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Abstract

We assume that financial traders remember certain days—for example, those

when the trader was actively trading—and that these days need not coincide across

traders. This disagreement leads to trade because those who recall bull markets

buy and those who recall bear markets sell. In our equilibrium, which is plagued by

purely non-fundamental volatility, a volatile price history generates belief disper-

sion and subsequent trade ensures continued price volatility. We then characterize

the steady-state cross-sectional distribution when traders remember active trading

days. In the cross-section, young (old) traders, who have not (have) experienced

many trading days, have dispersed (concentrated) beliefs. Equilibrium prices dis-

play excess kurtosis due to the small chance that everyone trading on a particular

day is young.
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1 Introduction

Why are asset prices so volatile? Shiller (2015) has famously shown that the majority of

this volatility cannot be attributed to news alone. Here we introduce a theory of asset

price volatility that relies critically on the past personal experiences of traders. Many

empirical studies support this theory: Malmendier and Nagel (2011) show that individ-

uals who experienced low stock market returns are more pessimistic about future stock

returns. Kuchler and Zafar (2019) show that individuals use personal experiences to form

expectations about aggregate economic outcomes like house prices and unemployment.

Kaustia and Knupfer (2008) show that personally experienced returns from past IPOs,

not passively observed returns, affect future IPO subscriptions. Malmendier and Nagel

(2015) show that individuals overweight inflation experienced during their lifetimes when

forming expectations about future inflation.

An important theoretical benchmark model has been developed by Nagel and Xu

(2022), in which a representative agent has a fading memory. That is, a data point’s

influence on beliefs gradually fades over time. While their setup is appropriate for mod-

eling aggregate shocks like a recession, here we focus on precisely the residual effects.

What we have in mind are memorable events which are idiosyncratic to the trader, like

active trading days. These are days (which may differ across traders) when the trader

holds a nonzero position in a particular asset and personally experiences the gain or

loss. Andersen et al. (2019) show that experiences on such days, as opposed to second-

hand experiences, affect an individual’s risk-taking behavior. Similarly, Strahilevitz et al.

(2011) show that investors are reluctant to repurchase stocks previously sold for a loss.

To summarize, feeling the gain or loss seems to impact individuals more profoundly than

passively observing returns.

Aside from traders failing to recall certain days, we assume that they are Bayesian.1

They gather what they can remember, and use this data to form expectations about

future returns. Idiosyncratic recall generates expectation disagreement amongst traders,

which is captured in the cross-sectional distribution over beliefs. And this disagreement

is the motive for trade: pessimists who recall bear markets sell, and optimists who recall

bull markets buy. We assume that a random subset of traders are active in financial

markets during any given period; this effectively “draws” traders independently from

1Our model also resembles one of under- and overreaction that can be traced back to Grether (1980).
Mullainathan (2002) also makes this connection: imperfect recall explains under- and overreactions with
respect to Bayes’ Rule.
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the cross-section and is, in fact, the only exogenous random variable in the model. This

captures the empirically-relevant constraint that traders are not all simultaneously active

in financial markets.2

The final participant in our economy is a simple linear market maker like the one

from Teeple (2022) and Teeple (2023). This market maker raises (lowers) prices when

there is excess demand (supply), while providing the required liquidity throughout to en-

sure that markets clear.3 The following quote from Bagehot (1971) provides an excellent

summary of our model’s microstructure:

It is well known that market makers of all kinds make surprisingly little use

of fundamental information. Instead they observe the relative pressure of buy

and sell orders and attempt to find a price that equilibrates these pressures.

The resulting market price at any point in time is not merely a consensus of

the transactors in the marketplace, it is also a consensus of their mistakes.

Under the heading of mistakes we may include errors in computation, errors

of judgment, factual oversights and errors in the logic of analysis.

An equilibrium is established in the following sense. We begin with a history of prices

drawn from a discrete time stochastic process, which forms the basis for traders’ beliefs.

Based on what they can recall, traders apply Bayes rule. Based on these posteriors,

a subset of traders trade; and based on trades, the market maker adjusts the price.

Equilibrium prices must have the property that the distribution of current prices matches

that of the history of past prices. Intuitively, it is because prices have always been volatile

that traders have dispersed beliefs; this, in itself, drives future price volatility. Given that

there is no news or other shocks in our model, imperfect memory gives rise to purely non-

fundamental volatility.

We show that the discrete time Brownian motion is the unique equilibrium price

process when traders have mean-variance utility and remember a fixed, homogeneous

number of periods. Importantly, this utility assumption gives our model a linear struc-

ture: demands are linear in past price observations due to the mean-variance assumption,

and the sum of demands determines future prices due to the linear market maker. Then

the equilibrium requirement that past and future prices share a common distribution

becomes equivalent to stability of the equilibrium price distribution.4 Within the stable

2See Graham et al. (2009) and Richards and Willows (2018).
3The classical Walrasian auctioneer appears as a limiting case of our market maker.
4A distribution is stable when the sum of i.i.d. random variables have that same distribution.
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family, the Normal distribution is the only distribution with a finite variance.

Up to this point, we took the days which a particular trader remembered as given.

In our main application, we assume that traders remember the days on which they

were actively trading. This gives rise to learning, and the cross-sectional distribution

over subjective returns becomes more concentrated over time as traders receive more

information. In order to make the model stationary, we assume that traders die at a

constant rate and are consequently replaced with newborns who have yet to trade. The

steady-state cross-section consists of a mixture of the youth (traders who have traded

less, leading to dispersed beliefs) and the elderly (traders who have traded more, leading

to concentrated beliefs). This is consistent with survey evidence from Giglio et al. (2021)

that older individuals have tighter subjective distributions over future stock returns.

