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1. Introduction

A basic problem in the theory of monotone comparative statics concerns the behavior

of an optimal solution as the objective function changes.1 Consider a family of real-

valued functions {f(·, s)}s∈S, defined on the domain X ⊆ R and parameterized by s

in S ⊆ R. Under what conditions can we guarantee that2

argmaxx∈Xf(x, s′′) ≥ argmaxx∈Xf(x, s′) whenever s′′ > s′ ? (1)

In an influential paper, Milgrom and Shannon (1994) showed that (1) holds if the

family of functions {f(·, s)}s∈S obeys the single crossing property (SCP). Apart from

guaranteeing (1), the single crossing property has other features that makes it an

easily applicable concept for comparative statics, but it is not a necessary condition

for (1). Indeed, Milgrom and Shannon show that it is necessary and sufficient to

guarantee that

for all Y ⊆ X, argmaxx∈Y f(x, s′′) ≥ argmaxx∈Y f(x, s′) whenever s′′ > s′. (2)

This leaves open the possibility that there may be other useful concepts for compar-

ative statics in situations where the modeler is principally interested in comparative

statics on the domain X (rather than all subsets of X).

The first objective of this paper is to introduce a new way of ordering functions

that is weaker than the single crossing property but is still sufficient to guarantee (1).

We call this new order the interval dominance order (IDO). We show that the family

{f(·, s)}s∈S obeys the interval dominance order if and only if

for all intervals Y ⊆ X, argmaxx∈Y f(x, s′′) ≥ argmaxx∈Y f(x, s′) whenever s′′ > s′.

(3)

1Early contributions to this literature include Topkis (1978), Milgrom and Roberts (1990), Vives

(1990), and Milgrom and Shannon (1994). A textbook treatment can be found in Topkis (1998).

Ashworth and Bueno de Mesquita (2006) discusses applications in political science.
2The sets in (1) are ordered according to the strong set order, which we define in Section 2. It

reduces to the standard order on the real numbers when the sets are singletons.
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It is clear from this characterization that IDO is weaker than SCP.3

For IDO to be useful in applications, it helps if there is a simple way of checking for

the property. A sufficient condition for a family of differentiable functions {f(·, s)}s∈S
to obey IDO is that, for any two functions f(·, s′′) and f(·, s′) with s′′ > s′, there is

a nondecreasing positive function h (which may depend on s′ and s′′) such that

df

dx
(x, s′′) ≥ h(x)

df

dx
(x, s′).

We give applications where the function h arises naturally.

An important feature of the single crossing property is that it is, in some sense,

robust to the introduction of uncertainty. Suppose {f(·, s)}s∈S is an SCP family

and interpret s as the state of the world, which is unknown to the agent when he is

choosing x. Assuming that the agent is an expected utility maximizer, he will choose

x to maximize
∫
s∈S f(x, s)λ(s)ds, where λ is his subjective probability over states.

Since the optimal choice of x increases with s if s is known, one expects the agent’s

decision under uncertainty to have the same pattern, i.e., the optimally chosen x

should increase when higher states are more likely. It turns out that SCP does indeed

possess this comparative statics property (see Athey (2002)); formally,

argmaxx∈X

∫
s∈S

f(x, s)γ(s)ds ≥ argmaxx∈X

∫
s∈S

f(x, s)λ(s)ds (4)

whenever {f(·, s)}s∈S obeys SCP and γ dominates λ by the monotone likelihood

ratio.4 An important feature of the interval dominance order is that, even though it

is a weaker property than SCP, it is still robust to the introduction of uncertainty;

i.e., (4) holds whenever {f(·, s)}s∈S obeys IDO.

The second objective of this paper is to bridge the gap between the literature on

monotone comparative statics and the closely related literature in statistical decision

theory on informativeness. In that setting, the agent takes an action x (in X) before

3Y ⊂ X is an interval of X if any x ∈ X is also in Y whenever there is x′ and x′′ in Y such that

x′ ≤ x ≤ x′′. For example, if X = {1, 2, 3}, then {1, 2} (but not {1, 3}) is an interval of X.
4Note that γ dominates λ by the monotone likelihood ratio if γ(s)/λ(s) is increasing in s.
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the state is known but after observing a signal z (in Z ⊂ R) which conveys information

on the true state. The information structure H refers to the family of distribution

functions {H(·|s)}s∈S, where H(·|s) is the distribution of z conditional on the state s.

Assuming that the agent has a prior given by the density function λ on S, the value of

H for the payoff function f is V(H, f) ≡ maxφ∈D
[∫
s∈S

∫
z∈Z f(φ(z), s)dH(z|s)λ(s)ds

]
,

where D is the set of all decision rules (which are maps from Z to X). So V(H, f) is

the agent’s ex ante expected payoff from an optimally chosen decision rule.

Lehmann identifies an intuitive condition under which H can be thought of as

more informative than (another information structure) G. He goes on to show that

if H is more informative than G, then

V(H, f) ≥ V(G, f) (5)

whenever f obeys the following property: f(·, s) is a quasiconcave function of the

action x, and (1) holds. (In other words, the peaks of the quasiconcave functions

f(·, s) are moving right with increasing s.) This restriction imposed on f by Lehmann

implies that {f(·, s)}s∈S obeys the interval dominance order, but significantly, it need

not obey the single crossing property. We extend Lehmann’s result by showing that,

if H is more informative than G, then (5) holds whenever {f(·, s)}s∈S obeys IDO (and

thus, in particular, SCP). In this way, we have found a single condition on the payoff

function that is useful for both comparative statics and comparative informativeness,

so results in one category extend seamlessly into results in the other.5

Our final major result uses Lehmann’s informativeness theorem to identify con-

ditions under which a decision maker, including one who is not Bayesian, will pick a

decision rule where the action is increasing in the signal. (In statistical terminology,

5Economic applications of Lehmann’s concept of informativeness can be found in Persico (2000),

Athey and Levin (2001), Levin (2001), Bergemann and Valimaki (2002), and Jewitt (2006). The

distinction between Lehmann’s restriction on the payoff function and the single crossing property

was first highlighted in Jewitt (2006), which also discusses the significance of this distinction in

economic applications.
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increasing decision rules form an essentially complete class.) Our result generalizes

the complete class theorem of Karlin and Rubin (1956). Karlin and Rubin assume

that the payoff functions obey the same restriction as the one employed by Lehmann;

we generalize it to an IDO class of payoff functions.

The paper contains several applications, which serve primarily to illustrate the

use of the IDO property and the results relating to it, but may also be of interest

in themselves. The following are the main applications. (1) We show that for any

optimal stopping problem, a lower discount rate delays the optimal stopping time and

raises the value of the problem. (2) The IDO property can also be used to examine

a basic issue in optimal growth theory: we show that a lower discount rate leads

to capital deepening, i.e., the optimal capital stock is higher at all times. Both of

these results are shown under general conditions, providing significant extensions to

existing results. (3) We illustrate the use of the informativeness results by applying

them to a portfolio problem. Consider a group of investors who pool their funds

with a single fund manager; the manager chooses a portfolio consisting of a safe and

a risky asset, and each investor’s return is proportional to their contribution to the

fund. We show that a fund manager who is more informed than another in the sense

of Lehmann can choose a portfolio that gives higher ex ante utility to every investor.

(4) Finally, we consider a treatment response problem studied in Manski (2005). We

show that our generalization of Karlin and Rubin’s complete class theorem allows for

more realistic payoff functions and fractional treatment rules.6

The paper is organized as follows. The next section introduces the interval dom-

inance order and identifies some of its basic properties. Section 3 is devoted to

applications. The IDO property for decision-making under uncertainty is studied in

Section 4. In Section 5, we introduce Lehmann’s notion of informativeness and extend

his result while Section 6 proves a complete class theorem.

6The first two examples are found in Section 3, the third in Section 5, and the last in Section 6.
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2. The Interval Dominance Order

Let X be a subset of the real line (denoted by R) and f and g two real-valued

functions defined on X. We say that g dominates f by the single crossing property

(which we denote by g �SC f) if for all x′′ and x′ such that x′′ > x′, the following

holds:

f(x′′)− f(x′) ≥ (>) 0 =⇒ g(x′′)− g(x′) ≥ (>) 0. (6)

A family of real-valued functions {f(·, s)}s∈S, defined on X and parameterized by s

in S ⊂ R is referred to as an SCP family if the functions are ordered by the single

crossing property (SCP), i.e., whenever s′′ > s′, we have f(·, s′′) �SC f(·, s′). Note

that for any x′′ > x′, the function ∆ : S → R defined by ∆(s) = f(x′′, s) − f(x′, s)

crosses the horizontal axis at most once, which gives the motivation for the term

‘single crossing’.

The crucial role played by the single crossing property when comparing the so-

lutions to optimization problems was highlighted by Milgrom and Shannon (1994).

Since the solution to an optimization problem is not necessarily unique, before we

state their result, we must first define an ordering on sets. Let S ′ and S ′′ be two sub-

sets of R. We say that S ′′ dominates S ′ in the strong set order (see Topkis (1998)),

and write S ′′ ≥ S ′ if for any for x′′ in S ′′ and x′ in S ′, we have max{x′′, x′} in S ′′ and

min{x′′, x′} in S ′.7 It follows immediately from this definition that if S ′′ = {x′′} and

S ′ = {x′}, then x′′ ≥ x′. More generally, suppose that both sets contain their largest

and smallest elements. Then it is clear that the largest (smallest) element in S ′′ is

larger than the largest (smallest) element in S ′.8

7Note that this definition of the strong set order makes sense on any lattice (see Topkis (1998)).
8Throughout this paper, when we say that something is ‘greater’ or ‘increasing’, we mean to say

that it is greater or increasing in the weak sense. Most of the comparisons in this paper are weak, so

this convention is convenient. When we are making a strict comparison, we shall say so explicitly,

as in ‘strictly higher’, ‘strictly increasing’, etc.
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Theorem (Milgrom and Shannon (1994)): Suppose that f and g are real-valued

functions defined on X ⊂ R. Then argmaxx∈Y g(x) ≥ argmaxx∈Y f(x) for any Y ⊆ X

if and only if g �SC f .9

Note that the necessity of the single crossing property is obvious since we are re-

quiring monotonicity of the optimal solution for all subsets Y of X. In particular, we

can choose Y = {x′, x′′}, in which case argmaxx∈Y g(x) ≥ argmaxx∈Y f(x) implies (6).

In fact, SCP is not necessary for monotone comparative statics if we only require

argmaxx∈Y g(x) ≥ argmaxx∈Y f(x) for Y = X or for Y belonging to a particular sub-

collection of the subsets of X. Consider Figures 1 and 2: in both cases, we have

argmaxx∈Xg(x) ≥ argmaxx∈Xf(x); furthermore, argmaxx∈Y g(x) ≥ argmaxx∈Y f(x)

where Y is any closed interval contained in X. In Figure 1, SCP is satisfied (specif-

ically, (6) is satisfied) but this is not true in Figure 2. In Figure 2, we have f(x′) =

f(x′′) but g(x′′) < g(x′), violating SCP.

This type of violation of SCP can arise naturally in an economic setting, as the

following simple example shows. We shall return to this example at various points in

the paper to illustrate our results.

Example 1. Consider a firm producing some good whose price we assume is fixed

at 1 (either because of market conditions or for some regulatory reason). It has

to decide on the production capacity (x) of its plant. Assume that a plant with

production capacity x costs Dx, where D > 0. Let s be the state of the world, which

we identify with the demand for the good. The unit cost of producing the good in

state s is c(s). We assume that, for all s, D + c(s) < 1. The firm makes its capacity

decision before the state of the world is realized and its production decision after the

state is revealed.

