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1 Introduction

You go to a used car lot. You �rst state your maximum price, then ask if any cars with a

manual transmission are available, then if any sport cars are available, then any Italian sport

cars ... and you end up driving away in a red Alfa Romeo.

In this example you make your decision when facing a set of alternatives using only

properties of the alternatives. A property is simply a subset of alternatives, e.g., all sports

cars. You go through your checklist of properties until you are able to narrow down the

set su¢ ciently. At each step you eliminate the alternatives that do not have the speci�ed

property, or, if no alternative has the property, you do not eliminate any options and move

on to the next property. No maximization of utility or of preferences is invoked: all that is

required is an ordered list of desirable attributes. That the list is ordered means that earlier

properties always trump later properties; if the car buyer checks car color only with his �nal

property, then color can never take precedence over the properties checked earlier on. This

lexicographic feature of ordered properties makes choosing by checklist appear distant from

the classical economic agent�s pursuit of utility. Moreover, a checklist is an easy procedure

to execute, while maximizing utility may seem to be a challenging task. In the words of

Herbert Simon [23]:

The assumption of a utility function postulates a consistency of human choice

that is not always evidenced in reality. The assumption of maximization may also

place a heavy (often unbearable) computational burden on the decision maker.

(p. 16)

We will see that checklists present a challenge to Simon�s view. Although easy to use,

checklists implicitly impose a utility ordering on alternatives; the checklist and utility models

are in fact nearly equivalent. Checklists in addition can make �ne preference discriminations

using only a handful of properties; from the checklist point of view, utility maximization is

computationally undemanding.

The sequential elimination of alternatives by whether or not they possess properties un-
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derlies several decision making models in psychology1 and marketing science.2 Any decision

procedure that follows a �owchart of �yes or no�questions can be written as a checklist.

Checklists can also serve as normative guides in �elds such as clinical medicine. For exam-

ple, Fischer et al. [7] propose a simple rule to guide the prescription of a certain antibiotic

to treat pneumonia in young children. Because resistance can develop, this drug should be

prescribed only in speci�c cases. The rule is (1) if the patient has had fever for less than two

days, do not prescribe, (2) otherwise, and if the patient is less than three years old, do not

prescribe, and (3) otherwise, prescribe. We will translate the car and antibiotic examples

into the language of our model in section 2, where we incorporate �deal-killing�properties

that an option must possess in order to be chosen.

Decision-making with a checklist is considered basic precisely because it eschews any

use of preference relations over alternatives, the hallmark of economic analysis. Its attrac-

tion is its simplicity: in the language of Gigerenzer and Todd [11], it generates �fast and

frugal�heuristics, appropriate when time, knowledge and computational power are scarce.

Gigerenzer and Todd indeed emphasize the contrast between such heuristics and �demonic

rationality�, by which they mean preference or utility maximization.

As the views of Simon and the psychologists illustrate, it is not clear at �rst sight that

there is a connection between checklists and the economic model of maximization. And the

fact that discriminations among alternatives made by one property can never be overturned

by later properties suggests that the only maximizing agents that the model can capture are

lexicographic agents who do not make trade-o¤s among di¤erent types of goods (where, e.g.,

agents prefer more of good 1 and good 2 quantities are decisive only when good 1 quantities

are tied). We will see that the reverse is the case: agents who use a checklist to make their

decisions always maximize a preference relation, and, when agents choose among commodity

bundles, checklists display the tractability that attracts psychologists if and only if agents do

display the trade-o¤s of classical utility maximizers. In particular, agents with a tractable

checklist �where all the alternatives that will be rejected are eliminated in �nitely many

1E.g. from the classic �elimination by aspect�model by Tversky [24], to the more recent Bereby-Meyer,
Assor and Katz [1], Brandstätter, Gigerenzer and Hertwig [2] and Katsikopoulos and Martignon [14].

2See e.g. Yee et al. [25]. The term �non-compensatory choice models�is used in these �elds to underscore
the lack of �tradeo¤s�between earlier and later properties.
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steps �cannot have lexicographic preferences.

We begin by showing that there is an exact equivalence between agents who choose

using checklists and agents who maximize a preference relation. Whatever goes on in the

minds of checklist users, they act just like preference maximizers. From the vantage point

of revealed preference theory, checklists therefore provide an alternative to �strong axiom�

characterizations of preference maximization. But half of this equivalence �that any choice

function that maximizes a preference relation has a checklist �is unsatisfying: the checklist

might be impractical, because the elimination of options does not end in �nitely many steps.

Much of the rest of the paper is devoted to showing that in the important economic

settings rational maximizers can use the quick checklists that make for tractable choice

procedures. That a checklist can be quick �where the number of properties the agent

must go through is small relative to the number of preference discriminations �shows that

checklist agents are not only rational but can sift through alternatives rapidly. Contrary to

Simon, classical economic maximization can be computationally e¢ cient.

First, when an agent has n (a �nite number) indi¤erence classes the agent can make

do with a checklist with only a small number of properties relative to n. Agents with a

checklist can in e¤ect perform a binary search, and the ratio of the number of properties to

n will converge to 0 at an exponential rate. For example, an agent who makes a 1,000,000

preference discriminations needs a checklist that is just 20 properties long.

Second, we consider the prototypical economic agent whose preferences over commodity

bundles de�ne uncountably many indi¤erence curves. Despite this large set of discrimina-

tions, such an agent can make decisions with a checklist that executes quickly. For any

�nite set of alternatives, the agent will need to go through only �nitely many properties on

his or her checklist before coming to a decision: the checklist ��nitely terminates.�

We argue in both directions: not only will any utility-maximizer have a checklist that

�nitely terminates but any agent with a checklist that �nitely terminates will have a utility

function. This result requires a domain restriction, but without a domain restriction an

alternative equivalence holds: an agent maximizes utility if and only if there is a checklist

that approximates his or her behavior arbitrarily closely. The procedural model of checklists

thus nearly coincides with the economic model of rationality.
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We end up near the Gigerenzer and Todd [11] point of view but with a caveat. Checklists

are indeed �fast and frugal�: they are a fast and frugal way to maximize utility.

2 Checklists

2.1 Standard checklists

Fix a nonempty set of alternatives X. An agent faces a domain � of choice sets, where each

S in � is a nonempty subset of X. For each choice set S in �, the agent must select a

nonempty c(S) � S. Following tradition, we call c a �choice function�but each c(S) is a set.