Unlike in the baseline setting, where belief dispersion is fixed across the cross-section and

equilibrium prices are Normal, in this extension, there is a mixture of belief dispersion

across demographics which leads to excess kurtosis in equilibrium prices. The intuition

is as follows: extreme prices result from the small chance that all traders trading on a

given day are young. To the knowledge of the authors, this mechanism for generating

heavy-tailed prices—which we term youthful volatility—is novel. We then provide several

testable implications of our model: an older population of traders leads to lower price

volatility, and a more dispersed population of traders (in terms of age) leads to larger

excess kurtosis in prices.

We consider three policies to reduce price variance, and immediately rule one out:

a capital gains tax. While it does dampen capital gains, a gains tax also dampens wealth

volatility, and the net effect goes in the wrong direction: it increases trade volume. We

then compare the distributional consequences of the two remaining effective policies: a

tax on trade volume and tightened borrowing limits. While transaction taxes truncate

trade for the center of the cross-sectional distribution (i.e. older traders), borrowing lim-

its truncate trade for the tails of the distribution (i.e. younger traders).

Related Literature. Recent papers by Malmandier et al. (2020) and Schraeder (2016),

which are the closest studies to ours, augment the fading memory assumption with trader

heterogeneity using an overlapping generations setup. In Schraeder (2016), the young

generation is assumed to be rational while the adult generation is assumed to overweight

the previous period’s observation. In Malmandier et al. (2020), the young generation

reacts more strongly than the old to recent observations, as these make up a larger part
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of their lifetimes. To compare models, we assume idiosyncratic instead of fading memory;

and to compare results, our paper is the only one that connects memory to excess price

kurtosis. Also closely related are papers by Collin-Dufresne et al. (2017) and Ehrling et al.

(2018). In Collin-Dufresne et al. (2017), younger generations update beliefs more so than

older generations with respect to macroeconomic shocks. In Ehrling et al. (2018), the

young generation, who act as trend chasers, disregard the price history and lose money

to the old generation, who act as contrarians.

The difference between the fading memory setup and ours is the over-weighting

of the previous period observation versus an idiosyncratic observation. First, our as-

sumption is well-supported by studies of human memory. According to the textbook

treatment of strength theory from Kahana (2012), each memory has a fixed numerical

value representing the degree to which that memory evokes a sense of familiarity. Kahana

(2012) comments that it is “reasonable to suppose that items vary in their strength, with

some items being stronger than others.” In fact, strength theory models typically assume

that strength values are drawn from a Gaussian distribution. In our model, we simplify

matters by assuming that observations are either remembered or not (we also extend to

high versus low memory strength). Second, our idiosyncratic assumption is reinforced by

recent economic survey evidence. For example, Dominitz and Manski (2011) find that

traders’ return expectations are interpersonally variable but intrapersonally stable. Simi-

larly, Giglio et al. (2021) find that beliefs are mostly characterized by large and persistent

individual heterogeneity.

The remainder of the paper is organized as follows. Section 2 provides a motivating

example demonstrating the Brownian equilibrium. Section 3 models the cross-section

when traders remember active trading days, and Section 4 presents the main theoretical

results in a generalized setting. Section 5 addresses policy implications, and Section 6

concludes.

2 Motivating Example

Traders. Time is discrete, infinite, and indexed by t ∈ Z (not N), and there is a

countable number of traders of a single long-lived financial asset that pays no dividends.

These individuals should be thought of as retail investors who use technical analysis
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before placing market orders.5 Suppose that there is a history of past price realizations

− even at the beginning of the model (t = 0) − and that these past realizations were

drawn from a discrete time Brownian motion with zero drift. That is, (pt+1−s − pt−s)s≥1

were independently drawn from a N(0,Σ2) distribution. In equilibrium, we will require

that this price history be consistent with prices generated within the model (for t ≥ 0).

Traders, indexed by i, maximize mean-variance utility

ui(xt) = (Ei[pt+1|pt]− pt)xt −
ρ

2
Var(pt+1 − pt|pt)x2

t (1)

where ρ denotes the risk aversion parameter and xt denotes the trader’s position.6 De-

mand is chosen to maximize utility,

xi(pt) =
Ei[pt+1|pt]− pt

ρΣ2

What makes each trader unique is that she believes that price increments (pt+1 − pt)

have mean µi, because certain past price realizations are more memorable. In this sim-

ple example, we let each trader remember only one period, and we assume that each

trader has a unique memorable time period. Following Nagel and Xu (2022), we assume

that traders apply geometric weights to observations (pt+1−s − pt−s)s≥1 when applying a

memory-constrained version of Bayes’ Rule:

f(µ|pt − pt−1, , ..., pt−T+1 − pt−T ) ∝
T∏

s=1

f(pt+1−s − pt−s|µ)α
i
s (2)

where T denotes the length of the price history and µ denotes the true price drift. Note

that, when αi
s = 1 for all s, this reduces to Bayesian updating with a flat prior. Instead

of the equal weighting case à la Bayes or αi
s fading over time à la Nagel and Xu (2022),

we assume that traders distinctly remember one period i by setting weights

αi
i = γT, and αi

s =
(1− γ)T

T − 1
for s ̸= i

where 0 < γ ≤ 1 denotes idiosyncratic memory strength. Because there is a one-to-one

mapping between traders and memorable periods in this example, we let the trader’s

index i also denote the period she remembers. Hence αi
i denotes the weight trader i puts

5Empirical evidence suggests that the scarring effects of personal experiences affect not only retail
investors, but also highly specialized individuals. See Malmandier and Wachter (2022).