Suppose it chooses capacity x and the realized state of the world (and thus realized

demand) is s ≥ x. In this case, the firm should produce up to its capacity, so that its

9Milgrom and Shannon’s result is situated in a lattice space. The theorem stated here is its

one-dimensional analog.
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profit Π(x, s) = x − c(s)x −Dx. On the other hand, if s < x, the firm will produce

(and sell) s units of the good, giving it a profit of Π(x, s) = s− c(s)s−Dx. It is easy

to see that Π(·, s) is increasing linearly for x ≤ s and thereafter declines, linearly with

a slope of −D. Its maximum is achieved at x = s, with Π(s, s) = (1 − c(s) − D)s.

Suppose s′′ > s′ and c(s′′) > c(s′); in other words, the state with higher demand

also has higher unit cost. Then it is possible that Π(s′′, s′′) < Π(s′′, s′); diagrammat-

ically, this means that the peak of the Π(·, s′′) curve (achieved at x = s′′) lies below

the Π(·, s′) curve. If this occurs, we have the situation depicted in Figure 2, with

f(·) = Π(·, s′) and g(·) = Π(·, s′′).

We wish to find a way of ordering functions that is useful for monotone compara-

tive statics and also weaker than the single crossing property. In particular, we want

the ordering to allow us to say that g dominates f (with respect to this new order)

whenever both functions are quasiconcave and argmaxx∈Xg(x) ≥ argmaxx∈Xf(x) (as

in Figure 2). To this end, it is useful to look again at Figure 2 and to notice that

violations of (6) can only occur if we compare points x′ and x′′ on opposite sides of

the maximum point of f . This suggests that a possible way of weakening SCP, while

retaining comparative statics, is to require (6) to hold only for a certain collection of

pairs {x′, x′′}, rather than all possible pairs.

The set J is an interval of X if, whenever x′ and x′′ are in J , any element x in X

such that x′ ≤ x ≤ x′′ is also in J .10 Let f and g be two real-valued functions defined

on X. We say that g dominates f by the interval dominance order (or, for short, g

I-dominates f , with the notation g �I f) if (6) holds for x′′ and x′ such that x′′ > x′

and f(x′′) ≥ f(x) for all x in the interval [x′, x′′] = {x ∈ X : x′ ≤ x ≤ x′′}. Clearly,

10Note that X need not be an interval in the conventional sense, i.e., X need not be, using our

terminology, an interval of R. Furthermore, the fact that J is an interval of X does not imply that

it is an interval of R. For example, if X = {1, 2, 3} then J = {1, 2} is an interval of X but of course

neither X nor J are intervals of R.
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the interval dominance order (IDO) is weaker than ordering by SCP. For example, in

Figure 2, g I-dominates f but g does not dominate f by SCP.

In visualizing the relationship between f and g, it may be helpful to note that we

could re-write the definition in the following manner: g �I f if

x′′ ∈ argmaxx∈[x′,x′′]f(x) (and x′ /∈ argmaxx∈[x′,x′′]f(x))

=⇒ x′′ ∈ argmaxx∈[x′,x′′]g(x) (and x′ /∈ argmaxx∈[x′,x′′]g(x)).

With the definition presented in this manner, it should come as no surprise that

g �I f guarantees that argmaxx∈Xg(x) ≥ argmaxx∈Xf(x). We state this formally in

Theorem 1, which gives the precise sense in which IDO is both sufficient and necessary

for monotone comparative statics. For the necessity part of the result, we shall impose

a mild regularity condition on the objective function. A function f : X → R is said

to be regular if argmaxx∈[x′,x′′]f(x) is nonempty for any points x′ and x′′ with x′′ > x′.

Suppose the set X is such that X ∪ [x′, x′′] is always closed, and thus compact, in R

(with the respect to the Euclidean topology). This is true, for example, if X is finite,

if it is closed, or if it is a (not necessarily closed) interval. Then f is regular if it is

upper semi-continuous with respect to the relative topology on X.

Theorem 1: Suppose that f and g are real-valued functions defined on X ⊂ R

and g �I f . Then the following property holds:

(?) argmaxx∈Jg(x) ≥ argmaxx∈Jf(x) for any interval J of X.

Furthermore, if property (?) holds and g is regular, then g �I f .

Proof: Assume that g I-dominates f and that x′′ is in argmaxx∈Jf(x) and x′ is

in argmaxx∈Jg(x). We need only consider the case where x′′ > x′. Since x′′ is in

argmaxx∈Jf(x), we have f(x′′) ≥ f(x) for all x in [x′, x′′] ⊆ J . Since g �I f , we also

have g(x′′) ≥ g(x′); thus x′′ is in argmaxx∈Jg(x). Furthermore, f(x′′) = f(x′) so that

x′ is in argmaxx∈Jf(x). If not, f(x′′) > f(x′) which implies (by the fact that g �I f)

that g(x′′) > g(x′), contradicting the assumption that g is maximized at x′.

To prove the other direction, we assume that there is an interval [x′, x′′] such that

f(x′′) ≥ f(x) for all x in [x′, x′′]. This means that x′′ is in argmaxx∈[x′,x′′]f(x). There
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are two possible violations of IDO. One possibility is that g(x′) > g(x′′); in this case,

by the regularity of g, the set argmaxx∈[x′,x′′]g(x) is nonempty but does not contain

x′′, which violates (?). Another possible violation of IDO occurs if g(x′′) = g(x′)

but f(x′′) > f(x′). In this case, the set argmaxx∈[x′,x′′]g(x) either contains x′, which

violates (?) since argmaxx∈[x′,x′′]f(x) does not contain x′, or it does not contain x′′,

which also violates (?). QED

While Theorem 1 is a straightforward result that follows easily from our definition

of the interval dominance order, it is worth stating as a theorem because it provides

the basic motivation for the concept. However, for the IDO concept to be genuinely

useful, we need to demonstrate that it has other attractive features. For the purposes

of application, it will be helpful if there is a simple way of checking that the property

holds. The next result provides such a condition.

Proposition 1: Suppose that X is an interval of R, the functions f , g : X → R

are absolutely continuous on compact intervals in X (and thus f and g are differ-

entiable a.e.), and there is an increasing and positive function α : X → R such

that g′(x) ≥ α(x)f ′(x) a.e. Then g �I f . More specifically, if f(x′′) ≥ f(x) for all

x ∈ [x′x′′], then

g(x′′)− g(x′) ≥ α(x′)(f(x′′)− f(x′)). (7)

If the function α in Proposition 1 is a constant ᾱ, then we obtain g(x′′)− g(x′) ≥

ᾱ(f(x′′) − f(x′)), which implies g �SC f . When α is not a constant, the functions f

and g in Proposition 1 need not be related by SCP, as the following example shows.

Let f : [0,M ] → R be a differentiable and quasiconcave function, with f(0) = 0

and a unique maximum at x∗ in (0,M). Let α : [0,M ] → R be given by α(x) = 1

for x ≤ x∗ and α(x) = 1 + (x − x∗) for x > x∗. Consider g : [0,M ] satisfying

g(0) = f(0) = 0 with g′(x) = α(x)f ′(x) (as in Proposition 1). Then it is clear that

g(x) = f(x) for x ≤ x∗ and g(x) < f(x) for x > x∗. In other words, g coincides with f
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up to the point x = x∗; thereafter, g falls more steeply than f . The function g is also

quasiconcave with a unique maximum at x∗ and g I-dominates f (weakly), but g does

not dominate f by SCP. To see this, choose x′ and x′′ on either side of x∗ such that

f(x′) = f(x′′). Then we have a violation of (6) since g(x′) = f(x′) = f(x′′) > g(x′′).

Proposition 1 is a consequence of the following lemma.

Lemma 1: Suppose [x′, x′′] is a compact interval of R and α and h are real-valued

functions defined on [x′, x′′], with h integrable and α increasing (and thus integrable

as well). If
∫ x′′
x
h(t)dt ≥ 0 for all x in [x′, x′′], then∫ x′′

x′
α(t)h(t)dt ≥ α(x′)

∫ x′′

x′
h(t)dt. (8)

Proof: We confine ourselves to the case where α is an increasing and differentiable

function. If we can establish (8) for such functions, then we can extend it to all

increasing functions α since any such function can be approximated by an increasing

and differentiable function.

The function H(t) ≡ α(t)
∫ x′′
t
h(z)dz is absolutely continuous and thus differen-

tiable a.e. By the fundamental theorem of calculus, H(x′′) − H(x′) =
∫ x′′
x′
H ′(t)dt;

furthermore, H(x′) = α(x′)
∫ x′′
x′
h(t)dt, H(x′′) = 0, and by the product rule,

H ′(t) = α′(t)

∫ x′′

t

h(z)dz − α(t)h(t). (9)

Therefore,

−α(x′)

∫ x′′

x′
h(t)dt = −H(x′)

=

∫ x′′

x′
H ′(t) dt

=

∫ x′′

x′
α′(x)

(∫ x′′

t

h(z)dz

)
dt−

∫ x′′

x′
α(t)h(t) dt,

where the last equality follows from (9). The term
∫ x′′
x′
α′(x)

(∫ x′′
t
h(z)dz

)
dt ≥ 0 by

assumption and so (8) follows. QED
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Proof of Proposition 1: Consider x′′ and x′ in X such that x′′ > x′ and assume

that f(x) ≤ f(x′′) for all x in [x′, x′′]. Since f is absolutely continuous on [x′, x′′],

f(x′′)− f(x) =
∫ x′′
x
f ′(t)dt (with an analogous expression for g). We then have∫ x′′

x′
g′(t)dt ≥

∫ x′′

x′
α(t)f ′(t)dt ≥ α(x′)

∫ x′′

x′
f ′(t)dt,

where the second inequality follows from Lemma 1. This leads to (7), from which we

obtain g(x′′) ≥ (>)g(x′) if f(x′′) ≥ (>)f(x′). QED

In this section, we introduced the interval dominance order and showed how it is

relevant to monotone comparative statics. The next section is devoted to applying the

theoretical results obtained so far: we illustrate the use (and usefulness) of the IDO

property through a number of simple examples. We shall focus on individual decision

problems, though our methods can also be applied in a game-theoretic context.11

Our theory could be fruitfully developed in different directions. For example, the

interval dominance order can be extended to a multidimensional setting. Notions like

quasisupermodularity (Milgrom and Shannon (1994)) and C-quasisupermodularity

(Quah (2007)), which are important for multidimensional comparative statics, are

essentially variations on the single crossing property; therefore, like the single crossing

property, they can also be generalized. We explore these issues in a companion paper

(see Quah and Strulovici (2007)).

In this paper, we shall instead focus on the development of the theory for decision-

making under uncertainty. In particular, we show in Section 4 that the interval

dominance order shares an important feature with the SCP order - in some precise

11Monotone comparative statics based on the single crossing property has been used, amongst

other things, to guarantee that a player’s strategy is increasing in the strategy of his opponent

(see Milgrom and Roberts (1990)) and, in Bayesian games, to guarantee that a player’s strategy

is increasing in the signal he receives (Athey (2001)). An IDO-based theory can serve the same

purpose and, since our results are more general, the restrictions on payoff functions to guarantee

monotonicity are potentially less stringent.
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sense, the order is preserved when one moves from a non-stochastic to a stochastic

environment. Section 4 also provides the foundation for the results on informativeness

covered in Sections 5 and 6. Readers who are keen on exploring those developments

can skip the next section and go straight to Section 4.

3. Applications of the IDO property

Example 2. A very natural application of Proposition 1 is to the comparative stat-

ics of optimal stopping time problems. We consider a simple deterministic problem

here; in Quah and Strulovici (2007) we show that the results in the next proposition

extend naturally to a stochastic optimal stopping time problem.

Suppose we are interested in maximizing Vδ(x) =
∫ x

0
e−δtu(t)dt for x ≥ 0, where

δ > 0 and the function u : R+ → R is bounded on compact intervals and measurable.

So x may be interpreted as the stopping time, δ is the discount rate, u(t) the cash

flow or utility of cash flow at time t (which may be positive or negative), and Vδ(x)

is the discounted sum of the cash flow (or its utility) when x is the stopping time.