A decision maker who chooses by checklist decides on a c(S) by going through a sequence

of properties; for each property, if there is an alternative in S that has that property then

the agent eliminates all those alternatives that do not. While an agent may use of a large

pool of properties to discriminate among alternatives, we require that for every S a �nal

selection is reached in a �nite number of steps.

Formally, a property P (i) is simply a set of alternatives, P (i) � X, and we say �alternative

x has property P (i)�when x 2 P (i). A (standard) checklist is a sequence of properties

P = (P (1); P (2); :::) = P (i)i2I where the set of indices I is either f1; :::; ng or the entire set

of natural numbers N.

Given a choice set S � X and a checklist P , de�ne inductively the following �survivor

sets�Mi(S):

M0(S) = S

Mi(S) =

8<: Mi�1(S) \ P (i) if Mi�1(S) \ P (i) 6= ?

Mi�1(S) otherwise

This sequence makes precise the elimination procedure we described. At each step i the

agent checks whether the current set of surviving alternatives have the ith property. If some

alternatives do, the alternatives that do not are thrown away. Otherwise, all alternatives

survive to the next round. In both cases the agent moves to step i+ 1.
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De�nition 1 A choice function c : � ! X has a (standard) checklist if and only if

there exists a checklist P such that, for all S 2 �, there is a property P (j) where j satis�es

Mi(S) = Mj(S) for all i � j

c(S) = Mj(S), (1)

and we then say that P is a checklist for c.

If the set of indices for the properties I is �nite, the checklist is �nite.

A choice function that has a standard checklist thus satis�es two features. First, the

procedure ��nitely terminates�: for any choice set S there exists a property in the checklist

such that, from that stage onwards, the set of survivors does not shrink any further.3 Second,

this set of permanent survivors coincides with what the choice function selects from S.

We call a complete and transitive binary relation on X a preference relation and say that

a choice function c with domain �maximizes a preference relation % if c(S) = fx 2 S : x % y
for all y 2 Sg for all S 2 �.

Example 1 In the car example of the introduction, we can model the option of not choosing

any car by letting some or all of the attributes be �deal killers,� i.e. attributes that a car

must have for a purchase to go through. For any car lot, let an object of choice be either a

vehicle vi in the lot, or the option w of walking away without buying anything. A choice set

S (a car lot) then has the form fv1; v2; :::; vn; wg. For the consumer in the introduction, with

an ordered set of desirable attributes, the �rst s attributes will be deal killers if each of these

properties includes w. For example, if attribute 1, say having price less than $30,000, and

attribute 2, having a manual transmission, are deal killers then w 2 P (1) and w 2 P (2) and

then a S that has no manual transmission car cheaper than $30,000 will lead the consumer

to walk. If every attribute is a deal killer, let w be in each P (i) and add an extra property

that repeats the �nal P (i) but omits w. Then if there is a car in S with every desirable

3For the agent, after reaching P (j) in De�nition 1, to execute a decision the agent must conclude that it
would be pointless to consider any further properties. The agent can make this inference in two prominent
cases: if Mj is a singleton or if Mj is a subset of a single indi¤erence class (taking preferences as primitive
in the latter case). The remaining cases are more problematic and ��nite termination�must be understood
as an approximate description, as we will explain in section 6.
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attribute it is chosen, and w is eliminated by the extra property; otherwise, every car in S is

eliminated and w survives as the only option.

Example 2 In the medical example in the introduction, an object of choice is a child who

has had a fever for f days and is y years old, and who receives either the treatment T = A

if the antibiotic is prescribed or T = NA if the antibiotic is not prescribed, hence a triple of

the form (f; y; T ). A choice set S is a f(f; y; A); (f; y;NA)g: any given child either does or

does not receive the antibiotic. The checklist described in the introduction is then P (1) =

f(f; y; T ) : f < 2; T = NAg, P (2) = f(f; y; T ) : y < 3; T = NAg, P (3) = f(f; y; T ) : T = Ag

which, as desired, ensures that only a child who has had a fever for two or more days and who

is three or older receives the drug. There is a shorter checklist that delivers the same decision

rule, the single property Q (1) = P (1)[P (2)[ f(f; y; T ) : f � 2; y � 3; T = Ag. Evidently,

because some alternatives do not group together naturally in the minds of decision-makers,

the shortest possible checklist may not be the easiest to use.

Example 3 (characteristics) In the spirit of Lancaster [16], we can recast the car example

by viewing each car as a bundle of characteristics (horsepower, color, price, and so on). For

any continuous characteristic, such as horsepower or price, there is a class of properties

that we call �coordinate cuto¤s.� Suppose that there are two continuous characteristics

and so X = R2+. A coordinate cuto¤ is a property of the form f(x1; x2) : xj � rg or

f(x1; x2) : xj � rg where j is the coordinate 1 or 2 and r is a real number. Coordinate

cuto¤s express categorical judgments about a single characteristic, e.g., if coordinate 1 is

price and P (1) = f(x1; x2) : x1 � 30,000g then any car costing less than $30,000 is ranked

above any other car. For a picture of the preferences that can arise from coordinate cuto¤s,

all of the form f(x1; x2) : xj � rg, see Figure 1, where the regions from worst to best are

labeled 1 through 9 and the cuto¤ level of property P (i) is labeled r(i).

Properties in Rn+ of course do not have to be coordinate cuto¤s. As a quick example,

let coordinates 1 and 2 be two foods that make up a meal �say meat and potatoes. Then

a property that placed a 800 calorie limit on the meal would be the �calorie cuto¤�P (i) =

f(x1; x2) : k1x1 + k2x2 � 800g, where ki is the number of calories per unit of food i.
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Figure 1: Coordinate cuto¤ preferences

Example 4 Suppose an agent has a preference relation% with n indi¤erence classes, labeled
X(1); :::; X(n) going from worst to best. Let c be a choice function that maximizes % on

some domain �. Then P (1) = X(n), P (2) = X(n � 1), ..., P (n � 1) = X(2) is a �nite

checklist for c.

Example 4 is a worst case scenario: the checklist has only one fewer property than the

number of indi¤erence classes. An agent with a checklist of this sort could spend a long

time eliminating alternatives before coming to a decision. Luckily, as we will see in section

4, the Example 4 checklists fail to be minimal when n > 1.

2.2 Extended checklists

We now present a more abstract model of checklists that allows sequences of properties to go

beyond the standard counting numbers. Since the details of how this is done will not come

up again until section 7, the reader can skip to section 3, noting only that any checklist in

section 2.1 quali�es as an one of the �extended checklists�that we now de�ne.