6Upcoming assumptions about the timing of trades justify the trader’s myopic objective.
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on her memorable period. Now consider the total weight put on non-memorable periods,∑
s ̸=i α

i
s = (1 − γ)T . Adding this to the memorable weight, αi

i, we see that the weights

add up to the number of observations, T , just like in the Bayesian case. However, here

we distribute γ proportion of that weight to the memorable period, and the rest on all

other periods. Because this remaining weight is distributed evenly across periods, in some

sense, traders are Bayesian over non-memorable periods. When a memory-constrained

Bayesian after T periods forms a posterior mean, it becomes a weighted average between

what she remembers and what she does not7

µi = γ(pi − pi−1) +
1− γ

T − 1

∑
s ̸=i

(ps − ps−1)

As we send the number of observations in the history, T , to infinity, by the strong law of

large numbers we have that

µi → γ(pi − pi−1) a.s.

so that non-memorable events effectively wash out.8 If γ = 0 and there are no memorable

periods, the expression above shows that traders eventually learn that the price drift is

truly zero. Since each trader recalls a different time period by assumption, the cross-

sectional distribution of beliefs µi approaches the N(0, γ2Σ2) distribution as the number

of traders, which we denote M , tends to infinity. More formally, by the strong law of

large numbers, the empirical distribution

FM(t) =
1

M

M∑
i=1

1µi≤t

approaches the Normal distribution function for each t almost surely as M → ∞.

Market Maker. If a randomly selected subset of traders of size n trades each period,

then a linear market maker

pt+1 = pt + c
n∑

i=1

xi(pt) (3)

7This formula relies on the Normality of price observations.
8Unlike in Nagel and Xu (2022), here there is no residual subjective uncertainty. That is, the variance

of the posterior tends to zero. Hence, volatility in this model comes from objective uncertainty over
prices, not subjective uncertainty over µ.
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ensures that prices follow a discrete time Brownian motion.9 Normality follows from the

fact that the sum of i.i.d. Normal random variables in (3) is also Normal. Furthermore,

Σ2 = cγ
√
n/ρ is the unique value that makes the variance of historical prices match that

of current prices. It is an equilibrium object. When Σ2 is too large (small), past price

volatility makes traders trade too little (much), leading to prices characterized by too

little (much) volatility according to (3). Note that the indexes of traders who trade in any

given period are exogenous random variables (in fact, the only ones), and are assumed

to be independently drawn across periods. This modeling assumption is motivated by

recent survey findings that beliefs do not predict when investors trade, only the direction

and magnitude of trades (see Giglio et al. (2021)). Furthermore, in a dataset of UK

investors, Richards and Willows (2018) find that while the top decile of traders trades 69

times per year, the second decile trades 23 times per year and the remaining 80% trade

6 times per year. Similarly, Graham et al. (2009) find that the average number of days

between trading is 89 using data from a UBS/Gallup general investor survey. These data

support a model where not all traders are simultaneously active in financial markets.10

The market maker (3) has the following microfoundation also used in Teeple (2022).

We set up the market maker objective function according to the three published objectives

of the NYSE’s designated market maker: prioritize price discovery, lower volatility, and

provide liquidity.

max
pt+1

pt+1

∑
i

xi(pt)−
1

2c
(pt+1 − pt)

2

Note that the first term above corresponds to price discovery, and is precisely the objective

of the classical Walrasian auctioneer.11 The incentive to raise prices on days with excess

demand and lower prices on days with excess supply is evident in this term. In the

classical general equilibrium setting, the fixed point of such a maximization problem is

studied; here we do not abstract away from preceding dynamics. The second term above

corresponds to the second objective of the designated market maker (lowering volatility).

The parameter c controls the relative weight allocated between these first two objectives.

Such an objective function implies that the market maker must provide liquidity (its

third goal); she injects extra liquidity into the market by taking the opposite side to

9To achieve a geometric Brownian motion, we redefine prices in logs.
10That all traders are memory-constrained and trade on random days may seem extreme. We could

extend the model to also include Bayesians with access to news who trade on all days. In the spirit of
simplicity, we have refrained from this exercise.

11This market maker does not rely on limit orders to infer the shape of trader demand functions.
Instead, she only observes the value of aggregate demand.
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excess demand, effectively clearing markets each period.

This objective function leads to the intuitive rule (3): the market maker maps

excess demand into higher prices and excess supply into lower prices at elasticity c. This

is consistent with empirical evidence from Chordia et al. (2002), who confirm that excess

buy (sell) orders drive up (down) returns, even at lagged time periods. For familiarity,

let us map this unconventional microstructure into a more standard one, maintaining

the same population of memory-constrained traders. Assume that the same group of n

traders trades each period (instead of n randomly drawn), that the asset pays random

dividends dt+1 (instead of zero dividends), and that the interest rate is R > 0 (instead of

zero interest rates). Demand would then be given by

xi(pt) =
Ei[pt+1 + dt+1]− (1 +R)pt

ρΣ2
=

γdi + (1− γ)E[dt+1]−Rpt
ρΣ2

where Σ2 now denotes volatility of exogenous dividends, and the second equality holds

when prices are at a steady state. The fixed point of the market maker’s rule, which

clears markets, is given by p = 1
R

(
γ
n

∑
i di + (1− γ)E[dt+1]

)
. The point of this exercise

is to emphasize that the market maker is a sensible one, which simply generates off-

equilibrium, or tâtonnement, dynamics in a standard model. However, in our setup,

we do away with dividends so that our equilibrium takes on a self-fulfilling flavor and

volatility in our setting becomes purely non-fundamental.12 The random variable that

takes the place of exogenous dividends is the identities of active traders.