We are interested in how the optimal stopping time changes with the discount

rate. It seems natural that the optimal stopping time will rise as the discount rate

δ falls. This intuition is correct but it cannot be proved by the methods of concave

maximization since Vδ need not be a quasiconcave function. Indeed, it will have a

turning point every time u changes sign and its local maxima occur when u changes

sign from positive to negative. Changing the discount rate does not change the times

at which local maxima are achieved, but it potentially changes the time at which

the global maximum is achieved, i.e., it changes the optimal stopping time. The next

result gives the solution to this problem.

Proposition 2: Suppose that δ1 > δ2 > 0. Then the following holds:

(i) Vδ2 �I Vδ1;

(ii) argmaxx≥0Vδ2(x) ≥ argmaxx≥0Vδ1(x); and

(iii) maxx≥0 Vδ2(x) ≥ maxx≥0 Vδ1(x).
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Proof: The functions Vδ2 and Vδ1 are absolutely continuous and thus differentiable

a.e.; moreover,

V ′δ2(x) = e−δ2xu(x) = e(δ1−δ2)xV ′δ1(x).

Note that the function α(x) = e(δ1−δ2)x is increasing, so Vδ2 �I Vδ1 (by Proposition 1)

and (ii) follows from Theorem 1. For (iii), let us suppose that Vδ1(x) is maximized

at x = x∗. Then for all x in [0, x∗], Vδ1(x) ≤ Vδ1(x
∗). Note that Vδ1(0) = Vδ2(0) = 0

and α(0) = 1. Thus, applying the inequality (7) (with x′ = 0 and x′′ = x∗) we obtain

Vδ2(x
∗) ≥ Vδ1(x

∗). Since maxx≥0 Vδ2(x) ≥ Vδ2(x
∗), we obtain (iii). QED

Arrow and Levhari (1969) has a version of Proposition 2(iii) (but not (ii)). They

require u to be a continuous function; with this assumption, they show that the value

function V̄ , defined by V̄ (δ) = maxx≥0 Vδ(x) is right differentiable and has a negative

derivative. This result is the crucial step (in their proof) guaranteeing the existence

of a unique internal rate of return for an investment project, i.e., a unique δ∗ such

that V̄ (δ∗) = 0. It is possible for us to extend and apply Proposition 2 to prove

something along these lines, but we shall not do so in this paper.12

We should point out that we cannot strengthen Proposition 2(i) to say that Vδ2 �SC

Vδ1 . To see this, suppose u(t) = 1 − t and choose x′ and x′′ (with x′ and x′′ smaller

and bigger than 1 respectively) such that Vδ1(x
′) = Vδ1(x

′′). It follows from this that

the function F , defined by F (δ) = Vδ(x
′′)− Vδ(x′) =

∫ x′′
x′
e−δt(1− t) dt satisfies

F (δ1) =

∫ x′′

x′
e−δ1t(1− t) dt = 0. (10)

Note that F ′(δ1) = −
∫ x′′
x′
e−δ1tt(1− t) dt > 0 because of (10). Therefore, if δ2 is close

to and smaller than δ1, we have F (δ2) < 0; equivalently, Vδ2(x
′) > Vδ2(x

′′). So we

obtain a violation of SCP.

Put another way, if u(t) = 1− t and the only stopping times available to the agent

were x′ and x′′, then while the agent will be indifferent between them at δ = δ1, she

will strictly prefer x′ at δ = δ2 – so a lower discount rate leads to earlier stopping. On

12We would like to thank H. Polemarchakis for pointing out Arrow and Levhari’s result.
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the other hand, if she can stop at any time x ≥ 0, then it is clear that, whatever the

discount rate, it is optimal to stop just before u turns negative, i.e. at x = 1. This is

reflected in Proposition 2.

Example 3. Consider a firm that chooses output x to maximize profit, given by

Π(x) = xP (x) − C(x), where P is the inverse demand function and C is the cost

function. Imagine that there is a change in market conditions, so that both P and

C are changed to P̃ and C̃ respectively. When can we say that argmaxx≥0Π̃(x) ≥

argmaxx≥0Π(x)? By Theorem 1, this holds if Π̃ I-dominates Π. Intuitively, we expect

this to hold if the increase in the inverse demand is greater than any increase in costs.

This idea can be formalized in the following manner.

Assume that all the functions are differentiable, that P̃ and P take strictly positive

values, and that the cost functions are strictly increasing. Define a(x) = P̃ (x)/P (x).

Differentiating Π̃(x) = a(x)xP (x)− C̃(x)

Π̃′(x) = a′(x)xP (x) + a(x)(xP (x))′ − C̃ ′(x)

≥ a(x)(xP (x))′ −

[
C̃ ′(x)

C ′(x)

]
C ′(x),

where the inequality holds because xP (x) > 0. Now suppose that

a(x) =
P̃ (x)

P (x)
≥ C̃ ′(x)

C ′(x)
, (11)

then we obtain Π̃′(x) ≥ a(x)Π′(x). By Proposition 1, Π̃ I-dominates Π if a is increasing

and (11) holds; in other words, the ratio of the inverse demand functions is increasing

in x and greater than the ratio of the marginal costs.13

Example 4. We wish to show, in the context of a standard optimal growth model,

that lowering the discount rate of the representative agent leads to capital deepening:

specifically, a higher capital stock at all times. Formally, the agent solves

max U(c, k) =

∫ ∞
0

e−δsu(c(s), k(s), s)ds subject to

13Note that our argument does not require that P be decreasing in x.
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(a) k̇(t) = H(c(t), k(t), t); (b) k(t) ≥ 0 and 0 ≤ c(t) ≤ Q(k(t), t); and (c) k(0) = k0.

The scalars c(t) and k(t) are the consumption and capital stock at time t respec-

tively. Q is the production function, u the felicity function, and δ the discount rate.

It is standard to have H(c(t), k(t), t) = Q(k(t), t)− c(t)−ηk(t) where η ∈ (0, 1) is the

(constant) rate of depreciation, but our result does not rely on this functional form.

We also allow felicity to depend on consumption and capital (rather than just the

former) and both the felicity and production functions may vary with t directly. In

these respects, our model specification is more general than what is often assumed.

We say that capital is beneficial if the optimal value of
∫ t2
t1
e−δsu(c(s), k(s), s)ds

subject to (a), (b), and the boundary conditions k(t1) = k1 and k(t2) = k2 is strictly

increasing in k1. In other words, raising the capital stock at t1 strictly increases

the utility achieved in the period [t1, t2]. Clearly, this is a mild condition which, in

essence, is guaranteed if felicity strictly increases with consumption and production

strictly increases with capital. This condition is all that is needed to guarantee that

a lower discount rate leads to capital deepening.14

Proposition 3: Suppose that capital is beneficial and (c̄, k̄) and (ĉ, k̂) are solu-

tions to the optimal growth problem at discount rates δ̄ and δ̂ respectively. If δ̂ < δ̄,

then k̂(t) ≥ k̄(t) for all t ≥ 0.

Proof: First, observe that the function F (·, T, δ̂) I-dominates F (·, T, δ̄), where

F (t, T, δ) ≡
∫ T

t

e−δs
[
u(ĉ(s), k̂(s), s)− u(c̄(s), k̄(s), s)

]
ds with δ = δ̄, δ̂. (12)

This follows from Proposition 1 since Ft(t, T, δ̂) = e(δ̄−δ̂)tFt(t, T, δ̄).
15 In particular,

14The reader may consult Boyd and Becker (1997) for a discussion of other results (in particular,

Amir (1996)) on the response of capital to the discount rate. Typically, these results are valid for

multiple capital goods and require, amongst other things, the supermodularity of the value function.

When specialized to the case of one capital good, those assumptions are still stronger than the ones

made in Proposition 3.
15Note that we cannot conclude that F (·, T, δ̂) SCP-dominates F (·, T, δ̄) without more information

on the integrand in (12). See the discussion at the end of Example 2.
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suppose that for all t in some interval [t, T ] we have F (t, T, δ̄) ≤ 0. Since F (T, T, δ̄) =

0, we obtain by the I-dominance property that F (t, T, δ̂) ≤ F (T, T, δ̂) = 0. Indeed,

we can say more. If F (t, T, δ̄) < 0 for t in a set of non-zero measure in [t, T ], then

F (t, T, δ̂) < 0.16

Suppose that, contrary to our claim, there is some time t′ at which k̄(t′) > k̂(t′).

Let t be the largest t below t′ such that k̄(t) = k̂(t); the existence of t is guaranteed

by the continuity of k̄ and k̂ and the fact that k̄(0) = k̂(0). Let T be the earliest

time after t′ at which k̄(T ) = k̂(T ). Set T = ∞ if no such time exists. So for t in

the interval [t, T ], we have k̄(t) ≥ k̂(t), with a strict inequality for t in (t, T ). For a

given t, denote by (c̃, k̃) the path that maximizes
∫ T
t
e−δ̄su(c(s), k(s), s)ds subject to

(a), (b), and the boundary conditions k(t) = k̂(t) and k(T ) = k̄(T ). We have∫ T

t

e−δ̄su(c̄(s), k̄(s), s)ds ≥
∫ T

t

e−δ̄su(c̃(s), k̃(s), s)ds ≥
∫ T

t

e−δ̄su(ĉ(s), k̂(s), s)ds.

The second inequality follows from the optimality of (c̃, k̃). The first inequality is an

equality if t = t and (by the fact that capital is beneficial) a strict inequality if t is

in (t, T ). So F (t, T, δ̄) ≤ 0 for t in [t, T ], with a strict inequality for t in (t, T ). We

have shown in the preceding paragraph that this implies that F (t, T, δ̂) < 0. This is

a contradiction because the optimality of (ĉ, k̂) at the discount rate δ̂ means that it

cannot accumulate strictly less utility over the interval [t, T ] than (c̄, k̄). QED

4. The interval dominance order when the state is uncertain

Consider the following problem. Let {f(·, s)}s∈S be a family of functions parame-

terized by s in S, an interval of R, with each function f(·, s) mapping Y , an interval of

R, to R. Assume that all the functions are quasiconcave, with their peaks increasing

in s; by this we mean that argmaxx∈Y f(x, s′′) ≥ argmaxx∈Y f(x, s′) whenever s′′ > s′.

16We can see this by re-tracing the proof of Lemma 1. In Lemma 1, the inequality (3) is strict if

(a)
∫ x′′

x
h(t)dt > 0 for x in a set with positive measure in (x′, x′′) and (b) α is a strictly increasing

function. Note that in this application, α(t) = e(δ̄−δ̂)t, which is strictly increasing in t.
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(Since f(·, s) is quasiconcave, its set of maximizers is either a singleton or an interval.)

We shall refer to such a family of functions as a QCIP family, where QCIP stands

for quasiconcave with increasing peaks. Interpreting s to be the state of the world,

an agent has to choose x under uncertainty, i.e., before s is realized. We assume the

agent maximizes the expected value of his objective; formally, he maximizes

F (x, λ) =

∫
s∈S

f(x, s)λ(s)ds,

where λ : S → R is the density function defined over the states of the world. It

is natural to think that if the agent considers the higher states to be more likely,

then his optimal value of x will increase. Is this true? More generally, we can ask

the same question if the functions {f(·, s)}s∈S form an IDO family, i.e., a family of

regular functions f(·, s) : X → R, with X ⊆ R, such that f(·, s′′) I-dominates f(·, s′)

whenever s′′ > s′.

One way of formalizing the notion that higher states are more likely is via the

monotone likelihood ratio (MLR) property. Let λ and γ be two density functions

defined on the interval S of R and assume that λ(s) > 0 for s in S. We call γ an

MLR shift of λ if γ(s)/λ(s) is increasing in s. For density changes of this kind, there

are two results that come close, though not quite, to addressing the problem we posed.

