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What We Did

• Dekel, Lipman, and Rustichini’s (2001) (DLR) preferences:

- for a set X , which is referred to as a menu,

U (X ) = ∑
s∈S

π (s)max
x∈X

u (x , s) ,

where

- S : a subjective state space,

- π: a probability measure over S ,

- u : A× S → R: a state dependent utility function.

• We aggregate individual DLR preferences into social DLR preferences.

- No paper has tackled this aggregation problem yet.
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Brief Explanation of DLR Preferences

• A DM buys food for tomorrow’s lunch.

- Relevant states in their mind: {sunny, rainy}.
- Tastes over food:

- u (ice cream, sunny) > u (apple pie, sunny),

- u (apple pie, rainy) > u (ice cream, rainy).

• The DM wants to buy both today:

U ({ice cream, apple pie})

=π (sunny) u (ice cream, sunny) + π (rainy) u (apple pie, rainy)

>π (sunny) u (ice cream, sunny) + π (rainy) u (ice cream, rainy)

=U ({ice cream}) .
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What We Did (Reprinted)

• Dekel, Lipman, and Rustichini’s (2001) (DLR) preferences:

- for a set X , which is referred to as a menu,

U (X ) = ∑
s∈S

π (s)max
x∈X

u (x , s) ,

where

- S : a subjective state space,

- π: a probability measure over S ,

- u : A× S → R: a state dependent utility function.

• We aggregate individual DLR preferences into social DLR preferences.

- No paper has tackled this aggregation problem yet.
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Motivating Story

• Consider a meeting in a large company, which is held by

- CEO (= society),

- division heads (= individuals).

- E.g., automobiles, social networking services (SNS), artificial intelligence (AI).

• They decide on the next action,

- e.g., determining which another company to acquire.
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Why Menu Preferences?

Decide actions Implement one of them

A time lag for

coordination, negotiations, procedures

• A large group needs to make decisions well before implementation.

- But, effectiveness of actions is uncertain at the decision stage:

- It depends on the circumstances during their implementation.

⇒ At the decision stage, multiple actions are required as candidates for the best option.

- Multiple actions = a menu.
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Why Subjective States? and Why Aggregation?

• The relevant states differ entirely across the divisions.

- Automobile industry: {gasoline engines, hydrogen engines}.

- AI industry: {Google, Apple}.

⇒ The devision heads hold different preferences over menus of actions.

• How should the CEO aggregate these preferences?

- Especially, how should the CEO construct a comprehensive state space?

{gasoline engines, hydrogen engines}
{Google, Apple}

=⇒ ?
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Model

• A: a finite set.

- We refer to a ∈ A as an outcome.

• ∆ (A): the set of probability distributions over A.

- We refer to l = (l (a))a∈A ∈ ∆ (A) as a lottery (= action).

• K (∆ (A)): the set of nonempty and compact subsets in ∆ (A), which is endowed with

the Hausdorff topology.

- We refer to X ∈ K (∆ (A)) as a menu.
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Individual and Social Preferences

• N = {1, . . . , n}: a set of individuals.

• Index 0 represents society.

• ≿i : a complete and transitive binary relation on the set of menus, K (∆ (A)).

- X ≿i Y : Individual i evaluates that X is at least as good as Y .
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Aggregation Problem

• (≿i )i∈N and ≿0 admit the DLR representation:

Ui (X ) = ∑
si∈Si

πi (si )max
l∈X

ui (l , si ) .

- Si : a finite set.

- πi : a full support probability measure over Si .

- ui : ∆ (A)× Si → R: a state dependent utility function.

- Each ui (· , si ) is mixture-linear.

Question:

• How should society aggregate (Si ,πi , ui )i∈N into (S0,π0, u0)?
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Representation: Rough Preview

• The following 4 axioms characterize this representation:

1. two restricted Pareto conditions,

2. a violation of Pareto indifference,

3. a rationality axiom.
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Outline of the Remaining Part

1. Preliminary clarifications on DLR preferences

2. A benchmark Pareto indifference

2.1 An impossibility theorem

2.2 Discussion

3. Our axioms

3.1 Two axioms from the above discussion

3.2 Two further axioms

4. Representation theorem

5. Proof
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Features of DLR Preferences

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

• For all X ⊃ Y , X ≿i Y must hold.