It is important to point out that the timing assumptions differ significantly from

standard market order models like that of Kyle (1985). There, traders face uncertainty

about the price at which their orders are executed. Here, traders are able to trade

unlimited positions at the fixed price pt. By ignoring price impact, we are effectively

ignoring the bid-ask spread, which simplifies our model and is a reasonable assumption

when spreads are small. Teeple (2023) introduces the spread in a similar setting but with

no memory constraints. There, a revenue-maximizing market maker is shown to have

the same qualitative properties as the one described here.

Because traders trade on random days, it is assumed that they buy (sell) on such

days at price pt then sell (buy) on the very next day at price pt+1.
13 Importantly, they do

1221% of the S&P500 does not pay dividends. However, this number grows to over 50% when consid-
ering all US publicly traded stocks.

13The second half of this round trip is not included in the excess demand for period (t+1). In Teeple
(2023), where the market maker’s problem is explicitly modeled, market makers have an incentive to

9



not hold the asset between two randomly chosen trading days. This has implications for

both earnings and inventories of the market maker. In terms of earnings, prices according

to (3) rise (fall) when the market maker takes a short (long) position. In other words,

the market maker loses money each period. This observation is consistent with empirical

evidence from Sofianos (1995) that market makers incur positioning losses on their in-

ventory, which are compensated by revenues from spreads (not modeled here). In terms

of inventories, when the market maker takes a long (short) position, she buys (sells) at

price pt then sells (buys) at price pt+1. Hence her inventories in any given period are

−
∑

i x
i(pt), but importantly, she does not accumulate inventories across periods. This

is observationally consistent with mean-reversion theories of market maker inventories.

For example, see Hasbrouck and Sofianos (1993).

Equilibrium Definition. Here we define our equilibrium concept. The price history is

initially drawn from some distribution. Based on their imperfect memory, traders dis-

agree and trade; and based on the market maker, prices adjust. We require that the

distribution of prices generated by the model be precisely the one from which the price

history was initially drawn. Formally, an equilibrium is a price history Ht, trader beliefs

µi and demands xi(pt), and a price distribution Ft satisfying:

(a) Given the recollection Hi
t ⊂ Ht, traders form beliefs µi according to (2).

(b) Given beliefs µi and conjecture Σ2
t , x

i(pt) maximizes (1) if they are in the active

group, i ∈ At. Otherwise, xi(pt) = 0.

(c) The market maker (3) generates prices drawn from Ft, where Ft is consistent with

history Ht and VarFt(pt+1 − pt) = Σ2
t .

Furthermore, we focus our attention on steady-state equilibria where Ft = F (Σ2
t = Σ2)

for all t. While markets do not clear in the traditional sense (they do clear when the

market maker’s position is accounted for), we maintain the standard assumption that

markets are competitive. With few traders, each has a non-negligible own price impact.

Optimizing over this price impact, even with memory constraints, could allow traders to

do better than the demand functions described here.

move prices based on initial trades to elicit trader participation. However, this incentive disappears
when traders unwind positions.
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Uniqueness. Our next question is whether the Brownian motion is the unique equi-

librium price process in this baseline setting. Interestingly, the drift of the Brownian

motion (or lack thereof) is unique. To understand why, consider the following extension

of the model. Instead of assuming that the asset is in net zero supply, say that the asset

has an exogenous, deterministic supply S > 0. The natural extension of the market

maker’s objective is

max
pt+1

pt+1

(∑
i

xi(pt)− S

)
− 1

2c
(pt+1 − pt)

2

which yields the following generalization of (3)

pt+1 = pt + c

(∑
i

xi(pt)− S

)
(4)

so that, just like before, prices rise (fall) when excess demand is positive (negative).

Assuming that the price history has a drift of µ, beliefs converge almost surely to

µi = γ(pi − pi−1) + (1− γ)µ

and the cross-section of beliefs µi across the population then approaches N(µ, γ2Σ2). The

equilibrium drift µ can then be found by taking the expectation of the market maker’s

rule (4). With some algebra, this condition reduces to

µ =
cS

cn/(ρΣ2)− 1
(5)

The intuition is that positive drift generates excess demand; this, in turn, requires a

positive asset supply.14 Importantly, µ = 0 when S = 0, establishing the uniqueness of

zero drift in the baseline setting.

To summarize so far, both variance and drift are unique. However, we can say

more by making use of the following well-known statistical fact from Durrett (2017): if a

linear combination of two independent random variables with some distribution has that

same distribution, it is said to be stable. Let us consider the implications for our model,

where demand is linear in past prices due to the mean-variance assumption, and prices

14S > 0 does not change the variance calculation, hence Σ2 = cγ
√
n/ρ like before. Then n > 1 ensures

that the denominator of (5) is positive.
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are linear in demand due to the nature of the market maker objective. Altogether,

pt+1 − pt = c
∑
i

γ

Linear in prices︷ ︸︸ ︷
(pi − pi−1)

ρΣ2︸ ︷︷ ︸
Linear in demand

Equilibrium requires that the past price distribution match the current one, so the only

candidate for the equilibrium distribution is the stable-α distribution. Furthermore, there

is only one distribution in the stable-α family that has a finite variance: the Normal

distribution. Hence the Brownian motion (with drift and variance pinned down) is not

just an equilibrium distribution. It is the unique equilibrium distribution.