Ormiston and Schlee (1993) identify some conditions under which an MLR shift in

the density function will raise the agent’s optimal choice. Amongst other conditions,

they assume that F (·;λ) is quasiconcave. This will hold if all the functions in the

family {f(·, s)}s∈S are concave but will not generally hold if the functions are just

quasiconcave. Athey (2002) has a related result which says that an MLR shift will

lead to a higher optimal choice of x provided {f(·, s)}s∈S is an SCP family. As we

had already pointed out in Example 1, a QCIP family need not be an SCP family.

The next result gives the solution to the problem we posed.

Theorem 2: Let S be an interval of R and {f(·, s)}s∈S be an IDO family. Then

F (·, γ) �I F (·, λ) if γ is an MLR shift of λ. Consequently, argmaxx∈XF (x, γ) ≥
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argmaxx∈XF (x, λ).

Notice that since {f(·, s)}s∈S in Theorem 2 is assumed to be an IDO family, we

know (from Theorem 1) that argmaxx∈Xf(x, s′′) ≥ argmaxx∈Xf(x, s′). Thus Theo-

rem 2 guarantees that the comparative statics which holds when s is known also holds

when s is unknown but experiences an MLR shift.17,18

The proof of Theorem 2 requires a lemma (stated below). Its motivation arises

from the observation that if g �SC f , then for any x′′ > x′ such that g(x′)− g(x′′) ≥

(>) 0, we must also have f(x′)− f(x′′) ≥ (>) 0. Lemma 2 is the (less trivial) analog

of this observation in the case when g �I f .

Lemma 2: Let X be a subset of R and f and g two regular functions defined on

X. Then g �I f if and only if the following property holds:

(M) if g(x′) ≥ g(x) for x in [x′, x′′] then

g(x′)− g(x′′) ≥ (>) 0 =⇒ f(x′)− f(x′′) ≥ (>) 0.

Proof: Suppose x′ < x′′ and g(x′) ≥ g(x) for x in [x′, x′′]. There are two possible

ways for property (M) to be violated. One possibility is that f(x′′) > f(x′). By

regularity, we know that argmaxx∈[x′,x′′]f(x) is nonempty; choosing x∗ in this set, we

have f(x∗) ≥ f(x) for all x in [x′, x∗], with f(x∗) ≥ f(x′′) > f(x′). Since g �I f , we

must have g(x∗) > g(x′), which is a contradiction.

The other possible violation of (M) occurs if g(x′) > g(x′′) but f(x′) = f(x′′). By

regularity, we know that argmaxx∈[x′,x′′]f(x) is nonempty, and if f is maximized at x∗

with f(x∗) > f(x′), then we are back to the case considered above. So assume that

x′ and x′′ are both in argmaxx∈[x′,x′′]f(x). Since f �I g, we must have g(x′′) ≥ g(x′),

contradicting our initial assumption.

17We are echoing an observation that was made by Athey (2002) in a similar context.
18Apart from being interesting in itself, the monotonicity property guaranteed by Theorem 2 can

play a crucial role in establishing the existence of a pure strategy equilibrium in certain Bayesian

games (see Athey (2001)).
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So we have shown that (M) holds if g �I f . The proof that (M) implies g �I f is

similar. QED

Proof of Theorem 2: This consists of two parts. Firstly, we prove that if F (x′′, λ) ≥

F (x, λ) for all x in [x′, x′′], then, for any s̃ in S,∫ s∗

s̃

(f(x′′, s)− f(x′, s))λ(s)ds ≥ 0 (13)

(where s∗ denotes the supremum of S). Assume instead that there is s̄ such that∫ s∗

s̄

(f(x′′, s)− f(x′, s))λ(s)ds < 0. (14)

By the regularity of f(·, s̄), there is x̄ that maximizes f in [x′, x′′]. In particular,

f(x̄, s̄) ≥ f(x, s̄) for all x in [x̄, x′′]. Since {f(·, s)}s∈S is an IDO family of regular

functions, we also have f(x̄, s) ≥ f(x′′, s) for all s ≤ s̄ (using Lemma 2). Thus∫ s̄

s∗

(f(x̄, s)− f(x′′, s))λ(s)ds ≥ 0, (15)

where s∗ is the infimum of S. Notice also that f(x̄, s̄) ≥ f(x, s̄) for all x in [x′, x̄],

which implies that f(x̄, s) ≥ f(x′, s) for all s ≥ s̄. Aggregating across s we obtain∫ s∗

s̄

(f(x̄, s)− f(x′, s))λ(s)ds ≥ 0. (16)

It follows from (14) and (16) that∫ s∗

s̄

(f(x̄, s)− f(x′′, s))λ(s)ds =

∫ s∗

s̄

(f(x̄, s)− f(x′, s))λ(s)ds

+

∫ s∗

s̄

(f(x′, s)− f(x′′, s))λ(s)ds

> 0.

Combining this with (15), we obtain
∫ s∗
s∗

(f(x̄, s)− f(x′′, s))λ(s)ds > 0 ; in other

words, F (x̄, λ) > F (x′′, λ), which is a contradiction.

Given (13), the function H(·, λ) : [s∗, s
∗]→ R defined by

H(s̃, λ) =

∫ s̃

s∗

(f(x′′, s)− f(x′, s)) γ(s)ds
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satisfies H(s∗, λ) ≥ H(s̃, λ) for all s̃ in [s∗, s
∗]. Defining H(·, γ) in an analogous fash-

ion, we also have H ′(s̃, γ) = [γ(s)/λ(s)]H ′(s̃, λ) for s̃ in S. Since γ is an upward MLR

shift of λ, the ratio γ(s)/λ(s) is increasing in s. By Proposition 1, H(·, γ) �I H(·, λ).

In particular, we have H(s∗, γ) ≥ (>)H(s∗, γ) = 0 if H(s∗, λ) ≥ (>)H(s∗, λ) = 0.

Re-writing this, we have F (x′′, γ) ≥ (>)F (x′, γ) if F (x′′, λ) ≥ (>)F (x′, λ). QED

Note that Theorem 2 remains true if S is not an interval; in Appendix A, we prove

Theorem 2 in the case where S is a finite set of states. We also show in that appendix

that the MLR condition in Theorem 2 cannot be weakened in the following sense: if

γ is not an MLR shift of λ, then there is an SCP (hence IDO) family {f(·, s)}s∈S such

that argmaxx∈XF (x, γ) < argmaxx∈XF (x, λ).

We turn now to two simple applications of Theorem 2.

Example 1 continued. Recall that in state s, the firm’s profit is Π(x, s). It achieves

its maximum at x∗(s) = s, with Π(s, s) = (1 − c(s) −D)s, which is strictly positive

by assumption. The firm has to choose its capacity before the state of the world is

realized; we assume that s is drawn from S, an interval in R, and has a distribution

given by the density function λ : S → R. We can think of the firm as maximizing its

expected profit, which is
∫
S

Π(x, s)λ(s)ds, or more generally, its expected utility from

profit which is U(x, λ) =
∫
S
u(Π(x, s), s)λ(s)ds, where, for each s, the function u(·, s) :

R → R is strictly increasing. The family {u(Π(·, s), s)}s∈S consists of quasiconcave

functions, the peaks of which are increasing in s. This is an IDO family. By Theorem

2, we know that an upward MLR shift of the density function will lead the firm to

choose a greater capacity.

Example 5. Consider a firm that has to decide on when to launch a new product.

The more time the firm gives itself, the more it can improve the quality of the product

and its manufacturing process, but it also knows that there is a rival about to launch

a similar product. In formal terms, we assume that the firm’s profit (if it is not

anticipated by its rival) is an increasing function of time φ : R+ → R+. If the rival

launches its product at time s, then the firm’s profit falls to w(s) (in R). In other
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words, the firm’s profit function in state s, denoted by π(·, s) satisfies π(t, s) = φ(t)

for t ≤ s and π(t, s) = w(s) for t > s, where w(s) < φ(s). Clearly, each π(·, s) is

a quasiconcave function and {π(·, s)}s∈S is an IDO family. The firm decides on the

launch date t by maximizing F (t, λ) =
∫
s∈S π(t, s)λ(s)ds, where λ : R+ → R is the

density function over s. By Theorem 2, if the firm thinks that it is less likely that the

rival will launch early, in the sense that there is an MLR shift in the density function,

then it will decide on a later launch date.

Note that IDO imposes no restrictions on the function w : R+ → R, which gives

the firm’s profit should it be anticipated by its rival at time s. One can check that

{π(·, s)}s∈S is an SCP family if (and only if) w is an increasing function of s, but

Theorem 2 gives us the desired conclusion without making this stronger assumption.

5. Comparing Information Structures19

Consider an agent who, as in the previous section, has to make a decision before

the state of the world (s) is realized, where the set of possible states S is a subset of R.

Suppose that, before he makes his decision, the agent observes a signal z. This signal

is potentially informative of the true state of the world; we refer to the collection

{H(·|s)}s∈S , where H(·|s) is the distribution of the signal z conditional on s, as the

information structure of the decision maker’s problem. (Whenever convenient, we

shall simply call this information structure H.) We assume that, for every s, H(·|s)

admits a density function and has the compact interval Z ⊂ R as its support. We

say that H is MLR-ordered if the density function of H(·|s′′) is an MLR shift of the

density function of H(·|s′) whenever s′′ > s′.

We assume that the agent has a prior distribution Λ on S. We allow either of the

following: (i) S is a compact interval and Λ admits a density function with S as its

support or (ii) S is finite and Λ has S as its support. The agent’s decision rule (under

19We are very grateful to Ian Jewitt for introducing us to the literature in this section and the

next and for extensive discussions.
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H) is a measurable map from Z to the set of actions X (contained in R). Denoting

the utility of action x in state s by u(x, s), the decision rule φ : Z → X gives the ex

ante expected utility U(φ,H,Λ) =
∫
S

∫
Z
u(φ(z), s)dH(z|s) dΛ(s).

We denote the agent’s posterior distribution (on S) upon observing z by Λz
H . The

ex ante utility of an agent with the decision rule φ : Z → X may be equivalently

written as

U(φ,H,Λ) =

∫
z∈Z

[∫
s∈S

u(φ(z), s)dΛz
H

]
dMH,Λ

where MH,Λ is the marginal distribution of z. A decision rule φ̂ : Z → X that

maximizes the agent’s (posterior) expected utility at each realized signal is called an

H-optimal decision rule. We assume that X is compact and that {u(·, s)}s∈S is an

equicontinuous family. This guarantees that the map from x to
∫
S
u(x, s)dΛz

H(s) is

continuous, so the problem maxx∈X
∫
S
u(x, s)dΛz

H(s) has a solution at every value of

z; in other words, φ̂ exists. The agent’s ex ante utility using such a rule is denoted

by V(H,Λ, u).

Consider now an alternative information structure given by G = {G(·|s)}s∈S; we

assume that G(·|s) admits a density function and has the compact interval Z as its

support. What conditions will guarantee that the information structure H is more

favorable than G in the sense of offering the agent a higher ex ante utility; in other

words, how can we guarantee that V(H,Λ, u) ≥ V(G,Λ, u)?

It is well known that this holds if H is more informative than G according to the

criterion developed by Blackwell (1953); furthermore, this criterion is also necessary if

one does not impose significant restrictions on u (see Blackwell (1953) or, for a recent

textbook treatment, Gollier (2001)). We wish instead to consider the case where a

significant restriction is imposed on u; specifically, we assume that {u(·, s)}s∈S is an

IDO family. We show that, in this context, a different notion of informativeness due

to Lehmann (1988) is the appropriate concept.20

20Jewitt (2006) gives the precise sense in which Lehmann’s concept is weaker than Blackwell’s

(see also Lehmann (1988) and Persico (2000)) and also discusses its relationship with the concept
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Our assumptions on H guarantee that, for any s, H(·|s) admits a density function

with support Z; therefore, for any (z, s) in Z × S, there exists a unique element in

Z, which we denote by T (z, s), such that H(T (z, s)|s) = G(z|s). We say that H is

more accurate than G if T is an increasing function of s.21 Our goal in this section is

to prove the following result.

