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Abstract

In many settings, individuals face a tradeoff between cooperating to expand

a collective good (a “collective pie”) or competing to expand the share they own

of that good. We study this tradeoff as a dynamic public goods problem where

the size of the collective pie (and its shares) can only be gradually changed and

contributions to the pie’s growth are irreversible. Our main result is that the

pie’s growth eventually halts and zero-sum conflict between the agents ensues

forever. In the essentially unique subgame perfect equilibrium, growth ultimately

leads to a stage-game that is reminiscent of the prisoner’s dilemma. However,

unlike a repeated prisoner’s dilemma, cooperation is unsustainable in our model

for any discount factor. We also explore the relationship between growth and

inequality in the agents’ shares. We highlight the empirical relevance of our theory

to factionalism in organizations, special interest politics, and market competition.

1 Introduction

In many settings, individuals face a tradeoff between pursuing cooperative actions
that expand a collective good or competitive actions that expand the share they own
of that good. This classical tradeoff is ever present. Members of an organization must
choose between investing their time in expanding their organization’s resources or
trying to redirect existing resources toward their preferred use (Milgrom and Roberts,
1988; Milgrom, 1988). In an industry, firms may expand their industry’s market as a
whole (e.g., via industry-wide advertising) or compete to increase their market share.
Organized interest groups may exert effort toward expanding production—“society’s
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Hans Gersbach, Arda Gitmez, Gabriele Gratton, Ángel Hernándo-Veciana, Hongyi Li, Elliot Lipnowski,
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pie”—or try to shift a greater share of the existing pie toward their members (see, e.g.,
Olson, 1982).

Understanding when and why individuals cooperate to grow a collective good or
when, instead, they pursue zero-sum conflict over its distribution is crucial for our
understanding of the dynamics of organizations, markets, and political competition (Ali,
Mihm and Siga, 2024; Bueno de Mesquita and Dziuda, 2023). Yet, the dynamics
of growth and conflict are potentially complicated. In these settings, individuals’
interactions are rarely one-shot; instead, individuals must repeatedly resolve this
tradeoff as they interact in the same market place, organization, or economy. This
gives rise to dynamic consequences: Choosing to expand one’s share today means
starting with a higher share tomorrow; expanding the collective good today leads to a
larger good tomorrow. Therefore, present decisions may have long-term consequences
for both the evolution of the collective good’s size and its distribution. Furthermore,
since individuals have long-term interests, there is scope for relational contracts to
emerge whereby cooperation is sustained over time by the threat of (self-enforcing)
punishment.

In this paper, we study this tradeoff as a dynamic public goods problem. We focus
on settings that have two features common to the literature on public goods. First,
individuals face constraints imposed by institutions or technology that allow only for
gradual shifts in the shares and size of the collective good (Acharya and Ortner, 2022;
Bowen, Chen and Eraslan, 2014; Bowen, Chen, Eraslan and Zápal, 2017). Second, con-
tributions to expand the collective good are irreversible (Battaglini, Nunnari and Palfrey,
2014; Chen, Deng, Fujio and Khan, 2023). Irreversibility appears naturally in many
settings. For example, useful ideas contributed by an organization’s member cannot be
unlearned. A firm’s advertisement that makes a new segment of the population aware
of the industry’s existence can not be easily reversed.

In our benchmark model, two forward-looking agents own complementary shares
of a pie, and each period they simultaneously choose whether to expand the pie or
expand their share of it. Agents’ actions have constant and additive effects on the size
of the pie and the shares. In particular, the pie only grows if some agent contributes
to it and each agent’s contribution adds a fixed amount to the pie; thus, if both agents
contribute to it, the pie grows by twice as much as if only one contributes. Similarly, if
only one agent attempts to increase her share, it increases by a fixed amount. But if both
(or neither) attempt to increase their share, there is a stalemate and the agents’ shares
remain unchanged. This means that an agent, if she so chooses, can always defend her
current share.

Two key forces underscore our model and are derived from the agents’ myopic
(stage game) incentives. First, an agent’s incentive to expand the pie is increasing in her
share of it (à la Olson, 1971). Second, her incentive to expand her share is increasing
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in the size of the pie. Hence, an agent is more tempted to expand her share when the
pie is large or her share is small. With myopic agents, a sufficiently large pie leads to
perpetual conflict: Both agents fight for their share, producing a stalemate that stops
growth. Yet, one may conjecture that cooperation can be sustained when agents are
forward-looking and interacting repeatedly.

Our main result shows that this conjecture is wrong: Growth eventually halts and
zero-sum conflict follows thereafter. Furthermore, the size of the pie for which conflict
ensues is independent of the agents’ discount factor (and, hence, coincides with the
agents’ myopic behavior). To see why, suppose we try to sustain a path of growth via
grim-trigger strategies: If any agent deviates to increase her share, the other will punish
her by attempting to increase her share, and growth will cease thereafter. By the ensuing
stalemate over the shares of the pie, a deviating agent will still guarantee herself the
payoff that she appropriated in her deviation. The breakdown of cooperation then
follows from the fact that, since the pie grows with constant returns, the total future
growth of the pie is independent of its current size. However, each agent’s gain from
deviating to increase her share naturally increases in the pie’s size—in turn, there exists
a size of the pie for which agents deviate.1 The fact that cooperation eventually halts
has an unraveling effect. As a result, forward-looking agents are unable to grow the pie
beyond what myopic agents can achieve. More generally, all dynamics in our model
are unaffected by the agents’ discount factors.

Our results on the dynamics of growth and conflict before growth halts connect
inequality both to the speed and limit of growth. If agents have equal initial shares,
both contribute to expand the pie and eventually stop at the same time. If they have
different initial shares, the agent with the smallest share stops cooperating first. This
causes the speed of growth to slow and the initial inequality in the agents’ shares to
decline: The agent who owns a larger share keeps the pie growing while the agent with
a smaller share free rides and increases her own share at the expense of the large-share
agent. However, because the share of the large-share agent is gradually decreased,
this also decreases the large-share agent’s incentive to contribute to expanding the pie
and, eventually, leads the large-share agent to also compete to increase (or defend) her
share of the pie. Perhaps interestingly, this initial inequality leads the pie to grow to a
larger long-run size than it would otherwise be attained if the agents had equal shares.
Hence, more persistent growth requires initial inequality but growth also gradually
erodes inequality. Our dynamics of growth and conflict resemble key observations in
the seminal works of Olson (1971) and Hirshleifer (1991). In collective action problems,
there is a “tendency for ‘exploitation’ of the great by the small” (Olson, 1971) and, in

1In Section 6, we discuss the robustness of this result to relaxations of key assumptions, including:
the possibility that the size of pie depreciates or conflict over the shares destroys part of the pie, and
endowing the agents with asymmetric discount factors.
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power struggles, “poorer or smaller combatants often end up improving their position
relative to richer or larger ones” (Hirshleifer, 1991).

In our framework, initial conditions matter. More extreme initial levels of inequality
are more likely to have a persistent effect, which consists of greater long-run inequality
but also a greater long-run size of the pie. However, this does not mean that extreme
initial inequality is necessarily the utilitarian optimum since, as a result of the “tendency
for ‘exploitation’ of the great by the small,” more unequal initial conditions translate
into equilibrium paths where only one agent contributes to the collective good, implying
slower growth rates.

Institutions and the broader technological environment play an important role in
enabling, or hindering, cooperation. Consider the example of market competition
and firms’ advertising decisions mentioned earlier. The effectiveness of the firms to
expand the market or their share might depend on their ability to micro-target new
customers outside of the market or customers of their competitor. New technologies,
access to richer data, or changes in privacy regulation may affect one or both of these.
Similarly, in organizations and politics, interest groups’ effectiveness in redirecting
resources toward their own interests might depend on institutional structures, such
as the stringency of checks and balances. Holding all else equal, if institutions or
technology are such that it becomes easier for agents to expand their share or harder to
expand the pie, then cooperation becomes harder to sustain, conflict ensues earlier, and
the long-run size of the pie is smaller.2 This result provides insight into when and why
demand for more stringent regulations or institutions (e.g., checks and balances) might
arise. Our framework also highlights how sophisticated institutions that limit agents’
abilities to expand their share as the pie increases may be necessary for sustaining
cooperation and growth.

Our setting connects to two classical games: The prisoner’s dilemma and the
centipede game (Rosenthal, 1981). When the pie has grown enough, the stage game
that agents face is a prisoner’s dilemma: Each agent’s dominant strategy in the stage
game is to expand her share but both agents would be better off if they expanded
the pie. Therefore, the dynamics of growth in our model imply that regardless of
initial conditions, agents end up eventually playing a repeated prisoner’s dilemma at
perpetuity. However, unlike the folk theorems for repeated games (Friedman, 1971),
cooperation cannot be sustained because cooperation leads to a larger pie, which
increases the attractiveness of defection and this, in turn, has an unraveling effect that
makes cooperation impossible. In this sense, the logic of conflict is reminiscent of a
centipede game. Yet, in our model, the unraveling argument of the centipede game

2Naturally, changes that make it easier for agents to expand their share might also have spillover
effects that make it easier to expand the pie. So long as the spillovers are not too large, the same
conclusion holds.
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applies only partially: When the pie is small, agents are still able to cooperate and grow
the pie despite the anticipation of future conflict.

Finally, we emphasize the empirical relevance of our results by focusing on three
applications. First, we consider the emergence of factionalism in social movement
organizations. We show that the literatures in organizational behavior and sociology
provide support for our underlying mechanism and that a larger pie—more organiza-
tional resources—may induce conflict in organizations. Second, we apply our theory
to market competition and firms’ decisions to invest in industry-wide (“generic”) or
firm-specific (“branded”) advertising, where the former aims to expand market de-
mand for the entire industry and the latter aims to steal, or defend, market share
from competitors. In this context, we show that our key predictions for growth and
conflict are supported by a range of anecdotal and empirical evidence. We also explain
how our mechanism highlights new policy implications of federal laws that mandate
industry-wide advertising—in particular, how such laws may inadvertently increase
market concentration. Last, we highlight how our theory is consistent with observations
made by Olson (1982), which connect the existence of special interest groups (so called
“distributional coalitions”) to a country’s poorer economic performance.

The remainder of the paper is structured as follows. Subsection 1.1 reviews the
related literature. Section 2 presents the benchmark model. Section 3 establishes
our core result that growth eventually halts. Section 4 characterizes the dynamics
of growth and conflict. Section 5 discusses the empirical relevance of our theory
with applications to organizations, politics, and markets. Section 6 discusses some
relaxations of key modeling choices. Section 7 concludes the paper. All proofs are
deferred to the appendix.

1.1 Related literature

We study a classical tradeoff between expanding the pie or expanding one’s share of it.
This tradeoff appears in Olson (1982) but he does not develop a formal model nor ana-
lyze its dynamic consequences. Since Olson, economists have formalized this tradeoff
in a variety contexts but have largely approached the problem by considering static
settings, the steady states of dynamic systems, dynamic settings with myopic agents,
or dynamic settings that prohibit history-dependent strategies (see, e.g., Eggert et al.,
2011; Gonzalez, 2007; Gustafsson et al., 2020; Maxwell and Reuveny, 2005; Skaperdas,
1992).3 We complement this literature by analyzing this classical tradeoff in a dynamic
setting with forward-looking agents and allowing for history-dependent strategies.

3Our tradeoff differs from the (related) “guns and butter” tradeoff (Grossman and Kim, 1995; Hirsh-
leifer, 1995; Skaperdas and Syropoulos, 2001) because our setting features a collective good: Agents are
able to exert effort toward growing a pie that simultaneously benefits both agents.
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We connect to the literature on dynamic public goods problem. As is common in this
literature, our public good is subject to irreversibility (Battaglini et al., 2014; Chen et al.,
2023; Lockwood and Thomas, 2002; Marx and Matthews, 2000; Matthews, 2013; Parihar,
2024).4 and gradualism. Previous work has focused on the emergence of gradualism
in public goods problems (and bargaining) as a means to achieving more efficient
outcomes (see, e.g., Admati and Perry, 1991; Compte and Jehiel, 2004). Others have
focused on how the irreversibility of a public good contribution can in of itself generate
gradualism (Lockwood and Thomas, 2002). We contrast this literature by imposing
gradualism as a constraint (similar to Acharya and Ortner (2022)), which captures
frictions generated by institutions, technology, or consumer behavior. In addition, in
our paper, the public good (the size of the pie) is irreversible but, at the same time,
the benefit an agent derives from the public good can be gradually changed—in this
sense, our public good has a fungible private component. This latter feature contrasts
with the voluntary contributions literature. Our results also differ in important ways
from those Lockwood and Thomas (2002) and Compte and Jehiel (2004). These papers
illustrate how gradualism is needed to achieve more efficient outcomes and, as the
agents become more patient, the inefficiency induced by gradualism decreases. In
contrast, gradualism does not allow for more efficient outcomes in our framework;
instead, gradualism is barrier: if the agents were able to grow the pie by a larger
amount, then they would obtain a more efficient outcome. Furthermore, due to the
unraveling effect that emerges in equilibrium, the inefficiency that occurs in equilibrium
is independent of the agents’ discount factors and, hence, cannot be resolved by more
patient agents.

In the context of (dynamic) veto bargaining, a common explanation for inefficient
outcomes is the status quo effect: bargaining outcomes that are achieved today can
increase agents’ reservation values in the future (Acharya and Ortner, 2022; Compte
and Jehiel, 2004; Duggan and Kalandrakis, 2012; Dziuda and Loeper, 2016; Kalandrakis,
2004).5 Our model also features a status quo effect in the form of “gradualism” whereby
only small changes in the size of the pie and its shares can be achieved each period.
However, unlike the veto bargaining literature, our agents are not endowed with veto
power and, furthermore, there are no synergies in their actions. This implies that the
net effect of an agent’s action is independent of the other’s action. Perhaps closer to our
paper is Acharya and Ortner (2022), which studies a setting where two agents engage
in veto bargaining with policies arriving stochastically and there is an exogenously-

4Irreversibility is also a common assumption in environmental contexts, where the pie corresponds to
the amount of resources or the level of environmental exploitation (Harstad, 2023). For such contexts, it
may be natural to modify our model to impose an exogenous bound on the maximum level of the pie
(e.g., equal to the maximum amount of resources that could plausibly be exploited). Our results on the
dynamics of growth and conflict are unchanged when such a bound is imposed (see, Remark 1).

5Offering a different perspective, Bowen et al. (2014) show that the status quo effect can improve
efficiency (see also, Bowen et al., 2017). For a recent survey, see Eraslan et al. (2022).
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assumed (and commonly known) Pareto frontier. Our framework poses an interesting
contrast because—despite the potential for unbounded growth—in equilibrium, what
would appear as a Pareto frontier emerges endogenously.

Finally, our theory speaks to the emergence of zero-sum competition in markets,
politics, and organizations. Recent work has focused on the role of information asym-
metries in generating zero-sum competition. Bueno de Mesquita and Dziuda (2023)
analyze a dynamic model of politics where the underlying prevalence of common-value
issues is known to politicians but unknown to voters. Bueno de Mesquita and Dziuda
show the inevitability of “partisan traps,” whereby political competition centers around
zero-sum (partisan) issues. Politicians exploit their informational advantage to make
voters more pessimistic about the prevalence of common-value issues, inducing them
to behave as partisans—ultimately, leading to a zero-sum trap. Similarly, Ali, Mihm
and Siga (2024) illustrates how an ex-ante Pareto-efficient policy may be rejected by
a majority of voters because of the uncertainty about how its zero-sum benefits are
distributed. Ash, Morelli and Van Weelden (2017) illustrate how a politician’s desire
to signal her type to voters can lead her to (inefficiently) allocate resources toward
divisive, zero-sum policy issues instead of common-value ones. Our theory, in contrast,
features no informational asymmetry.6 We offer a complementary perspective in which
the emergence and inevitability of zero-sum competition is a product of the growth of
the collective good itself.

2 Benchmark model

Time is discrete and infinite, t ∈ {1, 2, . . .}. There are two agents, A and B, who own
shares st and 1 − st, respectively, of a pie πt. The (exogenous) initial shares and pie
are s0 and π0. The pie and each agent’s share constitute a two-dimensional state of the
world (st, πt) ∈ [0, 1]× [π0,∞).

At the start of each period t, the agents simultaneously choose a binary action:
atA ∈ {0, 1} and atB ∈ {0, 1}. These actions at := (atA, a

t
B) together with the previous

period’s state (st−1, πt−1) determine period-t state, (st, πt). By choosing atj = 1 an agent
j ∈ {A,B} increases the pie by ω > 0, while choosing atj = 0 is an attempt to increase
her share by κ > 0, where κ = 2−m > 0 for some m ∈ N. Formally, the states of the
world evolve according to the law of motion:

st = max
{
0,min

{
1, st−1 + κ(atB − atA)

}}
and πt = πt−1 + ω(atA + atB).

6In a different tradition, Pei (2023) has shown the impossibility of cooperation in a repeated prisoner’s
dilemma if agents are sufficiently patient and have control over their publicly observable record of
behavior.
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The initial state of the world is (s0, π0), where s0 = ℓκ for some ℓ ∈ {1, . . . , 2m − 1} and
π0 > 0. To avoid issues of indifference, we assume π0 is not a multiple of ω.

Payoffs. Agent A and B’s per-period payoffs are uA(st, πt) := stπt and uB(st, πt) :=

(1− st)πt, respectively. The agents discount future payoffs at a rate of β ∈ (0, 1); hence,
agent j’s payoff is

∑∞
t=1 β

t−1uj(st, πt) for j ∈ {A,B}.

Equilibrium concept. Our equilibrium concept is pure-strategy Subgame Perfect equi-
librium (equilibrium hereafter). A strategy for j ∈ {A,B} is a mapping aj(st−1, πt−1, ht−1)

from every feasible state (st−1, πt−1) and history of past actions ht−1 into a binary de-
cision atj ∈ {0, 1}. We denote the agents’ strategy profile by σ = (aA, aB) and an
equilibrium by σ∗ = (a∗A, a

∗
B). Given a strategy profile σ, we define agent j’s continua-

tion payoff from a state (st−1, πt−1) = (s, π) with history ht−1 as

Vj(s, π | σ, ht−1) := E
[ ∞∑

t′=t

βt′−tuj(st′ , πt′)
∣∣∣σ, s, π, ht−1

]
,

where (st′ , πt′) and ht′ are determined by σ and the law of motion for every period
t′ ≥ t.

3 Growth eventually halts

In this section, we show that there exists a limit to the growth of the pie. We begin
with two auxiliary lemmas that highlight the key forces that ultimately limit growth.
First, consider the payoff an agent obtains if perpetual conflict occurs: Both agents
perpetually attempt to increase their shares—guaranteeing that the pie never grows
and each agent’s share remains fixed. Lemma 1 says that, in every equilibrium, an
agent’s continuation payoff must be at least as high as her payoff from this perpetual
conflict.

Lemma 1 (Perpetual conflict as a lower bound on payoffs.) Let the state be (st−1, πt−1) =

(s, π) with some history ht−1. In every equilibrium, σ∗, each agent’s continuation payoff is
bounded below by the continuation payoff of perpetual conflict:

VA(s, π | σ∗, ht−1) ≥
sπ

1− β
and VB(s, π | σ∗, ht−1) ≥

(1− s)π

1− β
. (1)

Since each agent’s impact on the share is symmetric, an agent’s choice to increase her
share has a defensive effect: She ensures that her share does not decrease regardless of
the other agent’s action. At the same time, growth is irreversible. Therefore, an agent’s
continuation payoff must not be less than maintaining her current share and the current
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size of the pie for every future period, which precisely corresponds to the perpetual
conflict payoff.

Second, consider the payoff an agent obtains from the opposite extreme: perpetual
cooperation, whereby in every period the agents choose to expand the pie and thus, the
pie grows at its maximum speed: 2ω per period. This maximizes the joint continuation
payoffs of the agents—the “surplus” generated by the agents—which is simply the
discounted sum of the size of the future pies (since the agents own complementary
shares). Intuitively, in every equilibrium, this surplus is bounded above by the surplus
generated by perpetual cooperation. Yet, because there are constant returns to coopera-
tion, the surplus generated by perpetual cooperation is decreasing as a fraction of the
pie’s current size. Lemma 2 formalizes these results.

Lemma 2 (Perpetual cooperation as an upper bound on payoffs.) Let the state be (st−1, πt−1) =

(s, π) with some history ht−1. In every equilibrium, σ∗, the sum of agents’ continuation payoffs
is bounded above by the continuation payoff of perpetual cooperation:

VA(s, π | σ∗, ht−1) + VB(s, π | σ∗, ht−1) =
∞∑
t′=t

βt′−tπ∗
t′ ≤

π

1− β
+

2ω

(1− β)2
. (2)

Moreover, the surplus from perpetual cooperation is finite and decreasing as a fraction the pie’s
current size.

Lemmas 1 and 2 present two forces that act against cooperation: that agents are
able to defend their existing shares of the pie and the surplus generated by perpetual
cooperation is bounded and decreasing as fraction of the pie’s size. Consider now, for
example, a strategy profile whereby the agents perpetually cooperate, so the surplus
generated by the agents is the right hand side of (2). If an agent, say agent A, instead
decides to deviate and increase her share, she free rides on the other agent’s choice
to expand the pie and benefits immediately from a larger share of the now larger pie:
(s + κ)(π + ω). By Lemma 1, she can (at minimum) retain this same benefit in every
future period. Applying the same logic to agent B, it follows that sustaining perpetual
cooperation requires a sufficiently large surplus to be available:

VA(s, π | σ∗, ht−1) + VB(s, π | σ∗, ht−1) ≥
(s+ κ)(π + ω)

1− β
+

(1− s+ κ)(π + ω)

1− β

=
(1 + 2κ)(π + ω)

1− β
.