3 Active Trading Days

Up until this point, we have taken the days which each trader remembers as given. The

setting we consider now is that of Section 2 except for the following change. When the

random subset of size n trade, they remember that period’s return (after they trade and

the return is realized). Empirically, this is consistent with evidence that traders dis-

proportionately use active trading days (more than inactive ones) to form beliefs about

future returns (see Andersen et al. (2019) and Strahilevitz et al. (2011)). Theoretically,

this is consistent with the context-dependent memory model of Bordalo et al. (2020),

where the context here would be whether or not the trader was actively trading.15

Expanded Memory. The first difficulty with this setup is characterizing the Bayesian

posterior mean when a trader has multiple memorable periods. Despite the well-known

difficulties in deriving a closed-form solution for the posterior mean of arbitrary distribu-

tions (equilibrium prices may not be Normal), our first lemma addresses this issue. All

proofs are in Appendix A.

Lemma 1. (Posterior Consistency) Say that traders calculate their posterior ac-

cording to memory-constrained Bayes’ Rule (2), with weights given by

αi
t =

γT/|Ki| for t ∈ Ki

(1− γ)T/(T − |Ki|) otherwise
(6)

15See also Wachter and Kahana (2024).
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As the history T → ∞, their posterior mean approaches

µi =
γ

|Ki|
∑
t∈Ki

(pt − pt−1) + (1− γ)µ

irrespective of the price distribution.

Note that µ denotes the mean of the price distribution, γ denotes idiosyncratic

memory strength, and Ki denotes the memorable set for trader i. When this set consists

of only one period, the weights in (6) collapse precisely to those described in Section 2.

Now consider |Ki| > 1. Just like in Section 2, the total weight adds up to T , with γ

proportion of that weight distributed evenly across memorable periods. The way that

we circumvent the usual algebraic difficulties in dealing with non-Normal posteriors is by

sending T → ∞. Asymptotically, there are results from probability theory that guarantee

consistency of the Bayesian posterior mean. Weights in (6) are as-if the trader not only

observes an infinite number of independent non-memorable prices, but also an infinite

number of repeated observations of (pt − pt−1) for each t ∈ Ki. As T → ∞, they become

sure that their posterior mean equals the µi defined in Lemma 1 (i.e. their posterior

variance tends to zero).

To get a sense of an economy with expanded memory, Proposition 1 extends the

economy from Section 2 with multiple memorable periods. What we do not allow for

(yet) is overlapping memory; each trader still remembers a subset of the price history

disjoint from any other trader. What we do allow for here is heterogeneity in memory

length; one trader may remember two periods, while another may remember three. With

heterogeneity in memory length, equilibrium prices need not be Normal. However, in

one special case we recover the Brownian equilibrium.16

Proposition 1. (Expanded Memory) Say that each trader remembers ki disjoint

periods for ki ∈ {1, ..., K}. Equilibrium prices converge in distribution to a discrete time

Brownian motion as n → ∞ and T → ∞.17

First consider the homogeneous case, where all traders remember the same number,

k, of disjoint periods. If multiple events are memorable, good days and bad days begin

to cancel each other out within the memorable set. Hence, traders with a larger set

16Note that we exclude the case where indexes of memorable prices are measurable with respect to
the realization. This, for example, rules out extreme prices being remembered by more traders.

17Note that sending the history T → ∞ implies that the number of traders M → ∞ at the same rate.
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of memorable events hold less dispersed, or tighter, beliefs. This, in itself, does not

destroy Normality and simply lowers the equilibrium variance, Σ2. See Figure 1 for the

cross-sectional distribution over µi for traders who remember 1, 2, and 3 disjoint periods

(memory parameter γ is set to one).

Figure 1: Cross-Section with Expanded Memory

Now consider adding heterogeneity in memory length. The cross-sectional distribu-

tion of beliefs is no longer Normal, because the mixture of Normal distributions need not

be Normal. That is, when drawing a trader from the cross-section, there is some chance

she is inexperienced (few memorable periods, with dispersed beliefs) and some chance

she is experienced (many memorable periods, with concentrated beliefs). So while the

cross-section need not be Normal, the Lindeberg-Lévy theorem applies when n is large

and the market maker ensures that prices continue to follow a Brownian motion. In

contrast to Section 2, sending n → ∞ is with significant loss of generality.18

Compared to the baseline case of Section 2, this last discussion suggests that there

will be two notable changes in the active trading days setup. First, the equilibrium vari-

ance will be reduced because the older generations have less dispersed beliefs. Second,

equilibrium prices need not be Normally distributed due to the mixing of younger and

older generations (when n is finite).

18As n grows, so does the equilibrium variance. To deal with this fact, we normalize the equilibrium
variance to one and find a market maker constant, c, consistent with that normalization.
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Cross-Section. When traders remember active trading days, the cross-section of traders

would continuously learn. To regain stationarity in our model, we assume that D > 0

traders die each period and are consequently replaced by D new traders.19 The steady-

state cross-section of traders is characterized by a sequence (Pj)
∞
j=0, which represents the

proportion of the population that remembers j days. We first analyze the case where

the number of traders, M , is finite, then take limits. When M is finite but large (in

particular, M > n+D), the law of motion for Pj is given by

P t+1
j =

P t
j

(
1− D

M
− n

M

)
+ D

M
, if j = 0

P t
j

(
1− D

M
− n

M

)
+ P t

j−1
n
M
, otherwise

When j = 0, the proportion decreases by a factor D
M

due to death, and by another factor
n
M

due to active trading, learning, and traders consequently leaving group P t
0 for group

P t+1
1 . The proportion increases by the amount D

M
due to the introduction of new traders.