Theorem 3: Suppose {u(·, s)}s∈S is an IDO family, G is MLR-ordered, and Λ

is the agent’s prior distribution on S. If H is more accurate than G, then

V(H,Λ, u) ≥ V(G,Λ, u). (17)

This theorem generalizes a number of earlier results. Lehmann (1988) establishes

a special case of Theorem 3 in which {u(·, s)}s∈S is a QCIP family. Persico (1996)

has a version of Theorem 3 in which {u(·, s)}s∈S is an SCP family, but he requires the

optimal decision rule to vary smoothly with the signal, a property that is not generally

true without the sufficiency of the first order conditions for optimality. Jewitt (2006)

proves Theorem 3 for the general SCP case.22

To prove Theorem 3, we first note that if G is MLR-ordered, then the family of

posterior distributions {Λz
G}z∈Z is also MLR-ordered, i.e., if z′′ > z′ then Λz′′

G is an

MLR shift of Λz′
G.23 Since {u(·, s)}s∈S is an IDO family, Theorem 2 guarantees that

of concordance. Some papers with economic applications of Lehmann’s concept of informativeness

are Persico (2000), Athey and Levin (2001), Levin (2001), Bergemann and Valimaki (2002), and

Jewitt (2006). Athey and Levin (2001) explore other related concepts of informativeness and their

relationship with the payoff functions. The manner in which these papers are related to Lehmann’s

(1988) result and to each other is not straightforward; Jewitt (2006) provides an overview.
21The concept is Lehmann’s; the term accuracy follows Persico (2000).
22However, there is a sense in which it is incorrect to say that Theorem 3 generalizes Lehmann’s

result. The criterion employed by us here (and indeed by Persico (1996) and Jewitt (2006) as well)

- comparing information structures with the ex ante utility - is less stringent than the criterion

Lehmann used. In the next section we shall compare information structures using precisely the

same criterion as Lehmann and prove a result (Corollary 1) that is stronger than Theorem 3.
23To be precise, in the case when S is an interval, we mean that their associated density functions
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there exists a G-optimal decision rule that is increasing in z. Therefore, Theorem 3

is valid if we can show that for any increasing decision rule ψ : Z → X under G there

is a rule φ : Z → X under H that gives a higher ex ante utility, i.e.,∫
S

∫
Z

u(φ(z), s)dH(z|s) dΛ(s) ≥
∫
S

∫
Z

u(ψ(z), s)dG(z|s) dΛ(s).

This inequality in turn follows from aggregating (across s) the inequality (18) below.

Proposition 4: Suppose {u(·, s)}s∈S is an IDO family and H is more accurate

than G. Then for any increasing decision rule ψ : Z → X under G, there is an

increasing decision rule φ : Z → X under H such that, at each state s, the distribution

of utility induced by φ and H(·|s) first order stochastically dominates the distribution

of utility induced by ψ and G(·|s). Consequently, at each state s,∫
Z

u(φ(z), s)dH(z|s) ≥
∫
Z

u(ψ(z), s)dG(z|s). (18)

(At a given state s, a decision rule ρ and a distribution on z induces a distribution

of utility in the following sense: for any measurable set U of R, the probability of

{u ∈ U} equals the probability of {z ∈ Z : u(ρ(z), s) ∈ U}. So it is meaningful to

refer, as this proposition does, to the distribution of utility at each s.)

Our proof of Proposition 4 requires the following lemma.

Lemma 3: Suppose {u(·, s)}s∈S is an IDO family and H is more accurate than

G. Then for any increasing decision rule ψ : Z → X under G, there is an increasing

decision rule φ : Z → X under H such that, for all (z, s),

u(φ(T (z, s)), s) ≥ u(ψ(z), s). (19)

Proof: We shall only demonstrate here how we construct φ from ψ in the case

where ψ takes only finitely many values. This is true, in particular, when the set of

are MLR-ordered. In the case when S consists of finitely many elements, the definition of MLR-

ordering is given in Appendix A.
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actions X is finite. The extension to the case where the range of ψ is infinite is shown

in Appendix B; the proof that φ is increasing is also postponed to that appendix.

The proof below assumes that S is a compact interval, but it can be modified in an

obvious way to deal with the case where S is finite.

For every t̄ in Z and s in S, there is a unique z̄ in Z such that t̄ = T (z̄, s). This

follows from the fact that G(·|s) is a strictly increasing continuous function (since it

admits a density function with support Z). We write z̄ = τ(t̄, s); note that because

T is increasing in both its arguments, the function τ : Z × S → Z is decreasing in s.

Note also that (19) is equivalent to

u(φ(t), s) ≥ u(ψ(τ(t, s)), s). (20)

We will now show how φ(t) may be chosen to satisfy (20).

Note that because τ is decreasing and ψ is increasing the function ψ(τ(t, ·)) is

decreasing in s. This, together with our assumption that ψ takes finitely many

values, allow us to partition S = [s∗, s∗∗] into the sets S1, S2,..., SM , where M is odd,

with the following properties: (i) if m > n, then any element in Sm is greater than

any element in Sn; (ii) whenever m is odd, Sm is a singleton, with S1 = {s∗} and

SM = {s∗∗}; (iii) when m is even, Sm is an open interval; (iv) for any s′ and s′′ in Sm,

we have ψ(τ(t, s′)) = ψ(τ(t, s′′)); and (v) for s′′ in Sm and s′ in Sn such that m > n,

ψ(τ(t, s′)) ≥ ψ(τ(t, s′′)).

In other words, we have partitioned S into finitely many sets, so that within each

set, ψ(τ(t, ·)) takes the same value. Denoting ψ(τ(t, s)) for s in Sm by ψm, (v) says

that ψ1 ≥ ψ2 ≥ ψ3 ≥ ... ≥ ψM . Establishing (20) involves finding φ(t) such that

u(φ(t), sm) ≥ u(ψm, sm) for any sm ∈ Sm; m = 1, 2, ...,M . (21)

In the interval [ψ2, ψ1], we pick the largest action φ̂2 that maximizes u(·, s∗) in

that interval. This exists because u(·, s∗) is continuous and X ∩ [ψ2, ψ1] is compact.

By the IDO property,

u(φ̂2, sm) ≥ u(ψm, sm) for any sm ∈ Sm; m = 1, 2. (22)
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Recall that S3 is a singleton; we call that element s3. The action φ̂4 is chosen to be

the largest action in the interval [ψ4, φ̂2] that maximizes u(·, s3). Since ψ3 is in that

interval, we have u(φ̂4, s3) ≥ u(ψ3, s3). Since u(φ̂4, s3) ≥ u(ψ4, s3), the IDO property

guarantees that u(φ̂4, s4) ≥ u(ψ4, s4) for any s4 in S4. Using the IDO property again

(specifically, Lemma 2), we have u(φ̂4, sm) ≥ u(φ̂2, sm) for sm in Sm (m = 1, 2) since

u(φ̂4, s3) ≥ u(φ̂2, s3). Combining this with (22), we have found φ̂4 in [ψ4, φ̂2] such

that

u(φ̂4, sm) ≥ u(ψm, sm) for any sm ∈ Sm; m = 1, 2, 3, 4. (23)

We can repeat the procedure finitely many times, at each stage choosing φ̂m+1 (for m

odd) as the largest element maximizing u(·, sm) in the interval [ψm+1, φ̂m−1], and

finally, choosing φ̂M+1 as the largest element maximizing u(·, s∗∗) in the interval

[ψM , φ̂M−1]. It is clear that φ(t) = φ̂M will satisfy (21). QED

Proof of Proposition 4: Let z̃ denote the random signal received under information

structure G and let ũG denote the (random) utility achieved when the decision rule ψ

is used. Correspondingly, we denote the random signal received under H by t̃, with

ũH denoting the utility achieved by the rule φ, as constructed in Lemma 3. Observe

that for any fixed utility level u′ and at a given state s′,

Pr[ũH ≤ u′|s = s′] = Pr[u(φ(t̃), s′) ≤ u′|s = s′]

= Pr[u(φ(T (z̃, s′)), s′) ≤ u′|s = s′]

≤ Pr[u(ψ(z̃), s′) ≤ u′|s = s′]

= Pr[ũG ≤ u′|s = s′]

where the second equality comes from the fact that, conditional on s = s′, the dis-

tribution of t̃ coincides with that of T (z̃, s′), and the inequality comes from the fact

that u(φ(T (z, s′)), s′) ≥ u(ψ(z), s′) for all z (by Lemma 3).

Finally, the fact that, given the state, the conditional distribution of ũH first

order stochastically dominates ũG means that the conditional mean of ũH must also

be higher than that of ũG. QED
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Example 1 continued. As a simple application of Theorem 3, we return again to

this example (previously discussed in Sections 2 and 4), where a firm has to decide on

its production capacity before the state of the world is realized. Recall that the profit

functions {Π(·, s)}s∈S form an IDO (though not necessarily SCP) family. Suppose

that before it makes its decision, the firm receives a signal z from the information

structure G. Provided G is MLR-ordered, we know that the posterior distributions

(on S) will also be MLR-ordered (in z). It follows from Theorem 2 that a higher

signal will cause the firm to decide on a higher capacity. Assuming the firm is risk

neutral, its ex ante expected profit is V(G,Λ,Π), where Λ is the firm’s prior on S.

Theorem 3 tells us that a more accurate information structure H will lead to a higher

ex ante expected profit; the difference V(H,Λ,Π) − V(G,Λ,Π) represents what the

firm is willing to spend for the more accurate information structure.

We can clearly extend our analysis of Example 5 (in Section 4) in a similar way,

i.e., we can introduce and compare information structures available to the firm for

deciding the date of its product launch.

It is worth pointing out that our use of Proposition 4 to prove Theorem 3 (via

(18)) does not fully exploit the property of first order stochastic dominance that

Proposition 4 obtains. Our next application is one where this stronger conclusion is

crucial.

Example 6. There are N investors, with investor i having wealth wi > 0 and the

strictly increasing Bernoulli utility function vi. These investors place their wealth with

a manager who decides on an investment policy; specifically, the manager allocates the

total pool of funds W =
∑N

i=1wi between a risky asset, with return s in state s, and

a safe asset with return r > 0. Denoting the fraction invested in the risky asset by x,

investor i’s utility (as a function of x and s) is given by ui(x, s) = vi((xs+(1−x)r)wi).

It is easy to see that {ui(·, s)}s∈S is an IDO family. Indeed, it is also an SCP and a

QCIP family: for s > r, ui(·, s) is strictly increasing in x; for s = r, ui(·, r) is the

constant vi(rwi); and for s < r, ui(·, s) is strictly decreasing in x.
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Before she makes her portfolio decision, the manager receives a signal z from some

information structure G. She employs the decision rule ψ, where ψ(z) (in [0, 1]) is

the fraction of W invested in the risky asset. We assume that ψ is increasing in the

signal; in the next section we shall give the precise sense in which this restriction

involves no loss of generality. Suppose that the manager now has access to a superior

information structure H. By Proposition 4, there is an increasing decision rule φ

under H such that, at any state s, the distribution of investor k’s utility under H

and φ first order stochastically dominates the distribution of k’s utility under G

and ψ. In particular, (18) holds for u = uk. Aggregating across states we obtain

Uk(φ,H,Λk) ≥ Uk(ψ,G,Λk), where Λk is investor k’s (subjective) prior; in other

words, k’s ex ante utility is higher with the new information structure and the new

decision rule.

But even more can be said because, for any other investor i, ui(·, s) is a strictly

increasing transformation of uk(·, s), i.e., there is a strictly increasing function f such

that ui = f ◦uk. It follows from Proposition 4 that (18) is true, not just for u = uk but

for u = ui. Aggregating across states, we obtain Ui(φ,H,Λi) ≥ Ui(ψ,G,Λi), where

Λi is investor i’s prior.