• X ∪ {l} ≻i X : “Individual i has a possibility to need option l .”

⇐⇒ There exists si ∈ Si such that ui (l , si ) > ui (l
′, si ) for all l ′ ∈ X .

- We do not know whether ui
(
l , s ′i

)
⋛ ui

(
l ′, s ′i

)
under other s ′i ∈ Si .

• X ∪ {l} ∼i X : “Individual i will never need option l .”

⇐⇒ For each si ∈ Si , there exists lsi ∈ X such that ui (lsi , si ) ≥ ui (l , si ).
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Benchmark Pareto Indifference

Expanding Pareto Indifference

For all menus X ∈ K (∆ (A)) and all lotteries l ∈ ∆ (A),

X ∪ {l} ∼i X for all i ∈ N =⇒ X ∪ {l} ∼0 X .

Interpretation:

• If no one needs option l , then neither does society.

14 / 45



Benchmark Theorem: Ex-post Dictatorship

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Theorem

The DLR preference profile, (≿i )i∈N and ≿0, satisfies Expanding Pareto Indifference if and

only if for each s0 ∈ S0, there exist i ∈ N and si ∈ Si such that u0 (· , s0) = ui (· , si ).

Interpretation:

• It says S0 ⊂ S1 ∪ · · · ∪ Sn.

→ Society plans to focus exclusively on one aspect.
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Discussions about Expanding Pareto Indifference

Example:

• N = {1, 2}, S1 = {s1}, and S2 = {s2}.

⇒ Ui (X ) = maxl∈X ui (l , si ).

• u1 (l , s1) > u1 (l ′′, s1) >> u1 (l ′, s1) and u2 (l ′, s2) > u2 (l ′′, s2) >> u2 (l , s2).

⇓
• {l , l ′, l ′′} ∼i {l , l ′} for i = 1, 2.

• However, {l , l ′, l ′′} ≻0 {l , l ′} seems desirable.

∵ Option l ′′ is highly regarded by everyone.

Lesson:

• If an ex-post disagreement will occur, society may need a compromise option.
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Axiom 1: Weaker Pareto Indifference

Idea: If an option is surely Pareto dominated ex-post, society does not need it.

Pareto Indifference for Dominated Options

For all menus X ∈ K (∆ (A)) and all lotteries l̂ ∈ ∆ (A), if

(1) X ∪
{
l̂
}
∼i X for some i ∈ N and

(2)
{
l̂ , l

}
∼j {l} for all l ∈ X and all other individuals j ∈ N\ {i},

then X ∪
{
l̂
}
∼0 X .

• Under DLR preferences: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ),

- (1) ⇐⇒ In every si ∈ Si , l̂ is not the best among X ∪
{
l̂
}
.

- (2) ⇐⇒ In every sj ∈ Sj , l̂ is the worst among X ∪
{
l̂
}
.
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Axiom 2: Violation of Pareto Indifference

Idea: {l , l ′, l ′′} ≻0 {l , l ′} if an ex-post disagreement between l and l ′ is sufficiently large.

Expansion toward Moderate Options

For all lotteries l̂ , l1, . . . , ln ∈ ∆ (A), if for each individual i ∈ N,

• {
l̂ , lj

}
∼i

{
l̂
}
∼i {lj} for all j ̸= i and

• {
l̂ , li

}
≻i {li},

there exists l∗ := ∑n
i=1 λi li + (1− ∑n

i=1 λi ) l̂ ((λi )i ∈ (0, 1)n with ∑n
i=1 λi < 1) such that

{l∗, l1, . . . , ln} ≻0 {l1, . . . , ln} .
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n = 2 Case

Expansion toward Moderate Options (when n = 2)

For all lotteries l̂ , l1, l2 ∈ ∆ (A), if

• {
l̂ , l2

}
∼1

{
l̂
}
∼1 {l2} and

{
l̂ , l1

}
≻1 {l1},

• {
l̂ , l1

}
∼2

{
l̂
}
∼2 {l1} and

{
l̂ , l2

}
≻2 {l2},

there exists l∗ := λ1l1 + λ2l2 + (1− λ1 − λ2) l̂ (λ1,λ2 ∈ (0, 1) with λ1 + λ2 < 1) such that

{l∗, l1, l2} ≻0 {l1, l2} .