However, as the pie grows, even the surplus generated by perpetual cooperation—the
maximum possible surplus—is insufficient: Cooperation cannot be sustained. Intu-
itively, when the pie is large enough, since there are constant returns to cooperation,
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perpetual cooperation generates only an arbitrarily small surplus relative to what per-
petual conflict generates. At the same time, the incentive to deviate increases as the pie
grows, and eventually some agent will prefer not to cooperate.

Lemma 3 formalizes the above intuition and implications. It says that if each agent
has a non-unit share (i.e., s ̸= 0, 1), then growth eventually halts: For a sufficiently large
pie, in every equilibrium, the agents engage in perpetual (zero-sum) conflict and the
size of the pie and the agents’ shares remain fixed.7

Lemma 3 (Limited growth.) There exists π̄(κ, ω, β) such that if the state is (st−1, πt−1) =

(s, π) with π > π̄(κ, ω, β), then, in every equilibrium, conflict ensues and growth halts for
interior shares, i.e., if s /∈ {0, 1}, then (s∗t′ , π

∗
t′) = (s, π) for every t′ ≥ t;

We have seen that conflict ensues when the pie is sufficiently large. However,
Lemma 3 and the above discussion suggest that the agents’ discount factor plays an
important role in determining the limit of growth; indeed, the surplus generated by
perpetual cooperation is larger when the agents are more patient. Therefore, one
may expect that even if growth must eventually halt, a more patient agent can be
incentivized to cooperate for larger pies through the promise of the other’s future
cooperation. Proposition 1 establishes that this is not the case: The limit of growth is
independent of the agents’ discount factors.

Proposition 1 (The unraveling effect of limited growth.) Consider the state be (st−1, πt−1) =

(s, π) such that
π >

ω

κ
s− ω and π >

ω

κ
(1− s)− ω (3)

and any history ht−1. In every equilibrium, σ∗, conflict ensues and growth halts for interior
shares, that is, if s /∈ {0, 1}, then (s∗t′ , π

∗
t′) = (s, π) for every t′ ≥ t.

Therefore, the limit of growth depends only on the agents’ shares, s, and the extent
to which they can expand their share, κ, or the pie, ω, per period. The reason why is
that the limits of growth posed in Lemma 3 have an unraveling effect in equilibrium. If

7The case where an agent owns a non-interior share (i.e., s ∈ {0, 1}) is an edge case that does not
arise on the equilibrium path (we show this formally in Section 4). For completeness, Corollary A.1 in
Appendix A, states the possible equilibrium outcomes for these subgames. In some equilibria of these
subgames, the pie may continue to grow; however, in every equilibrium, the agents’ shares remain fixed.
It follows because, when one agent has a unit share, the other agent (who has a zero share) is indifferent
between having a zero share of the current pie and having a zero share of a larger pie. This allows for
the existence of an equilibrium whereby the unit-share agent expands her share (to no effect) and the
zero-share agent grows the pie unless the unit-share agent grows the pie, in which case the zero-share
agent reverts to expanding her share forever. Yet, this scenario never arises on the equilibrium path
since an agent with non-zero share always has a strict incentive to avoid subgames where her share is
zero. The possibility of growth in this edge case (and our results more generally), do not rely on the
possibility that agents can have zero, or unit, shares. Our essentially unique equilibrium (to be presented
in Proposition 2) remains unchanged if agents’ shares are bounded between s and 1− s for some s > 0
sufficiently small.
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agents know that cooperation is impossible tomorrow, they will only cooperate today if
it is in their myopic interest. Iterating on this logic, by backward induction shows that
the limit of growth unravels to the largest pie for which there exist myopic incentives
for growth—which is a bound smaller than the one in Lemma 3. Since this frontier
is exclusively determined by myopic incentives, it is independent of agents’ discount
factor.

This logic is reminiscent of the centipede game, in which two agents fail to grow a
common pie because each is afraid of the other appropriating it. In the centipede game,
the expectation of the other agent’s selfish behavior also triggers an unraveling effect
making cooperation altogether impossible. However, unlike the centipede game, in our
model agents accrue payoffs in each period—hence, temporary cooperation can offer
both agents benefits—and an agent may be better off cooperating today even if she
expects that in the future the other agent will selfishly deviate. These crucial differences
result from the gradualism with which shares change and give cooperation a greater
chance of being sustained in our setting.

It is interesting to note that at the point at which growth ceases, the agents’ stage
game payoffs correspond to a prisoners’ dilemma: In the stage game, both agents’ dom-
inant strategy is to increase their share but they would be strictly better off if both
expanded the pie. More generally, at any point where cooperation to expand the pie
fails, the stage game is a prisoners’ dilemma. Yet, unlike a repeated prisoners’ dilemma,
this is a dynamic game: Cooperation generates a larger pie, which in turn increases
agents’ incentives to defect. This difference makes cooperation impossible, regardless
of the agents’ discount factors. This conclusion is perhaps surprising given that our
equilibrium concept allows for history-dependant strategies, so agents could potentially
sustain cooperation through relational incentives (see, e.g. Friedman, 1971).8

Proposition 1 leaves open a number of questions: Can growth be achieved when
the pie is small? How does the size of the pie and the agents’ shares evolve in the face
of limited growth? What is the relationship between the inequality of agents’ shares
and the long-run size of the pie? We turn to these questions in the next section.

4 Dynamics of growth and conflict and its consequences

We now characterize the equilibrium dynamics of growth and conflict. These dynamics
are underscored by a simple logic: An agent’s marginal benefit from increasing her
share is (roughly) in proportion to the size of the pie, and her marginal benefit from
increasing the pie is (roughly) in proportion to the size of her share. This suggests that
a small pie is more likely to incentivize agents to expand the pie; while a large pie is

8Related folk theorems for dynamic games, such as those in Dutta (1995), do not apply to our setting
because of the irreversibility constraint.
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more likely to incentive agents to expand their shares—inducing perpetual zero-sum
conflict. Conversely, it also suggests that, for any given size of the pie, the agent with
the smallest share will have the greatest incentive to expand her share.
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ω
κ
1
2
− ω

ω
κ
− ω

π
=

ω
κ
s
−
ω

π
=

ω
κ (1−

s)−
ω

s

π

Figure 1: The dynamics induced by equilibrium behavior with respect to (s, π).

Proposition 2 says that there exists an essentially unique equilibrium that is Marko-
vian (history-independent); it is depicted in Figure 1. The dynamics induced by the
equilibrium have two key features that follow from the logic described above:

(i) When the agents’ initial shares are not too unequal (and the initial pie is not too
large), both agents initially cooperate to expand the pie. However, as the pie grows,
cooperation ceases: The agent with the smaller share chooses to expand her share,
while the agent with the larger share continues to expand the pie. This implies that the
state evolves along a diagonal in the (s, π) space: The pie expands (albeit at a slower
rate) and agents’ shares gradually equalize to st =

1
2
. Once any initial inequality has

been removed, perpetual zero-sum conflict ensues and growth halts with the long-run
size of the pie attaining a minimal value.

(ii) When the agents’ initial shares are sufficiently unequal (and the pie is not too large),
the agents never cooperate. The agent with the smaller share immediately chooses to
expand her share, and the agent with the larger initial share expands the pie. Again, this
process temporarily leads to an expanding pie and a gradually more equal distribution
of shares between the agents. But once the pie has grown sufficiently, perpetual conflict
ensues. However, at this point—and unlike in case (i)—the agents’ shares are not
equalized, the initial inequality persists (although reduced) and the long-run size of the
pie is larger than the minimal value attained in (i).
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Proposition 2 (Dynamics of growth and conflict.) There exists a Subgame Perfect equi-
librium σ∗ whereby actions are Markovian on and off the equilibrium path as follows: For any
state (st−1, πt−1) = (s, π) and any history ht−1

a∗A(s, π, ht−1) =

0 if π > ω
κ
s− ω

1 if π < ω
κ
s− ω.

and a∗B(s, π, ht−1) =

0 if π > ω
κ
(1− s)− ω

1 if π < ω
κ
(1− s)− ω.

(4)

Furthermore, this Subgame Perfect equilibrium is essentially unique: For any initial state
(s0, π0) with s0 ∈ (0, 1), the state evolves according to a unique equilibrium path, {(s∗t , π∗

t )}∞t=0,
as described by (4).

The dynamics exhibited by Proposition 2 could be mistaken as diminishing marginal
returns: In equilibrium, as the pie grows, the amount by which it grows is (weakly)
decreasing, and similarly, as an agent’s share increases, she is less likely to further
expand her share. Yet, in our setting, there are constant returns to both actions.9 Our
dynamics are, instead, endogenously driven by the payoff complementarity between
an agent’s share and the size of the pie.

As in Proposition 1, the equilibrium dynamics in Proposition 2 are independent
of the agents’ discount factors and follow precisely the (Markovian) dynamics that
would arise if the agents were myopic. In equilibrium, therefore, the agents’ dynamic
concerns play no role. Intuitively, this feature arises via an unraveling argument. The
inevitability of perpetual conflict (recall Proposition 1) makes it impossible for the
agents to develop a relational contract that improves over their myopically preferred
strategies.

Our model allows for the possibility of an unbounded growth of the pie. However,
in some settings, it may be natural to consider some upper limit, say π̄, to the size
of the pie. For example, the upper bound may represent the optimal level of growth
after which further growth is detrimental or the (finite) amount of resources available;
alternatively, πt may map into the probability for which agents will capture some fixed
prize and this probability is bounded by π̄ = 1. The equilibrium behavior and dynamics
presented in Proposition 1 are unaffected if the maximum size of the pie is bounded.
Intuitively, a bounded pie necessarily means that growth must halt—in particular, when
πt = π̄, perpetual conflict must ensue. But then an unraveling argument (per the results
presented in Section 3) applies: In any subgame that could lead to πt+1 = π̄, the agents
anticipate that perpetual conflict will ensue if the pie is expanded and, in turn, resort to
their myopic incentives. The remainder of the argument then follows identically to that
of the benchmark model.

9If there are diminishing marginal returns to agents’ actions, our results are strengthened—more
limited growth and earlier conflict. We return to these assumptions in Section 6.
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Remark 1 (Extension with a bounded pie.) Suppose the pie is bounded above by some
(exogenous) value π̄ ≥ 1; i.e., the law of motion of πt is πt = min{π̄, πt−1 +ω(atA + atB)}. Then
Proposition 1 holds verbatim.

An exogenous upper bound on the pie, π̄, may also naturally arise in settings where
the collective good, π, is, in fact, a collective bad, such as a pile of trash or pollution.
The agents’ actions would then correspond to a decision to reduce the pile of trash
(reducing the collective bad) or attempting to shift some share of the trash toward the
other agent. Such a model is isomorphic to our model10 and, hence, Remark 1 can be
applied.

4.1 Inequality and the long-run size of the pie

We now turn to the consequences of the equilibrium dynamics for long-run outcomes
and the optimal level of (in)equality. Corollary 1 summarizes the implications of the
dynamics of growth and conflict (Proposition 2) for the relationship between initial
levels of inequality and long-run outcomes. The corollary focuses on cases where the
initial size of the pie is intermediate. When the initial inequality of shares is low, initial
conditions do not matter: In the long-run, there is perfect equality and the long-run pie
attains its minimum long-run value of (approximately) ω

κ
1
2
− ω. However, when initial

inequality is high, initial conditions matter: In the long-run, inequality persists and
the long-run pie is greater than ω

κ
1
2
− ω. Further, both the long-run inequality and the

long-run pie are increasing in the initial inequality.11

Corollary 1 (Initial conditions, long-run inequality, and the long-run pie.) Suppose the
initial size of the pie is intermediate: ω

κ
(1− 3κ)−ω < π0 <

ω
κ
1
2
−ω. Only when initial inequal-

ity is large enough, the initial conditions, (s0, π0), matter for long-run outcomes, (s∗∞, π∗
∞). In

particular:

(i) If
∣∣s0− 1

2

∣∣ < 1
2
− (π0+ω) κ

ω
, then initial conditions do not matter. There is long-run equality

s∞ = 1
2
, and the long-run pie is minimized, π∗

∞ ∈ (ω
κ
1
2
− ω, ω

κ
1
2
+ ω).

(ii) Otherwise, initial conditions matter. Inequality is persistent, long-run inequality is increas-
ing in the initial inequality, and the long-run pie is increasing in the initial inequality:
s∗∞ ≷ 1

2
⇐⇒ s0 ≷ 1

2
; and

∣∣s∗∞ − 1
2

∣∣ and π∗
∞ > ω

κ
1
2
+ ω are increasing in

∣∣s0 − 1
2

∣∣.
10To be more precise, the agents’ per period payoffs should be rewritten as uA(st, πt) = π̄ − πtst

and uB(st, πt) = π̄ − πt(1 − st) and the law of motion for the agents’ shares rewritten as st =
max{0,min{1, st−1 − κ(atB − atA)}}.

11When the initial size of the pie is large, there is no growth for intermediate ranges of initial inequality—
the initial conditions are the same as the long-run outcomes. When the initial size of the pie is sufficiently
small, all levels of initial inequality with s0 ∈ {κ, . . . , 1 − κ} lead to long-run equality s∞ = 1

2 and a
minimally-sized long-run pie π∗

∞ ∈ (ωκ
1
2 − ω, ω

κ
1
2 + ω).
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Although greater initial inequality is needed for a larger long-run pie, it does not follow
that inequality is optimal in the utilitarian sense. This is because when the initial size
of the pie is intermediate there is a tradeoff between growing faster or growing into
a larger long-run pie. When there is little inequality, the pie develops quickly toward
its minimal long-run size; when there is extreme inequality, the pie develops slowly
toward its maximal long-run size.12 Therefore, the utilitarian optimal level of inequality
depends on the agents’ discount factor: when the agents are more patient, maximal
inequality is optimal; when the agents are impatient, minimal inequality is optimal.
Proposition 3 formalizes this result. The proof appears in Supplemental Appendix S.4.

Proposition 3 (Utilitarian-optimal inequality.) Suppose the initial size of the pie is inter-
mediate: ω

κ
(1− 3κ)− ω < π0 <

ω
κ
1
2
− κ.

(i) If the agents are sufficiently impatient (β sufficiently close to 0), the utilitarian-optimal
initial condition features minimal inequality: s0 = 1

2
or s0 = 1

2
± κ.

(ii) If the agents are sufficiently patient (β sufficiently close to 1), the utilitarian-optimal initial
condition features maximal inequality: s0 = κ or s0 = 1− κ.

Part (ii) of Corollary 1 and Proposition 3 suggest that when agents are sufficiently
patient, they may have an incentive to agree to redistribute their initial shares increasing
inequality as a way so to induce a larger long-run size of the pie and higher utilitarian
payoff. For example, for a fixed initial size of the pie, the small-share agent may agree
to redistribute part of her share to the large-share agent. However, in the absence of
transferable utility, the small-share agent would not agree to such a redistribution plan.
Intuitively, the plan hurts the small-share agent in the short-run because she must
sacrifice part of their share. Therefore, the agreement could only possibly be reached if
the long-run state induced by greater inequality is beneficial to the small-share agent,
but this is not the case. Greater inequality induces a long-run state that lies higher along
the diagonal illustrated in Figure 1 (and per Proposition 2). However, moving the state
to a higher point along this diagonal hurts the small-share agent: they strictly prefer
lower states along this diagonal (and the high-share agent strictly prefers the opposite).
Thus, there is no hope for a redistributive agreement.

4.2 Institutions and technology

So far, we have fixed agents’ effectiveness at expanding the pie or their shares. In this
section, we explore the implications of changes in the agents’ effectiveness: ω and κ.

12When the initial size of the pie is large or small, this tradeoff does not arise. For a large initial pie,
greater inequality is the utilitarian optimum (since there is no growth for low levels of inequality). For
a small initial pie, minimal inequality is optimal because greater inequality does not generate a larger
long-run pie and leads to slower growth—this is partly due to the coarseness of our state space.
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These parameters may naturally differ between contexts and depend on institutions and
the broader technological environment. Consider the example of market competition
and firms’ advertising decisions mentioned in the introduction. The effectiveness of
the firms to expand the market or their share might depend on their ability to micro-
target new customers outside of the market or customers of their competitor. New
technologies, access to richer data, or changes in privacy regulation may affect one or
both of these.13

Agent’s incentives depend on their effectiveness at each action. Intuitively, as the
agents become more effective at expanding their shares, they are also less willing to
expand the pie, and the perpetual-conflict region becomes larger (i.e., as κ increases, the
upper triangle in Figure 1 expands). In turn, the long-run size of the pie is smaller and
long-run inequality is larger. The reverse holds when the agents become more effective
at growing the pie. Corollary 2 states this result and highlights an important role of
institutions and technology in fostering greater growth and reducing conflict.

Corollary 2 (More effective agents.) As κ increases or ω decreases,

(i) the set of parameters that induce perpetual conflict (weakly) increases in the set-inclusion
order;

(ii) for any initial condition, (s0, π0), the long-run inequality (weakly) increases, and the
long-run size of the pie (weakly) decreases.

We can apply this result to contexts in which reducing agents’ effectiveness in
expanding their share has spillover effects such that agents are also less effective at
growing the pie. For example, in the context of legislative bargaining, stronger checks
and balances and constraints on legislative majorities may limit politicians’ ability to
achieve partisan as well as bipartisan reforms (Acharya and Ortner, 2022; Dziuda and
Loeper, 2016; Gratton and Morelli, 2022; Lee, 2022). Formally, these spillovers can be
analyzed by taking the agent’s effectiveness at expanding the pie to be an increasing
function of their ability to expand their share: ω := H(κ), where H(κ) > 0 and H ′(κ) ≥ 0

for all κ. Intuitively, as long as the spillover effect, H ′(κ), is not too large, Corollary 2
will continue to hold. This suggests that fostering greater growth requires institutions
that limit agents’ effectiveness in expanding their shares but are also carefully crafted
as to avoid stifling agents’ abilities to grow the pie.

Finally, Corollary 2 provides some insights into when and why agents may demand—
and even agree—on reforms that modify their ability to expand their shares. For
example, consider an instance where the state is such that, in equilibrium, agents

13Similarly, in organizations and politics, interest groups’ effectiveness in redirecting resources toward
their own interests might depend on institutional structures, such as the stringency of checks and
balances.
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engage in perpetual conflict. In such cases, a reform that reduces their effectiveness
expanding their shares may facilitate a (temporary) end of conflict and a larger pie.
Such a reform constitutes a Pareto improvement so, if available, is likely to be agreed to
by the agents. Applied to the context of democratic politics, this suggests that countries
with higher levels of development and state capacity may be more likely to strengthen
checks and balances.14 Now, instead, consider states such that, in equilibrium, the
agents are not in perpetual conflict (i.e., the size of the pie is not too large). In such
cases, it is possible that reducing the agents’ abilities to expand their shares is not Pareto
optimal and, hence, is less likely to be demanded by both agents. Returning again to
the context of democratic politics, checks and balances are less likely to be strengthened
in countries with lower levels of development and state capacity.

5 Empirical relevance

Our theory points toward a type of organizational “resource curse,” whereby the
prevalence (or sudden influx) of resources produces an inefficient halt in cooperation
and the emergence of zero-sum conflict. Our resource curse stems neither from agents
being short-sighted (or subjected to turnover) nor from decreasing returns in the
technology used to expand the pie. Instead, our resource curse is grounded in the
simple fact that avoiding conflict becomes harder as growth increases the victor’s
spoils.15 Indeed, our theory also highlights that the temptation for an agent to stop
cooperating is strongest for the agent with a smaller share, since she has relatively more
to gain from expanding her own share of the existing pie compared to expanding the
pie as a whole.

Our organizational resource curse resonates with several applications. In the follow-
ing subsections, we explore three applications: factionalism within social movement
organizations, competition in markets, and distributive conflict within economies.

5.1 Factionalism in social movement organizations

Within a social movement organization (and sometimes between social movement orga-
nizations), there is often a collective goal that unites its members, e.g., progress toward
social justice or environmental goals. Nonetheless, organization scholars and sociolo-
gists widely agree that, with progress and growth, factionalism arises, leading to internal
conflict over “movement resources, direction, and media attention” (Kretschmer, 2024).
Indeed, in his seminal book Gamson (1975) refers to factionalism as the “nature of

14We share this feature with Karakas (2017).
15A related dynamic appears in Acemoglu et al. (2008) where, as the economy grows, a politician’s

temptation to steal production also grows. In this electoral accountability setting, voters avoid this
“resource curse” by providing relational incentives to the politician.
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the beast” and Kretschmer (2024) concludes that factionalism is “probably inevitable.”
As in our theory, factionalism also imposes an opportunity cost as “resources are
channeled into internal disputes rather than toward pressing the [organization’s] de-
mands” (Balser, 1997).

Our theory highlights that, as a social movement organization becomes more promi-
nent and accumulates more resources and power, factionalism will arise. This is
consistent with Gamson’s and Kretschmer’s observations that factionalism is inevitable.
Further, in our theory it is the expansion of resources itself that generates factionalism
and conflict. This mechanism, which runs contrary to some other arguments, is never-
theless supported by existing work.16 First, in summarizing the literature, Kretschmer
(2024) writes “evidence across a variety of movements shows us that in boom times,
when movements are popular, public participation is high, and resources are flowing
in, factionalism [...] within and between groups is likely to be high.” Kretschmer (2013)
hints at our mechanism by asking “is factionalism more likely in prosperous economic
times because there are more resources to fight over?” For evidence, Kretschmer points
to Balser’s (1997) case study of the SNCC (Student Nonviolent Coordinating Com-
mittee) in the United States. Balser documents how the influx of new resources from
the Kennedy administration in 1961 “instigated a serious conflict” between members
with competing views over the organization’s direction. More systematic empirical
studies also come to a similar conclusion. Soule and King (2008) study competition
between social movement organizations within the same “social movement indus-
try” (i.e., sharing a common goal). They analyze the organizational tactics adopted
by protest organizations supporting peace, women’s, and environmental movements
in New York State between 1960 and 1986. Contrary to their own hypothesis, they
document that tactics associated with competition over resources are more likely when
“resources are prevalent.” Although the causes of factionalism are surely multi-faceted,
our mechanism appears empirically relevant across a variety of settings within and
between social movement organizations.