In our earlier elimination procedure, each set of survivors Mh(S) is a subset of its im-

mediate predecessor Mh�1(S). Since therefore Mi�1(S) = \
k<i
Mk(S), we could equivalently
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de�ne the elimination by

M0(S) = S

Mi(S) =

8><>:
\
k<i
Mk(S) \ P (i) if \

k<i
Mk(S) \ P (i) 6= ?

\
k<i
Mk(S) otherwise

for each i > 0. This de�nition has the advantage that it can be applied to �longer�sets

of properties: we can weaken the assumption that the indices I in a checklist are a set of

natural numbers and suppose instead that I is well-ordered by some �, setting 0 as the

least element of I.4 The assumption that I is well-ordered implies that each i 2 I has an

immediate successor; thus the procession through the checklist of properties remains orderly.

For an arbitrary well-ordered I, the above de�nition employs a variant of standard induction

(trans�nite induction) to specify each Mi(S) as a function of its entire set of predecessors

and P (i).

We say that a choice function c has an extended checklist if c satis�es De�nition 1

except that the Mi(S) are de�ned as above and I is permitted to be any well-ordered set

whose least element is 0.5 The terminal step j continues to be de�ned as in De�nition 1

but now need not be �nite. Any standard checklist quali�es as an extended checklist, and

conversely, if c has an extended checklist that ��nitely terminates�� for each S 2 �, the

index j identi�ed in De�nition 1 is �nite �then c has a standard checklist since then we can

excise all but the properties with �nite indices.

4A set A is well-ordered by � if � is a linear order (a complete, transitive, and antisymmetric relation)
on A such that every nonempty subset of A has a least element a: a � x for all x 2 A. See Halmos [12] for
the set theory concepts we use in this section.

5In terms of ordinal numbers, the distinction between standard and extended checklists is that the ordinal
number of the former must be ! or less while the ordinal number of the latter is unrestricted. Also, notice
that if we apply an arbitrary well-ordered set of properties to a choice set S, it could happen that Mi(S) is
empty for some i (when \

k<i
Mk(S) = ?). But if c has an extended checklist then this possibility does not

arise since we require c(S) 6= ? for S 2 �.
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3 Checklists and preference maximization

We �rst show that any choice function that has a checklist maximizes a preference relation.

This conclusion holds for extended checklists (and hence for standard checklists) and then

the converse obtains. The result is valid no matter what the domain of the choice function;

for example, it applies equally to budget sets in consumer theory and to �nite sets.

Theorem 1 A choice function has an extended checklist if and only if it maximizes a pref-

erence relation.

Formal proofs are in the appendix. Since �having an extended checklist,� as an as-

sumption on choice functions, is equivalent to preference maximization, it is equivalent to

any characterization of preference maximization for choice functions. For example, it is

equivalent to the congruence formulation of the strong axiom of revealed preference (Richter

[18]).

The �only if�half of Theorem 1 says that an agent whose choices come from a checklist

acts �as if�he were maximizing a preference relation. Of course the agent does not have to

think about preferences at all; the agent only needs to churn through his list of properties.

But in fact it is easy to name the preference relation the agent implicitly maximizes. When

a choice function has a checklist, we can identify each x 2 X with a sequence of �ins�and

�outs�that indicate in any coordinate i whether x is in or is not in property P (i), and declare

x % y if the x and y sequences are identical or x scores an �in�at the �rst coordinate where
the sequences di¤er. This % de�nes a preference relation on X and c must maximize %: if x
is chosen from some S that also contains y then y could not score an �in�before x does (this

would eliminate x), and conversely if x is %-maximizing on S then x can never be eliminated
by any y 2 S since if there is a �rst property that has one of x and y but not both it must

be y that is missing and is eliminated.6

6A less general argument works via the weak axiom of revealed preference (WARP). A choice function
with an extended checklist must satisfy WARP since if x is chosen when y is available it must be that if
there is a �rst property P (i) that contains either x or y but not both then P (i) contains x, hence if y is
chosen from any S that contains x then x must be chosen too. So on any domain where WARP implies that
a choice function maximizes some preference relation, for example the �nite subsets of X, a choice function
with a checklist must also maximize a preference relation.
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In fact, for a standard checklist P it is easy to strengthen the �only if�half of Theorem

1. Suppose we write down the �ins�and �outs�as a sequence of 1�s and 0�s respectively.

When P has �nitely many properties, use 0�s following the last property. For example, if

P has four properties and x 2 P (1), x =2 P (2), x =2 P (3), x 2 P (4), the sequence for x is

1; 0; 0; 1; 0; 0; 0; :::. Now we can read this sequence as the 0�s and 1�s of binary expansion

of a number between 0 and 1; for the x above, this number is 1
2
+ 1

16
= :5625. Given a

standard checklist P , each x has a 0 or 1 for each place in the binary expansion and thus

de�nes a number in [0; 1]. Outside of a small class of exceptions, this number can serve as

the utility of x for an agent who uses P ! The reason is simply that these numbers can serve

as a utility representation of the % de�ned in the previous paragraph.7

To state this result, de�ne a choice function c : �! X to maximize a utility function if

there exists a function u : X ! R such that c(S) = fx 2 X : u(x) � u(y) for all y 2 Xg for

all S 2 �.

Theorem 2 If a choice function has a standard checklist then it maximizes a utility function.

Since lexicographic preferences cannot be represented by a utility function, we conclude

that an agent who chooses with a standard checklist cannot have such preferences.8 Checklist

users, who at �rst glance seem not to make trade-o¤s, turn out to �t the textbook ideal of

an economic consumer.

Example 5 (characteristics revisited) To eliminate the puzzle, suppose all of the prop-

erties in Example 3 are coordinate cuto¤s of the form f(x1; x2) : xj � rg, as in Figure 1.

So if, e.g., P (1) = f(x1; x2) : x1 � rg then any bundle with x1 � r is ranked above any

bundle with x1 < r according to the preferences maximized by any c that has P (1) as its

�rst property. Notice that in the four property checklist in Figure 1, the numbers in the

�gure can serve as utilities for the nine regions. If we increase the number of properties

and let the cuto¤ levels ��ll in�each axis (become dense in R+), we approach preferences

that have a strictly increasing utility function. But no matter how many coordinate cuto¤

7The exceptions are numbers in [0; 1] with two binary representations, but this di¢ culty can be bypassed;
see the proof of Theorem 2.