Interpretation: when S1 = {s1}, S2 = {s2}, and λ1 and λ2 are sufficiently small,
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Axiom 3: Commitment Pareto

Commitment Pareto

For all lotteries l , l ′ ∈ ∆ (A), if {l} ≿i {l ′} for all i ∈ N, then {l} ≿0 {l ′}.

20 / 45



Preliminary for Axiom 4

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Normalization Assumption

For (≿i )i∈N , take (Si ,πi , ui )i∈N so that there exists b,w ∈ ∆ (A) such that ui (b, si ) = 1 and

ui (w , si ) = 0 for all i ∈ N and all si ∈ Si .

• In the paper, we ensure the existence of b and w that satisfy ui (b, si ) > ui (w , si ) for all

i ∈ N and all si ∈ Si .

• Given this, the assumption imposes that the evaluation of b and w are the same across all

individuals’ possible tastes, respectively.
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Axiom 4: Rationality Requirement

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Exclusion of Redundant Flexibility

For all lotteries l , l ′ ∈ ∆ (A), if for each i ∈ N

• either {b, l} ∼i {b} ∼i {l} or {w , l} ∼i {w} ∼i {l}, and
• either {b, l ′} ∼i {b} ∼i {l ′} or {w , l ′} ∼i {w} ∼i {l ′},

then either {l , l ′} ∼0 {l} or {l , l ′} ∼0 {l ′} holds.

• {b, l} ∼i {b} ∼i {l} =⇒ ui (l , si ) = ui (b, si ) = 1 for all si ∈ Si .

- i.e., everyone foresees with certainty the evaluations of l and l ′.

⇒ No multiple possibilities exist for future tastes.

⇒ One lottery is sufficient.
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Representation Theorem

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Theorem

Fix the representation (Si ,πi , ui )i∈N that satisfies the normalization assumption, arbitrarily.

Then, the DLR preference profile, (≿i )i∈N and ≿0, satisfies the four axioms if and only if

1. S0 = S1 × · · · × Sn;

2. there exists (αi )i∈N ∈ (0, 1)n such that for each s0 = (si )i ∈ S0,

u0 (· , (si )i ) = ∑
i∈N

αiui (· , si ) ;

3. for each i ∈ N and each s∗i ∈ Si ,

∑
s0=(sj )j∈S0 :si=s∗i

π0 (s0) = πi (s
∗
i ) .
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Interpretation

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Theorem

The DLR preference profile, (≿i )i∈N and ≿0, satisfies the four axioms if and only if

1. S0 = S1 × · · · × Sn;
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Interpretation

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Theorem

The DLR preference profile, (≿i )i∈N and ≿0, satisfies the four axioms if and only if

2. u0 (· , (si )i ) = ∑i∈N αiui (· , si ) for each s0 = (si )i ∈ S0;
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Interpretation

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Theorem

The DLR preference profile, (≿i )i∈N and ≿0, satisfies the four axioms if and only if

3. for each i ∈ N and each s∗i ∈ Si , ∑s0=(sj )j∈S0:si=s∗i
π0 (s0) = πi (s∗i ).
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Proof Intuition (1/4)

Pareto Indifference for Dominated Options

(1) X ∪
{
l̂
}
∼i X for some i ∈ N and

(2)
{
l̂ , l

}
∼j {l} for all l ∈ X and all other individuals j ∈ N\ {i},

⇒ X ∪
{
l̂
}
∼0 X .

≒ a Pareto principle for tastes over lotteries

⇒ For each s0 ∈ S0, there exists some (si )i∈N and (αi ,s0)i∈N ∈ [0, 1]n such that

u0 (· , s0) = ∑
i∈N

αi ,s0ui (· , si ) .
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Proof Intuition (2/4)

Expansion toward Moderate Options (when n = 2)

1.
{
l̂ , l2

}
∼1

{
l̂
}
∼1 {l2} and

{
l̂ , l1

}
≻1 {l1},

2.
{
l̂ , l1

}
∼2

{
l̂
}
∼2 {l1} and

{
l̂ , l2

}
≻2 {l2},

⇒ ∃l∗ := λ1l1 + λ2l2 + (1− λ1 − λ2) l̂ such that {l∗, l1, l2} ≻0 {l1, l2}.

• “Any (ui (· , si ))i∈N has a disagreement =⇒ society needs a compromise lottery.”