5.2 Competition in growing markets

In market competition, firms face a tradeoff between taking actions that expand the
market as a whole—benefiting all firms in the industry—and actions that expand their
market share—at the expense of their competitors. For example, and as mentioned
in the introduction, firms can choose between engaging in industry-wide (“generic”)
advertising or in firm-specific (“branded”) advertising. Industry-wide advertising aims

16Other arguments include that organization growth often entails a more diverse body of members or
that, once an organization comes close to achieving its goals, it can struggle to reorient and establish
consensus for a new collective goal (see, e.g., case studies and cited literature within Balser, 1997; Miller,
1999).
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to expand the market for the entire industry, so it is cooperative in nature, generating
a collective good that benefits all firms in the industry.17 In contrast, firm-specific
advertising is competitive and primarily aims to steal, or defend, market share from
competing firms in the same industry without affecting the size of the market as a
whole (Bass et al., 2005; Krishnamurthy, 2000; Ward et al., 1985).

In this setting, our theory makes three key predictions that are supported by anec-
dotal and empirical evidence. First, we predict that firms will collectively underinvest
in industry-wide advertising. Indeed, this is a key argument used by proponents
of the many federal laws that require firms to fund industry-wide advertising cam-
paigns (Messer et al., 2008; Varian, 2006). As put by Ward (2006),

“Removing potential free-riders and creating a pool of funds earmarked for generic
advertising messages is precisely the intent of the national legislation for supporting
commodity checkoff programs and an important objective of many federal and state
marketing orders.”

The claim that, absent mandatory requirements, firms underinvest in industry-wide
advertising is also supported by a range of empirical and experimental studies (Depken
et al., 2002; Liaukonyte et al., 2015; Messer et al., 2008; Tchumtchoua and Cotterill, 2010).

Second, our theory predicts that firms are more likely to engage in industry-wide
advertising when the industry’s market is relatively small but will switch to firm-
specific advertising as the market grows. Indeed, when federal law does not require
industry-wide advertising, marketing scholars often describe industry-wide advertising
as a feature of emerging markets and firm-specific advertising as a feature of mature
markets (Beard, 2010, 2011; Yoo and Mandhachitara, 2003). Quoting a contemporary
source, Beard’s (2011) historical analysis describes the steamship industry’s strategy to
engage in industry-wide advertising in the early 1900s:

“It dawned upon both lines that it was work meet [i.e., suitable or fitting] for even
two advertisers to educate the local public to travel more by water. The patronage
was not fixed; it could be increased as the public came to understand the pleasures
and the benefits of a trip by steamer (Pickett 1910, 29).”

Beard explains that similar attitudes appeared in industries where there was “near-
unanimous confidence in market expansion.” Yet, these cooperative behaviors even-
tually end. For example, in the early 1980s, the fast food industry matured and firms

17In some industries, the amount of expenditure on industry-wide advertising is large and significant.
As described by Chakravarti and Janiszewski (2004), “In 2002 alone, the annual domestic expenditure
on generic advertising for cheese, beef, and Florida orange juice was $47 million, $45 million, and $24
million, respectively. By comparison, advertising budgets for Kraft cheese, Hormel Foods fresh meat
products, and Tropicana orange juice were approximately $26.6 million, $2.6 million, and $32.4 million,
respectively.”
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switched to combative and firm-specific advertising. Again quoting a contemporary
source, Beard explains the switch:

“fast-food marketers are dealing with slow-growth industry, where market share
gains are the driving force behind any expansion (Kreisman and Mashall, 1982, 1).”

Another example comes from the cigarette industry. Tremblay and Tremblay (2012)
notes that between 1914 and 1940, the market was “taking off” and cigarette advertising
was mostly constructive (increasing market demand for all firms). However, in the
1960s, advertising turned combative (attempting to “steal customers from another
firm”).

Third, our theory predicts that, as a market matures, firms with smaller market
shares are more likely to engage in firm-specific advertising—free riding off the (tem-
porarily) more cooperative advertising made by large market share firms. Suggestive ev-
idence for this prediction comes from the observation that, when federal laws mandate
producers to contribute to industry-wide advertising campaigns, large firms appear
content with the mandatory programs whereas small firms tend to complain (Hamilton
et al., 2013; Ward, 2006; Zheng et al., 2010). Indeed, in some cases, small firms are
formally exempt from the mandatory program—in effect, allowing them to free ride on
the contributions of larger firms (Zheng et al., 2010, p. 752). In other cases, when volun-
tary industry-wide advertising programs have broken down or never existed at all, it
has been observed that larger firms may nonetheless continue to fund industry-wide
advertising regardless of other firms’ decisions (see, e.g., Section 6 of Krishnamurthy,
2000, for examples from the life insurance and butter industry).

Beyond being consistent with the above stylized facts, we provide an additional
insight that—to the best of our knowledge—is novel to the literature. Our theory
suggests that federal laws that mandate firms to contribute to industry-wide advertising
may be a double-edged sword. On the one hand, and as is well-established, such
mandatory programs allow for a larger expansion of markets than would otherwise
be achievable. But on the other hand, these programs are likely to insulate larger
firms from having their market shares eroded over time by smaller firms’ competitive
and firm-specific advertising.18 Thus, mandatory programs pose a dynamic tradeoff
between efficiency (a larger market) and market concentration.

5.3 Distributive conflict and economic growth

At a macroeconomic level, our theory connects to a long-running debate about the
sources of economic growth. Olson (1982) describes a framework that shares many

18Although it has been noted in literature that these mandatory programs have distributional (and
possibly unequal) consequences on small and large firms (see, e.g., Liaukonyte et al., 2015; Zheng et al.,
2010), the focus has not been on the evolution of market concentration.
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similarities with ours: Society is comprised of special interest groups (“distributional
coalitions”) that can benefit their members by either “making the pie the society pro-
duces larger, so that its members would get larger slices even with the same shares
as before, or alternatively by obtaining larger shares or slices of the social pie.” Olson
argues that distributional coalitions are costly for economic growth (society’s pie) as
they direct resources toward distributive conflict and away from efficient uses. Indeed,
Olson documents that: mature societies have slower economic growth and more special
interest groups than less mature societies, and these special interest groups are “over-
whelmingly orientated to struggles over the distribution of income and wealth rather
than to the production of additional output.” Olson aimed to explain the “economic
miracles” of Germany and Japan after World War II. Differently from us, his explana-
tion focused on periods of economic and political stability, which—he argues—allows
distributional coalitions to emerge, and not on growth per se.19

Our theory also speaks to the dynamic competition between special interest groups.
It predicts that smaller interest groups will be initially more active (and, hence, effective)
in distributive conflict. Furthermore, this asymmetry will generate greater distribu-
tional conflict in the long run as larger interest groups will gradually lose incentives to
expand society’s pie and, hence, will also pursue distributional conflict.

6 Discussion: robustness and the way out

Before concluding the paper, we return to our core result, namely, that growth eventu-
ally halts. We discuss now the role played by key assumptions in our benchmark model
and explore extensions of the benchmark to illustrate the robustness of this result when
certain assumptions are relaxed. In doing so, we also provide insights into institutional
solutions will allow for continual growth—a way out of limited growth.

Asymmetric discounting. Our benchmark model assumes that agents discount time
in the same way. But if agents have asymmetric discount factors, our key result that
growth eventually halts continues to hold. We analyze this extension formally in
Supplemental Appendix S.5. Furthermore, we show that—as in the benchmark model—
the point at which growth halts is independent of either agent’s discount factor. It is
straightforward to see then that all the dynamics of our benchmark model are identical
in this extension.20 Thus, whether one agent is more patient than the other has no
bearing on the dynamics of growth and conflict—contrasting Rubinstein (1982), where

19There is debate surrounding the explanatory power of Olson’s argument (see, e.g., Coates and
Heckelman, 2003; Knack, 2003; Mokyr and Nye, 2007; Weede, 1987), although recent work continues to
support Olson’s core predictions (see, e.g. Heckelman, 2007).

20In particular, the same proof arguments used to characterize the dynamics of growth and conflict in
the benchmark model can be applied.
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more patient agents extract a larger share of the surplus.

Exponential growth of pie. A key assumption of our benchmark model is that of
constant returns: An agent’s decision to expand the pie contributes a fixed amount ω,
regardless of the size of the pie. Constant returns implies that, as the pie grows, the
relative (discounted) payoff from continually growing the pie compared to pursuing
conflict is decreasing. Hence, for a large enough pie, the agents prefer conflict. Nat-
urally, and unsurprisingly, this result also holds if there are decreasing returns to the
growth of the pie (for details, see Supplemental Appendix S.6).21 With exponential
returns, however, continual growth may be possible. We can formalize this intuition
by assuming that the period-t pie is given by πt = πt−1(1 + r(atA + atB)) for r > 0. For
a sufficiently small exponential growth rate r, growth will halt. However, for larger
growth rates, it is possible for the agents to sustain an equilibrium with continual
growth.22

The assumption of constant (or decreasing) returns is consistent with existing work
on the dynamic provision of public goods. For example, Battaglini et al. (2014) ef-
fectively assumes decreasing returns since an agent’s private consumption can be
transformed into a public good contribution at a constant rate but the agents’ benefit
from the public good exhibits diminishing returns. Similarly, Marx and Matthews
(2000) assume agents’ benefit from the public good’s level of provision is piece-wise
linear with initially positive and constant marginal returns and then, above a certain
threshold, zero marginal returns. More generally, a growing body of empirical research
(see, e.g., Bloom et al., 2020) calls into question the exponential returns assumption that
is traditionally present in growth models.

Ability to expand one’s share as a function of the pie. Our benchmark model assumes
that an agent’s ability to expand her share is independent of the size of the pie. Naturally,
our result—that growth eventually halts—continues to hold if an agent’s ability to
expand her share increases with the size of the pie.23 If, instead, an agent’s ability to
expand her share decreases with the size of the pie, our result is robust if the rate of
decrease is not too fast. Formally, we can modify the law of motion of the agents’
shares so that κ is replaced with κ̃(π), where κ̃(·) is a positive and decreasing function
of π. If the agent’s ability to expand their share does not decline too fast, then growth
eventually halts for all (interior) distributions of shares. Formally, the condition we

21Formally, this would mean that an agent’s decision to expand the pie contributes an amount ω̃(π),
where ω̃(·) is a positive and decreasing function of π.

22This result requires that the growth rate is also not too large since a sufficiently large growth rate
leads to the agents’ discounted payoffs being possibly unbounded. In such cases, the one-shot deviation
principle does not apply due to a violation of the “continuity at infinity” condition and, hence, proving
equilibrium existence becomes intractable.

23Formally, this would mean that, in the law of motion of st, κ is replaced with κ̃(π), where κ̃(·) is a
positive and increasing function of π.

22



require is that κ̃(π)π is increasing and unbounded as π grows, e.g., κ̃(π) = 1√
π

(for
details, see Supplemental Appendix S.7). Conversely, this suggests that, in the absence
of exponential growth, continual growth requires “sophisticated” institutions that
increasingly—and quickly—constrain agents’ abilities to expand their share as the pie
grows.

Depreciation of the pie or destructive (negative-sum) conflict. In some settings, it
may be natural to assume that, in the absence of growth, the size of pie decreases. This
may arise because of depreciation or because of conflict being destructive: negative-sum
conflict. Our benchmark model can be extended to incorporate this feature by assuming
that, whenever conflict ensues, the period-t pie is πt = (1− δ)πt−1, where δ ∈ (0, 1) is
the rate of depreciation (or destruction). If δ is not too large relative to the discount
factor, growth eventually halts for all (interior) distributions of shares (for details, see
Supplemental Appendix S.8). Consistent with the folk theorem results of Dutta (1995)
for stochastic games, this result implies that there still exists an upper bound on the
growth of the pie as long the agents are not too patient; however, in this extension,
periods of growth and decline may still arise periodically. Conversely, when the level
of depreciation (or destruction caused by conflict) is large, the folk theorems of Dutta
(1995) will apply and growth need not halt. Thus, institutions that allow for more
severe—and necessarily negative-sum—punishments can provide a way out of the
growth trap presented in the benchmark model.

Continuous actions. Our benchmark model illustrates our tradeoff of interest in the
simplest possible: agents face a binary choice between growing the pie or expanding
their share. In some settings, it is more realistic that agents can flexibly choose how
to allocate a budget of resources (or time) between the two actions, i.e., agents face a
continuous action set. This would allow an agent to allocate some fraction of her budget
toward growing the pie and the remaining fraction toward defending (or expanding)
her share. By allocating some resources toward defending her share, she will limit
the gain that the other agent would obtain from deviating and attempting to expand
her share, thus making defection less attractive. A priori, this might suggest that the
agents could escape our benchmark model’s growth trap via continual cooperation
but at decreasing levels. Via a simple example in Supplemental Appendix S.9 (and
with a proof argument that resembles the one in the benchmark model), we show that
cooperation of this form cannot be sustained in equilibrium.

7 Conclusion

We proposed a dynamic theory of growth and conflict with collective goods. Our focus
centers on each agent’s tradeoff between expanding a collective pie and attempting to

23



expand her share of it. We showed that, as the pie grows, an individual’s incentives
to expand her share of the pie eventually dominates her incentive to expand the pie.
Ultimately, this leads the pie’s growth to halt and produces an (endogenous) upper
bound on the pie’s size. This bound on the growth of the pie is unaffected by the
individuals’ patience levels and persists despite the possibility of unbounded growth
of the pie, the presence of constant returns of individuals’ actions to expand the pie,
and the possibility of relational contracts.

When the pie is not too large, growth is possible. We characterized the dynamics of
growth and conflict prior to growth halting, illustrating how individuals’ incentives
to expand the pie depends on their shares and the pie’s size. When the pie is small
and individuals have relatively equal shares, both contribute to expanding the pie.
However, when individuals have sufficiently unequal shares, as per Olson (1971), there
is a “tendency for ‘exploitation’ of the great by the small.” The individual with the
largest share contributes to the pie’s expansion, while the small-share individual not
only free rides but also expands her own share. These dynamics connect inequality to
the speed and limits of growth: Greater inequality in the shares slows down growth but
leads to a larger long-run size of the pie—yet, growth also gradually reduces inequality.
In evaluating the benefits and costs of inequality, our result highlights a novel tradeoff
between the speed at which a collective good grows and the long-run size of such good.

A novel feature of our theory is that it provides a rationale for the ubiquity of
the prisoners’ dilemma. In our theory, given any initial condition, the pie and its
share evolve along a path that leads to a prisoners’ dilemma stage-game: Both agents
would be better off expanding the pie but their (stage-game) dominant strategy is to
attempt to expand their share. Furthermore, we shed light on why cooperation may
be unsustainable even if agents are patient and repeatedly play a prisoners’ dilemma.
Since cooperation generates a larger pie, it leads to greater incentives for defection in
the future. Anticipating the inevitability of future defection has an unraveling effect
that makes even temporary cooperation impossible. Instead, zero-sum conflict emerges
over the shares of the pie.

Although our theory finds support in empirical studies, its pessimistic conclusion—
that growth eventually halts—gives an important role for institutions and technology.
A solution to the halting of growth is that agents achieve exponential growth. However,
as previously noted, a growing body of empirical research calls into question the
realism of exponential growth (Bloom et al., 2020). Alternatively, institutions that
make it more difficult for agents to expand their shares may facilitate greater (albeit
still temporary) cooperation. Indeed, Olson (1982) provides suggestive evidence of
such institutions in his cross-country assessment of economic outcomes and interest
groups’ prevalence. Similarly, in the context of market competition, the presence federal
laws that mandate industry-wide advertising and their continued support on the side
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of producers suggest an important role for regulation. Nonetheless, as discussed in
Section 6, sustained growth requires that each agent’s effectiveness in expanding their
share is not only limited but also declines rapidly as the pie grows. Therefore, growth
requires “sophisticated” institutions (and regulation) that dynamically adjust to a
changing environment.
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A Proofs from Section 3

Proof of Lemma 1. For sake of a contradiction, suppose there exists an equilibrium σ∗

such that (1) does not hold. Without loss of generality, suppose VA(s, π | σ∗, ht−1) <
sπ
1−β

and consider A’s strategy a′A(st′ , πt′ , ht′) = 0 for all possible st′ , πt′ , ht′ and t′ ≥ t. Under
a′A, we have st′ ≥ s and πt′ ≥ π for all t′ ≥ t. Therefore, A’s payoff from a′A is at least
sπ
1−β

, which is strictly higher than the equilibrium payoff, VA(s, π | σ∗, ht−1). Thus, we
have a contradiction: σ∗ is not a Nash equilibrium of the subgame and, hence, is not
subgame perfect.

Proof of Lemma 2. The agents’ payoffs sum to πt in every period t and, by the law
of motion, πt′ ≤ πt′−1 + 2ω for all t′. It is then immediate that the sum of the agents’
equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + 2(j + 1)ω) =
π(1− β) + 2ω

(1− β)2
.

Proof of Lemma 3. We prove the following (slightly stronger) corollary.

Corollary A.1 (Lemma 3 extended) There exists π̄(κ, ω, β) as defined in Lemma A.2 such
that if (st−1, πt−1) = (s, π) with π > π̄(κ, ω, β), then in every equilibrium: (i) if s /∈ {0, 1},
then st′ = s and πt′ = π for all t′ ≥ t; (ii) if s ∈ {0, 1}, then st′ = s and πt′ ∈ {πt′−1, πt′−1+ω}
for all t′ ≥ t.

The above corollary follows immediately from two auxiliary lemmas: Lemmas A.1
and A.2, which we prove below.

Lemma A.1 Let σ∗ be an equilibrium. There exists a threshold π̃(κ, ω, β) such that if πt−1 >

π̃(κ, ω, β), then it cannot be that a∗A(st−1, πt−1, ht−1) = a∗B(st−1, πt−1, ht−1) = 1 for any
history ht−1.

Proof. For sake of a contradiction, suppose there exists an equilibrium σ∗ such that, for
some (st−1, πt−1) = (s, π) with some history ht−1 and π arbitrarily large, a∗A(s, π, ht−1) =

a∗B(s, π, ht−1) = 1. We consider 2 cases.

Case 1: Suppose s ∈ {κ, . . . , 1− κ}. Agent A’s payoff from deviating is

(s+ κ)(π + ω) + βVA(s+ κ, π + ω | σ∗) ≥ (s+ κ)(π + ω)

1− β
,

where the inequality follows from Lemma 1. Hence, a necessary condition for σ∗ to be
an equilibrium is

VA(s, π | σ∗) ≥ (s+ κ)(π + ω)

1− β
. (A.1)
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A similar argument for Agent B gives the necessary condition:

VB(s, π | σ∗) ≥ (1− s+ κ)(π + ω)

1− β
. (A.2)

Therefore, to sustain equilibrium σ∗, it must be that the sum of the RHS of (A.1) and
(A.2), which yields (π+ω)(1+2κ)

1−β
, is weakly less than the maximum discounted sum of

payoffs given by the RHS of (2) in Lemma 2—otherwise, at least one of the agents
would have an incentive to deviate. That is, we require

(π + ω)(1 + 2κ)

1− β
≤ π(1− β) + 2ω

(1− β)2
⇐⇒ 2κπ + ω(1 + 2κ)− 2ω

1− β
≤ 0,

which does not hold if π is sufficiently large. Let π̃1(κ, ω, β) denote the first value for
which the above inequality fails.

Case 2: Suppose s ∈ {0, 1}. We focus on s = 0 (the argument for s = 1 is similar). By
the same argument as in Case 1, we have that Inequality (A.1) must hold with s = 0

and, by Lemma 1, Agent B’s equilibrium payoff at (0, π) must satisfy

VB(0, π | σ∗) ≥ (π + 2ω)

1− β
. (A.3)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (A.1) at
s = 0 and (A.3), which yields κ(π+ω)+(π+2ω)

1−β
, is weakly less than the maximum discounted

sum of payoffs given by the RHS of (2) in Lemma 2—otherwise, at least one of the
agents would have an incentive to deviate. That is, we require

κ(π + ω) + (π + 2ω)

1− β
≤ π(1− β) + 2ω

(1− β)2
⇐⇒ κπ + ω(κ+ 2)− 2ω

(1− β)
≤ 0

which does not hold if π is sufficiently large. Let π̃2(κ, ω, β) denote the first value for
which the above inequality fails.

By combining the bounds from Case 1 and Case 2, i.e.,
π̃(κ, ω, β) := max{π̃1(κ, ω, β), π̃2(κ, ω, β)}, and taking π > π̃(κ, ω, β), we obtain our
desired contradiction.

Lemma A.2 There exists a threshold π̄(κ, ω, β) such that if (st−1, πt−1) = (s, π) with π >

π̄(κ, ω, β), then there is no equilibrium σ∗ such that any of the following is true: (i) for some
s ∈ {0, . . . , 1 − κ} and history ht−1, a∗B(s, π, ht−1) = 1; (ii) for some s ∈ {κ, . . . , 1} and
history ht−1, a∗A(s, π, ht−1) = 1.