8On R2+, for example, lexicographic preferences are de�ned by x % y if and only if x1 > y1 or (x1 = y1
and x2 � y2).
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properties an agent uses, the preferences that result cannot lexicographically rank bundles

�rst according the level of coordinate 1 and second according the level of coordinate 2. That

would require an extended checklist that begins with a countably in�nite set of properties

of type f(x1; x2) : x1 � rg (where the r�s for these properties are dense in R+) and then

proceeds to a countably in�nite set of properties of type f(x1; x2) : x2 � rg (again with the

r�s dense in R+).

We turn to the other half of Theorem 1 �that any choice function c that maximizes a

preference relation % has an extended checklist. A checklist can in fact be built from a

familiar item, the better-than (weak upper-contour) sets of the preference relation %: for
each x 2 X, set a property Px equal to fy 2 X : y % xg, ignoring the duplicates that arise
when x � x0. We then list �technically, we well-order �these properties to form an extended

checklist. When this checklist is applied to some S, the agent will eventually hit a property

Px where x % y for all y 2 S, whereupon no further eliminations occur.
When an agent has uncountably many indi¤erence classes �the primary model of con-

sumer theory �this construction is problematic; we have assembled a list of properties whose

length goes beyond the natural numbers. Since such checklists need not �nitely terminate,

they are neither tractable nor realistic.9 The conclusion in Theorem 1 that a preference-

maximizing choice function has a checklist is therefore satisfying only when the preference

relation has a �nite or countable number of indi¤erence classes; we then know that we can

form a standard checklist (or in the �nite case, recall Example 4). For checklists to furnish

a plausible model when agents have uncountably many indi¤erence classes, we must look for

cases where agents can continue to make do with a standard checklist, where the elimination

of options necessarily concludes after �nitely many steps. Although �nite termination might

seem too ambitious a goal when an agent has uncountably many indi¤erence classes, we will

see that it can sometimes be achieved.

The problem of slow checklists can arise even when agents have �nitely many indi¤erence

classes. To be useful, a checklist must execute quickly. An agent with n indi¤erence classes

who turns to the Example 4 checklist with n� 1 properties could end up with a procedure
9The problem shows up in the proof of Theorem 1 when we take the nonconstructive step of well-ordering

the upper contour sets to create the extended checklist.
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that is plodding and pro�igate, not fast and frugal!

The rest of the paper addresses these points. Can an agent with �nitely many indi¤erence

classes use a checklist that executes reasonably quickly? And can the agents of consumer

theory use a standard checklist at all?

4 Finite checklists can always be quick

Suppose an agent maximizes a preference relation with n indi¤erence classes (a �nite num-

ber): what is the shortest checklist the agent can use? These indi¤erence classes might

be derived from some c that has a checklist. If the preference relation that c implicitly

maximizes has n indi¤erence classes then our question is, �what is the shortest checklist for

c?�.

Consider an example with four indi¤erence classes

X = f1; 2; 3; 4g

where the choice function c, de�ned on all subsets of X, maximizes the usual order � on

integers. It is easy to see that P (1) = f4; 3g, P (2) = f4; 2g is a checklist for c.

Next, consider

X = f1; 2; 3; 4; 5; 6; 7; 8g

with c again maximizing �. De�ne the checklist P (1) = f8; 7; 6; 5g, P (2) = f8; 7; 4; 3g,

P (3) = f8; 6; 4; 2g. Again, it is easy to verify that this is a checklist for c. (It su¢ ces to

consider just the two-element subsets of X.)

Notice how the �rst example is nested in the second: the last two properties P (2) and

P (3) of the second example treat f5; 6; 7; 8g and f1; 2; 3; 4g just as P in the �rst example

treats f1; 2; 3; 4g, with the additional �rst property P (1) serving only to separate the two

chains. So, we have provided a checklist with 2 properties for a preference relation with

4 levels, and a checklist with 3 properties for a preference relation with 8 levels. This

conclusion extends inductively:
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Theorem 3 If c maximizes a preference relation with n indi¤erence classes, then c has a

checklist with k properties, where k is the smallest integer such that 2k � n. If in addition

the domain of c includes all the two-element sets then the minimum number of properties in

a checklist for c is k.

Theorem 3 shows how checklists become more and more e¢ cient as the number of indif-

ference classes increases. Not only will the required number of properties as a proportion

of the number of indi¤erence classes n fall to zero as n increases, but it will do so at an

exponential rate. Since 220 � 1,000,000, Theorem 3 explains the claim in the introduction

that a 1,000,000 preference discriminations require only 20 checklist properties.10

The pertinent feature of a choice set is its highest indi¤erence class; in the notation of the

above examples, a decision maker needs to identify, given S � f1; :::; ng, the largest integer

in S. The solution of this problem via �yes or no�questions is a classic illustration of a

binary search algorithm: �rst ask �does S contain an integer between n
2
and n?�, and then,

if yes, ask �does S contain an integer between 3n
4
and n?�and, if no, ask �does S contain an

integer between n
4
and n

2
?�, and so on. That a recursive computer program, where the choice

of the ith question depends on earlier answers, can execute this algorithm in dlog2 ne steps

is hardly news (dxe denotes the least integer � x)).11 What is notable about a checklist

is that it executes the algorithm nonrecursively. A property P (i) does not change as a

function of the eliminations that occur prior to i, and every property is used for every S.

To do without input from earlier steps, each property in e¤ect encodes a set of questions.

Consider again X = f1; 2; 3; 4; 5; 6; 7; 8g and let m denote maxS. Then P (1) �asks�one

question, �is m 2 f8; 7; 6; 5g?�, P (2) �asks�two conditional questions, �if m 2 f8; 7; 6; 5g then

is m 2 f8; 7g?� and �if m =2 f8; 7; 6; 5g then is m 2 f4; 3g?, and P (3) �asks�four conditional

questions. For i > 1, the eliminations prior to i ensure that only one of the antecedents of

the P (i) questions is satis�ed. Property P (i) therefore asks the right question, and without

recursive instructions or an exhaustive tree of n� 1 �if then�commands (where each answer

to a command leads to a distinct subsequent command).