To summarize, we have shown the following: though different investors may have

different attitudes towards risk aversion and different priors, the greater accuracy of

H compared to G allows the manager to implement a new decision rule that gives

greater ex ante utility to every investor.

Finally, we turn to the following question: how important is the accuracy criterion

to the results of this section? For example, Theorem 3 tells us that when H is more

accurate than G, it gives the agent a higher ex ante utility for any prior that he may

have on S. This raises the possibility that the accuracy criterion may be weakened if

we only wish H to give a higher ex ante utility than G for a particular prior. However,

this is not the case, as the next result shows.
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Proposition 5: Let S be finite, and H and G two information structures on S.

If (17) holds at a given prior Λ∗ which has S as its support and for any SCP family

{u(·, s)}s∈S, then (17) holds at any prior Λ which has S as its support and for any

SCP family.

Proof: For the distribution Λ∗ (Λ) we denote the probability of state s by λ∗(s)

(λ(s)). Given the SCP family {u(·, s)}s∈S, define the family {ũ(·, s)}s∈S by ũ(x, s) =

[λ(s)/λ∗(s)]u(x, s). The ex ante utility of the decision rule φ under H, when the

agent’s utility is ũ, may be written as

Ũ(φ,H,Λ∗) =
∑
s∈S

λ∗(s)

∫
ũ(φ(z), s)dH(z|s).

Clearly,

U(φ,H,Λ) ≡
∑
s∈S

λ(s)

∫
u(φ(z), s)dH(z|s) = Ũ(φ,H,Λ∗).

From this, we conclude that

V(H,Λ, u) = V(H,Λ∗, ũ). (24)

Crucially, the fact that {u(·, s)}s∈S is an SCP family, guarantees that {ũ(·, s)}s∈S is

also an SCP family. By assumption, V(H,Λ∗, ũ) ≥ V(G,Λ∗, ũ). Applying (24) to

both sides of this inequality, we obtain V(H,Λ, u) ≥ V(G,Λ, u). QED

Loosely speaking, this result says that if we wish to have ex ante utility compa-

rability for any SCP family (or, even more strongly, any IDO family), then fixing the

prior does not lead to a weaker criterion of informativeness. A weaker criterion can

only be obtained if we fix the prior and require ex ante utility comparability for a

smaller class of utility families.24

To construct a converse to Theorem 3, we assume that there are two states and

two actions and that the actions are non-ordered with respect to u in the sense that x1

is the better action in state s1 and x2 the better action in s2, i.e., u(x1, s1) > u(x2, s1)

24This possibility is explored in Athey and Levin (2001).
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and u(x1, s2) < u(x2, s2). This condition guarantees that information on the state

is potentially useful; if it does not hold, the decision problem is clearly trivial since

either x1 or x2 will be unambiguously superior to the other action. Note also that

the family {u(·, s1), u(·, s2)} is an IDO family. We have the following result.

Proposition 6: Suppose that S = {s1, s2}, X = {x1, x2}, and that the actions

are non-ordered with respect to u. If H is MLR-ordered and not more accurate than

G, then there is a prior Λ̄ on S such that V(H, Λ̄, u) < V(G, Λ̄, u).

Proof: Since H is not more accurate than G, there is z̄ and t̄ such that

G(z̄|s1) = H(t̄|s1) and G(z̄|s2) < H(t̄|s2). (25)

Given any prior Λ, and with the information structure H, we may work out the

posterior distribution and the posterior expected utility of any action after receipt

of a signal. We claim that there is a prior Λ̄ such that, action x1 maximizes the

agent’s posterior expected utility after he receives the signal z < t̄ (under H), and

action x2 maximizes the agent’s posterior expected utility after he receives the signal

z ≥ t̄. This result follows from the assumption that H is MLR-ordered and is proved

in Appendix B.

Therefore, the decision rule φ such that φ(z) = x1 for z < t̄ and φ(z) = x2 for

z ≥ t̄ maximizes the agent’s ex ante utility, i.e.

V(H, Λ̄, u) = U(φ,H, Λ̄)

= λ̄(s1) {u(x1|s1)H(t̄|s1) + u(x2|s1)[1−H(t̄|s1)] }

+ λ̄(s2) {u(x1|s2)H(t̄|s2) + u(x2|s2)[1−H(t̄|s2)] } .

Now consider the decision rule ψ under G given by ψ(z) = x1 for z < z̄ and

ψ(z) = x2 for z ≥ z̄. We have

U(ψ,G, Λ̄) = λ̄(s1) {u(x1|s1)G(z̄|s1) + u(x2|s1)[1−G(z̄|s1)] }

+ λ̄(s2) {u(x1|s2)G(z̄|s2) + u(x2|s2)[1−G(z̄|s2)] } .
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Comparing the expressions for U(ψ,G, Λ̄) and U(φ,H, Λ̄), bearing in mind (25), and

the fact that x2 is the optimal action in state s2, we see that

U(ψ,G, Λ̄) > U(φ,H, Λ̄) = V(H, Λ̄, u).

Therefore, V(G, Λ̄, u) > V(H, Λ̄, u). QED

6. The Completeness of Increasing Decision Rules

The model of information we constructed in the last section is drawn from statisti-

cal decision theory.25 In the context of statistical decisions, the agent is a statistician

conducting an experiment, the signal is the random outcome of the experiment, and

the state of the world should be interpreted as a parameter of the model being con-

sidered by the statistician. In the previous section we identified conditions under

which a Bayesian statistician, i.e., a statistician who has a prior on the states of

the world, will pick an increasing decision rule. Our objective in this section is to

strengthen that conclusion: we show that, under the same conditions, statisticians

who use other criteria for choosing their decision rule may also confine their attention

to increasing decision rules. This conclusion follows from a natural application of the

informativeness results of the previous section (in particular, Proposition 4).

Consider an information structure G = {G(·|s)}s∈S; as in the previous section, we

assume that the signal z is drawn from a compact interval Z and that its distribution

G(·|s) admits a density function with Z as its support. The set of possible states, S,

may either be a compact interval or a finite set of points. Unlike the previous section,

we do not assume that the statistician has a prior on S. The utility associated to

each action and state is given by the function u : X × S → R. We assume that the

set of actions X is a compact subset of R and that u is continuous in x.

25For an introduction to statistical decision theory, see Blackwell and Girshik (1954) or Berger

(1985). Statistical decision theory has been used in econometrics to study portfolio allocation,

treatment choice, and model uncertainty in macroeconomic policy, amongst other areas. See the

survey of Hirano (2008).
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Let D be the set of all decision rules (which are measurable maps from Z to X).

The expected utility of the rule ψ in state s (denoted by EG(ψ, s)) is defined as

EG(ψ, s) =

∫
z∈Z

u(ψ(z), s)dG(z|s).

Note that our assumptions guarantee that this is well defined.

The decision rule ψ̃ is said to be at least as good as another decision ψ, if it gives

higher expected utility in all states, i.e., EG(ψ̃, s) ≥ EG(ψ, s) for all s in S. A subset

D′ of decision rules forms an essentially complete class if for any decision rule ψ, there

is a rule ψ̃ in D′ that is at least as good as ψ. Results that identify some subset of

decision rules as an essentially complete class are called complete class theorems.26

It is useful to identify such a class of decision rules because, while statisticians may

differ on the criterion they adopt in choosing amongst decision rules, it is typically

the case that a rule satisfying their preferred criterion can be found in an essentially

complete class. Consider the Bayesian statistician with prior Λ; her ex ante util-

ity from the rule ψ (recall that this is denoted by U(ψ,G,Λ)), can be written as∫
s∈S EG(ψ, s) dΛ(s). It is clear that if U(ψ,G,Λ) is maximized at ψ = ψ̂, then a rule

ψ̃ in the complete class that is at least as good as ψ̂ will also maximize U(ψ,G,Λ).

A non-Bayesian statistician will choose a rule using a different criterion; the two

most commonly used are the maxmin and minimax regret criteria. The maxmin crite-

rion evaluates a decision rule according to the lowest utility the rule could bring; for-

mally, a rule ψ̂ satisfies this criterion if it solves maxψ∈D {mins∈S EG(ψ, s)}. The regret

of a decision rule ψ, which we denote by r(ψ), is defined as maxs∈S[maxψ′∈D EG(ψ′, s)−

EG(ψ, s)]. In other words, the regret of a rule ψ is the utility gap between the ideal

rule (if s is known) and the rule ψ. A rule ψ̂ satisfies the minimax regret criterion

if it solves minψ∈D r(ψ). It is not hard to check that if a decision rule for either

26Some readers may wonder why, in our definition of a decision rule, we did not allow the statis-

tician to mix actions at any given signal. The answer is that, when the signal space is atomless (as

we have assumed), allowing her to do so will not make a difference since the set of decision rules

involving only pure actions form an essentially complete class (see Blackwell (1951)).
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the maxmin or minimax regret criterion exists, then such a rule can be found in an

essentially complete class.27

The following complete class theorem is the main result of this section. It provides

a justification for the statistician to restrict her attention to increasing decision rules.

Theorem 4: Suppose {u(·, s)}s∈S is an IDO family and G is MLR-ordered. Then

the increasing decision rules form an essentially complete class.

Theorem 4 generalizes the complete class theorem of Karlin and Rubin (1956),

which in turn generalizes Blackwell and Girshik (1954, Theorem 7.4.3). Karlin and

Rubin (1956) establishes the essential completeness of increasing decision rules under

the assumption that {u(·, s)}s∈S is a QCIP family, which is a special case of our

assumption that {u(·, s)}s∈S forms an IDO family. Note that Theorem 4 is not known

even for the case where {u(·, s)}s∈S forms an SCP family.

An immediate application of Theorem 4 is that it allows us to generalize Theorem

3. Recall that Theorem 3 tells us that, for the Bayesian statistician, if H is more

accurate than G, then H achieves a higher ex ante utility. Combining Theorem 4 and

Proposition 4 allows us to strengthen that conclusion by establishing the superiority

of H over G under a more stringent criterion; specifically, Corollary 1 below tells us

that when an experiment H is more accurate than G, then H is capable of achieving

higher expected utility in all states.

Corollary 1: Suppose {u(·, s)}s∈S is an IDO family, H is more accurate than

G, and G is MLR-ordered. Then for any decision rule ψ : Z → X under G, there is

an increasing decision rule φ : Z → X under H such that

EH(φ, s) ≥ EG(ψ, s) at each s ∈ S. (26)

27In the context of statistical decisions, the maxmin criterion was first studied by Wald; the

minimax regret criterion is due to Savage. Discussion and motivation for the maxmin and minimax

regret criteria can be found in Blackwell and Girshik (1954), Berger (1985), and Manski (2005). For

some recent applications of the minimax regret criterion, see Manski (2004, 2005) and Manski and

Tetenov (2007); a closely related criterion is employed in Chamberlain (2000).
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Proof: If ψ is not increasing, then by Theorem 4, there is an increasing rule ψ̄

that is at least as good as ψ. Proposition 4 in turn guarantees that there is an

increasing decision rule φ under H that is at least as good as ψ̄ since (18) says that

EH(φ, s) ≥ EG(ψ̄, s) at each s. QED

Corollary 1 is a generalization of Lehmann (1988) which establishes a version of

this result in the case where {u(·, s)}s∈S is a QCIP family. This result is not known

even for the case where {u(·, s)}s∈S forms an SCP family.

Proof of Theorem 4: The idea of the proof is to show that the statistician who

uses a strategy that is not increasing is in some sense debasing the information made

available to her by G.

Having assumed that Z is a compact interval, we can assume, without further

loss of generality, that Z = [0, 1]. Suppose that ψ is a decision rule (not necessarily

increasing) under G. Here we confine ourselves to the case where ψ takes only finitely

many values, an assumption which certainly holds if the set of actions X is finite.