Proof. We will prove the statement in Part (i)—the proof of Part (ii) is similar. For
sake of a contradiction, let the state be (st−1, πt−1) = (s, π) with s ∈ {0, . . . , 1− κ}, and
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suppose that an equilibrium σ∗ exists such that, for π arbitrarily large and some history
ht−1, a∗B(s, π, ht−1) = 1. By Lemma A.1, for any state (st−1, πt−1) with πt−1 > π̃(κ, ω, β),
it cannot be that a∗A(st−1, πt−1, ht−1) = a∗B(st−1, πt−1, ht−1) = 1. Therefore, taking π >

π̃(κ, ω, β), σ∗ must be such that at most one agent chooses action at
′
j = 1 and, hence,

πt′ ≤ πt′−1 + ω for all t′ ≥ t. Using a similar argument as in the proof of Lemma 2, it
follows that

VA(s, π | σ∗) + VB(s, π | σ∗) ≤
∞∑
j=0

βj(π + (j + 1)ω) =
π(1− β) + ω

(1− β)2
. (A.4)

By construction of σ∗, a∗A(s, π, h) = 0 and a∗B(s, π, h) = 1. Thus, using Lemma 1, Agent
A’s equilibrium payoff can be bounded from below as follows:

VA(s, π | σ∗) = (s+ κ)(π + ω) + βVA(s+ κ, π + ω | σ∗) ≥ (s+ κ)(π + ω)

1− β
. (A.5)

Now consider Agent B’s payoff from deviating: (1 − s)π + βV ∗
B(s, π | σ∗) ≥ (1−s)π

1−β
,

where the inequality follows from Lemma 1. Hence, a necessary condition for σ∗ to be
an equilibrium is

VB(s, π | σ∗) ≥ (1− s)π

1− β
. (A.6)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (A.5) and
(A.6), which yields (s+κ)(π+ω)+(1−s)π

1−β
, is weakly less than (A.4). That is, we require

(s+ κ)(π + ω) + (1− s)π

1− β
≤ π(1− β) + ω

(1− β)2
⇐⇒ κπ + ω(s+ κ) ≤ ω

(1− β)
,

which does not hold if π is sufficiently large. Let π̃′(κ, ω, β) denote the first value
such that, for all s ∈ {0, 1, . . . , 1 − κ}, the above inequality does not hold. Taking π

to be greater than both π̃′(κ, ω, β) and π̃(κ, ω, β) (as given in Lemma A.1) delivers a
contradiction and completes the proof.

Proof of Proposition 1. Proposition 1 is implied by Proposition 2, which is proven
without reference to Proposition 1. For completeness, we note that a direct proof of
Proposition 1 can be obtained by combining Lemmas S.1.1 and B.1.

B Proof of (essential) uniqueness in Proposition 2

The proof of essential uniqueness follows from Lemmas B.1, B.2, and B.3, which we
present and prove below. Supplemental Appendix S.2 includes auxiliary lemmas used
in the proof arguments of this appendix.

Lemma B.1 There exists an equilibrium σ∗ whereby for state (st−1, πt−1) = (s, π) such that
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π >
ω

κ
s− ω and π >

ω

κ
(1− s)− ω, (B.1)

conflict occurs: a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 0. In any equilibrium:

(i) for any s ∈ {κ, . . . , 1 − κ} such that (B.1) holds, the equilibrium behavior and, hence,
equilibrium path is unique with st′ = s and πt′ = π for any t′ ≥ t.

(ii) for any s ∈ {0, 1} such that (B.1) holds, the equilibrium path is such that st′ = s for any
t′ ≥ t.

Proof. Existence is proven in Supplemental Appendix S.1. We now prove Parts (i) and
(ii) of the lemma via an induction argument. First we introduce some notation. Let π̄ be
the smallest value such that π̄ = π0 + jω for some positive integer j and π̄ > π̄(κ, ω, β),
where π̄(κ, ω, β) is as defined in Corollary A.1 (equivalently, Lemma 3).

Our inductive argument parameterizes π as π = π̄ −mω, where m is an integer. By
Corollary A.1, Parts (i) and (ii) of the lemma statement hold for all m ≤ 0. Now, our
inductive assumption is that there exists an integer m such that the lemma holds for
any (s, π) satisfying (B.1) and π = π̄ −m′ω for integer m′ ≤ m− 1.

Consider the case of π = π̄ −mω for arbitrary m > 0. Suppose (st−1, πt−1) = (s, π)

such that s = 0 (the case of s = 1 is similar and, hence, omitted). For sake of a
contradiction, suppose there exists an equilibrium such that st′ ̸= 0 for some t′ ≥ t. If
st′ ̸= 0, it must be that at some t̃ ∈ {t, . . . , t′}, at̃A = 0 and at̃B = 1 — let t̃ be the smallest
such value. Given the inductive argument, in this equilibrium, B’s payoff from period
t̃ onward is (1−κ)(π+ω)

1−β
. But if B deviated to at̃B = 0, then, by Lemma 1, she would obtain

a payoff of at least π
1−β

, which is strictly higher than her equilibrium payoff because
(B.1) holds. Thus, we have a contradiction.

Now suppose (st−1, πt−1) = (s, π) such that s ∈ {κ, . . . , 1 − κ}. Hence, for all
possible actions of either agent at period t, we have st ∈ {s − κ, s, s + κ} ⊆ [0, 1]. We
explore now A’s best response to each of B’s possible strategies at (s, π). Suppose
a∗B(s, π̄−mω, ht−1) = 0. By the inductive argument, A’s payoff from atA = 1 is (s−κ)(π+ω)

1−β

and A’s payoff from atA = 0 is sπ + βVA(s, π | σ∗, ht) ≥ sπ
1−β

, where the inequality
follows from Lemma 1. Therefore, a∗A(s, π̄ −mω, ht−1) = 0 is the unique best response
to a∗B(s, π, ht−1) = 0 if sπ

1−β
> (s−κ)(π+ω)

1−β
⇐⇒ π > ω

κ
s − ω, which holds for all (s, π)

satisfying (B.1). Now suppose, instead, that a∗B(s, π̄ −mω, ht−1) = 1. By the inductive
argument, A’s payoff from atA = 1 is s(π+2ω)

1−β
and, by Lemma 1, A’s payoff from atA = 0

is at least as large as (s+κ)(π+ω)
1−β

. Therefore, a∗A(s, π̄ − mω, ht−1) = 0 is the unique best
response to a∗B(s, π, ht−1) = 1 if (s+κ)(π+ω)

1−β
> s(π+2ω)

1−β
⇐⇒ π > ω

κ
s−ω, which holds for all

(s, π) satisfying (B.1). By a similar argument, we conclude that a∗B(s, π̄ −mω, ht−1) = 0.
Thus, in any equilibrium, Parts (i) and (ii) of the lemma hold.
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Lemma B.2 There exists an equilibrium σ∗ whereby for any state (st−1, πt−1) = (s, π) such
that

π >
ω

κ
s− ω and π <

ω

κ
(1− s)− ω, (B.2)

a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1. And symmetrically, if π < ω
κ
s − ω and π >

ω
κ
(1 − s) − ω, then a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) = 0. Furthermore, the equilibrium

behavior and, hence, equilibrium path is unique at any such state with s ∈ {κ, . . . , 1− κ}.

Proof. Existence has been proven in Supplemental Appendix S.1. In what follows, σ∗

is taken to be a strategy profile satisfying Lemma B.1, and the state (st−1, πt−1) = (s, π)

satisfies (B.2). The proof of the symmetric case is similar and, hence, omitted. For a
given (s, π), we define m̄ to be the smallest integer-value m = m̄ such that

π +mω >
ω

κ
(1− s)− ω. (B.3)

We will often utilize the observation that (B.3) holds at m = m̄ if and only if

π + (m̄−m′)ω >
ω

κ
(1− (s+m′κ))− ω ∀m′ ∈ {0, 1, . . . , m̄}. (B.4)

We will prove the lemma via a 2-dimensional induction argument where a generic
state (s, π) is parameterized by (ℓ, m̄) ∈ N>0 × N>0 such that s = ℓκ and π is such that
m̄ ≥ 1, where m̄ is defined in (B.3). Abusing notation slightly, given another generic
state (s′, π′) we will denote the corresponding parameterization by the pair (ℓ′, m̄′). We
proceed with the following steps for (s, π) satisfying (B.2):

Step 1. For ℓ = 1 and m̄ = 1, the unique equilibrium action is atA = 0 and atB = 1.

Step 2. For ℓ > 1 and m̄ = 1, the unique equilibrium action is atA = 0 and atB = 1.

Step 3. For ℓ = 1 and m̄ = 2, the unique equilibrium action is atA = 0 and atB = 1.

Step 4. For ℓ > 1 and m̄ = 2, the unique equilibrium action is atA = 0 and atB = 1.

Step 5. For ℓ = 1 and m̄ > 2, the unique equilibrium action is atA = 0 and atB = 1.

Step 6. For ℓ > 1 and m̄ > 2, the unique equilibrium action is atA = 0 and atB = 1.

Step 1: ℓ̄ = 1 and m̄ = 1. Let (s, π) be such that (B.2) holds, ℓ = 1, and m̄ = 1 (recall that
m̄ is defined as per (B.3)). We consider three alternative strategies at period t− 1 and
derive a contradiction in each case, which allows us to conclude that the only possible
equilibrium behavior is a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

(a) Suppose there exists an equilibrium σ∗ such that a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) =

0. Then, the state evolves to (st, πt) = (0, π + ω). By Lemma S.2.1, the state must
(eventually) evolve for some t′ ≥ t + 1 to (st′ , πt′) = (0, π + 2ω), (0, π + 3ω), or
(κ, π + 2ω). In the first two cases (and by Lemma B.1, Part (ii)), in equilibrium,
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st̃ = 0 at perpetuity and, hence, A obtains a future discounted payoff stream equal to
zero. This can’t be an equilibrium since, by deviating to atA = 0, A obtains a strictly
positive payoff. Therefore, the third case must hold: in equilibrium the state must
(eventually) evolve to (st′ , πt′) = (κ, π + 2ω) for some t′ ≥ t+ 1. But by Lemma S.2.3,
it must be that t′ = t+ 1 and then, by Lemma S.2.2, we have a contradiction.

(b) Suppose a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) = 1. By Lemma S.2.4, this can’t occur in
equilibrium.

(c) Suppose a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 0. By Lemma S.2.1, there exists some
future time period t′ ≥ t+ 1 such that, in equilibrium, at′j = 1 for some j ∈ {A,B}.
Let t′ be the smallest such value. Given Parts (a) and (b) above, it follows that
(at

′
A, a

t′
B) = (0, 1) and hence, (st′ , πt′) = (s + κ, π + ω). Applying Lemma S.2.3 then

gives the desired contradiction.

Step 2: ℓ > 1 and m̄ = 1. Let (s, π) be such that (B.2) holds, ℓ > 1, and m̄ = 1. Our
inductive assumption is that the lemma statement holds for any (s′, π′) satisfying (B.2)
with (ℓ′, m̄′) such that 1 ≤ ℓ′ < ℓ and m̄′ = 1. We consider three alternative strategies at
period t− 1 and derive a contradiction in each case, which allows us to conclude that
a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

(a) Suppose a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) = 0. By Lemma S.2.2, this can’t occur in
equilibrium.

(b) and (c) Repeating the arguments of Step 1(b) and Step 1(c), neither a∗A(s, π, ht−1) = a∗B(s, π, ht−1) =

1 or a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 0 can be an equilibrium.

Step 3: ℓ = 1 and m̄ = 2. Let (s, π) be such that (B.2) holds, ℓ = 1, and m̄ = 2. Our
inductive assumption is that the lemma statement holds for any (s′, π′) satisfying (B.2)
with (ℓ′, m̄′) such that ℓ′ ≥ 1 and m̄′ = 1. We consider three alternative strategies at
period t− 1 and derive a contradiction in each case, which allows us to conclude that
a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

(a) Suppose a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) = 0. Then, the state evolves to (st, πt) =

(0, π + ω). And by Lemma S.2.1 the state must (eventually) evolve to (0, π + 3ω),
(κ, π + 2ω), or (st′ , πt′) = (0, π + 2ω) for some t′ ≥ t + 1. Let t′ be the smallest such
value.

We consider each of these cases separately. Suppose (st′ , πt′) = (0, π + 3ω). Because
m̄ = 2 and applying Lemma B.1, in equilibrium A obtains payoff equal to zero in
every period. However, by deviating to atA = 0, A obtains a strictly positive payoff.
Therefore, this first case cannot occur. Now suppose (st′ , πt′) = (κ, π + 2ω). By
Lemma S.2.3, it must be that t′ = t+1, but then Lemma S.2.2 leads to a contradiction.
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Therefore, the third case (st′ , πt′) = (0, π + 2ω) must hold. For a∗A(s, π, ht−1) = 1 and
a∗B(s, π, ht−1) = 0 to be an equilibrium, it must be that A obtains strictly positive
payoff in equilibrium; therefore, from (st′ , πt′) it must be that the state (eventually)
evolves to (κ, π + 3ω) in some period t̃ ≥ t′ + 1. However, by applying Lemma S.2.3,
we can conclude that it must be that the state evolves immediately from (st′ , πt′) to
(st′+1, πt′+1) = (κ, π + 3ω), i.e., t̃ = t′ + 1. Now consider period t′ at which the
state evolves from (0, π + ω) to (st′ , πt′) = (0, π + 2ω). At this point it must be that
(at

′
A, a

t′
B) = (1, 0). Using Lemma B.1 and because m̄ = 2, in equilibrium, B’s payoff is

π + 2ω + β
(1− κ)(π + 3ω)

1− β
.

However, if B deviates to at
′
B = 1, then the state evolves to (st′ , πt′) = (0, π + 3ω)

and, by Lemma 1, they obtain payoff at least π+3ω
1−β

, which is strictly higher than their
equilibrium payoff—a contradiction.

(b) and (c) Repeating the arguments of Step 1(b) and Step 1(c), neither a∗A(s, π, ht−1) = a∗B(s, π, ht−1) =

1 or a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 0 can be an equilibrium.

Step 4: ℓ > 1 and m̄ = 2. Let (s, π) be such that (B.2) holds, ℓ > 1, and m̄ = 2. Our
inductive assumptions are two-fold:

(i) the lemma statement holds for any (s′, π′) satisfying (B.2) with (ℓ′, m̄′) such that ℓ′ ≥ 1

and m̄′ = 1;

(ii) the lemma statement holds for any (s′, π′) satisfying (B.2) with (ℓ′, m̄′) such that
1 ≤ ℓ′ ≤ ℓ− 1 and m̄′ = 2.

The arguments used for Step 2 apply verbatim here; thus, the only possible equilibrium
behavior is a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

Step 5: ℓ = 1 and m̄ > 2. Let (s, π) be such that (B.2) holds, ℓ = 1, and m̄ > 2. Our
inductive assumption is:

(i) the lemma statement holds for all (s′, π′) satisfying (B.2) with (ℓ′, m̄′) such that ℓ′ ≥ 1

and m̄′ < m̄.

We proceed with the proof argument as usual by considering three alternative strategies
at period t− 1 and derive a contradiction in each case, which allows us to conclude that
a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

(a) Suppose a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) = 0. Then, the state moves from
(st−1, πt−1) = (κ, π) to (st, πt) = (0, π + ω). There are then 2 cases to consider:

Case 1. the state remains with st′ = 0 for all t′ ≥ t+ 1;

Case 2. the state moves to st′ = κ for some t′ ≥ t+ 1.
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Case 1 cannot occur since in such an equilibrium A obtains payoff zero in every
period, but from deviating A obtains a strictly positive payoff. Therefore, Case 2
must hold: for some t′ ≥ t+1, we have (st′ , πt′) = (κ, πt′−1+ω). Let t′ be the smallest
such value, which implies that (st′−1, πt′−1) = (0, πt′−1). Note that πt′−1 need not
equal π + ω.

Now consider period t′ − 1, where the state is (st′−1, πt′−1) = (0, πt′−1) and then in
the next period evolves to (st′ , πt′) = (κ, πt′−1 + ω). By Lemma S.2.3, it cannot be
that (at

′−1
A , at

′−1
B ) = (0, 0) and, hence, (st′−2, πt′−2) ̸= (0, πt′−1). Therefore, by the law

of motion and because t′ is the smallest value such that Case 2 occurs, it must be that
either (st′−2, πt′−2) = (0, πt′−1 − ω) or (st′−2, πt′−2) = (0, πt′−1 − 2ω).

Suppose (st′−2, πt′−2) = (0, πt′−1 − 2ω). Then, at period t′ − 1, the agents must have
choosen actions (at

′−1
A , at

′−1
B ) = (1, 1). Thus, A’s equilibrium payoff at period t′ is

determined by their discounted payoff from the path of states:

(jκ, πt′−1 + jω) for j ≥ 0,

until (B.1) is satisfied, at which point the state remain fixed for all future periods.
Using the inductive assumption, if instead A deviates to at

′−1
A = 0, A’s payoff is

determined by their discounted payoff from the path of states:

((1 + j)κ, πt′−1 + (j + 1− 2)ω) for j ≥ 0,

until (B.1) is satisfied, at which point the state remain fixed for all future periods. A’s
payoff from this deviation is strictly profitable because the number of steps before
(B.1) is satisfied is the same regardless of whether A deviates or follows equilibrium
play, and furthermore at every point along the deviation path A obtains strictly
higher stage payoff than under the equilibrium path:

((1 + j)κ)(πt′−1 + (j + 1− 2)ω) > jκ(πt′−1 + jω)) ⇐⇒ πt′−1 > ω,

which is (trivially) true. Therefore, it cannot be that (st′−2, πt′−2) = (0, πt′−1 − 2ω).

Suppose instead that (st′−2, πt′−2) = (0, πt′−1 − ω). Then, by the law of motion, at
period t′ − 1, it must be that the agents chose (at

′−1
A , at

′−1
B ) = (1, 0) and (st′−1, πt′−1) =

(0, πt′−1). B’s equilibrium payoff is thus determined by their discounted payoff from
the path of states

(jκ, πt′−1 + jω) for j ≥ 0,

until (B.1) is satisfied, at which point the state remains fixed for all future periods. If
instead B deviates to at

′−1
B = 1, the state evolves to (st′−1, πt′−1) = (0, πt′−1 + ω). By
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Lemma S.2.5, B’s payoff is weakly larger than the discounted payoff from the path

(jκ, πt′−1 + (j + 1)ω) for j ≥ 0,

until (B.1) is satisfied, at which point the state remains fixed for all future periods.
B’s payoff from this deviation is strictly profitable. To see why, note that the number
of steps before (B.1) is satisfied under the equilibrium is at most one more than that
under the deviation and—in any case—at each step along the path, we have that B’s
stage payoff from the deviation is strictly higher than the equilibrium payoff, i.e.,

(1− jκ)(πt′−1 + (1 + j)ω) > (1− jκ)(πt′−1 + jω) and

(1− jκ)(πt′−1 + (1 + j)ω) > (1− (j + 1)κ)(πt′−1 + (j + 1)ω).

Thus, we have a contradiction. It cannot be that a∗A(s, π, ht−1) = 1 and a∗B(s, π, ht−1) =

0.

(b) and (c) Repeating the arguments of Step 1(b) and Step 1(c), neither a∗A(s, π, ht−1) = a∗B(s, π, ht−1) =

1 or a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 0 can be an equilibrium.

Step 6: ℓ > 1 and m̄ > 2. Let (s, π) be such that (B.2) holds, ℓ > 1, and m̄ > 2. Our
inductive assumptions are two-fold:

(i) the lemma statement holds for all (s′, π′) satisfying (B.2) with (ℓ′, m̄′) such that ℓ′ ≥ 1

and m̄′ < m̄;

(ii) the lemma statement holds for (s′, π′) satisfying (B.2) with (ℓ′, m̄′) such that 1 ≤ ℓ′ ≤
ℓ− 1 and m̄′ = m̄.

Applying the same proof argument as in Step 2(a)-(c), it follows that the only possible
equilibrium behavior is for a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 1.

Lemma B.3 There exists an equilibrium σ∗, whereby for any (st−1, πt−1) = (s, π) such that

π <
ω

κ
s− ω and π <

ω

κ
(1− s)− ω, (B.5)

a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1. Furthermore, the equilibrium behavior and, hence, equilib-
rium path is unique.

Proof. Existence has been proven in Supplemental Appendix S.1. We prove the
uniqueness result via a 2-dimensional inductive argument where (s, π) satisfying (B.5)
is parameterized via (ℓ,m) ∈ N≥0 × N>0 such that s = 1

2
± ℓκ and m is the smallest

positive integer such that π +mω > ω
κ
(1
2
− κℓ)− ω. We proceed via the following steps:

Step 1. For ℓ = 0 and m ∈ {1, 2}, the unique equilibrium is atA = atB = 1.
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Step 2. For ℓ ≥ 1 and m ∈ {1, 2}, the unique equilibrium is atA = atB = 1.

Step 3. For ℓ = 0 and m > 2, the unique equilibrium is atA = atB = 1.

Step 4. For ℓ ≥ 1 and m > 2, the unique equilibrium is atA = atB = 1.

Steps 1 and 2 are straightforward and, hence, omitted. For completeness, we present
the details in Supplemental Appendix S.3. We now proceed with Steps 3 and 4.

Step 3. Suppose (ℓ,m) such that ℓ = 0 and m > 2. Our inductive assumption is that the
lemma holds for all (s′, π′) satisfying (B.5) with (ℓ′,m′) where ℓ′ ∈ N≥0 and m′ < m. We
consider three alternative strategies at period t− 1 and derive a contradiction in each
case, which allows us to conclude that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

(a) Suppose that in equilibrium, (atA, a
t
B) = (0, 1) or (atA, a

t
B) = (1, 0). Since s = 1

2

and applying a symmetry argument, we can focus on the first case without loss of
generality. By Lemmas B.1 and B.2 and the inductive assumption, A’s equilibrium
payoff is

j̄∑
j=0

βj(s+ κ)(π + (1 + 2j)ω) +
β j̄+1

1− β
s(π + (1 + 2j̄)ω + ω),

where j̄ = ⌈m
2
⌉ − 1.24 If A deviates to atA

′
= 1, then because of the inductive

assumption and ℓ = 0, A’s payoff is

j̄∑
j=0

βjs(π + 2(j + 1)ω) +
β j̄+1

1− β
s(π + 2(j̄ + 1)ω),

where j̄ is as previously defined, j̄ = ⌈m
2
⌉− 1.25 Therefore, A’s payoff from deviating

is strictly higher than their equilibrium payoff if and only if

j̄∑
j=0

βjs(π + 2(j + 1)ω) >

j̄∑
j=0

βj(s+ κ)(π + (1 + 2j)ω),

which is true because s(π+2(j+1)ω) > (s+κ)(π+(1+2j)ω) ⇐⇒ π+2jω < ω
κ
s−ω

and j ≤ j̄ = ⌈m
2
⌉ − 1. Thus, we have a contradiction.