10If c always selects a singleton, then Theorem 3 can be rephrased using the number of alternatives in X
rather than the number of indi¤erence classes.
11See, e.g., Knuth [15], chapter 6, Theorem B.
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We can compare the e¢ ciency of a checklist relative to an optimal tree of �yes or no�

questions. If we can ask questions of the form �does S intersect Y � f1; :::; ng?�, then, de-

pending on the probabilities that particular integers lie in S, the minimum expected number

of questions can be less than dlog2 ne. For example if it is highly likely that m = maxS = 4,

then one can �rst ask �does S intersect f5; 6; 7; 8g?�and if not �does S intersect f4g?�. But

if each x 2 X is equally likely to be m then dlog2 ne is the minimum expected number of

questions: the optimal tree does no better than the optimal checklist.12

5 Utility maximizers can have quick checklists

Finite checklists are appealingly concrete: there is a uniform upper bound on the number

of properties the decision maker has to examine before the choice procedure terminates. In

an arbitrary standard checklist, it remains true that each choice set needs to be checked

against only �nitely many properties but there might not be any bound on the number of

properties that serves simultaneously for all choice sets. This small di¤erence allows the

reach of standard checklists to extend much further than �nite checklists. Indeed, we will

now see that, under a domain restriction, any agent who maximizes a utility function can use

a standard checklist, which we label as �quick�since the eliminations made by the checklist

will end in a �nite number of steps. Classical commodity consumers can thereby �t under

the checklist umbrella.

Given a choice function c that maximizes a utility function u, we can build a standard

checklist P by setting, for each rational number r, the property Pr = fx 2 X : u(x) � rg

and then listing these properties in a standard checklist. The u-maximal alternatives in a

S will never be eliminated: if at any stage i the set of survivors from the previous rounds

contains some alternatives that are in P (i), then the u-maximal alternatives must be among

them. Conversely, any z in S that is not u-maximal will eventually be eliminated by a Pr

such that r lies strictly between u(z) and the maximum utility achieved by the alternatives

in S. Thus, we have

12If questions of the form �ism 2 Y ?�are permitted, which is exactly the game �Twenty questions,�Hu¤man
coding [13] generates the optimal tree. See also Zimmerman [26], and Gilbert [10] for the connection to our
problem.
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Theorem 4 If a choice function de�ned on a domain of �nite sets maximizes a utility

function then it has a standard checklist.

Theorem 4 shows the power of standard checklists: they can mimic preference maximiza-

tion even in some cases where a preference relation % has a continuum of indi¤erence classes.
In these cases, a standard checklist will, for any given choice set S, eliminate the inferior

alternatives from S in a �nite number of steps.

The following example shows that a domain restriction is required in Theorem 4.

Example 6 Let X be the interval [0; 1], let the domain of c be the closed sets in X, let

the utility function u : X �! R that c maximizes be de�ned by u(x) = x, and suppose P

is a standard checklist for c. Proposition 1 below shows we may assume that the checklist

consists only of properties P (i) that are weak or strict upper contour sets, i.e., sets of the

form fx 2 X : x � qg or fx 2 X : x > qg for some q 2 X. That is, if bP is a standard

checklist for c then there is also a standard checklist P for c that consists solely of upper

contour sets.

Assume then that there is a P that is a standard checklist for c that consists of upper

contours. If we call glb(i) the greatest lower bound of P (i), then there will be at most

countably many glb(i) for the properties in P . Pick some y 2 X that is not one of these

glb(i), and set S = fx 2 X : x � yg. Then, for any i,Mi(S) will equal the nonempty interval

whose lower boundary equals maxfglb(k) : glb(k) < y and k � ig and whose upper boundary

equals y. (This interval contains y but may or may not contain its lower boundary.) Since

Mi(S) 6= fyg = c(S) for all i, P could not in fact be a checklist for c.

That we may take a checklist in Example 6 to consist solely of (weak or strict) upper

contours illustrates a wider principle. A set U � X is an upper cut of a preference relation

% on X if (x 2 U and y % x) =) y 2 U . For the preference relation � on R (but not for

an arbitrary preference relation), an upper cut must be a weak or strict upper contour set.

Proposition 1 (canonical checklists) If c has a standard checklist and maximizes the

preference relation %, then c also has a standard checklist that consists solely of upper cuts
of %.
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If the domain of a choice function c is restricted su¢ ciently, c can maximize more than

one preference relation; Proposition 1 applies to any these preference relations.

While Example 6 shows that some domain limitation is needed in Theorem 4, the re-

striction can be weakened. For instance, the conclusion of the theorem still holds on any

domain that includes at most countably many in�nite sets. But we do not have an attrac-

tive characterization of the maximum permissible domain. So, while the converse result,

Theorem 2, is clearcut, the ideal way to �ll the gap in �A choice function ... if and only if it

has a standard checklist�remains an open question.

6 Utility maximizers always have quick approximate

checklists

As we have seen, the choice behavior of utility maximizers does not coincide exactly with that

of agents who use a standard checklist (a domain restriction is necessary), nor of agents who

use an extended checklist (since then we go beyond utility maximization to preference max-

imization). Nevertheless, standard checklists can closely approximate utility maximization

regardless of the domain.

To capture the idea that a checklist can approximate the decision c(S) we consider the

limit of the set of survivors selected by a standard checklist: although the procedure never

yields exactly the decision c(S) at any �nite step, it approximates c(S) more and more

accurately as the number of steps increases. In the limit, we get exact equivalence between

the choices of standard checklist users and utility maximizers.

As no notion of distance is present in our set-up, we use a set-theoretic de�nition of the

convergence of the Mi(S). A choice function c : �! X has an approximate checklist if

and only if there is a standard checklist P such that, for all S 2 �,

c(S) =
\
i2I
Mi(S),

where the Mi(S) are de�ned from P as in section 2.1. Although after any �nite number of

steps the set of surviving alternatives may still contain other alternatives beside the chosen

16



ones, it is only the chosen alternatives that survive all steps of elimination: for any alternative

rejected by the choice function, there exists a property that it does not have.

Theorem 5 A choice function maximizes a utility function if and only if it has an approx-

imate checklist.

Approximate checklists help explain how a standard checklist that has N as its set of

indices would work practically. Such checklists can raise a termination problem: even when

no further eliminations occur after some property P (j), the agent may not know this fact.

The agent will know it for choice functions that always select singletons or subsets of a single

indi¤erence class (see footnote 3). But in all other cases, the practical distinction between

standard and approximate checklists is not sharp. For both of these checklist models, the

agent would have to declare at some point that the set of alternatives has been winnowed

down adequately.

7 Multivalued properties and the representation of pref-

erences

While so far we have focussed on checklists as decision-making procedures, they can also be

seen as a preference representation device. This section explores this possibility and the

connection to Chipman [3]�s theory of lexicographic utility.