When j > 0, the proportion decreases for the exact same reasons. The proportion

increases by the amount P t
j−1

n
M

due to active trading, learning, and traders consequently

entering group P t+1
j from group P t

j−1. The steady state of such a system is geometric:

P =

(
D

D + n
,

Dn

(D + n)2
,

Dn2

(D + n)3
, ...

)
(7)

and, importantly, is independent of M . As an example, consider the special case when

D = n so that traders die at the same rate that they learn. Then the steady state is(
1
2
, 1
4
, 1
8
, ...
)
.

The cross section (7) forces us to take a stance on trader beliefs in the absence of

any memorable period. We have yet to encounter this issue because each trader remem-

bered one day in Section 2 and one or more days in Proposition 1. Our approach here is

to extend the weights in (6) so that, when |Ki| = 0, αi
t = 1 for all t. In other words, they

are Bayesian before their memorable period arrives. Note that this does not preclude

newborns from observing the price history; it simply means that no period from that

history stands out, or is memorable, to them.

Overlapping Memory. The active trading days setup introduces an additional com-

plication in the form of overlapping memory. That is, when n > 1 traders remember an

19Due to an absence of wealth effects in the model, we conjecture that our results would not change
qualitatively under an alternate survival story where traders die off when wealth hits zero.
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active trading day, their beliefs are no longer mutually independent.20 In general, this

problem of overlapping beliefs makes the model intractable. However, in the special case

when traders remember past active trading days, the degree of overlap is “limited” and we

have the following lemma. It states that, with enough traders, this limited overlap does

not preclude the law of large numbers from holding and, consequently, the cross-section

of trader beliefs converges in distribution much like in Section 2.

Lemma 2. (Limited Dependence) Assume that the maximum number of periods re-

membered in the economy is K. Then, as the number of traders M → ∞, the empirical

distribution over beliefs FM(t) converges in probability to its expected value for each t.

A natural next question is: What is the expected value of FM(t)? However, we hold

off on this investigation until Section 4. Instead, the point of Lemma 2 is to emphasize

that the cross-section converges to some distribution despite the presence of traders whose

beliefs overlap (albeit in a limited way).

For intuition, consider whether the weak law of large numbers holds (instead of

whether the empirical distribution converges). By Chebyshev’s Inequality,

Pr(|µM − µ| ≥ ε) ≤ Var(µM)

ε2
(8)

where µM denotes the average belief in the cross-section of size M , and µ denotes the

actual price drift. In the standard i.i.d. case, the variance term above collapses into

something that is O(1/M) and so the weak law holds. However, here, posterior means

µi are neither independent nor identically distributed. Although the younger (older)

generation has more dispersed (concentrated) beliefs, this is not problematic because

there exists a most-dispersed belief, which serves as an upper bound for the variance of

any belief in (8). And although there is some overlap in beliefs, each trader’s belief can

only overlap with K(n−1) others’ because they trade on K days where there were (n−1)

other traders on each day. Hence the variance of the average belief in (8) decomposes

into some (bounded) variances and (a finite number of) covariances, which all disappear

as M → ∞. This same idea is employed in the actual proof, although the empirical

distribution, 1
M

∑M
i=1 1µi≤t, is considered.

The key to the lemma is that we truncate the number of remembered periods at a

large number K. That is, we ignore traders who remember an arbitrarily large number of

20Note that any overlap in beliefs was explicitly assumed away in Section 2 and Proposition 1, but is
unavoidable in the active trading days setup.
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past periods. This is justified for two reasons. First, such traders do not contribute to our

economy in the sense that they trade close to zero. Second, we focus on cross-sectional

distributions (7) where such traders have a small mass. Hence, the economy considered

in Lemma 2 will become arbitrarily close to the true cross-section when K is large.

4 Equilibrium Prices

Section 2 was the simplest possible example in our setting, and Section 3 suggested a

viable microfoundation for heterogeneous memory. To nest both cases, we now consider

a general steady-state sequence (Pj)
K
j=0, representing proportions of the population re-

membering j days. If this sequence were geometric, we recover the special case of Section

3; if it were degenerate, we recover the special case of Section 2. We emphasize that,

while this setup may seem very general, we can only guarantee that upcoming results

apply to the following two settings:

1. An extension of Section 2 where each trader remembers ki disjoint periods for

ki ∈ {1, ..., K}.

2. The active trading days setting from Section 3, so that Lemma 2 continues to

apply.21

As discussed in Section 3, it is the problematic overlap in beliefs which necessitates these

conditions above. These two requirements are sufficient but not necessary for upcoming

results.22

Next, we recast the failure of Normality from Proposition 1 (when n < ∞) not as

a negative one, but as a positive one (i.e. interesting properties of equilibrium prices). In

particular, we show that mixing distributions with different variances in the cross-section

results in excess kurtosis in equilibrium prices.

Theorem 1. (Heavy Tails) Let µ4 denote the fourth (central) moment of prices. Then

1. E[pt+1 − pt|pt] = 0.

21In Section 3 the cross-section (Pj)
K
j=0 depended on n, while here it does not. This is not critical for

our results.
22For example, consider Section 2 but with heterogeneity in memory strength γi or risk aversion ρi.