(b) Suppose that in equilibrium, (atA, a
t
B) = (0, 0). By Lemma S.2.1, we know that at

some point t̄ ≥ t + 1, the state must evolve. By Point (a) above, it must be that

24Note that j = j̄ is the smallest integer j such that π + (1 + 2j)ω > ω
κ (1− (s+ κ))− ω.

25Note that j = j̄ is the smallest integer j such that π + 2(j + 1)ω > ω
κ (1− s)− ω = ω

κ s− ω, where the
equality follows because s = 1

2 .
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(at̄A, a
t̄
B) = (1, 1). Consider period t̄− 1, A’s equilibrium payoff is

j̄−1∑
j=0

βjs(π + 2jω) +
β j̄

1− β
s(π + 2j̄ω),

where j̄ = ⌈m
2
⌉.26 If A deviates to at̄−1

A

′
= 1, then their payoff is

j̄−1∑
j=0

βj(s− κ)(π + (1 + 2j)ω) +
β j̄

1− β
s(π + (1 + 2(j̄ − 1))ω + ω)

=

j̄−1∑
j=0

βj(s− κ)(π + (1 + 2j)ω) +
β j̄

1− β
s(π + 2j̄ω),

where j̄ is as previously defined, j̄ = ⌈m
2
⌉.27 Therefore, A’s payoff from deviating is

strictly higher than their equilibrium payoff if and only if

j̄−1∑
j=0

βj(s− κ)(π + (1 + 2j)ω) >

j̄−1∑
j=0

βjs(π + 2jω),

which is true because (s − κ)(π + (1 + 2j)ω) > s(π + 2jω) ⇐⇒ π + 2jω < ω
κ
s − ω

and j ≤ j̄ − 1 = ⌈m
2
⌉ − 1. Thus, we have a contradiction.

Step 4. Suppose (ℓ,m) such that ℓ ≥ 1 and m > 2. Our inductive assumption is two-
fold: first, that the proposition holds for all (s′, π′) satisfying (B.5) with (ℓ′,m′) where
ℓ′ ≤ ℓ− 1 and m′ = m; second, that the proposition holds for all (s′, π′) satisfying (B.5)
with (ℓ′,m′) where ℓ′ ∈ N≥0 and m′ < m. By a symmetry argument, we focus on the
case of s = 1

2
− ℓκ (the case of s = 1

2
+ ℓκ is similar and hence omitted). We consider

three alternative strategies at period t−1 and derive a contradiction in each case, which
allows us to conclude that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

(a) Suppose that in equilibrium, (atA, a
t
B) = (0, 1). By Lemmas B.1 and B.2, ℓ ≥ 1 and the

inductive assumption, A’s equilibrium payoff is

j̄∑
j=0

βj(s+ κ)(π + (1 + 2j)ω) + β j̄+1VA(s+ κ, π + (1 + 2j̄)ω),

where j̄ = ⌈m
2
⌉.28 If A deviates to atA

′
= 1, then because of the inductive assumption

26Note that j = j̄ is the smallest integer j such that π + 2jω > ω
κ (1 − s) − ω = ω

κ s − ω, where the
equality holds because s = 1

2 .
27Note that j = j̄ − 1 is the smallest integer j such that π + (1 + 2j)ω > ω

κ (s− κ)− ω.
28Note that j = j̄ is the smallest integer j such that π + (1 + 2j)ω > ω

κ (s+ κ)− ω.
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and ℓ ≥ 1, her payoff is

j̄−1∑
j=0

βjs(π + 2(j + 1)ω) + β j̄(s+ κ)(π + 2j̄ω + ω) + β j̄+1VA(s+ κ, π + (1 + 2j̄)ω),

where j̄ is as previously defined, j̄ = ⌈m
2
⌉.29 Therefore, A’s payoff from deviating is

strictly higher than their equilibrium payoff if and only if

j̄−1∑
j=0

βjs(π + 2(j + 1)ω) + β j̄(s+ κ)(π + 2j̄ω + ω) >

j̄∑
j=0

βj(s+ κ)(π + (1 + 2j)ω)

⇐⇒
j̄−1∑
j=0

βjs(π + 2(j + 1)ω) >

j̄−1∑
j=0

βj(s+ κ)(π + (1 + 2j)ω),

which is true because s(π+2(j+1)ω) > (s+κ)(π+(1+2j)ω) ⇐⇒ π+(1+2j)ω <
ω
κ
(s+ κ)− ω and j ≤ j̄ − 1 = ⌈m

2
⌉ − 1. Thus, we have a contradiction.

(b) Suppose that in equilibrium, (atA, a
t
B) = (1, 0). By Lemmas B.1 and B.2 and ℓ ≥ 1 and

the inductive assumption, B’s equilibrium payoff is

j̄∑
j=0

βj(1− s+ κ)(π + (1 + 2j)ω) + β j̄+1VB(s− κ, π + (1 + 2j̄)ω),

where j̄ = ⌈m
2
⌉ − 1.30 If B deviates to atB

′
= 1, then because of the inductive

assumption, B’s payoff is

j̄∑
j=0

βj(1− s)(π + 2(j + 1)ω) + β j̄+1VB(s, π + 2(j̄ + 1)ω),

where j̄ is as previously defined, j̄ = ⌈m
2
⌉ − 1.31 Using Lemma S.2.6, we obtain the

following lower bound on B’s payoff from deviating

j̄∑
j=0

βj(1− s)(π + 2(j + 1)ω) + β j̄+1VB(s− κ, π + (1 + 2j̄)ω).

It follows that B’s deviation is strictly greater than their equilibrium payoff if

j̄∑
j=0

βj(1− s)(π + 2(j + 1)ω) >

j̄∑
j=0

βj(1− s+ κ)(π + (1 + 2j)ω).

29Note that j = j̄ − 1 is the smallest integer j such that π + 2(j + 1)ω > ω
κ s− ω.

30Note that j = j̄ is the smallest integer j such that π + (1 + 2j)ω > ω
κ (s− κ)− ω.

31Note that j = j̄ is the smallest integer j such that π + 2(j + 1)ω > ω
κ s− ω.

40



This inequality holds if

(1− s)(π + 2(j + 1)ω) > (1− s+ κ)(π + (1 + 2j)ω) ⇐⇒ π + 2jω <
ω

κ
(1− s)− ω.

But notice that j ≤ j̄ = ⌈m
2
⌉ − 1 and, by construction of j̄, for any j ≤ j̄ we have

π + 2jω < ω
κ
s− ω =⇒ π + 2jω < ω

κ
(1− s)− ω because s < 1

2
(i.e., ℓ ≥ 1). Therefore,

B has a strict incentive to deviate — a contradiction.

(c) Suppose that in equilibrium, (atA, a
t
B) = (0, 0). By Lemma S.2.1, we know that

at some point t̄ ≥ t + 1, the state must evolve. By Parts (a) and (b) above, it
must be that (at̄A, a

t̄
B) = (1, 1). Then, A’s equilibrium payoff in period t̄ − 1 is∑j̄

j=0 β
js(π + 2jω) + β j̄+1VA(s, π + 2j̄ω), where j̄ = ⌈m

2
⌉. Note that j = j̄ is the

smallest integer j such that π + 2jω > ω
κ
s− ω. If A deviates to at̄−1

A

′
= 1 her payoff is

j̄−1∑
j=0

βj(s− κ)(π + (2j + 1)ω) + β j̄s(π + 2j̄ω) + β j̄+1VA(s, π + 2j̄ω),

where j̄ is as previously defined, j̄ = ⌈m
2
⌉.32 Therefore, A’s payoff from deviating is

strictly higher than her equilibrium payoff if and only if

j̄−1∑
j=0

βj(s− κ)(π + (2j + 1)ω) + β j̄s(π + 2j̄ω) >

j̄∑
j=0

βjs(π + 2jω)

⇐⇒
j̄−1∑
j=0

βj(s− κ)(π + (2j + 1)ω) >

j̄−1∑
j=0

βjs(π + 2jω),

which is true because (s − κ)(π + (2j + 1)ω) > s(π + 2jω) ⇐⇒ π + 2jω < ω
κ
s − ω

and j ≤ j̄ − 1 = ⌈m
2
⌉ − 1. Thus, we have a contradiction.

32Note that j = j̄ − 1 is the smallest integer j such that π + (2j + 1)ω > ω
κ (s− κ)− ω.
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Supplemental appendix for “When Growth leads to Zero-

sum Conflict” by Álvaro Delgado-Vega and Barton E. Lee

S.1 Proof of existence in Proposition 2

The proof of existence follows from Lemmas S.1.1, S.1.2 and S.1.3, which we present
and prove below.

Lemma S.1.1 The strategy profile σ∗ described in Proposition 2 is an equilibrium for any
subgame with state (s, π) such that

π >
ω

κ
(1− s)− ω and π >

ω

κ
s− ω. (S.1.1)

Proof. Let (s, π) be a state satisfying (S.1.1) and suppose σ∗ is the strategy profile
described in the lemma. Under σ∗, (atA, a

t
B) = (0, 0) and Agent A obtains payoff sπ

1−β
. If A

makes a one-step deviation at period t, then (atA, a
t
B) = (1, 0) and A’s payoff is (s−κ)(π+ω)

1−β
.

This deviation is not strictly profitable because (S.1.1) holds: sπ
1−β

> (s−κ)(π+ω)
1−β

⇐⇒
π > ω

κ
s− ω. A similar argument shows that B also does not have a strictly profitable

deviation since π > ω
κ
(1−s)−ω. We conclude that σ∗ is an equilibrium for any subgame

satisfying (S.1.1).

Lemma S.1.2 The strategy profile σ∗ described in Proposition 2 is an equilibrium for any
subgame with state (s, π) such that

π <
ω

κ
(1− s)− ω and π >

ω

κ
s− ω, or (S.1.2)

π >
ω

κ
(1− s)− ω and π <

ω

κ
s− ω. (S.1.3)

Proof. We prove the lemma for case where (S.1.2) holds (the case of (S.1.3) is similar
and, hence, omitted). Let (s, π) be a state satisfying (S.1.2) and suppose σ∗ is the strategy
profile described in Proposition 2. Then, σ∗ prescribes (atA, a

t
B) = (0, 1) and Agent B’s

payoff is given by the discounted payoff from the path

(st−1+j, πt−1+j) =

(s+ jκ, π + jω) for j ∈ {1, . . . , j̄},

(s+ j̄κ, π + j̄ω) for j > j̄,
(S.1.4)

where j̄ is defined as the smallest integer such that π + j̄ω > ω
κ
(1 − (s + j̄κ)) − ω.

Graphically, Figure 1 illustrates this path as a temporary evolution of the state in the
diagonal direction. If B makes a one-step deviation at period t, then (atA, a

t
B) = (0, 0)
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and B’s payoff is given by the discounted payoff from the path

(st−1+j, πt−1+j) =

(s+ (j − 1)κ, π + (j − 1)ω) for j ∈ {1, . . . , j̄ + 1},

(s+ j̄κ, π + j̄ω) for j > j̄ + 1,
(S.1.5)

where j̄ is as previously defined. This deviation is not strictly profitable for B because:

(i) B’s payoff for any j ∈ {1, . . . , j̄} along the equilibrium path (S.1.4) provides strictly
higher per-period payoff than the path (S.1.5):

(1−(s+jκ))(π+jω) > (1−(s+(j−1)κ))(π+(j−1)ω) ⇐⇒ π+(j−1)ω <
ω

κ
(1−(s+(j−1)κ))−ω

which is true by construction of j̄, and

(ii) B’s payoff for any j > j̄ is the same along both paths (S.1.4) and (S.1.5) since the
state remains fixed at (s+ j̄κ, π + j̄ω).

Now consider A’s incentive to deviate. Under σ∗, (atA, a
t
B) = (0, 1) and Agent A’s payoff

is given by the discounted payoff from the path (S.1.4). If A makes a one-step deviation
at period t, then (atA, a

t
B) = (1, 1) and A’s payoff is given by the discounted payoff from

the path

(st−1+j, πt−1+j) =

(s+ (j − 1)κ, π + (j + 1)ω) for j ∈ {1, . . . , j̄},

(s+ (j̄ − 1)κ, π + (j̄ + 1)ω) for j > j̄,
(S.1.6)

where j̄ is as previously defined.33 This deviation is not strictly profitable for A because:
A’s payoff for any j ≥ 1 along the equilibrium path (S.1.4) provides strictly higher
per-period payoff than the path (S.1.6):

(s+ jκ)(π + jω) > (s+ (j − 1)κ)(π + (j + 1)ω) ⇐⇒ π >
ω

κ
s− ω,

which is true by assumption that (s, π) satisfies (S.1.2). We conclude that σ∗ is an
equilibrium for any subgame satisfying (S.1.2).

Lemma S.1.3 The strategy profile σ∗ described in Proposition 2 is an equilibrium for any
subgame with state (s, π) such that

π <
ω

κ
(1− s)− ω and π <

ω

κ
s− ω. (S.1.7)

33To see why, notice that j̄ was previously defined as the smallest integer such that π + j̄ω > ω
κ (1−

(s+ j̄κ))− ω. The analogous condition for the path that follows from A’s deviation is that j̄′ is smallest
integer such that π + (j̄′ + 1)ω > ω

κ (1− (s+ (j̄′ − 1)κ))− ω, but this condition simplifies to π + j̄′ω >
ω
κ (1− (s+ j̄′κ))− ω, i.e., the same condition that defined j̄.
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Proof. Suppose σ∗ is the strategy profile described in the lemma. Let (s, π) be a state
satisfying (S.1.2). Without loss of generality, we assume that s ≤ 1

2
. In equilibrium,

(atA, a
t
B) = (1, 1) and, following the graphical illustration in Figure 1, Agent A’s payoff

is given by the discounted payoff from the path

(st−1+j, πt−1+j) =


(s, π + 2jω) for j ∈ {1, . . . , j̄},

(s+ (j − j̄)κ, π + (2j̄ + (j − j̄))ω) for j ∈ {j̄ + 1, . . . , ℓ̄},

(s+ (ℓ̄− j̄)κ, π + (2j̄ + (ℓ̄− j̄))ω) for j > ℓ̄,

(S.1.8)

where j̄ is defined as the smallest integer such that π + 2j̄ω > ω
κ
s− ω and ℓ̄ is defined

as the smallest integer such that π + (2j̄ + (ℓ̄− j̄))ω > ω
κ
(1− (s+ (ℓ̄− j̄)κ))− ω. Note

that if ℓ̄ = j̄, we use the convention that {j̄ + 1, . . . , ℓ̄} = ∅, i.e., we exclude the middle
case in (S.1.8). The case of ℓ̄ = j̄ occurs if and only if s = 1

2
. We proceed by considering

two cases depending on whether s < 1/2 or s = 1/2.

Case of s < 1/2. If A makes a one-step deviation at period t, then (atA, a
t
B) = (0, 1)

and A’s payoff is given by the discounted payoff from the path

(st−1+j, πt−1+j)

=


(s+ κ, π + (2j − 1)ω) for j ∈ {1, . . . , j̄ + 1},

(s+ (1 + j − (j̄ + 1))κ, π + (2(j̄ + 1)− 1 + (j − (j̄ + 1)))ω) for j ∈ {j̄ + 2, . . . , ℓ̄− 1},

(s+ (ℓ̄− j̄)κ, π + (2j̄ + (ℓ̄− j̄))ω) for j > ℓ̄,

=


(s+ κ, π + (2j − 1)ω) for j ∈ {1, . . . , j̄ + 1},

(s+ (j − j̄)κ, π + (2j̄ + (j − j̄))ω) for j ∈ {j̄ + 2, . . . , ℓ̄− 1},

(s+ (ℓ̄− j̄)κ, π + (2j̄ + (ℓ̄− j̄))ω) for j > ℓ̄,

(S.1.9)

where j̄ and ℓ̄ are as previously defined.34 This deviation is not strictly profitable for A
because:

(i) A’s payoff for any j ∈ {1, . . . , j̄} along the equilibrium path (S.1.8) provides strictly
higher per-period payoff than the path (S.1.9):

s(π + 2jω) > (s+ κ)(π + (2j − 1)ω) ⇐⇒ π + 2(j − 1)ω <
ω

κ
s− ω,

which is true by construction of j̄, and

34To see why, recall that j̄ was defined as the smallest integer such that π + 2j̄ω > ω
κ s − ω. The

analogous condition for the path that follows from A’s deviation is that j̄′ is the smallest integer such
that π + (2j̄′ − 1)ω > ω

κ (s+ κ)− ω, but this condition simplifies to π + 2(j̄′ − 1)ω > ω
κ s− ω and, hence,

j̄′ = j̄ + 1. A similar argument shows that ℓ̄′ = ℓ̄− 1.
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(ii) A’s per-period payoff for any j > j̄ is equal for the paths (S.1.8) and (S.1.9) since the
states evolve along the same path for j > j̄ (including for j > ℓ̄).

Now consider B’s incentive to deviate. If B makes a one-step deviation at period t,
then (atA, a

t
B) = (1, 0) and B’s payoff is the discounted payoff from the path

(st−1+j, πt−1+j) =


(s− κ, π + (2j − 1)ω) for j ∈ {1, . . . , j̄},

(s+ (j − 1− j̄)κ, π + (2j̄ − 1 + (j − j̄))ω) for j ∈ {j̄ + 1, . . . , ℓ̄+ 1},

(s+ (ℓ̄− j̄)κ, π + (2j̄ + (ℓ̄− j̄))ω) for j > ℓ̄,

(S.1.10)

where j̄ and ℓ̄ are as previously defined.35 This deviation is not strictly for B because:

(i) B’s per-period payoff for any j ∈ {1, . . . , j̄} along the equilibrium path (S.1.8) is
strictly higher than along (S.1.10):

(1− s)(π + 2jω) > (1− (s− κ))(π + (2j − 1)ω) ⇐⇒ π + 2(j − 1)ω <
ω

κ
(1− s)− ω

which is true because s ≤ 1/2 and by construction of j̄, and

(ii) B’s per-period payoff for any j ∈ {j̄+1, . . . , ℓ̄} is strictly higher along the equilibrium
path than along (S.1.10)

(1− (s+ (j − j̄)κ))(π + (2j̄ + (j − j̄))ω) > (1− (s+ (j − 1− j̄)κ))(π + (2j̄ − 1 + (j − j̄))ω)

⇐⇒ π + 2(j̄ − 1)ω <
ω

κ
(1− s)− ω,

which is true because s ≤ 1/2 and by construction of j̄, and

(iii) B’s per-period payoff for any j > ℓ̄ is equal along the equilibrium path and the
deviation since the states evolve along the same path for j > ℓ̄

We conclude that σ∗ is an equilibrium for any subgame satisfying (S.1.7).

Case of s = 1/2. Note that in (S.1.8), the middle case is excluded because ℓ̄ = j̄ and,
hence, {j̄ + 1, . . . , ℓ̄} = ∅. By a symmetry argument, it suffices to show that just one of
the agents, say Agent B, has no incentive to deviate. The proof argument is then similar
to the above case of Agent B deviating when s < 1/2 (in fact, the proof argument above
only utilizes the weak inequality s ≤ 1/2).

35To see why, recall that j̄ was defined as the smallest integer such that π + 2j̄ω > ω
κ s − ω. The

analogous condition for the path that follows from B’s deviation is that j̄′ is the smallest integer such
that π + (2j̄′ − 1)ω > ω

κ (s− κ)− ω, but this condition simplifies to π + 2j̄′ω > ω
κ s− ω and, hence, j̄′ = j̄.

A similar argument shows that ℓ̄′ = ℓ̄+ 1.
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S.2 Auxiliary lemmas for Appendix B

Lemma S.2.1 If (B.1) is not satisfied for (st−1, πt−1) = (s, π), then there is no equilibrium
whereby, for any history ht−1, (at′A, at

′
B) = (0, 0) for all t′ ≥ t.

Proof. Suppose for a contradiction that (B.1) is not satisfied and for some equilibrium
σ∗ and history ht−1, (at

′
A, a

t′
B) = (0, 0) for all t′ ≥ t. Then the equilibrium payoffs for

A and B are sπ
1−β

and (1−s)π
1−β

, respectively. We begin with the case of s /∈ {0, 1}. If A
deviates to atA = 1, her payoff is

(s− κ)(π + ω) + βVA(s− κ, π + ω | σ∗, ht) ≥
(s− κ)(π + ω)

1− β
,

where the inequality follows from Lemma 1. Therefore, to sustain the equilibrium, it
must be that (s−κ)(π+ω)

1−β
≤ sπ

1−β
⇐⇒ π ≥ ω

κ
s− ω. Similarly, by considering B’s deviation

to atB = 1, we require that (1−(s+κ))(π+ω)
1−β

≤ (1−s)π
1−β

⇐⇒ π ≥ ω
κ
(1− s)− ω. Since (B.1) is

not satisfied and π is not a multiple of ω, we have a contradiction.
Now suppose s = 1 (the case of s = 0 is similar and, hence, omitted). Because (B.1)

is not satisfied and π0 is positive and not a multiple of ω, it must be that π < ω
κ
− ω.