⇒ Society considers all of the combinations S1 × · · · × Sn.

⇒ S0 ⊃ S1 × · · · × Sn.
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Proof Intuition (3/4)

Exclusion of Redundant Flexibility

• either {b, l} ∼i {b} ∼i {l} or {w , l} ∼i {w} ∼i {l}, and
• either {b, l ′} ∼i {b} ∼i {l ′} or {w , l ′} ∼i {w} ∼i {l ′}

for each i ∈ N, then either {l , l ′} ∼0 {l} or {l , l ′} ∼0 {l ′} holds.

• This axiom is violated if

- 1 = u1 (l , s1) > u1 (l
′, s1) = 0 for all s1 ∈ S1;

- 0 = u2 (l , s2) < u2 (l
′, s2) = 1 for all s2 ∈ S2;

- society has s0, s
′
0 ∈ S0 such that u0 (· , s0) = u1 (· , s1) and u0 (· , s ′0) = u2 (· , s2).

• As a result, the axiom implies S0 ⊂ S1 × · · · × Sn.
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Proof Intuition (4/4)

Commitment Pareto: {l} ≿i {l ′} for all i ∈ N =⇒ {l} ≿0 {l ′}.

⇒ In the evaluation, society has to maintain the ratio πi (si ) /πi (s ′i ).

⇒ ∑s0=(sj )j∈S0 :si=s∗i
π0 (s0) = πi (s∗i ) for each s∗i ∈ Si .
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Proof of the Core Part
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Two Core Axioms

• We only see the implications of the first two axioms:

Pareto Indifference for Dominated Options

(1) X ∪
{
l̂
}
∼i X for some i ∈ N and

(2)
{
l̂ , l

}
∼j {l} for all l ∈ X and all other individuals j ∈ N\ {i},

⇒ X ∪
{
l̂
}
∼0 X .

Expansion toward Moderate Options (when n = 2)

1.
{
l̂ , l2

}
∼1

{
l̂
}
∼1 {l2} and

{
l̂ , l1

}
≻1 {l1},

2.
{
l̂ , l1

}
∼2

{
l̂
}
∼2 {l1} and

{
l̂ , l2

}
≻2 {l2},

⇒ ∃l∗ := λ1l1 + λ2l2 + (1− λ1 − λ2) l̂ such that {l∗, l1, l2} ≻0 {l1, l2}.
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Technical Assumption for the Proof

Richness Condition

For each i ∈ N and each si ∈ Si , there exist lotteries lsi , l
′
si
∈ ∆ (A) such that

• ui (lsi , si ) > ui
(
l ′si , si

)
,

• ui (lsi , ti ) = ui
(
l ′si , ti

)
for all ti ̸= si , and

• uj (lsi , sj ) = uj
(
l ′si , sj

)
for all j ̸= i and all sj ∈ Sj .

• In the paper, we adopt a weaker richness condition.

- But here, we impose the above condition to simplify the proof.
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Lemma (1/2): Ex-Post Utilitarianism

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Lemma

If the DLR preference profile, (≿i )i∈I and ≿0, satisfies Pareto Indifference for Dominated

Options, then for each s0 ∈ S0, there exist (si )i ∈ S1 × · · · × Sn and (αi )i ∈ [0, 1]n with

∑i∈N αi = 1 such that

u0 (· , s0) = ∑
i∈N

αiui (· , si ) .

Remarks:

• Under some s0 ∈ S0, society may assign zero weight to some individuals.

• For some profile (si )i ∈ S1 × · · · × Sn, there may be no corresponding s0.
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Proof

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

• When X = {l} in Pareto Indifference for Dominated Options,

-
{
l , l̂

}
∼i {l} for all i ∈ N =⇒

{
l , l̂

}
∼0 {l}.

⇔ ui (l , si ) ≥ ui
(
l̂ , si

)
for all si ∈ Si and all i ∈ N =⇒ u0 (l , s0) ≥ u0 (l

′, s0) for all s0 ∈ S0.

⇒ For each s0 ∈ S0, by applying Harsanyi’s Theorem,

u0 (· , s0) = ∑
i∈N

∑
si∈Si

αsiui (· , si ) .
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Proof (Continued)

• Suppose that for some s0 ∈ S0,

u0 (· , s0) = αsi︸︷︷︸
>0

ui (· , si ) + αs ′i︸︷︷︸
>0

ui
(
· , s ′i

)
+ ∑

j ̸=i
∑
sj∈Sj

αsjuj (· , sj ) .