We can rephrase our initial model of standard checklists by replacing each property P (i)

with the indicator function of P (i) �the function ui : X �! f0; 1g with ui(x) = 1 if and

only if x 2 P (i) �and rede�ningMi(S) to equal argmaxui(x) s.t. x 2Mi�1(S) for all i > 0.

Each of these newly de�ned Mi(S) will coincide with our original de�nition of Mi(S). For

the more general case of extended checklists, we can instead use Mi(S) = argmaxui(x) s.t.

x 2
T
k<iMk(S) for i > 0.

This reformulation suggests replacing the ui above with functions that have a larger range

(�multivalued properties�). Among the prominent possibilities, we could admit any ui that

maps to a �nite set with at least two elements, or any ui that maps into R. Indeed we could
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go one step further and instead of functions, use a complete and transitive relation Ri on X,

and set

Mi(S) = fx 2
\
k<i

Mk(S) : xRiy for all y 2
\
k<i

Mk(S)g (2)

for i > 0. This last proposal is evidently the most general. Given a well-ordered set

of indices I with least element 0 and a complete and transitive Ri for each i 2 I, we call

fRigi2I a multivalued checklist. If each Ri has at most two indi¤erence classes (our original

model) we say fRigi2I is a two-valued checklist, if the number of indi¤erence classes of each

Ri is �nite we say fRigi2I is a �nite-valued checklist, and if each Ri has a real-valued utility

representation we say fRigi2I is a real-valued checklist.

With the Mi(S) given by (2), we can de�ne fRigi2I to be a multivalued checklist for a

choice function c by applying De�nition 1.

Theorem 1 extends to any multivalued checklist: a choice function c has a multivalued

checklist if and only if it maximizes a preference relation. The �if�direction follows from our

original statement of Theorem 1. For the �only if�direction, some minor adjustments to the

proof of Theorem 1 show that if fRigi2I is a multivalued checklist for c then c maximizes

the weak lexicographic order �L on X de�ned by13

x �L y () [(xRiy and yRix for all i 2 I) or (yRix =) 9k < i with xRky)]. (3)

Theorem 1�s applicability to multivalued checklists suggests their use as a representation

device. One way to proceed would be to say that a multivalued checklist fRigi2I represents

the preference relation % if fRigi2I is a checklist for the choice function c, de�ned on �nite
subsets of X, that maximizes %. But it is equivalent and simpler to omit any mention of

choice functions and just say that a multivalued checklist fRigi2I represents the preference

relation % if %=�L (as de�ned by (3)). Requiring that a checklist is n-valued (for n =

two, �nite, real) provides a correspondingly more restrictive de�nition of representation.

A real-valued checklist is the de�nition of representation that Chipman [3] proposed in his

classical work on utility theory.14 To see that Chipman pitched his de�nition at the right level

13This extension of Theorem 1 would not hold if the Ri were not required to be complete and transitive.
See Manzini and Mariotti [17].
14We thank Chris Tyson for stressing the connection between our work and Chipman�s. For a survey of
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of generality, observe that with no restrictions on the admissible Ri, multivalued checklists

can be trivial and have no value for representation purposes: any preference relation % can
be represented by the multivalued checklist that consists of the single relation %. Moreover,
there are preference relations that can be �concisely�represented by a real-valued checklist

but that have neither a classical utility representation nor a �concise��nite-valued checklist.

The simplest example is the lexicographic ordering on R2+, which can be represented by a

real-valued checklist that consists of just two functions but where any �nite-valued checklist

representation must have an index set I that goes beyond N (this conclusion follows from

Theorem 2). Thus real-valued checklists are restrictive enough to be useful but not so

restrictive that they are always unwieldy. In fact, Chipman�s construction would lose most

of its value if we added even the smallest additional restriction on the admissible Ri, that each

must have only countably many indi¤erence classes: one may show that any such �countably-

valued�checklist that has an index set I that is �nite or equal to N represents a preference

relation that could also be represented by a classical utility function. To get a concise

representation when a classical utility is unavailable, a real-valued checklist is required.

In our terminology, the main theorem in Chipman [3] states that any preference relation

% can be represented by a real-valued checklist. Theorem 1 implies this result. Indeed,

Chipman�s proof uses utility functions with ranges that take on two values; thus, he implicitly

showed that any % can be represented by a two-valued checklist, which is the content of

Theorem 1.15 Outside of Theorem 1, our results do not intersect with lexicographic utility

theory, for the very reason that we restrict the range of the admissible Ri. The range

restriction indeed exposes a rich structure hiding inside Chipman�s theory; for example, the

capacity of a two-valued checklist to make exponentially many preference discriminations

has no parallel in the theory of real-valued checklists, since one real-valued function can by

itself make in�nitely many discriminations.

Finally, we note that our original model of two-valued checklists perform reasonably well

as a representation tool. Chipman [4] showed that there are preferences relations that can

be represented by only those real-valued checklists fRigi2I that use a I that is uncountable.

Chipman�s theory and related developments, see Fishburn [9].
15This result precedes Chipman in the mathematical literature on ordinal numbers, see Cuesta Dutari [5],

[6] and Sierpinski [21].
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Since Theorem 1 applies to such preference relations, they can be represented by two-valued

checklists �as Chipman himself makes clear �though of course I must again be uncountable.

Conversely, if a preference relation % is represented by a real-valued checklist fRigi2I with a
set of indices I that is at most countable then it can be represented by a two-valued checklist

where I is at most countable.16 Real-valued checklists still have an edge: as we have seen,

there are preference relations % that can be represented by a real-valued checklist with a set
of indices that is �nite or equal to N but where the only two-valued checklists that represent

the same % have to use a set of indices with an ordinal number larger than N. Of course

it is this �drawback�of two-valued checklists that guarantees the tight connection between

their tractability as a decision procedure �that they terminate after �nitely many steps �

and utility maximization. Two-valued checklists have to use a set of properties that goes

beyond N to represent a % in just the cases where % has no utility representation.

8 Concluding remarks

Since Simon�s [22] contribution, we have been used to thinking of �procedural rationality�as

entirely separate from, and even in opposition to, �substantive rationality.� This paper leads

to a di¤erent view. We have considered a tractable, realistic procedure that can underpin

utility maximization, thus blurring Simon�s distinction.