Using the same argument as the case of s /∈ {0, 1}, if A deviates to atA = 1, her payoff
is at least (1−κ)(π+ω)

1−β
. This is strictly higher than her equilibrium payoff of π

1−β
because

π < ω
κ
− ω. Thus, we have a contradiction.

Lemma S.2.2 Let σ∗ be an equilibrium such that for some (st, πt) = (s, π), where π < ω
κ
(1−

s)− ω and, for some history ht, the state evolves to (st+1, πt+1) = (s+ κ, π + ω). Furthermore,
suppose equilibrium play under σ∗ follows Proposition 2 for any state (st′ , πt′) = (s+ κ, π+ω)

and any state reachable thereafter. Then it cannot be that at (st−1, πt−1) = (s+ κ, π − ω), the
agents choose a∗A(s+ κ, π − ω, ht−1) = 1 and a∗B(s+ κ, π − ω, ht−1) = 0 for any history ht−1.

Proof. Suppose for the sake of a contradiction that such behavior is prescribed by an
equilibrium σ∗. Then, at (st−1, πt−1) = (s+ κ, π − ω) B obtains equilibrium payoff

(1− s)π + β
(
(1− s− κ)(π + ω) + βVB(s+ κ, π + ω | σ∗)

)
. (S.2.1)

If B deviates to atB = 1, B obtains payoff

(1− s− κ)(π + ω) + βVB(s+ κ, π + ω | σ∗). (S.2.2)

Note that, by the lemma’s supposition, the continuation payoffs in (S.2.1) and (S.2.2) are
history independent. After rearranging (S.2.1) and (S.2.2), it follows that this deviation
is strictly profitable if and only if

(1− s)π

1− β
< (1− s− κ)(π + ω) + βVB(s+ κ, π + ω | σ∗).
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But, by Lemma 1, the RHS has lower bound (1−s−κ)(π+ω)
1−β

. Therefore, a strictly profitable
deviation exists if (1−s)π

1−β
< (1−s−κ)(π+ω)

1−β
, which is true because π < ω

κ
(1− s)− ω. Thus,

we have a contradiction.

Lemma S.2.3 Let σ∗ be an equilibrium such that for some (st−1, πt−1) = (s, π) where π <
ω
κ
(1 − s) − ω and some history ht−1, the state evolves to (st′ , πt′) = (s + κ, π + ω) for some

t′ ≥ t. Furthermore, suppose equilibrium play under σ∗ follows Proposition 2 for any state
(st′ , πt′) = (s+ κ, π + ω) and for any state reachable thereafter. Then it cannot be that at (s, π),
a∗A(s, π, ht−1) = 0 and a∗B(s, π, ht−1) = 0 for any history ht−1.

Proof. Suppose for a contradiction that such behavior is prescribed by an equilibrium
σ∗. Without loss of generality, we consider the case where t′ = t+ 1 (i.e., we focus on
the period immediately before the state evolves in the event that the state does not
evolve for multiple periods). Since σ∗ is an equilibrium, it must be that B best responds
to a∗A(s, π, ht−1) = 0 at period t:

(1− s)π + β
(
(1− (s+ κ))(π + ω) + βVB(s+ κ, π + ω | σ∗)

)
≥ (1− (s+ κ))(π + ω) + βVB(s+ κ, π + ω | σ∗), (S.2.3)

where the continuation payoffs are history independent by the lemma’s supposition.
Rearranging (S.2.3) gives the following condition:

(1− s)π

1− β
≥ (1− (s+ κ))(π + ω) + βVB(s+ κ, π + ω | σ∗) ≥ (1− (s+ κ))(π + ω)

1− β
,

where the last inequality follows from Lemma 1. However, this condition holds if and
only if π ≥ ω

κ
(1− s)− ω, which is not true—hence, we have a contradiction.

Lemma S.2.4 Let σ̃ be an equilibrium and let (st−1, πt−1) = (s, π), where (B.2) holds and the
minimum value of m ∈ N such that (B.3) holds is some m = m̄ ≥ 1. Furthermore, suppose
equilibrium play under σ̃ follows Proposition 2 for any state (st′ , πt′) ∈

{
(s, π+2ω), (s+κ, π+

ω)
}

and for any state reachable thereafter. Then it cannot be that, at (st−1, πt−1) = (s, π), σ̃
prescribes atA = 1 and atB = 1 for any history ht−1.

Proof. For sake a contradiction, suppose that such an equilibrium σ̃ exists. We begin
with two observations. First, note that by the lemma’s supposition:

(i) if the state reaches (st′ , πt′) = (s, π + 2ω) for some t′ ≥ t, then it evolves determin-
istically along the path (st′+j, πt′+j) = (s + jκ, π + (2 + j)ω) for j ∈ N≥0 until j = j̄,
where j̄ is the smallest integer such that

πt′+j̄ >
ω

κ
(1− st′+j̄)− ω.
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at which point conflict ensues and the state does not evolve further;

(ii) if the state reaches (st′ , πt′) = (s+ κ, π + ω) for some t′ ≥ t, then it evolves determin-
istically along the path (st′+j, πt′+j) = (s + (1 + j)κ, π + (1 + j)ω) for j ∈ N≥0 until
j = j̄, where j̄ is the smallest integer such that

πt′+j̄ >
ω

κ
(1− st′+j̄)− ω,

at which point conflict ensues and the state does not evolve further.

Second, note that the value j̄ is the same in both Parts (i) and (ii) above—to see this,
simply observe that

(π + (2 + j)ω) >
ω

κ
(1− (s+ jκ))− ω ⇐⇒ π + (1 + j)ω >

ω

κ
(1− (s+ (1 + j)κ))− ω.

We now proceed with the proof argument. In equilibrium, by Part (i) above, Agent A’s
payoff at (s, π):

j̄−1∑
j=0

βj(s+ jκ)(π + (2 + jω)) + β j̄ (s+ j̄κ)(π + (2 + j̄ω))

1− β
,

where the first summation is taken to equal zero if j̄ = 0. Now suppose A deviates to
atA = 0. Then, by Part (ii) above, Agent A’s payoff is

j̄−1∑
j=0

βj(s+ (1 + j)κ)(π + (1 + jω)) + β j̄ (s+ (1 + j̄)κ)(π + (1 + j̄ω))

1− β
,

which is strictly higher than their equilibrium payoff—a contradiction. To see this,
notice that, for any j ≥ 0 (including j > j̄), we have

(s+ (1 + j)κ)(π + (1 + jω)) > (s+ jκ)(π + (2 + jω)) ⇐⇒ π >
ω

κ
s− ω,

which is true by (B.2).

Lemma S.2.5 Let σ̃ be an equilibrium such that for any (st−1, πt−1) = (s, π) where s ∈
{κ, . . . , 1− κ} and for some m ∈ N>0:

π <
ω

κ
(1− s)− ω, π >

ω

κ
s− ω and π +mω >

ω

κ
(1− s)− ω, (S.2.4)

the state’s equilibrium evolution at (s, π) and any state reachable thereafter is as per σ∗ in
Proposition 2. Then at any state (st−1, πt−1) = (0, π) such that

π +mω >
ω

κ
− ω and π + (m− 1)ω <

ω

κ
− ω, (S.2.5)
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we have

VB(0, π | σ̃, ht−1) ≥
j̄∑

j=0

βj(1− (1 + j)κ)(π + (1 + j)ω) + β j̄+1 (1− (1 + j̄)κ)(π + (1 + j̄)ω)

1− β
,

(S.2.6)

where j̄ = ⌊m−1
2

⌋.

Proof. We begin by proving the result for m = 1 and m = 2. We then prove the result
for arbitrary m > 2 via an induction argument.

Case of m ∈ {1, 2}. Let σ̃ be an equilibrium and suppose the conditions of the lemma
statement are satisfied for m ∈ {1, 2}. For state (0, π) satisfying (S.2.5), we wish to prove
(S.2.6), which simplifies to

VB(0, π | σ̃, ht−1) ≥
(1− κ)(π + ω)

1− β
.

Suppose the state is (0, π) with some history ht−1 and satisfies (S.2.5) for m ∈ {1, 2}. We
know that B’s equilibrium payoff must be weakly larger than the minimum payoff
obtained by choosing atB = 1; that is,

VB(0, π | σ̃, ht−1) ≥ min
{
(π + 2ω) + βVB(0, π + 2ω | σ̃, ht−1, (a

t
A, a

t
B) = (1, 1)),

(1− κ)(π + ω) + βVB(κ, π + ω | σ̃, ht−1, (a
t
A, a

t
B) = (0, 1))

}
.

Because m ∈ {1, 2} and by Lemma 1, it follows that the above inequality simplifies to

VB(0, π | σ̃, ht−1) ≥ min
{(π + 2ω)

1− β
,
(1− κ)(π + ω)

1− β

}
≥ (1− κ)(π + ω)

1− β
,

as required.

Case of m > 2. We now extend the result to general m. Let σ̃ be an equilibrium and
suppose m > 2 is such that the conditions of the lemma statement are satisfied. Suppose
the state is (0, π) with some history ht−1 and satisfies (S.2.5) for m.

We will prove the result via an induction argument. Note that the proof argument
above for m ∈ {1, 2} immediately implies that (S.2.6) holds for any state (0, π′) satisfying
(S.2.5) for j̄ = ⌊m′−1

2
⌋ and m′ ∈ {1, 2}. Thus, we make the inductive assumption that the

lemma statement holds for m′ ∈ {m− 2,m− 1}. We know that B’s equilibrium payoff

49



must be weakly larger than the minimum payoff obtained by choosing atB = 1; that is,

VB(0, π | σ̃, ht−1) ≥ min
{
(π + 2ω) + βVB(0, π + 2ω | σ̃, ht−1, (a

t
A, a

t
B) = (1, 1)),

(1− κ)(π + ω) + βVB(κ, π + ω | σ̃, ht−1, (a
t
A, a

t
B) = (0, 1))

}
.

(S.2.7)

Because the conditions in the lemma statement are satisfied for m and s > 0, the second
term in the minimization is equal to the RHS of (S.2.6), i.e., the discounted payoff from
the path

(jκ, π + jω) (S.2.8)

for j ≥ 1 until j = ⌊m−1
2

⌋, at which point the state does not evolve any further. Thus,
it suffices to show that the first term in the minimization is weakly larger than (S.2.6).
Using the inductive argument for m′ = m − 2, we have that the first term in the
minimization is weakly larger than

(π + 2ω) + β

(
j̄′∑

j=0

βj(1− (1 + j)κ)(π + (3 + j)ω) + β j̄′+1 (1− (1 + j̄′)κ)(π + (3 + j̄′)ω)

1− β

)
,

where j̄′ = ⌊m−3
2

⌋. This payoff equals the discounted payoff from the path

((j − 1)κ, π + (1 + j)ω) (S.2.9)

for j ≥ 1 until j = 2 + ⌊m−3
2

⌋ = ⌊m−1
2

⌋, at which point the state does not evolve any
further. But notice that, for any j ∈ {1, . . . , ⌊m−1

2
⌋}, B’s payoff from the state (S.2.9) is

strictly greater than the payoff from the state (S.2.8). Furthermore, the length of the
paths in (S.2.8) and (S.2.9) are equal to ⌊m−1

2
⌋. Thus, B’s discounted payoff from (S.2.9)

is strictly greater than their payoff from (S.2.8). It follows that (S.2.7) implies

VB(0, π | σ̃, ht−1) ≥ (π + 2κ) + βVB(0, π + 2ω | σ̃, ht−1, (a
t
A, a

t
B) = (1, 1))

=

j̄∑
j=0

βj(1− (1 + j)κ)(π + (1 + j)ω) + β j̄+1 (1− (1 + j̄)κ)(π + (1 + j̄)ω)

1− β
,

where j̄ = ⌊m−1
2

⌋, as required.

Lemma S.2.6 Let σ∗ be an equilibrium. For any (st−1, πt−1) = (s, π) such that s > κ and

π >
ω

κ
s− ω and π <

ω

κ
(1− s)− ω,
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we have

VB(s, π | σ∗) > VB(s− κ, π − ω | σ∗). (S.2.10)

Proof. By Lemma B.2, (S.2.10) simplifies to

j̄∑
j=0

βj(1− s− (j + 1)κ)(π + (j + 1)ω) +
β j̄+1

1− β
(1− s− (j̄ + 1)κ)(π + (j̄ + 1)ω)

>

j̄+1∑
j=0

βj(1− s− jκ)(π + jω) +
β j̄+2

1− β
(1− s− (j̄ + 1)κ)(π + (j̄ + 1)ω),

where j̄ is defined as the smallest integer j = j̄ such that π + (j + 1)ω > ω
κ
(1− (s+ (j +

1)κ))− ω. Simplifying further gives

j̄∑
j=0

βj(1− s− (j + 1)κ)(π + (j + 1)ω) + β j̄+1(1− s− (j̄ + 1)κ)(π + (j̄ + 1)ω)

>

j̄∑
j=0

βj(1− s− jκ)(π + jω) + β j̄+1(1− s− (j̄ + 1)κ)(π + (j̄ + 1)ω)

⇐⇒
j̄∑

j=0

βj(1− s− (j + 1)κ)(π + (j + 1)ω) >

j̄∑
j=0

βj(1− s− jκ)(π + jω).

This inequality is true because

(1− s− (j + 1)κ)(π + (j + 1)ω) > (1− s− jκ)(π + jω)

⇐⇒ π + jω <
ω

κ
(1− (s+ jκ))− ω

and j ≤ j̄.

S.3 Omitted steps from Proof of Lemma B.3

In this appendix, we provide the omitted steps (Step 1 and Step 2) from Proof of
Lemma B.3.

Step 1. Suppose (ℓ,m) such that ℓ = 0 and m ∈ {1, 2}. We consider three alternative
strategies at period t− 1 and derive a contradiction in each case, which allows us to
conclude that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

(a) Suppose that in equilibrium, (atA, a
t
B) = (0, 1) or (atA, a

t
B) = (1, 0). Since s = 1

2
and via

a symmetry argument, we can focus on the first case without loss of generality. Then,
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by Lemmas B.1 and B.2 and because ℓ = 0 and m ∈ {1, 2}, A has a strict incentive to
deviate to atA

′
= 1 if and only if

(s+ κ)(π + ω) +
β

1− β
s(π + 2ω) <

1

1− β
s(π + 2ω),

which holds because s(π + 2ω) > (s + κ)(π + ω) ⇐⇒ π < ω
κ
s − ω; which is a

contradiction.

(b) Suppose that in equilibrium, (atA, a
t
B) = (0, 0). We know by Lemma S.2.1 that at

some point t̄ ≥ t + 1, the state must evolve. By Point 1 above, it must be that
(at̄A, a

t̄
B) = (1, 1). Consider period t̄− 1, A has a strict incentive to deviate to at̄−1

A

′
= 1

if and only if sπ+ β
1−β

s(π+2ω) < (s−κ)(π+ω)+ β
1−β

s(π+2ω), which holds because
π < ω

κ
s− ω; which is a contradiction.

Step 2. Suppose (ℓ,m) such that ℓ ≥ 1 and m ∈ {1, 2}. For m = 1, our inductive
assumption is that the lemma holds for all (s′, π′) satisfying (B.5) with (ℓ′,m′) = (ℓ′,m)

for all ℓ′ ≤ ℓ − 1.36 For m = 2, our inductive assumption additionally includes that
the lemma holds for all (s′, π′) satisfying (B.5) with (ℓ′,m′) = (ℓ′, 1) where ℓ′ ∈ N≥0. By
a symmetry argument, we focus on the case of s = 1

2
− ℓκ (the case of s = 1

2
+ ℓκ is

similar and hence omitted). We consider three alternative strategies at period t− 1 and
derive a contradiction in each case, which allows us to conclude that a∗A(s, π, ht−1) =

a∗B(s, π, ht−1) = 1.

(a) Suppose that in equilibrium, (atA, a
t
B) = (0, 1). By Lemmas B.1 and B.2, m ≤ 2 and

ℓ ≥ 1 and the inductive argument, A’s equilibrium payoff is given by

(s+κ)(π+ω)+β(s+κ)(π+3ω)+β2VA(s+κ, π+3ω | σ∗) = (s+κ)(π+ω)+βVA(s, π+2ω | σ∗),

where the equality follows by Lemma B.2. If A deviates to atA
′
= 1, their payoff is

s(π + 2ω) + βV (s, π + 2ω | σ∗), which is strictly higher than their equilibrium payoff
because π < ω

κ
s− ω. This is a contradiction.

(b) Suppose that in equilibrium, (atA, a
t
B) = (1, 0). By Lemmas B.1 and B.2, B’s equilib-

rium payoff is (1− s+ κ)(π + ω) + βVB(s− κ, π + ω). If B deviates to atB
′
= 1, their

payoff is

(1− s)(π + 2ω) + βVB(s, π + 2ω | σ∗) > (1− s)(π + 2ω) + βVB(s− κ, π + ω | σ∗),

where the lower bound follows by Lemma S.2.6. This lower bound is strictly higher
than the equilibrium payoff because π < ω

κ
(1− s)− ω; this is a contradiction.

36When combined with the fact that m = 1 and (s′, π′) satisfying (B.5), this inductive assumption
simply reduces to the lemma holding for m′ = 1 and ℓ′ = ℓ− 1.
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(c) Suppose that in equilibrium, (atA, a
t
B) = (0, 0). By Lemma S.2.1, we know that at

some point t̄ ≥ t + 1, the state must evolve. By Parts (a) and (b) above, it must be
that (at̄A, a

t̄
B) = (1, 1). Consider period t̄− 1, A’s equilibrium payoff is

sπ + βs(π + 2ω) + β2VA(s, π + 2ω) = sπ + βVA(s− κ, π + ω),

where the equality follows by Lemma B.2. If A deviates to at̄−1
A

′
= 1, their payoff is

(s− κ)(π + ω) + βVA(s− κ, π + ω),

which is strictly greater than their equilibrium payoff because π < ω
κ
s− ω. This is a

contradiction.

S.4 Proof of Proposition 3

Proof of Proposition 3. Given π0 < ω
κ
1
2
− ω, define s (resp., s) as the smallest (resp.,

largest) value of s0 such that, in equilibrium, atA = atB = 1 for t = 1 (per Proposition 2).
Formally, s and s are the values that satisfy

π0 =
ω

κ
s− ω and π0 =

ω

κ
(1− s)− ω.

Note that 0 < s < s < 1 because 0 < π0 <
ω
κ
1
2
− ω.

We begin with two auxiliary claims.

Claim 1: For any β ∈ [0, 1), the maximum utilitarian payoff from an initial condition
s0 ∈ {1

2
−κ, 1

2
, 1
2
+κ} is strictly higher than the utilitarian payoff from any other feasible

s′0 ∈ (s, s)\{1
2
− κ, 1

2
, 1
2
+ κ}.

Proof of Claim 1. Without loss of generality, assume s′0 > 1
2
+ κ and s′0 ∈ (s, s).

By Proposition 2, both agents contribute to expanding the pie, atA = atB = 1, until
πt >

ω
κ
(1 − s′0) − ω. At this point, the large-share agent continue to expand the pie

and the small-share agent expands their share until πt > ω
κ
st − ω; at this point, πt

remains fixed forever. Therefore, the utilitarian payoff from any such s′0 can be directly
calculated as

j̄∑
j=0

βj
(
π0 + 2ω(1 + j)

)
+

j̄′∑
j=j̄+1

βj
(
π0 +

(
2(1 + j̄) + j − j̄

)
ω
)

+
β j̄′+1

1− β

(
π0 +

(
2(1 + j̄) + j̄′ − j̄

)
ω
)
, (S.4.1)
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where j̄ is the smallest positive integer j such that

π0 + 2ω(1 + j) >
ω

κ
(1− s′0)− ω

and j̄′ is the smallest positive integer j ≥ j̄ such that

π0 +
(
2(1 + j̄) + j − j̄

)
ω >

ω

κ

(
s′0 − κ(j − j̄)

)
− ω.

Note that j̄′ ≥ j̄ + 2 because s′0 ≥ 1
2
+ 2κ.

Now consider the utilitarian payoff from s0 = s′0 − 2κ. For this initial condition, the
agents will choose atA = atB = 1 for one additional period before the small-share agent
decides to expand their share (atj = 0); furthermore, the long-run size of the pie will be
the same with initial condition s′0. Thus, the initial condition s0 provides faster growth
without any cost to the long-run size of the pie and, hence, provides higher utilitarian
payoff. Formally, and similar to (S.4.1), the utilitarian payoff from s0 is

j̃∑
j=0

βj
(
π0 + 2ω(1 + j)

)
+

j̃′∑
j=j̃+1

βj
(
π0 +

(
2(1 + j̃) + j − j̃

)
ω
)

+
β j̃′+1

1− β

(
π0 +

(
2(1 + j̃) + j̃′ − j̃

)
ω
)
, (S.4.2)

where j̃ is the smallest positive integer j such that

π0 + 2ω(1 + j) >
ω

κ
(1− (s′0 − 2κ))− ω ⇐⇒ π0 + 2ω(1 + j − 1) >

ω

κ
(1− s′0)− ω,

and j̃′ is the smallest positive integer j ≥ j̃ (equality will hold if and only if s0 = 1
2
)

such that
π0 +

(
2(1 + j̃) + j − j̃

)
ω >

ω

κ

(
(s′0 − 2κ)− κ(j − j̃)

)
− ω.