• Take l , l ′, l ′′ ∈ ∆ (A) so that

- ui (l , si ) = ui (l
′′, si ) > ui (l

′, si ),

- ui (l
′, s ′i ) = ui (l

′′, s ′i ) > ui (l , s
′
i ),

- uj (l
′′, sj ) = uj (l , sj ) = uj (l

′, sj ) for all sj ∈
⋃

j∈N Sj\ {si , s ′i }.

1. Pareto Indifference for Dominated Options =⇒ {l , l ′, l ′′} ∼0 {l , l ′}.

2. But, u0 (l ′′, s0) > u0 (l , s0) and u0 (l ′′, s0). =⇒ {l , l ′, l ′′} ≻0 {l , l ′}: a contradiction.
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Lemma (2/2): Responsiveness to Every Profile of Individual States

DLR Representation: Ui (X ) = ∑si∈Si πi (si )maxl∈X ui (l , si ).

Lemma

Suppose that for each s0 ∈ S0, there exist (si )i ∈ S1 × · · · × Sn and (αi )i ∈ [0, 1]n with

∑i∈N αi = 1 such that

u0 (· , s0) = ∑
i∈N

αiui (· , si ) . (1)

Then, if the DLR preference profile, (≿i )i∈I and ≿0, satisfies Expansion toward Moderate

Options, for each profile (si )i ∈ S1 × · · · × Sn, there exists s0 ∈ S0 such that equation (1)

holds where αi > 0 for all i ∈ N.

Remarks:

• Still, for some (si )i ∈ S1 × · · · × Sn, there may exist multiple corresponding social states.
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Proof

• Take any s1 ∈ S1, s2 ∈ S2 and l̂ , l1, l2 ∈ ∆ (A) so that

- u1
(
l̂ , s1

)
= u1 (l2, s1) > u1 (l1, s1),

- u2
(
l̂ , s2

)
= u2 (l1, s2) > u2 (l2, s2),

- ui
(
l̂ , si

)
= ui (l1, si ) = ui (li , si ) for all si ∈ (S1 ∪ S2) \ {s1, s2}.

1. Expansion toward Moderate Options =⇒ {l∗, l1, l2} ≻0 {l1, l2}.

2. ̸∃s0 ∈ S0 such that u0 (· , s0) = α1u1 (· , s1) + α2u2 (· , s2).

⇒ ̸∃s0 ∈ S0 such that u0 (l
∗, s0) > u0 (l1, s0) and u0 (l2, s0).

⇒ {l∗, l1, l2} ∼0 {l1, l2}: a contradiction.
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Connection to the Literature
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Previous Study: Preferences over Lotteries

• Domain: lotteries l ∈ ∆ (A).

• Preferences: ≿i for each individual i ∈ N and social ≿0 is represented by

Ui (l) = ∑
a∈A

l (a) ui (a) .

Theorem (Harsanyi (1955))

(≿i )i∈ and ≿0 satisfy the Pareto condition if and only if u0 = ∑i∈N αiui .
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Previous Study: Preferences over Acts

• Domain: acts f : S → A.

• Preferences: ≿i for each individual i ∈ N and social ≿0 is represented by

Ui (f ) = ∑
s∈S

πi (s) ui (f (s)) .

Theorem (Mongin (1995))

(≿i )i∈ and ≿0 satisfy the Pareto condition if and only if u0 = ui and π0 = πi for some i.

Theorem (Gilboa et al. (2004))

(≿i )i∈ and ≿0 satisfy a certain restricted Pareto condition if and only if u0 = ∑i∈N αiui and

π0 = ∑i∈N βiπi .
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Features of This Paper

• Previous study:

- The probability measure πi over S is different across individuals.

- But, the state space S is common.

• This paper:

- Relevant states are different among individuals.

- We consider menu preferences.

- Only a few studies exist: Ahn and Chambers (2010), Qu (2016), Hayashi (2021), Hayashi et al.

(2024).
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Summary

Question:

• How should society aggregate preferences over menus of options?

- Especially, how should society construct a comprehensive state space?

Answer:
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