The case where ψ has an infinite range is covered in Appendix B.

Suppose that the actions taken under ψ are exactly x1, x2,...xn (arranged in in-

creasing order). We construct a new information structure Ḡ = {Ḡ(·|s)}s∈S along

the following lines. For each s, Ḡ(0|s) = 0 and Ḡ(k/n|s) = PrG[ψ(z) ≤ xk|s] for

k = 1, 2, ..., n, where the right side of the second equation refers to the probability

of {z ∈ Z : ψ(z) ≤ xk} under the distribution G(·|s). We define tk(s) as the unique

element in Z that obeys G(tk(s)|s) = Ḡ(k/n|s). (Note that t0(s) = 0 for all s.) Any

z in ( (k − 1)/n, k/n ) may be written as z = θ [(k − 1)/n] + (1− θ) [k/n] for some θ

in (0, 1); we define

Ḡ(z|s) = G(θtk−1(s) + (1− θ)tk(s)|s). (27)

This completely specifies Ḡ.

Define a new decision rule ψ̄ by ψ̄(z) = x1 for z in [0, 1/n]; for k ≥ 2, we have

ψ̄(z) = xk for z in ( (k− 1)/n, k/n ]. This is an increasing decision rule since we have
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arranged xk to be increasing with k. It is also clear from our construction of Ḡ and

ψ̄ that, at each state s, the distribution of utility induced by Ḡ and ψ̄ equals the

distribution of utility induced by G and ψ.

We claim that G is more accurate than Ḡ. Provided this is true, Proposition 4

says that there is an increasing decision rule φ under G that is at least as good as

ψ̄ under Ḡ, i.e., at each s, the distribution of utility induced by G and φ first order

stochastically dominates that induced by Ḡ and ψ̄. Since the latter coincides with

the distribution of utility induced by G and ψ, the proof is complete.

That G is more accurate than Ḡ follows from the assumption that G is MLR-

ordered. Denote the density function associated to the distribution G(·|s) by g(·|s).

The probability of Zk = {z ∈ Z : ψ(z) ≤ xk} is given by
∫

1Zk
(z)g(z|s)dz, where 1Zk

is the indicator function of Zk. By the definition of Ḡ, we have

Ḡ(k/n|s) =

∫
1Zk

(z)g(z|s)dz.

Recall that tk(s) is defined as the unique element that obeys G(tk(s)|s) = Ḡ(k/n|s);

equivalently,

Ḡ(k/n|s)−G(tk(s)|s) =

∫ [
1Zk

(z)− 1[0,tk(s)](z)
]
g(z|s)dz = 0. (28)

The function W given by W (z) = 1Zk
(z)−1[0,tk(s)](z) has the following single-crossing

type condition: z > tk(s), we have W (z) ≥ 0 and for z ≤ tk(s), we have W (z) ≤ 0.28

Let s′ > s; since G(·|s) is MLR-ordered, g(z|s′)/g(z|s) is an increasing function of z.

By a standard result (see, for example, Athey (2002, Lemma 5)), we have

Ḡ(k/n|s′)−G(tk(s)|s′) =

∫ [
1Zk

(z)− 1[0,tk(s)](z)
]
g(z|s′)dz ≥ 0. (29)

This implies that tk(s
′) ≥ tk(s) since G(tk(s

′)|s′) = Ḡ(k/n|s′).

To show that G is more accurate than Ḡ, we require T (z, s) to be increasing in

s, where T is defined by G(T (z, s)|s) = Ḡ(z|s). For z = k/n, T (z, s) = tk(s), which

28This property is related to but not the same as the single crossing property we have defined in

this paper; Athey (2002) refers to this property as SC1 and the one we use as SC2.
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we have shown is increasing in s. For z in the interval ( (k − 1)/n, k/n ), recall (see

(27)) that Ḡ(z) was defined such that T (z, s) = θtk−1(s) + (1 − θ)tk(s). Since both

tk−1 and tk are increasing in s, T (z, s) is also increasing in s. QED

It is clear from our proof of Theorem 4 that we can in fact give a sharper statement

of that result; we do so below.

Theorem 4?: Suppose {u(·, s)}s∈S is an IDO family and G is MLR-ordered. Then

for any decision rule ψ : Z → X, there is an increasing decision rule φ : Z → X such

that, at each s, the distribution of utility induced by G and φ first order stochastically

dominates the distribution of utility induced by G and ψ.

Complete class theorems obviously have a role in statistics and econometrics, but

they are also relevant in theoretical economic modeling. The next example gives an

instance of such an application.

Example 6 continued. Recall that we assume in Section 5 that the manager’s

decision rule under G is increasing in the signal. This restriction on the decision rule

needs to be justified; provided G is MLR-ordered, this justification is provided by

Theorem 4?.

Let ψ̃ be a (not necessarily increasing) decision rule. Theorem 4? tells us that for

some investor k, there is an increasing decision rule ψ : Z → X such that, at each

s, the distribution of uk induced by G and ψ first order stochastically dominates the

distribution of uk induced by G and ψ̃. This implies that∫
z∈Z

uk(φ(z), s)dG(z|s) ≥
∫
z∈Z

uk(ψ̃(z), s)dG(z|s). (30)

Aggregating this inequality across states, we obtain Uk(ψ,G,Λk) ≥ Uk(ψ̃, G,Λk), i.e.,

the increasing rule gives investor k a higher ex ante utility.

However, we can say more because, for any other investor i, ui(·, s) is just an

increasing transformation of uk(·, s), i.e., there is a strictly increasing function f such

that ui = f ◦ uk. Appealing to Theorem 4? again, we see that (30) is true if uk is

replaced with ui. Aggregating this inequality across states gives us Ui(ψ,G,Λi) ≥
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Ui(ψ̃, G,Λi). In short, we have shown the following: any decision rule admits an in-

creasing decision rule that (weakly) raises the ex ante utility of every investor. This

justifies our assumption that the manager uses an increasing decision rule.

Our final application generalizes an example found in Manski (2005, Proposition

3.1) on monotone treatment rules.

Example 7. Suppose that there are two ways of treating patients with a particular

medical condition. Treatment A is the status quo; it is known that a patient who re-

ceives this treatment will recover with probability p̄A. Treatment B is a new treatment

whose effectiveness is unknown. The probability of recovery with this treatment, pB,

corresponds to the unknown state of the world and takes values in some set P . We

assume that the planner receives a signal z of pB that is MLR-ordered with respect

to pB. (Manski (2005) considers the case of N subjects who are randomly selected

to receive Treatment B, with z being the the number who are cured. Clearly, the

distribution of z is binomial; it is also not hard to check that it is MLR-ordered with

respect to pB.)

Normalizing the utility of a cure at 1 and that of no cure at 0, the planner’s

expected utility when a member of the population receives treatment A is p̄A. Simi-

larly, the expected utility of treatment B is pB. Therefore, the planner’s utility if she

subjects fraction x of the population to B (and the rest to A) is

u(x, pB) = (1− x) p̄A + x pB. (31)

The planner’s decision (treatment) rule maps z to the proportion x of the (pa-

tient) population who will receive treatment B. As pointed out in Manski (2005),

{u(x, ·)}pB∈P is a QCIP family, and so Karlin and Rubin (1956) guarantee that deci-

sion rules where x increases with z form an essentially complete class.

Suppose now that the planner has a different payoff function, that takes into

account the cost of the treatment. We denote the cost of having fraction x treated

38



with B and the rest with A by C(x). Then the payoff function is

u(x, pB) = (1− x) p̄A + x pB − C(x).

If the cost of treatments A and B are both linear, or more generally if C is convex,

then one can check that {u(x, ·)}pB∈P will still be a QCIP family. We can then appeal

to Karlin and Rubin (1956) to obtain the essential completeness of the increasing

decision rules. But there is no particular reason to believe that C is convex; indeed

C will never be convex if the presence of scale economies leads to the total cost

of having both treatments in use being more expensive than subjecting the entire

population to one treatment or the other. (Formally, there is x∗ ∈ (0, 1) such that

C(0) < C(x∗) > C(1).) However, u is supermodular in (x, pB) whatever the shape of

C, so {u(x, ·)}pB∈P is an IDO family; Theorem 4 tells us that the planner may confine

herself to increasing decision rules since they form an essentially complete class.29

Appendix A

Our objective in this section is to prove Theorem 2 and its converse in the case

where S is a finite set. Suppose that S = {s1, s2, ..., sN} and the agent’s objective

function is

F (x, λ) =
N∑
i=1

f(x, si)λ(si)

29Manski and Tetenov (2007) prove a complete class theorem with a different variation on the

payoff function (31). For the payoff function (31), Manski (2005) in fact showed a sharper result:

the planner will choose a rule where the whole population is subject to B (A) if the number of

treatment successes in the sample goes above (below) a particular threshold. The modification

of the payoff function in Manski and Tetenov (2007) is motivated in part by the desire to obtain

fractional treatment rules, in which, for a non-negligible set of sample outcomes, both treatments

will be in use. In our variation on (31), it is clear that fractional treatment is plausible if large values

of x involve very high costs.

39



where λ(si) is the probability of state si. We assume that λ(si) > 0 for all si. Let

γ be another distribution with support S. We say that γ is an MLR-shift of λ if

γ(si)/λ(si) is increasing in i.

Proof of Theorem 2 for the case of finite S: Suppose F (x′′, λ) ≥ F (x, λ) for x

in [x′, x′′]. We denote (f(x′′, si) − f(x′, si))λ(si) by ai and define Ak =
∑N

i=k ai. By

assumption, A1 = F (x′′, λ)−F (x′, λ) ≥ 0; we claim that Ak ≥ 0 for any k (this claim

is analogous to (13) in the proof of Theorem 2).

Suppose instead that there is M ≥ 2 such that

AM =
N∑
i=M

(f(x′′, si)− f(x′, si))λ(si) < 0.

As in the proof of Theorem 2 in the main part of the paper, we choose x̄ that

maximizes f(·, sM) in [x′, x′′]. By the IDO property and Lemma 2, we have

f(x̄, si)− f(x′′, si) ≥ 0 for i ≤M and (32)

f(x̄, si)− f(x′, si) ≥ 0 for i ≥M . (33)

(These inequalities (32) and (33) are analogous to (15) and (16) respectively.) Fol-

lowing the argument used in Theorem 2, these inequalities lead to

A1 =
N∑
i=1

(f(x′′, si)− f(x′, si))λ(si) < 0, (34)

which is a contradiction. Therefore AM ≥ 0.

Denoting γ(si)/λ(si) by bi, we have

F (x′′, γ)− F (x′, γ) =
N∑
i=1

aibi.

It is not hard to check that30

A1b1 +
N∑
i=2

Ai(bi − bi−1) =
N∑

1=1

aibi. (35)

30This is just a discrete version of integration by parts.
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Since γ is an MLR shift of λ, bi − bi−1 ≥ 0 for all i and so
∑N

i=2 Ai(bi − bi−1) ≥ 0.

Thus (35) guarantees that
∑N

1=1 aibi ≥ A1b1; in other words,

F (x′′, γ)− F (x′, γ) ≥ γ(s1)

λ(s1)
[F (x′′, λ)− F (x′, λ)] . (36)

It follows that the left hand side is nonnegative (positive) if the right side is nonneg-

ative (positive), as required by the IDO property. QED

It is natural to ask whether the MLR condition in Theorem 2 can be weakened,

i.e., can we obtain F (·, γ) �I F (·, λ) for every IDO family without requiring an MLR

shift from λ to γ? The following proposition says that the answer is ‘No’.

Proposition A1: If γ is not an MLR-shift of λ, there exists an SCP family

{f(·, s)}s∈S defined on X ⊂ R such that argmaxx∈XF (x, γ) < argmaxx∈XF (x, λ).