Note that in (S.4.2) we use the convention that if j̃′ < j̃ + 1, then the summation is
equal to zero. Comparing the definitions of j̃ and j̄, it is immediate that j̃ = j̄ + 1.
Substituting this into the definition for j̃′ gives

π0 +
(
2(1 + j̄ + 1) + j − (j̄ + 1)

)
ω >

ω

κ

(
(s′0 − 2κ)− κ(j − (j̄ + 1))

)
− ω

⇐⇒ π0 +
(
2(1 + j̄) + (j + 2)− j̄

)
ω >

ω

κ

(
s′0 − κ(j − j̄)

)
− ω

⇐⇒ π0 +
(
2(1 + j̄) + (j + 1)− j̄

)
ω >

ω

κ

(
s′0 − κ(j + 1− j̄)

)
− ω;
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thus, j̃′ = j̄′ − 1. Returning to (S.4.2), we can rewrite the utilitarian payoff as

j̄+1∑
j=0

βj
(
π0 + 2ω(1 + j)

)
+

j̄′−1∑
j=j̄+1+1

βj
(
π0 +

(
2(1 + j̄ + 1) + j − (j̄ + 1)

)
ω
)

+
β j̄′−1+1

1− β

(
π0 +

(
2(1 + j̄ + 1) + j̄′ − 1− (j̄ + 1)

)
ω
)

=

j̄∑
j=0

βj
(
π0 + 2ω(1 + j)

)
+ β j̄+1

(
π0 +

(
2(1 + j̄) + 2

)
ω
)

+

j̄′−1∑
j=j̄+2

βj
(
π0 +

(
2(1 + j̄) + (j + 1)− j̄

)
ω
)
+ β j̄′

(
π0 +

(
2(1 + j̄) + j̄′ − j̄

)
ω
)

+
β j̄′+1

1− β

(
π0 +

(
2(1 + j̄) + j̄′ − j̄

)
ω
)
. (S.4.3)

Note that the first summation and the final term in (S.4.3) and (S.4.1) are equal, whereas
the second summation in (S.4.1) is strictly smaller than the middle terms in (S.4.3). Thus,
it follows that (S.4.3) is strictly greater than (S.4.1), and the utilitarian payoff is higher
with initial condition s0.

Claim 2: For any β ∈ [0, 1) and any s0 /∈ (s, s), the utilitarian payoff is strictly increas-
ing as |1

2
− s0| increases.

Proof of Claim 2. Without loss of generality, assume s0 > 1
2
. Notice that when

s0 /∈ (s, s) and s0 >
1
2
, one agent contributes to expanding the pie (atj = 1) and the other

agent expands their share (atj = 0) until πt >
ω
κ
st − ω; at which point, πt remains fixed

forever (as per Proposition 2). Therefore, the utilitarian payoff from any such s0 can be
directly calculated as

j̄∑
j=0

βj(π0 + ω(1 + j)) +
β j̄+1

1− β
(π0 + ω(1 + j̄)), (S.4.4)

where j̄ is the smallest (positive) integer j such that π0+ω(1+ j) > ω
κ
(s0−κ(1+ j))−ω.

It is immediate that (S.4.4) is strictly increasing in j̄. Furthermore, because j̄ is strictly
increasing in s0, the claim follows.

Together Claims 1 and 2 imply that, for the purpose of maximizing utilitarian
payoffs for s0 ∈ {κ, . . . , 1− κ}, it is without loss of generality to consider s0 ∈ {κ, 1

2
−

κ, 1
2
, 1
2
+ κ, 1 − κ}. We now proceed with the proof argument. Again, for simplicity

and without loss of generality, we assume s0 ≥ 1
2

and, thus, consider initial conditions:
s0 ∈ {1

2
, 1
2
+κ, 1−κ}. We now characterize the utilitarian payoff for each initial condition.
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Suppose s0 = 1− κ. By Proposition 2, the utilitarian payoff is

t̃∑
t=0

βt(π0 + (2 + t)ω) +
β t̃+1

1− β
π̃∞, (S.4.5)

where π̃∞ = π0 + (2 + t̃)ω for some positive integer t̃. Because π0 > ω
κ
(1 − 3κ) − ω,

we have π̃∞ > ω
κ
1
2
+ ω. To see this, notice that if m is the largest positive integer

such that π0 > ω
κ
(1 −mκ) − ω, then, for initial condition s0 = 1 −mκ, the value of πt

for which conflict ensues is contained in (ω
κ
1
2
− ω, ω

κ
1
2
). Furthermore, initial condition

s0 = 1− (m− 1)κ, the value of πt for which conflict ensures is contained in (ω
κ
1
2
, ω
κ
1
2
+ω),

i.e., the interval of values is shifted up by ω. Repeating this argument and noting that it
can be applied at least 3 times (since π0 >

ω
κ
(1− 3κ)− ω), shows that π̃∞ > ω

κ
1
2
+ ω.

Suppose s0 =
1
2

or s0 = 1
2
+ κ. By Proposition 2, the utilitarian payoff is

t̂∑
t=0

βt(π0 + 2(1 + t)ω) +
β t̂+1

1− β
π̂∞, or (S.4.6)

t̂′∑
t=0

βt(π0 + 2(1 + t)ω) + β t̂′+1(π0 + 2(1 + t̂′ + 1)ω + ω) +
β t̂′+1

1− β
π̂′
∞, (S.4.7)

respectively, where π̂∞ = (π0+2(1+ t̂)ω) and π̂′
∞ = (π0+2(1+ t̂′)ω+ω), and t̂ and t̂′ are

positive integers. Given Proposition 2, it is immediate that π̂∞, π̂′
∞ ∈ (ω

κ
1
2
− ω, ω

κ
1
2
+ ω).

For different discount factors, β, we now compare the payoff (S.4.5) to the maximum
or minimum of (S.4.6) and (S.4.7). Clearly, for β sufficiently small, (S.4.6) and (S.4.7)
are strictly greater than (S.4.5). Thus, s0 ∈ {1

2
, 1
2
+ κ} maximizes the utilitarian payoff

when β is small. Now consider β sufficiently close to 1. Because π̃∞ in (S.4.5) is strictly
greater than π̂∞ and π̂′

∞ in (S.4.6) and (S.4.7), it follows that for large enough β, (S.4.5)
is strictly greater than (S.4.6) and (S.4.7). Thus, s0 ∈ {1− κ} maximizes the utilitarian
payoff when β is close to 1.

S.5 Asymmetric discount factors

In this appendix, we consider an extension of the benchmark model where the agents
have (possibly) different discount factors: βA ∈ [0, 1) and βB ∈ [0, 1) for agent A and B,
respectively. Our key result that growth eventually halts continues to hold. We begin
with two auxiliary lemmas (Lemmas S.5.1 and S.5.2). Proposition S.5.1 then presents
the main result.

Lemma S.5.1 There exists π̄(βA, βB) such that, for all (st−1, πt−1) = (s, π) with π > π̄(βA, βB),
there is no equilibrium σ∗ such that on the equilibrium path: πt′ grows unboundedly and
at

′
A = at

′
B ∈ {0, 1} for all t′ ≥ t.
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Proof. For sake of a contradiction, suppose that there exists an equilibrium σ∗ that
grows πt−1 unboundedly on the equilibrium path and such that, for πt−1 arbitrarily
large, at′A = at

′
B ∈ {0, 1} for all t′ ≥ t. Because πt′ grows unboundedly, on the equilibrium

path there exists πt′ arbitrarily large such that at′A = at
′
B = 1 (and, hence, πt′+1 = πt′ +2ω).

Abusing notation slightly, we denote this πt′ by simply π.
We now focus on agent A’s incentive to deviate, and suppose s ∈ {0, . . . , 1− κ} (the

case of s = 1 follows similarly by focusing on agent B’s incentive to deviate and, hence,
is omitted). On the equilibrium path at

′
A = at

′
B for all t′ ≥ t; thus, agent A’s equilibrium

payoff is bounded above by

s

∞∑
j=0

βj
A(π + 2(j + 1)ω)) = s

π(1− βA) + 2ω

(1− βA)2
.

Agent A’s payoff from deviating to at
′
A = 0 delivers payoff

(s+ κ)(π + ω) + βAVA(s+ κ, π + ω | σ∗, ht′) ≥
(s+ κ)(π + ω)

(1− βA)
,

where the inequality follows from Lemma 1. Note that Lemma 1 (with the same proof
argument) continues to hold in this extension. Therefore, to sustain the equilibrium σ∗,
we require that

(s+ κ)(π + ω)

(1− βA)
≤ s

π(1− βA) + 2ω

(1− βA)2
,

which does not hold for sufficiently large π. Denote the first value for which the
inequality does not hold by π̄(s, βA). In a similar way, define π̄(1, βB) as first value for
which the analagous inequality does not hold for agent B when s = 1. The lemma is
then completed by defining π̄(βA, βB) := max{maxs π̄(s, βA), π̄(1, βB)}.

Lemma S.5.2 Suppose (st−1, πt−1) = (s, π) with s /∈ {0, 1}. There is no equilibrium σ∗ such
that, on the equilibrium path, πt′ grows unboundedly.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. Let s̄
(resp., s) denote the limit superior (resp., limit inferior) values of st′ that occur on the
equilibrium path. That is, s̄ := limt′→∞ sup st′ and s := limt′→∞ inf st′ . We consider three
cases.

Case 1: Suppose s > 0 or s̄ < 1. We focus on the latter scenario (the former is similar
and, hence, we omit the proof). Consider t′ ≥ t such that st′−1 = s̄ and s̄ ≥ st′′ for all
t′′ ≥ t′ and πt′−1 > π̄(βA, βB) (as defined in Lemma S.5.1). Note that such a time period
exists by definition of s̄ and because σ∗ is such that πt′ grows unboundedly. Applying
Lemma S.5.1, we can then conclude that it must be that, on the equilibrium path,
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(st′′−1, πt′′−1) = (s̄, πt′′−1) and (at
′′
A , a

t′′
B ) = (0, 1) or (at′′A , a

t′′
B ) = (1, 0) at some time period

t′′ ≥ t′. However, since s̄ ≥ st′′ for all t′′ ≥ t′, only the latter can occur: (at′′A , a
t′′
B ) = (1, 0).

Consider now agent A’s incentive to deviate at time period t′′. Agent A’s equilibrium
payoff is bounded above by

(s̄− κ)(π + ω) + βA

(
s̄

∞∑
j=0

βj
A(π + 2(j + 1)ω))

)
= (s̄− κ)(π + ω) + βAs̄

π(1− βA) + 2ω

(1− βA)2
.

Agent A’s payoff from deviating to at
′
A = 0 is

s̄π + βAVA(s̄, π | σ∗, ht′) ≥
s̄π

(1− βA)
,

where the inequality follows from Lemma 1. Therefore, to sustain the equilibrium σ∗,
we require that

s̄π

(1− βA)
≤ (s̄− κ)(π + ω) + βAs̄

π(1− βA) + 2ω

(1− βA)2
,

which does not hold for sufficiently large π. This contradicts the existence of σ∗ because,
on the equilibrium path, πt′ grows unboundedly and, since s̄ is the limit superior of st′ ,
the state must repeatedly reach a state (st′′ , πt′′) with πt′′ unboundedly large.

Case 2: Suppose s = 0 and s̄ = 1. Consider t′ ≥ t such that st′−1 = s̄ and s̄ ≥ st′′ for
all t′′ ≥ t′ and πt′−1 > π̄(βA, βB) (as defined in Lemma S.5.1). Note that such a time
period exists by definition of s̄ and because σ∗ is such that πt′ grows unboundedly.
Because s < s̄, it must be that, on the equilibrium path, (st′′−1, πt′′−1) = (s̄, πt′′−1) and
(at

′′
A , a

t′′
B ) = (1, 0) at some time period t′′ ≥ t′. A contradiction then follows via the same

argument (and inequalities) presented in Case 1.

Case 3: Suppose s = s̄ ∈ {0, 1}. Without loss of generality, suppose s = s̄ = 1.
Consider the first value of t′ ≥ t such that st′−1 = s = 1 and s = 1 ≤ st′′ for all t′′ ≥ t′.
In other words, st′′ = 1 for all t′′ ≥ t′. Note that such a time period exists by definition
of s = 1. By the law of motion and because st−1 = s /∈ {0, 1}, at period t′ − 1, it must
have been that (st′−2, πt′−2) = (1− κ, πt′−1 − ω) and, on the equilibrium path, the agents
chose actions: (at

′−1
A , at

′−1
B ) = (0, 1), which lead to state: (st′−1, πt′−1) = (1, πt′−1).

Consider now agent B’s incentive to deviate at time period t′ − 1. Agent B’s
equilibrium payoff is zero (by construction of the time period t′). Agent B’s payoff
from deviating to at

′−1
B = 0 is

κ(πt′−1 − ω) + βBVB(1− κ, πt′−1 | σ∗, ht′) ≥
κ(πt′−1 − ω)

1− βB

> 0.
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Clearly, agent B’s deviation is strictly profitable and, hence, we have a contradiction.

Proposition S.5.1 Suppose (s0, π0) = (s, π) with s /∈ {0, 1}, and let σ∗ be an equilibrium. If
(st−1, πt−1) is such that

πt−1 > max
{ω
κ
st−1 − ω,

ω

κ
(1− st−1)− ω

}
(S.5.1)

and (st−1, πt−1) is on the equilibrium path, then conflict ensues and (st′ , πt′) = (s, π) for every
t′ ≥ t.

Proof. Let σ∗ be an equilibrium. By Lemma S.5.2, the growth of πt′ is bounded; thus,
on the equilibrium path, there exists π̄ and t̄ ≥ t such that πt̄ = π̄, (st′ , πt′) = (st̄, π̄) for
all t′ ≥ t̄, and πt̄−1 < π̄. Furthermore, it must be that st̄ /∈ {0, 1}. To see this, suppose
that st̄ = 1 (the case of st̄ = 0 is similar). Because s ̸= 1 and using the law of motion,
there exists some time period t̃ : 0 ≤ t̃ < t̄ such that st̃ = 1− κ, st′ = 1 for all t′ > t̃, and
(at̃A, a

t̃
B) = (0, 1). At this point, agent B has a strictly profitable deviation since their

equilibrium continuation payoff is zero but deviating to at̃+1
B = 1 guarantees strictly

positive payoff. Thus, such an equilibrium cannot exist and it must be that st̄ /∈ {0, 1}.
We now show that a necessary condition for σ∗ to exist is that

πt̄−1 ≤ max
{ω
κ
st̄−1 − ω,

ω

κ
(1− st̄−1)− ω

}
; (S.5.2)

hence, on the equilibrium path, conflict must ensue whenever the above inequality fails,
i.e., (S.5.1) holds. We prove this by considering the 2 possible cases that are consistent
with the equilibrium, i.e., growth of πt′ at period t.

Case 1: (at̄A, at̄B) = (1, 1) and, hence, (st̄−1, πt̄−1) = (st̄, π̄ − 2ω). Consider agent A’s
incentive to deviate at period t̄. Agent A’s equilibrium payoff is st̄π̄

1−βA
. Agent A’s payoff

from deviating to at̄A = 0 is

(st̄ + κ)(π̄ − ω) + βAVA(st̄ + κ, π̄ − ω | σ∗, ht′) ≥
(st̄ + κ)(π̄ − ω)

(1− βA)
,

where the inequality follows from Lemma 1. Thus, for (at̄A, a
t̄
B) = (1, 1) to be an

equilibrium, it must be that

(st̄ + κ)(π̄ − ω)

(1− βA)
≤ st̄π̄

1− βA

⇐⇒ π̄ ≤ ω

κ
st̄ + ω. (S.5.3)

By considering agent B’s incentives, it similarly follows that

π̄ ≤ ω

κ
(1− st̄) + ω. (S.5.4)
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Combining (S.5.3) and (S.5.4), it must be that π̄ ≤ min
{

ω
κ
st̄ + ω, ω

κ
(1 − st̄) + ω

}
and,

hence,

πt̄−1 ≤ min
{ω
κ
st̄ − ω,

ω

κ
(1− st̄)− ω

}
= min

{ω
κ
st̄−1 − ω,

ω

κ
(1− st̄−1)− ω

}
.

Case 2: (at̄A, at̄B) ∈ {(0, 1), (1, 0)} and, hence, (st̄−1, πt̄−1) = (st̄±κ, π̄−ω). First, suppose
(at̄A, a

t̄
B) = (1, 0) and, hence, (st̄−1, πt̄−1) = (st̄ + κ, π̄ − ω). Consider agent A’s incentive

to deviate at period t̄. Agent A’s equilibrium payoff is st̄π̄
1−βA

. Agent A’s payoff from
deviating to at̄A = 0 is

(st̄ + κ)(π̄ − ω) + βAVA(st̄ + κ, π̄ − ω | σ∗, ht′) ≥
(st̄ + κ)(π̄ − ω)

(1− βA)
,

where the inequality follows from Lemma 1. Thus, for (at̄A, a
t̄
B) = (1, 0) to be an

equilibrium, it must be that

(st̄ + κ)(π̄ − ω)

(1− βA)
≤ st̄π̄

1− βA

⇐⇒ π̄ ≤ ω

κ
st̄ + ω.

Hence,
πt̄−1 ≤

ω

κ
st̄ =

ω

κ
st̄−1 − ω.

Second, suppose (at̄A, a
t̄
B) = (0, 1) and, hence, (st̄−1, πt̄−1) = (st̄ − κ, π̄ − ω). By consider-

ing agent B’s incentive, a similar argument shows that

(1− st̄ + κ)(π̄ − ω)

(1− βA)
≤ (1− st̄)π̄

1− βA

⇐⇒ π̄ ≤ ω

κ
(1− st̄) + ω.

Hence,
πt̄−1 ≤

ω

κ
(1− st̄) =

ω

κ
(1− st̄−1)− ω.

Combining the conclusions presented in Cases 1 and 2, shows the necessary condi-
tion (S.5.2) and completes the proof.

S.6 Diminishing returns to expanding the pie

In this appendix, we consider an extension of the benchmark model whereby an agent’s
ability to expand the pie features diminishing returns. Formally, the law of motion
of the size of the pie has ω replaced by ω̃(π), where ω̃(·) is positive and decreasing
function. We show that our key result that growth eventually halts continues to hold.
We now proceed with the proof.
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Lemma S.6.1 In every equilibrium σ∗, if the state is (st−1, πt−1) = (s, π), the players’ contin-
uation payoffs are such that: for any history ht−1,

VA(s, π | σ∗, ht−1) ≥
sπ

1− β
and VB(s, π | σ∗, ht−1) ≥

(1− s)π

1− β
. (S.6.1)

Proof. The proof argument is similar to that of Lemma 1.

Lemma S.6.2 Let σ∗ be an equilibrium and let (st−1, πt−1) = (s, π) with some history ht−1.
There exists a threshold π̃(ω, β) such that: if π sufficiently large, π > π̃(ω, β), then it cannot be
that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. Using
the fact that the parties’ payoffs sum to πt in every period t (and πt′ ≤ πt′−1 + 2ω̃(πt−1)

for all t′), we know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + 2(j + 1)ω̃(π)) =
π(1− β) + 2ω̃(π)

(1− β)2
.

(S.6.2)

We consider 2 cases.

Case 1: Suppose s ∈ {κ, . . . , 1− κ}. Party A’s payoff from deviating is

(s+ κ)(π + ω̃(π)) + βVA(s+ κ, π + ω̃(π) | σ∗) ≥ (s+ κ)(π + ω̃(π))

1− β
,

where the inequality follows from Lemma S.6.1. Hence, for σ∗ to be an equilibrium, a
necessary condition is

VA(s, π | σ∗) ≥ (s+ κ)(π + ω̃(π))

1− β
. (S.6.3)

A similar argument for Party B implies that, for σ∗ to be an equilibrium, a necessary
condition is

VB(s, π | σ∗) ≥ (1− s+ κ)(π + ω̃(π))

1− β
. (S.6.4)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.6.3)
and (S.6.4), which yields (π+ω̃(π))(1+2κ)

1−β
, is weakly less than (S.6.2) — otherwise, at least
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one of the parties would have an incentive to deviate. That is, we require

(π + ω̃(π))(1 + 2κ)

1− β
≤ π(1− β) + 2ω̃(π)

(1− β)2

⇐⇒ π(1 + 2κ) + ω̃(π)(1 + 2κ) ≤ π +
2ω̃(π)

1− β

2κπ + ω̃(π)(1 + 2κ)− 2ω̃(π)

1− β
≤ 0.

For sufficiently large π, the above inequality does not hold since limπ→∞ ω̃(π) equals
some finite value independent of π. Let π̃1(κ, β) be the first such value for which for
the inequality does not hold for all π > π̃1(κ, β).

Case 2: Suppose s ∈ {0, 1}. We focus on s = 0 (argument for s = 1 is similar). By the
same argument as in Case 1, we have that Inequality (S.6.3) must hold at s = 0, i.e.,

VA(s, π | σ∗) ≥ κ(π + ω̃(π))

1− β
. (S.6.5)

And, by Lemma S.6.1, Party B’s equilibrium payoff at (0, π) must satisfy

VB(s, π | σ∗) ≥ (π + 2ω̃(π))

1− β
. (S.6.6)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.6.5)
and the RHS of (S.6.6), which yields (1+κ)(π+ω̃(π))+ω̃(π)

1−β
, is weakly less than (S.6.2) —

otherwise, at least one of the parties would have an incentive to deviate. That is, we
require

(1 + κ)(π + ω̃(π)) + ω̃(π)

1− β
≤ π(1− β) + 2ω̃(π)

(1− β)2

⇐⇒ κ(π + ω̃(π)) + 2ω̃(π) ≤ 2ω̃(π)

1− β
.

For sufficiently large π, the above inequality does not hold since limπ→∞ ω̃(π) equals
some finite value independent of π. Let π̃2(κ, β) be the first such value for which the
inequality does not hold for all π > π̃2(κ, β) and for any s ∈ [0, 1].

By combining the bounds from Case 1 and Case 2, i.e., π̃(κ, β) > max{π̃1(κ, β), π̃2(κ, β)},
we obtain the desired result.