Upcoming results apply in these settings as well.
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2. Assume that the cross-section (Pj)
K
j=0 is nondegenerate and that n > N(P). Then

µ4/(Σ2)2 ≥ 3, and the inequality holds with equality if and only if n → ∞.

Analogous to the no drift discussion in Section 2, equilibrium prices generally are

a martingale. Importantly, prices are heavy-tailed and the effect disappears only when

n → ∞ and central limit theorems apply. Figure 2 shows how mixing leads to heavy

tails, using two Normal distributions with mean zero and differing variances (σ2 = 1 and

σ2 = 2). For visual clarity, the mixture fractions here are set to 1
2
and 1

2
. In words,

heavy tails result from a small chance of the trader being drawn from the high variance

distribution. However, this argument only guarantees that the cross-section has heavy

tails, not prices. Prices arise from the sum of n traders’ demands, and summing random

variables reduces excess kurtosis due to the central limit theorem. Theorem 1 Condition

2 can be understood as characterizing the net effect between these two competing forces

(mixing and summing).

Figure 2: Heavy-Tailed Mixture Distributions

To get a sense of how the proof of Theorem 1 works, consider the simpler case when

n → ∞. Calculating the fourth moment of the market maker’s rule (3) and dividing by

(Σ2)2,
µ4

(Σ2)2
=

c4(nE[xi(pt)
4] + 3n(n− 1)E[xi(pt)

2]2)

(Σ2)2
(9)

which holds true when demands are independently drawn from the cross-section and have

mean zero. Note the factor of three in the numerator of (9), which arises mathematically

18



when expanding the expression E[{
∑

i x
i(pt)}4]. By taking the variance of the market

maker’s rule (3), we have that Σ2 = c2nE[xi(pt)
2]. Plugging this into the denominator

of (9), only O(n2) terms in the numerator of (9) survive, and hence the price kurtosis

tends to three as n tends to infinity.

Interestingly, the heavy tail result can fail for small values of n below N(P). This

notation is meant to emphasize that the cutoff value of n depends only on the cross-

sectional distribution P ≡ (Pj)
K
j=0, not any other parameters. While so far we have

emphasized the latter, there are two reasons why equilibrium prices might have heavy

tails. First, there are historical effects in the sense that a heavy-tailed history tends to

generate heavy-tailed prices (or vice versa). Second, due to the mixing of different gen-

erations in the cross-section, there is a small chance of a youthful draw. This breakdown

can be explicitly seen after manipulating condition (9):

Excess kurtosis =
N(P) · (Excess kurtosis) +M(P) · (Variance of cross-section)

n

where N(P) > 0 and M(P) > 0, whose explicit expressions are relegated to Appendix A.

For excess kurtosis to inherit the sign of the variance of the cross-section (positive when

the cross-section is nondegenerate), we require that n > N(P). In Figure 3, we plot this

cutoff N but not as a function of the distribution P . Instead, we take all distributions

with support of size K, then find a sufficient cutoff for that family of distributions.

Mathematically, N(K) = maxsupp(P)≤K N(P). We emphasize that this cutoff is a small

number (hence n > N(P) is not restrictive) even when traders are allowed to recall

K = 50 memorable periods.

The explanation for heavy tails proposed here is distinct from those previously

proposed in the literature. For example, Gabaix et al. (2006) cite heavy tails in wealth,

Cont and Bouchaud (2000) cite imitation among traders, and Thurner et al. (2012)

cite leverage effects. Here, heavy tails come from the mixing of random variables with

different variances. Extreme price events occur when young traders, understood as those

who have experienced only a few past trades, all trade in a given period. This is consistent

with survey evidence in Giglio et al. (2021), who find that older individuals’ subjective

distributions over future stock returns have lower standard deviations (than those of

young individuals) and, furthermore, they assign smaller probabilities to extreme events

such as large stock market declines.

Our next proposition considers comparative statics of equilibrium price moments
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Figure 3: Cutoff Value N(K)

with respect to the cross-sectional distribution (Pj)
K
j=0. As Proposition 1 suggested,

increasing the “age” of the population decreases the equilibrium variance. And as Theo-

rem 1 alluded to, increasing the dispersion of age within the population increases excess

kurtosis.

Proposition 2. (Comparative Statics) Let Σ2 and µ4 denote the variance and fourth

(central) moment of prices, respectively. Then

1. Σ2 is increasing in EP [1/X].

2. µ4/(Σ2)2 is increasing in VarP(1/X) when n > N(P).

First let us understand the random variable, 1/X. X here denotes age, or more

specifically, when X = k, the proportion Pk of the population has k memorable periods.

Hence 1/X is the inverse of age, so when this object is larger (smaller), the trader trades

more (less). Let us refer to 1/X as the trader’s youthfulness. Condition 1 of Proposition

2 then says that more youthful economies are characterized by more volatility. And

as intuition suggests, excess kurtosis in Condition 2 is increasing in the variance of the

cross-section. Proposition 2 presents empirically testable implications of our theory.
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5 Policy

We consider three policies to reduce price variance in the general model from Section 4:

a transaction tax, a capital gains tax, and tightened borrowing constraints.

Transaction Tax. The trader’s wealth wt+1 with a transaction tax r > 0 is

wt+1 = (pt+1 − pt)xt − r|xt|

where r = 0 corresponds to the baseline setting. In terms of implications for trade, the

tax creates an inaction zone, where traders for whom Ei[pt+1|pt] ≈ pt choose not to trade.