There are ways to choose by checklist that do not �t the model of this paper. Consider a

consumer shopping for a camera, who �rst looks for cameras on the top shelf, then for those

priced between $225 and $250, and then for those with black �nish. This agent could choose

di¤erent cameras from stores that stocked the same set of cameras but put them on di¤erent

shelves. Moreover, the properties (sets of cameras) in this list can di¤er by store whereas

checklists as we have de�ned them are �xed across choice sets S. If we think of a store as

a choice set, our model rules out this agent�s choice procedure. Rubinstein and Salant [20]

16To build a two-valued checklist from such a fRigi2I , it is easiest to use our notation for properties.
For each Ri, there is an countable set DRi

� X that is Ri-order-dense. Hence for each Ri there is a
function dRi

that maps N onto DRi
and we can de�ne a property PRi

(j) = fx 2 X : xRi dRi
(j)g for each

�index� (Ri; j) in the countable set fRigi2I � N. We de�ne a well-ordering � of fRigi2I � N by setting
(Ri; j) � (Rm; l), ((j � l and i = m) or i < m). It is easy to con�rm that these properties as ordered by
� de�ne a two-valued checklist that represents %.
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better �ts this example: the alternatives in each choice problem are presented to the decision

maker in an exogenously speci�ed order (e.g., the element on the top shelf is seen before

the element on the next shelf). A choice problem is then an ordered list of alternatives

(a1; :::; ak), and a choice function associates each such list with one of its elements.

Although we believe that the checklist model is new to economics, we should mention

Rubinstein [19], who underlines the potential importance of unary relations (what we call

�properties�) in decision making. Although distantly related, that work was the initial

stimulus for this project.

9 Appendix: Proofs

Proof of Theorem 1: Let the choice function c have the extended checklist P . We

identify each x 2 X with the vector px 2 f0; 1gI given by px(i) = 1 if x 2 P (i) and px(i) = 0

if x =2 P (i) (of course each px can be associated with many alternatives). We order f0; 1gI

lexicographically: for p; q 2 f0; 1gI , de�ne �L by p �L q () (q(i) > p(i) =) 9k < i

with p(k) > q(k)). The asymmetric and symmetric parts of �L are labeled >L and =L
respectively. To conclude that �L is a linear order, we could appeal to the fact that the

lexicographic order of any family of linear orders with well-ordered indices must itself be a

linear order. But to argue directly, completeness follows from the fact that (1) if p = q then

(q(i) > p(i) =) 9k < i with p(k) > q(k)) obtains vacuously, while (2) if p 6= q then the

well-ordering of I implies that j = minfi : p(i) 6= q(i)g is well-de�ned and hence p >L q if

p(j) > q(j) and q >L p if q(j) > p(j). Case (2) also yields antisymmetry. For transitivity,

if p =L q =L r then p = q = r and hence p =L r. If on the other hand p �L q >L r or

p >L q �L r set j = minfi : p(i) 6= q(i) or q(i) 6= r(i)g. Then p(j) � q(j) � r(j) with at

least one strict inequality. Hence p(j) > r(j) and p(i) = r(i) for i < j, i.e., p >L r.

Let % now denote the relation on X given by x % y () px �L py: since �L on

f0; 1gI is a linear order, % on X is a preference relation. To see that for any S 2 �,

c(S) = fx 2 S : x % y for all y 2 Sg, suppose �rst that x 2 c(S). If y � x for some y 2 S
and we set j = minfi : px(i) 6= py(i)g then the fact that x 2 Mi(S) for all i < j implies

that y 2 Mi(S) for all i < j. But since y 2 P (j) and x =2 P (j), x =2 Mj(S), contradicting
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x 2 c(S). Conversely suppose x 2 S and x % y for all y 2 S. Then, since c(S) is nonempty,
x % z for some z 2 c(S). Since z 2 Mi(S) for all i, x % z implies fi : px(i) 6= pz(i)g = ?
(otherwise z would be eliminated at minfi : px(i) 6= pz(i)g). So x 2 Mi(S) for all i, i.e.,

x 2 c(S).

Now suppose that c maximizes some preference relation %. To construct a checklist,

let I = X [ f0g and let � be a well-ordering of I with 0 < x for any x 2 X. (This is a

nonconstructive step: the principle that any set can be well-ordered relies on the axiom of

choice.) For each x 2 X de�ne P (x) = fy 2 X : y % xg. Fix S 2 � and some x 2 c (S).

Then, for any z 2 X with x =2 P (z), the fact that x % y for y 2 S and the transitivity of
% imply y =2 P (z) for any y 2 S. So, for any z 2 X, if x 2 \w<zMw(S) then x 2 Mz(S).

Since x 2M0(S), trans�nite induction implies that x 2Mz(S) for all z 2 X. Moreover, for

all y =2 c(S), y =2 P (x) and so y =2 Mx(S). Finally observe that Mz(S) = Mx(S) for all z

such that x � z, so that the terminal step j in De�nition 1 is well de�ned.

Proof of Theorem 2: Let c have a standard checklist P : I ! 2X . As in Theorem 1,

given P , each x 2 X can be associated with a unique px 2 f0; 1gI , where the ith component

is de�ned by px(i) = 1 if x 2 P (i) and px(i) = 0 if x =2 P (i). De�ne u : X ! R by

u(x) =
X
i2I

px(i)

3i
.

Since
P
j>i

1
3j
< 1

3i
for any i 2 I, this u is a utility representation for %, where, as in the proof

of Theorem 1, % is the preference relation % on X induced by the lexicographic order �L on

f0; 1gI . (A utility representation for % is a u such that x % y , u(x) � u(y).) The proof

of Theorem 1 also shows that c(S) = fx 2 X : x % y for all y 2 Xg for all S 2 �. Hence

c(S) = fx 2 X : u(x) � u(y) for all y 2 Xg.

Proof of Theorem 3: For any n, let 1; :::; n denote the indi¤erence classes of the

preference relation % and let the linear order over f1; :::; ng that c induces be � (the standard
order on the integers). That is, g � h for g; h 2 f1; :::; ng if and only if, for all x 2 g and

y 2 h, x % y. It is su¢ cient to consider a choice function c de�ned on subsets of f1; :::; ng
that always selects the �-maximal element. Speci�cally, if bc is the choice function that
maximizes %, then let S be in the domain of c if and only if there is a bS in the domain of bc
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such that
�
(x 2 bS and x 2 g) =) g 2 S

�
and

�
g 2 S =) (9x 2 bS such that x 2 g)�.

Both conclusions of the theorem hold for n = 1 since the empty set of properties is

minimal. So assume henceforth that n > 1.