Lemma S.6.3 There exists π̄(κ, β) such that, for any (st−1, πt−1) = (s, π) with history ht−1

such that π is sufficiently large: π > π̄(κ, β). There is no equilibrium σ∗ such that:

(i) for some s ∈ {κ, . . . , 1}, π and history ht−1, a∗A(s, π, ht−1) = 1
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(ii) for some s ∈ {0, . . . , 1− κ}, π and history ht−1, a∗B(s, π, ht−1) = 1.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. By
Lemma S.6.2 and if π > π̃(κ, β), it cannot be that a∗A(s, π, h) = a∗B(s, π, h) = 1. Therefore,
at most one of the parties chooses action atj = 1 and, hence, πt ≤ πt−1 + ω̃(πt−1) for all
t. Combining this with the fact that the parties’ payoffs sum to πt in every period, we
know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + (j + 1)ω̃(π)) =
π(1− β) + ω̃(π)

(1− β)2
.

(S.6.7)

Without loss of generality assume that a∗A(s, π, h) = 0 and a∗B(s, π, h) = 1. We will prove
the statement in Part (ii) and, hence, assume s ∈ {0, . . . , 1− κ} — the proof of Part (i) is
similar. Party A’s equilibrium payoff can be bounded from below as follows:

VA(s, π | σ∗) = (s+ κ)(π + ω̃(π)) + βVA(s+ κ, π + ω | σ∗) ≥ (s+ κ)(π + ω̃(π))

1− β
, (S.6.8)

where the inequality follows from Lemma S.6.1.
Now consider Party B. Party B’s payoff from deviating is

(1− s)π + βV ∗
B(s, π | σ∗) ≥ (1− s)π

1− β
,

where the inequality follows from Lemma S.6.1. To be an equilibrium, a necessary
condition is

VB(s, π | σ∗) ≥ (1− s)π

1− β
. (S.6.9)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.6.8)
and (S.6.9), which yields (s+κ)(π+ω̃(π))+(1−s)π

1−β
, is weakly less than (S.6.7) — otherwise,

party B would have an incentive to deviate at time t. That is, we require

(s+ κ)(π + ω̃(π)) + (1− s)π

1− β
≤ π(1− β) + ω̃(π)

(1− β)2

⇐⇒ κπ + ω̃(π)(s+ κ) ≤ ω̃(π)

(1− β)
.

For sufficiently large π, the above inequality does not hold for any s since limπ→∞ ω̃(π)

equals some finite value independent of π. Let π̃′(κ, β) be the first such value for which
the inequality does not hold for all π > π̃′(κ, β) and any s ∈ {0, . . . , 1}. Combining this
bound on π with that given in Lemma S.6.2 completes the proof.
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Corollary S.6.1 There exists π̄(κ, β) as defined in Lemma S.6.3 such that if (st−1, πt−1) =

(s, π) with π > π̄(κ, β), then in every equilibrium

(i) If s ∈ {κ, 1− κ}, then st′ = s and πt′ = π for all t′ ≥ t;

(ii) If s ∈ {0, 1}, then st′ = s and πt′ ∈ {πt′−1, πt′−1 + ω̃(πt′−1)} for all t′ ≥ t.

S.7 Ability to expand one’s share depends on the pie

In this appendix, we consider an extension of the benchmark model whereby an agent’s
ability to expand their share depends on the size of the pie. Formally, the law of motion
of the agents’ shares has κ replaced by κ̃(π), where κ̃(·) is positive and decreasing
function. Our key result that growth eventually halts will be shown to hold under
Assumption S.7.1.

Assumption S.7.1 The ability to expand one’s share does not decline too fast as the pie grows:
κ̃(π)π is increasing and unbounded as π grows.

We now proceed with the proof.

Lemma S.7.1 In every equilibrium σ∗, if the state is (st−1, πt−1) = (s, π), the players’ contin-
uation payoffs are such that: for any history ht−1,

VA(s, π | σ∗, ht−1) ≥
sπ

1− β
and VB(s, π | σ∗, ht−1) ≥

(1− s)π

1− β
. (S.7.1)

Proof. The proof argument is similar to that of Lemma 1.

Lemma S.7.2 Suppose Assumption S.7.1 holds. Let σ∗ be an equilibrium and let (st−1, πt−1) =

(s, π) with some history ht−1. There exists a threshold π̃(ω, β) such that: if π sufficiently large,
π > π̃(ω, β), then it cannot be that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. Using
the fact that the parties’ payoffs sum to πt in every period t (and πt′ ≤ πt′−1 + 2ω for all
t′), we know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + 2(j + 1)ω) =
π(1− β) + 2ω

(1− β)2
.

(S.7.2)

We consider 2 cases.
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Case 1: Suppose s ∈ [κ̃(π), 1− κ̃(π)]. Party A’s payoff from deviating is

(s+ κ̃(π))(π + ω) + βVA(s+ κ̃(π), π + ω | σ∗) ≥ (s+ κ̃(π))(π + ω)

1− β
,

where the inequality follows from Lemma S.7.1. Hence, for σ∗ to be an equilibrium, a
necessary condition is

VA(s, π | σ∗) ≥ (s+ κ̃(π))(π + ω)

1− β
. (S.7.3)

Similarly, Party B’s payoff from deviating is

(1− s+ κ̃(π))(π + ω) + βVB(s− κ̃(π), π + ω | σ∗) ≥ (1− s+ κ̃(π))(π + ω)

1− β
,

and for σ∗ to be an equilibrium, a necessary condition is

VB(s, π | σ∗) ≥ (1− s+ κ̃(π))(π + ω)

1− β
. (S.7.4)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.7.3)
and (S.7.4), which yields (π+ω)(1+2κ̃(π))

1−β
, is weakly less than (S.7.2) — otherwise, at least

one of the parties would have an incentive to deviate. That is, we require

(π + ω)(1 + 2κ̃(π))

1− β
≤ π(1− β) + 2ω

(1− β)2

⇐⇒ π(1 + 2κ̃(π)) + ω(1 + 2κ̃(π)) ≤ π +
2ω

1− β

2κ̃(π)π + ω(1 + 2κ̃(π))− 2ω

1− β
≤ 0.

Under Assumption S.7.1, this inequality does not hold for sufficiently large π. Let
π̃1(ω, β) be the first such value for which the inequality does not hold for all π > π̃1(ω, β).

Case 2: Suppose s ∈ [0, κ̃(π)) ∪ (1 − κ̃(π), 1]. We focus on s ∈ [0, κ̃(π)) (argument
for s ∈ (1 − κ̃(π), 1] is similar). By the same argument as in Case 1, we have that
Inequality (S.7.3) must hold at s

VA(s, π | σ∗) ≥ (s+ κ̃(π))(π + ω)

1− β
. (S.7.5)

And, by Lemma S.7.1, Party B’s equilibrium payoff at (s, π) must satisfy

VB(s, π | σ∗) ≥ (1− s)(π + 2ω)

1− β
. (S.7.6)
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Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.8.3)
and the RHS of (S.7.6), which yields (1+κ̃(π))(π+ω)+(1−s)ω

1−β
, is weakly less than (S.7.2) —

otherwise, at least one of the parties would have an incentive to deviate. That is, we
require

(1 + κ̃(π))(π + ω) + (1− s)ω

1− β
≤ π(1− β) + 2ω

(1− β)2

⇐⇒ κ̃(π)(π + ω) + (2− s)ω ≤ 2ω

1− β
.

Under Assumption S.7.1, this inequality does not hold for sufficiently large π and any
value of s ∈ [0, 1]. Let π̃2(ω, β) be the first such value for which the inequality does not
hold for all π > π̃2(ω, β) and for any s ∈ [0, 1].

By combining the bounds from Case 1 and Case 2, i.e., π̃(ω, β) > max{π̃1(ω, β), π̃2(ω, β)},
we obtain the desired result.

Lemma S.7.3 Suppose Assumption S.7.1 holds. There exists π̄(ω, β) such that, for any
(st−1, πt−1) = (s, π) with history ht−1 such that π is sufficiently large: π > π̄(ω, β). There is
no equilibrium σ∗ such that:

(i) for some s ∈ [κ̃(π), 1], π and history ht−1, a∗A(s, π, ht−1) = 1

(ii) for some s ∈ [0, 1− κ̃(π)], π and history ht−1, a∗B(s, π, ht−1) = 1.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. By
Lemma S.7.2 and if π > π̃(ω, β), it cannot be that a∗A(s, π, h) = a∗B(s, π, h) = 1. Therefore,
at most one of the parties chooses action atj = 1 and, hence, πt ≤ πt−1 + ω for all t.
Combining this with the fact that the parties’ payoffs sum to πt in every period, we
know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + (j + 1)ω) =
π(1− β) + ω

(1− β)2
.

(S.7.7)

Without loss of generality assume that a∗A(s, π, h) = 0 and a∗B(s, π, h) = 1. We will prove
the statement in Part (ii) and, hence, assume s ∈ [0, 1− κ̃(π)] — the proof of Part (i) is
similar. Party A’s equilibrium payoff can be bounded from below as follows:

VA(s, π | σ∗) = (s+ κ̃(π))(π + ω) + βVA(s+ κ̃(π), π + ω | σ∗) ≥ (s+ κ̃(π))(π + ω)

1− β
,

(S.7.8)

where the inequality follows from Lemma S.7.1.
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Now consider Party B. Party B’s payoff from deviating is

(1− s)π + βV ∗
B(s, π | σ∗) ≥ (1− s)π

1− β
,

where the inequality follows from Lemma S.7.1. To be an equilibrium, a necessary
condition is

VB(s, π | σ∗) ≥ (1− s)π

1− β
. (S.7.9)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.7.8)
and (S.7.9), which yields (s+κ̃(π))(π+ω)+(1−s)π

1−β
, is weakly less than (S.7.7) — otherwise,

party B would have an incentive to deviate at time t. That is, we require

(s+ κ̃(π))(π + ω) + (1− s)π

1− β
≤ π(1− β) + ω

(1− β)2

⇐⇒ (1 + κ̃(π))π + ω(s+ κ̃(π)) ≤ π +
ω

(1− β)

⇐⇒ κ̃(π)π + ω(s+ κ̃(π)) ≤ ω

(1− β)
.

Under Assumption S.7.1 and for any s ∈ [0, 1], this inequality does not hold for suffi-
ciently large π. Let π̃′(ω, β) be the first such value for which the inequality does not
hold for all π > π̃′(ω, β) and any s ∈ [0, 1]. Combining this bound on π with that given
in Lemma S.7.2 completes the proof.

Corollary S.7.1 Suppose Assumption S.7.1 holds. There exists π̄(ω, β) as defined in Lemma S.7.3
such that if (st−1, πt−1) = (s, π) with π > π̄(ω, β), then in every equilibrium

(i) If s ∈ [κ̃(π), 1− κ̃(π)], then st′ = s and πt′ = π for all t′ ≥ t;

(ii) If s /∈ [κ̃(π), 1− κ̃(π)], then st′ = s and πt′ ∈ {πt′−1, πt′−1 + ω} for all t′ ≥ t.

S.8 Depreciation (or destruction) of the pie

In this appendix, we consider an extension of the benchmark model whereby the size
of pie is subject to depreciation (or destruction) if the agents do not expand it. Formally,
the law of motion of the pie is such that if both agents choose to expand their share, then
πt = (1− δ)πt−1 and st = st−1, where δ ∈ (0, 1). Our key result that growth eventually
halts will be shown to hold under Assumption S.8.1.

Assumption S.8.1 The rate of depreciation (or destruction) is small: δ ∈ [0, κ(1−β)
β+(1−β)κ

).

We now proceed with the proof.
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Lemma S.8.1 In every equilibrium σ∗, if the state is (st−1, πt−1) = (s, π), the players’ contin-
uation payoffs are such that: for any history ht−1,

VA(s, π | σ∗, ht−1) ≥
(1− δ)sπ

1− β(1− δ)
and VB(s, π | σ∗, ht−1) ≥

(1− δ)(1− s)π

1− β(1− δ)
. (S.8.1)

Proof. The proof argument is similar to that of Lemma 1.

Lemma S.8.2 Suppose Assumption S.8.1 holds. Let σ∗ be an equilibrium and let (st−1, πt−1) =

(s, π) with some history ht−1. There exists a threshold π̃(κ, ω, β, δ) such that: if π sufficiently
large, π > π̃(κ, ω, β, δ), then it cannot be that a∗A(s, π, ht−1) = a∗B(s, π, ht−1) = 1.

Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. Using
the fact that the parties’ payoffs sum to πt in every period t (and πt′ ≤ πt′−1 + 2ω for all
t′), we know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + 2(j + 1)ω) =
π(1− β) + 2ω

(1− β)2
.

(S.8.2)

We consider 2 cases.

Case 1: Suppose s ∈ {κ, . . . , 1− κ}. Party A’s payoff from deviating is

(s+ κ)(π + ω) + βVA(s+ κ, π + ω | σ∗) ≥ (s+ κ)(π + ω)

1− β(1− δ)
,

where the inequality follows from Lemma S.8.1. Hence, for σ∗ to be an equilibrium, a
necessary condition is

VA(s, π | σ∗) ≥ (s+ κ)(π + ω)

1− β(1− δ)
. (S.8.3)

Similarly, Party B’s payoff from deviating is

(1− s+ κ)(π + ω) + βVB(s− κ, π + ω | σ∗) ≥ (1− s+ κ)(π + ω)

1− β(1− δ)
,

and for σ∗ to be an equilibrium, a necessary condition is

VB(s, π | σ∗) ≥ (1− s+ κ)(π + ω)

1− β(1− δ)
. (S.8.4)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.8.3)
and (S.8.4), which yields (π+ω)(1+2κ)

1−β(1−δ)
, is weakly less than (S.7.2) — otherwise, at least one

68



of the parties would have an incentive to deviate. That is, we require

(π + ω)(1 + 2κ)

1− β(1− δ)
≤ π(1− β) + 2ω

(1− β)2

⇐⇒ π
( 2κ

1− β(1− δ)
+

1

1− β(1− δ)
− 1

1− β

)
+

ω(1 + 2κ)

1− β(1− δ)
≤ 2ω

(1− β)2

⇐⇒ π
( 2κ

1− β(1− δ)
− βδ

(1− β(1− δ))(1− β)

)
+

ω(1 + 2κ)

1− β(1− δ)
≤ 2ω

(1− β)2
.

Under Assumption S.8.1, the coefficient of π is strictly positive. Therefore, for suffi-
ciently large π, the inequality does not hold. Let π̃1(κ, ω, β, δ) be the first such value for
which the inequality does not hold for all π > π̃1(κ, ω, β, δ).

Case 2: Suppose s ∈ {0, 1}. We focus on s = 0 (argument for s = 1 is similar). By the
same argument as in Case 1, we have that Inequality (S.8.3) must hold with s = 0 and,
by Lemma S.8.1, Party B’s equilibrium payoff at (0, π) must satisfy

VB(s, π | σ∗) ≥ (π + 2ω)

1− β(1− δ)
. (S.8.5)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.8.3) at
s = 0 and (S.8.5), which yields κ(π+ω)+(π+2ω)

1−β(1−δ)
, is weakly less than (S.8.2) — otherwise, at

least one of the parties would have an incentive to deviate. That is, we require

κ(π + ω) + (π + 2ω)

1− β(1− δ)
≤ π(1− β) + 2ω

(1− β)2

⇐⇒ π
( 1 + κ

1− β(1− δ)
− 1

1− β

)
+

2ω + ωκ

1− β(1− δ)
≤ 2ω

(1− β)2

⇐⇒ π
( κ(1− β)− δβ

(1− β(1− δ))(1− β)

)
+

2ω + ωκ

1− β(1− δ)
≤ 2ω

(1− β)2
.

Under Assumption S.8.1, the coefficient of π is strictly positive. Therefore, for suffi-
ciently large π, the inequality does not hold. Let π̃2(κ, ω, β, δ) be the first such value for
which the inequality does not hold for all π > π̃2(κ, ω, β, δ).

By combining the bounds from Case 1 and Case 2, i.e., π̃(κ, ω, β, δ) > max{π̃1(κ, ω, β, δ), π̃2(κ, ω, β, δ)},
we obtain the desired result.

Lemma S.8.3 Suppose Assumption S.8.1 holds. There exists π̄(κ, ω, β, δ) such that, for any
(st−1, πt−1) = (s, π) with history ht−1 such that π is sufficiently large: π > π̄(κ, ω, β, δ). There
is no equilibrium σ∗ such that:

(i) for some s ∈ {κ, . . . , 1}, π and history ht−1, a∗A(s, π, ht−1) = 1

(ii) for some s ∈ {0, . . . , 1− κ}, π and history ht−1, a∗B(s, π, ht−1) = 1.
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Proof. For sake of a contradiction, suppose that such an equilibrium σ∗ exists. By
Lemma S.8.2 and if π > π̃(κ, ω, β, δ), it cannot be that a∗A(s, π, h) = a∗B(s, π, h) = 1.
Therefore, at most one of the parties chooses action atj = 1 and, hence, πt ≤ πt−1 + ω for
all t. Combining this with the fact that the parties’ payoffs sum to πt in every period,
we know that the sum of the parties’ equilibrium payoffs is:

VA(s, π | σ∗) + VB(s, π | σ∗) =
∞∑
j=0

βjπt+j ≤
∞∑
j=0

βj(π + (j + 1)ω) =
π(1− β) + ω

(1− β)2
.

(S.8.6)

Without loss of generality assume that a∗A(s, π, h) = 0 and a∗B(s, π, h) = 1. We will prove
the statement in Part (ii) and, hence, assume s ∈ {0, . . . , 1− κ} — the proof of Part (i) is
similar. Party A’s equilibrium payoff can be bounded from below as follows:

VA(s, π | σ∗) = (s+ κ)(π + ω) + βVA(s+ κ, π + ω | σ∗) ≥ (s+ κ)(π + ω)

1− β(1− δ)
, (S.8.7)

where the inequality follows from Lemma S.8.1.
Now consider Party B. Party B’s payoff from deviating is

(1− δ)(1− s)π + βV ∗
B(s, π | σ∗) ≥ (1− δ)(1− s)π

1− β(1− δ)
,

where the inequality follows from Lemma S.8.1. To be an equilibrium, a necessary
condition is

VB(s, π | σ∗) ≥ (1− δ)(1− s)π

1− β(1− δ)
. (S.8.8)

Therefore, to sustain the equilibrium σ∗, it must be that the sum of the RHS of (S.8.7)
and (S.8.8), which yields (s+κ)(π+ω)+(1−δ)(1−s)π

1−β(1−δ)
, is weakly less than (S.8.6) — otherwise,

party B would have an incentive to deviate at time t. That is, we require

(s+ κ)(π + ω) + (1− δ)(1− s)π

1− β(1− δ)
≤ π(1− β) + ω

(1− β)2

⇐⇒ π
(1 + κ− δ(1− s)

1− β(1− δ)
− 1

1− β

)
+

(s+ κ)ω

1− β(1− δ)
≤ ω

(1− β)2
. (S.8.9)
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The coefficient on π is positive if and only if

(1− β)(1 + κ− δ(1− s))− (1− β(1− δ)) > 0

⇐⇒ (1− β)(1 + κ)− (1− β) > δ
(
β + (1− β)(1− s)

)
⇐⇒ (1− β)κ

β + (1− β)(1− s)
> δ.

But because s ≤ 1− κ, a sufficient condition for the coefficient to be positive is

δ <
(1− β)κ

β + (1− β)κ
,

which holds by Assumption S.8.1. Therefore, Inequality (S.8.9) does not hold for
sufficiently large π. Let π̃′(κ, ω, β, δ) be the first such value for which the inequality
does not hold for all π > π̃′(κ, ω, β, δ) and any s ∈ [0, 1]. Combining this bound on π

with that given in Lemma S.8.2 completes the proof.

Corollary S.8.1 There exists π̄(κ, ω, β, δ) as defined in Lemma S.8.3 such that if (st−1, πt−1) =

(s, π) with π > π̄(κ, ω, β, δ), then in every equilibrium

(i) If s /∈ {0, 1}, then st′ = s and πt′ = π for all t′ ≥ t;

(ii) If s ∈ {0, 1}, then st′ = s and πt′ ∈ {πt′−1, πt′−1 + ω} for all t′ ≥ t.

S.9 Continuous action extension

Example 1 Let (s0, π0) = (s, π) such that s ∈ [κ, 1− κ] and π is arbitrarily large. Suppose,
for sake of a contradiction, that there exists an equilibrium σ∗ such that the agents continually
and symmetrically cooperate at a decreasing level. That is, for j ∈ {A,B}, atA = atB > 0 and
atj ≥ at+1

j for all t ≥ 1.
Via a similar argument applied in the benchmark model, we now show that this is not an

equilibrium. Without loss of generality, we’ll focus on agent A’s incentive to deviate. Defining
āπ = a1A = a1B, agent A’s equilibrium payoff is bounded above by

∞∑
t=1

βt−1(π + ω

∞∑
t=1

2atj)s ≤
∞∑
t=1

βt−1(π + 2tāπω)s =
πs

1− β
+

2ωāπs

(1− β)2
, (S.9.1)

where the inequality follows because atj ≥ at+1
j for all t ≥ 1. Now suppose agent A deviates

to a1A = 0. Applying a similar argument per Lemma 1, a lower bound on A’s payoff from this
defection is

(π + ωāπ)(s+ κāπ)

1− β
=

πs

1− β
+ āπ

πκ+ ω(s+ κāπ)

1− β
. (S.9.2)
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This deviation is strictly profitable if (S.9.2) exceeds the right-hand side of (S.9.1): after rear-
ranging, this gives

āπ
πκ+ ω(s+ κāπ)

1− β
>

2ωāπs

(1− β)2
⇐⇒ πκ+ ω(s+ κāπ)

1− β
>

2ωs

(1− β)2
,

which holds for sufficiently large π (and any āπ > 0). Thus, we have a contradiction and no
such equilibrium exists.
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