Proof: Suppose that γ is not an MLR shift of λ, so there are states k and k + 1

such that γ(sk)/λ(sk) > γ(sk+1)/λ(sk+1). It follows that there is positive scalar a such

that
λ(sk+1)a

λ(sk)
> 1 >

γ(sk+1)a

γ(sk)
. (37)

Let X = {x1, x2}, with x1 < x2, and define {f(·, s)}s∈S in the following way:

for i < k, f(x1, si) = ε and f(x2, si) = 0; for i = k, f(x1, sk) = 1 and f(x2, sk) = 0;

for i = k + 1, f(x1, sk+1) = 0 and f(x2, sk+1) = a; finally, for i > k + 1, f(x1, si) = 0

and f(x2, si) = ε. This is an SCP family provided ε > 0 since f(x2, si) − f(x1, si)

takes values −ε, −1, a, and finally ε as i increases.

Note that the first inequality in (37) says that λ(sk+1)a > λ(sk), so if ε is suffi-

ciently small,

F (x2, λ) = λ(sk+1)a+
N∑

i=k+2

λ(si)ε >
k−1∑
i=1

λ(si)ε+ λ(sk) = F (x1, λ).

Now the second inequality in (37) says that γ(sk) > γ(sk+1)a, so if ε is sufficiently

small,

F (x1, γ) =
k−1∑
i=1

γ(si)ε+ γ(sk) > γ(sk+1)a+
N∑

i=k+2

γ(si)ε = F (x2, γ).

So the shift from λ to γ has reduced the optimal value of x from x2 to x1. QED

41



Appendix B

Proof of Lemma 3 continued: We first show that φ (as constructed in the proof

in Section 5) is an increasing rule. We wish to compare φ(t′) against φ(t) where

t′ > t. Note that the construction of φ(t) first involves partitioning S into subsets

S1, S2, ...SM obeying properties (i) to (v). In particular, (v) says that for any s in

Sm, ψ(τ(t, s)) takes the same value, which we denote by ψm. To obtain φ(t′), we

first partition S into disjoints sets S ′1, S ′2,..., S ′L, where L is odd, with the partition

satisfying properties (i) to (v). The important thing to note is that, for any s, we

have

ψ(τ(t′, s)) ≥ ψ(τ(t, s)). (38)

This is clear: both ψ and τ(·, s) are increasing functions and t′ > t. We denote

ψ(τ(t′, s)) for s in S ′k by ψ′k. Any s in S belongs to some Sm and some S ′k, in which

case (38) may be re-written as

ψ′k ≥ ψm. (39)

The construction of φ(t′) involves the construction of φ̂′2, φ̂′4, etc. The action φ̂′2

is the largest action maximizing u(·, s∗) in the interval [ψ′2, ψ
′
1]. Comparing this with

φ̂2, which is the largest action maximizing u(·, s∗) in the interval [ψ2, ψ1], we know

that φ̂′2 ≥ φ̂2 since (following from (39)) ψ′2 ≥ ψ2 and ψ′1 ≥ ψ1.

By definition, φ̂′4 is the largest action maximizing u(·, s′3) in [ψ′4, φ̂
′
2], where s′3 refers

to the unique element in S ′3. Let m̄ be the largest odd number such that sm̄ ≤ s′3.

(Recall that sm̄ is the unique element in Sm̄.) By definition, φ̂m̄+1 is the largest element

maximizing u(·, sm̄) in [ψm̄+1, φ̂m̄−1]. We claim that φ̂′4 ≥ φ̂m̄+1. This is an application

of Theorem 1. If follows from the following: (i) s′3 ≥ sm̄, so u(·, s′3) �I u(·, sm̄); (ii)

the manner in which m̄ is defined, along with (39), guarantees that ψ′4 ≥ ψm̄+1; and

(iii) we know (from the previous paragraph) that φ̂′2 ≥ φ̂2 ≥ φ̂m̄−1.

So we obtain φ̂′4 ≥ φ̂m̄+1 ≥ φ(t). Repeating the argument finitely many times (on

φ̂′6 and so on), we obtain φ(t′) ≥ φ(t). This completes the proof of Lemma 3 in the
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special case where ψ takes finitely many values.

Extension to the case where the range of ψ is infinite.

The strategy is to approximate ψ with a sequence of simpler decision rules. Let

{An}n≥1 be a sequence of finite subsets of X such that An ⊂ An+1 and ∪n≥1An is

dense in X. (This sequence exists because X is compact.) The function ψn : Z → X

is defined as follows: ψn(z) is the largest element in An that is less than or equal to

ψ(z). The sequence of decision rules ψn has the following properties:

(i) ψn is increasing in z;

(ii) ψn+1(z) ≥ ψn(z) for all z;

(iii) the range of ψn is finite; and

(iv) the increasing sequence ψn converges to ψ pointwise.

Since ψn takes only finitely many values, we know there is an increasing decision

rule φn (as defined in the proof of Lemma 3 in Section 5) such that for all (z, s),

u(φn(T (z, s)), s) ≥ u(ψn(z), s). (40)

We claim that φn is also an increasing sequence. This follows from the fact that, for

all (t, s),

ψn+1(τ(t, s)) ≥ ψn(τ(t, s)). (41)

This inequality plays the same role as (38); the latter was used to show that φ(t′) ≥

φ(t). Mimicking the argument there, (41) tells us that φn+1(t) ≥ φn(t).

Since φn is an increasing sequence and X is compact, it has a limit, which we

denote as φ. Since, for each n, φn is an increasing decision rule, φ is also an increasing

decision rule. For each n, (40) holds; taking limits, and using the continuity of u with

respect to x, we obtain u(φ(T (z, s)), s) ≥ u(ψ(z), s). QED

Proof of Proposition 6 continued: It remains for us to show how Λ̄ is constructed.

We denote the density function of H(·|s) by h(·|s). It is clear that since the ac-

tions are non-ordered, we may choose λ̄(s1) and λ̄(s2) (the probabilities of s1 and s2
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respectively) such that

λ̄(s1)h(t̄|s1) [u(x1, s1)− u(x2, s1)] = λ̄(s2)h(t̄|s2) [u(x2|s2)− u(x1, s2)]. (42)

Re-arranging this equation, we obtain

λ̄(s1)h(t̄|s1)u(x1|s1)+λ̄(s2)h(t̄|s2)u(x1|s2) = λ̄(s1)h(t̄|s1)u(x2|s1)+λ̄(s2)h(t̄|s2)u(x2|s2).

Therefore, given the prior Λ̄, the posterior distribution after observing t̄ is such that

the agent is indifferent between actions x1 and x2.

Suppose the agent receives the signal z < t̄. Since H is MLR-ordered, we have

h(z|s1)

h(t̄|s1)
≥ h(z|s2)

h(t̄|s2)
.

This fact, together with (42) guarantee that

λ̄(s1)h(z|s1) [u(x1, s1)− u(x2, s1)] ≥ λ̄(s2)h(z|s2) [u(x2|s2)− u(x1, s2)].

Re-arranging this equation, we obtain

λ̄(s1)h(z|s1)u(x1|s1) + λ̄(s2)h(z|s2)u(x1|s2) ≥

λ̄(s1)h(z|s1)u(x2|s1) + λ̄(s2)h(z|s2)u(x2|s2).

So, after observing z < t̄, the (posterior) expected utility of action x1 is greater than

that of x2. In a similar way, we can show that x2 is the optimal action after observing

a signal z ≥ t̄. QED

Proof of Theorem 4 for the case where ψ has an infinite range: We construct

an alternative experiment Ḡ and increasing decision rule ψ̄ with the following two

properties:

(P1) at each state s, the distribution of losses induced by Ḡ and ψ̄ equals that induced

by G and ψ;

(P2) G is more accurate than Ḡ.

An application of Proposition 4 then guarantees that there is an increasing decision
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rule under G that is at least as good as ψ. Thus our proof is essentially the same as

the one we gave for the finite case in Section 6, except that construction of Ḡ and ψ̄

is somewhat more complicated.

Since X is compact, there is a smallest compact interval M containing X. At a

given state s, we denote the distribution on M induced by G and ψ by F (·|s), i.e., for

any x in M , we have F (x|s) = PrG[ψ(z) ≤ x|s]. There are two noteworthy features

of {F (·|s)}s∈S:

(i) For a fixed s̄, we may partition M into (disjoint) contour sets, Us̄(r), i.e., Us̄(r) =

{x ∈ M : F (x|s̄) = r}. It is possible that for some r, Us̄(r) is empty, but if it is

nonempty then it has a minimum and the minimum is in X (and not just in M).

Crucially, this partition is common across all states s. In other words, for any other

state s, there is some r′ such that Us(r
′) = Us̄(r).

(ii) The atoms of F (·|s) also do not vary with s; i.e., if x is an atom for F (·|s̄), then

it is an atom for F (·|s) for every other state s.

These two features follow easily from the definition of F , the compactness of X, and

the fact that G(·|s) is atomless and has support Z at every state s.

To each element x in M we associate a number ε(x), where ε(x) > 0 if and only

if x is an atom and
∑

x∈X ε(x) < ∞. (Note that there are at most countably many

atoms, so the infinite summation makes sense.) We define the map Y : M → R

where Y (x) = x+
∑
{x′∈M :x′≤x} ε(x

′). It is clear that this map is a strictly increasing

and hence 1-1 map. Let Y ∗ = ∪x∈M [Y (x) − ε(x), Y (x)]. The difference between Y ∗

and the range of Y , i.e., set Y ∗ \ Y (M), may be written in the form ∪∞n=1In, where

In = [Y (an)− ε(an) , Y (an) ) and {an}n∈N is the set of atoms. (Loosely speaking, the

‘gaps’ In arise at every atom.)

We define the distribution G̃(·|s) on Y ∗ in the following way. For y in Y (M),

G̃(y|s) = F (Y −1(y)|s). For y = Y (an) − ε(an), define G̃(y|s) as the limit of G̃(yn|s)

where yn is some sequence in Y (M) tending to y from the left; if no such sequence

exists (which occurs if and only if there is an atom at the smallest element of X), let
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G̃(y|s) = 0. (One can easily check that this definition is unambiguous.) It remains

for us to define G̃(y|s) for y in the open interval (Y (an) − ε(an) , Y (an) ). For y =

C(an) or y = C(an) − ε(an), define t(y) by G(t(y)|s) = G̃(y|s). Any element y in

(Y (an) − ε(an) , Y (an) ) may be written as θ [Y (an) − ε(an)] + (1 − θ) [Y (an)]. We

define

G̃(y|s) = G (θt (C(an)− ε(an)) + (1− θ)t (C(an)) |s) .

We have now completely specified the distribution G̃(·|s). Note that we have con-

structed this distribution to be atomless, so for every number r in [0, 1], the set {y ∈

Y ∗ : G̃(y|s) = r} is nonempty. Indeed, following from observation (i) above, this set

has a smallest element, which we denote by ŷ(r). We define Y ∗∗ = {ŷ(r) : r ∈ [0, 1]}.

Observation (i) also tells us that Y ∗∗ does not vary with s. We denote the restriction

of G̃(·|s) to Y ∗∗ by Ḡ(·|s). Therefore, for any r in [0, 1] and any state s, there is a

unique y in Y ∗∗ such that Ḡ(y|s) = r.

One can check that property (P2) (stated above) holds: G is more accurate than

Ḡ. Formally, the map T defined by G(T (y, s)|s) = Ḡ(y|s) exists and has the property

that T (y, s) is increasing in s; the proof is substantially the same as that for the

finite case. Furthermore, the map T (·|s) has a unique inverse (in Y ∗∗). So we have

identified precisely the properties of T needed for the application of Proposition 4.

Consider the decision rule ψ̄ : Y ∗∗ → X defined as follows: if y is in Y (M), define

ψ̄(y) = Y −1(y); if y is in [Y (an)− ε(an) , Y (an) ), define ψ̄(y) = an. It is not hard to

verify that Ḡ and ψ̄ generate the same distribution of losses as G and ψ, as required

by (P1). QED
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