Regarding minimality, suppose c has a checklist P with s properties. As in the proof of

Theorem 1, identify each x 2 f1; :::; ng with the px 2 f0; 1gs given by px(i) = 1 if x 2 P (i)

and px(i) = 0 if x =2 P (i). Since there are 2s elements in f0; 1gs and given that n > 1,

2s < n would imply that px = py for some distinct pair x; y 2 f1; :::; ng. Since the domain of

c contains the two-element sets, then fx; yg 2 � and thus c(fx; yg) = fx; yg, contradicting

the assumption that c maximizes �. So for this domain we cannot have 2s < n.

Regarding �there exists a checklist with k properties, where k is the smallest integer such

that 2k � n,�suppose this claim holds for 1; :::; n�1. Partition f1; :::; ng into Zl = f1; :::;mg

and Zu = fm+1; :::; ng, where m = n�2 if n is even and m = (n+1)�2 if n is odd. Then,

since n > 1, we have 2k�1 � jZrj for both r = l and r = u. The induction hypothesis

implies that cjZu (the choice function de�ned by restricting c to subsets of Zu) has a checklist

P = (P (1); :::; P (k� 1)) and that cjZl has a checklist P 0 = (P 0(1); :::; P 0(k� 1)). De�ne the

checklist Q by Q(1) = Zu and Q(i+ 1) = P (i) [ P 0(i) for i = 1; :::; k � 1.

For any checklist R, let MR
i (S) denote the ith set of survivors when R is applied to the

choice set S.

To see that Q is a checklist for c, notice �rst that if S 2 Zu then MQ
k (S) = M

Q
k�1(S) =

cjZu(S\Zu) = c (S), and similarly if S 2 Zl thenMQ
k (S) = c (S). For all S that contain both

elements of Zl and elements of Zu, application of Q(1) yields M
Q
1 (S) = S \Q(1) = S \ Zu.

Since Q(i+ 1) \ Zu = P (i), for i = 1; :::; k � 1, application of properties Q(2) through Q(k)

yields MQ
k (S) =M

P
k�1(S \ Zu) = cjZu(S \ Zu) = c(S).

Proof of Theorem 4: Given a choice function c that maximizes a utility function u,

de�ne for each rational r, the property Pr = fx 2 X : u(x) � rg. We de�ne a checklist P

by letting f : Q! N be a bijection that enumerates the rationals and setting P (i) = Pf�1(i)
for each i 2 N. Let S be a �nite choice set. Then S has at least one u-maximal element,

i.e., a y 2 S such that u(y) � u(z) for all z 2 S. Moreover, if y is u-maximal in S then

the checklist P can never eliminate y: if y 2Mi�1(S) and z 2Mi�1(S)\P (i) then y 2 P (i)

as well (since u(y) � u(z)) and hence y survives to stage i. If, on the other hand, z 2 S
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is not u-maximal then there is a u-maximal y 2 S and a property P (f(r)) = Pr for some

rational r such that u(z) < r < u(y) and therefore z must be eliminated by property Pr if

z 2Mi�1(S).

Proof of Proposition 1: Let c with domain � have the standard checklist P and

let I be the indices of P . We know from the proof of Theorem 1 that c maximizes the

preference relation % on X de�ned by w % z () pw �L pz, where pw 2 f0; 1gI is given by

pw(k) = 1() w 2 P (k) and �L is the lexicographic order on f0; 1gI . De�ne the countable

family P of upper cuts of % by Pq = fw 2 X : pw �L qg 2 P if and only if q 2 f0; 1gI has

�nitely many coordinates k such that q(k) = 1. Enumerate P by a bijection � : P �! bI,
where bI is well-ordered with least element 0, which de�nes a standard checklist bP and thus,
for any S 2 �, a sequence of survivor sets cMi(S). Since P is a standard checklist for c, for

every S 2 � there is an index j 2 I such that if y 2 Snc(S) then the �rst index i 2 I such

that y =2 Mi(S) satis�es i � j; for any y 2 Snc(S), let i(y) denote this index i. Fix some

x 2 c(S). Since each bP (k) is an upper cut of % and c maximizes %, x 2 cMk(S) for all k 2 bI
(see the proof of Theorem 1). For any y 2 Snc(S), we have x 2 P (i(y)) and y =2 P (i(y))

while x 2 P (k)() y 2 P (k) for k < i(y). Thus

px �L qi(y) >L py

where, for any index i, qi 2 f0; 1gI is de�ned by qi(k) = x(k) for k � i and qi(k) = 0 for

k > i. Thus, for the index l = �(Pqi(y)), x 2 bPl(S) and y =2 bPl(S) and so y =2 cMl(S). Since for

any y 2 Snc(S) the index �(Pqi(y)) must be drawn from the �nite set J = fl 2 bI : l = �(Pqi)
for some i � jg, cMmax J(S) = c(S). Thus c has a standard checklist that consists of upper

cuts of %.
If in addition c maximizes the preference relation %0, de�ne the standard checklist P 0

by setting P 0(k) = fz 2 X : z %0 w for some w 2 bP (k)g for each k 2 bI, and survivor sets
M 0
i(S). The transitivity of %0 implies that, for any k 2 bI, P 0(k) is an upper cut of %0.

Consider some S 2 � and suppose x 2 c(S) and y 2 Snc(S). As in the previous paragraph,

x 2 M 0
k(S) for each k 2 bI. Moreover, x 2 P 0(�(Pqi(y))) since x 2 bP (�(Pqi(y))) and %0 is

re�exive, while y =2 P 0(�(Pqi(y))) since otherwise there would be a w 2 bP (�(Pqi(y))) with
24



y %0 w and therefore, since bP (�(Pqi(y))) is an upper cut, y 2 bP (�(Pqi(y))). Hence y =2M 0
l (S)

for l = �(Pqi(y)) and therefore M
0
max J(S) = c(S).

Proof of Theorem 5: The part of the proof of Theorem 1 that shows that a c with a

checklist P : I �! 2X maximizes the % induced by the lexicographic order on f0; 1gI never
uses the fact that P �nitely terminates. The proof of Theorem 2 therefore also does not

use �nite termination, and so that proof establishes the �if�part of the present Theorem.

For the �only if�part, where we are given a utility u that represents some % and a c that

maximizes u, we use the same checklist constructed in the proof of Theorem 4. Once again

for any y 2 c (S) and i 2 I, we have y 2 Mi (S) =) y 2 Mi+1(S) and therefore y 2 Mi (S)

for all i 2 I. And for all z 2 Sn fc (S)g, where therefore y � z for any y 2 c(S), there must

exist P (i) = Pr such that u(z) < r < u(y). So it must be that z =2 \i2IMi (S), and thus

c (S) = \i2IMi (S).
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