This can be seen formally in the new demand function:

xi(pt) =


Ei[pt+1|pt]−pt−r

ρΣ2 , if Ei[pt+1|pt]− pt > r

Ei[pt+1|pt]−pt+r
ρΣ2 , if Ei[pt+1|pt]− pt < −r

0, otherwise

Traders who remain active in financial markets trade smaller quantities. While it may

seem immediate that the equilibrium price variance is reduced, we must be mindful

of equilibrium effects. Lowered price volatility can make financial markets look more

attractive, thereby increasing trade. Note that the upcoming Proposition 3 describes a

new equilibrium, presumably a sufficient amount of time after the policy change has been

enacted. This qualifier is needed, because the price history must also reflect the effects

of the policy.23

Proposition 3. (Transaction Tax) ∂Σ
∂r

< 0 for small values of r.

Consider the cross-section of demands. The tails have been shifted inwards toward

the origin, because potential market gains − in either direction − are reduced by the

amount of the tax. The middle range of the distribution has been removed altogether,

because the cost of trading entirely outweighs the benefits for such traders. See Figure

4 for an illustration of this truncated cross-section of demands xi(pt). With this lowered

dispersion of demands, we find that equilibrium price variance is reduced when transac-

tion taxes are reasonably small.

23The same comment applies to Proposition 4.
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xi(pt)

Density

Figure 4: Truncated Cross-Section of Demands

Capital Gains Tax. We model the capital gains tax with an adjusted budget set:

wt+1 = (1− τ)(pt+1 − pt)xt

where the tax is in the range 0 < τ < 1. Again we must consider the equilibrium effects

of the tax. Price variance must solve a fixed point condition

Σ2 = c2n
K∑
k=1

PkVar

[
(1− τ)γ

∑
t∈Ki(pt − pt−1)/k

ρ(1− τ)2Σ2

]

where the term inside the brackets is the capital gains-adjusted demand. This condition

is solved by Σ2 = cγ
ρ(1−τ)

√
n
∑K

k=1 Pk/k, so that taxes are actually counterproductive.24

To understand why, consider two competing forces: dampened capital gains versus damp-

ened wealth variance. The calculation above shows that the latter force outweighs the

former, leading to more trade in equilibrium and (unintentionally) higher price volatility.

We conclude that a capital gains tax is an ineffective policy tool in this setting.

Borrowing Constraints. The final policy that we consider is a borrowing constraint.

While mean-variance utility was previously used without formal derivation, here we begin

24From the proof of Theorem 1, without the tax, Σ2 = cγ
ρ

√
n
∑K

k=1 Pk/k.
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with the trader’s budget set today:

xtpt + at = 0

where at denotes the quantity saved (or borrowed) of a riskless asset. Notice that we

have normalized today’s wealth (RHS of equation above) to zero, which would be with

loss of generality if we were to consider an infinite horizon objective. The budget set

tomorrow is:

wt+1 = xtpt+1 + at

where wt+1 denotes wealth. Plugging the first budget set into the second, we recover the

objective of the trader from Section 2. In addition to this standard budget constraint,

we introduce two additional constraints

at ≥ −ptb, xt ≥ −b (10)

where b > 0 denotes the real borrowing constraint. When traders take a long position

on the risky asset, xt > 0, the first constraint in (10) applies and represents a borrowing

constraint on the riskless asset. When traders take a short position on the risky asset,

xt < 0, the second constraint in (10) applies and limits the quantity borrowed of the

risky asset. Substituting in today’s budget constraint, the two new constraints reduce

to:

|xt| ≤ b

This effectively truncates demand tails. Demand functions become

xi(pt) =


b, if Ei[pt+1|pt]−pt

ρΣ2 > b

−b, if Ei[pt+1|pt]−pt
ρΣ2 < −b

Ei[pt+1|pt]−pt
ρΣ2 , otherwise

Proposition 4. (Borrowing Constraints) ∂Σ
∂b

> 0 for large values of b.

As we tighten the constraint (decrease b), price variance is reduced as desired. And

the result holds when b is large (i.e. the borrowing constraint is relatively loose). Lastly,

we discuss differences between the two effective policies in terms of their distributional

effects. In the case of transaction taxes, traders with moderate beliefs trade zero, and
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those with tail beliefs reduce, or shift, their amount of trade by the quantity r
ρΣ2 . In the

case of borrowing limits, demand is truncated for traders with extreme beliefs. Hence

transaction taxes effectively target the center of the distribution, while borrowing limits

effectively target the tails of the distribution. In the context of the active trading days

setting, this means that transaction taxes (borrowing limits) are more likely to target

older (younger) individuals.

While both transaction taxes and borrowing limits are effective policy tools, capital

gains taxes are not. The two effective policies truncate expected gains, without directly

affecting the wealth variance (there are indirect effects that work through prices, which

were the focus of Propositions 3 and 4). In contrast, capital gains taxes are multiplicative.

This multiplicative property not only leads to dampened capital gains, but also directly

dampens wealth volatility; the net effect is (inadvertent) increased trade.

6 Conclusion

We have proposed a simple mechanism − idiosyncratic memory − to explain non-

fundamental volatility and heavy tails in financial markets. When some traders recall

bear markets and others recall bull markets, this creates belief dispersion in the cross-

section and, hence, a motive for trade. The first key takeaway from the paper is that we

live, in some sense, in a bad equilibrium: past volatility is what guarantees enough belief

dispersion to generate current volatility. The Brownian motion is the unique equilibrium

price process, and resulting volatility can be categorized as purely non-fundamental.

We then formally modeled one reason why traders might have idiosyncratic memory:

remembering active trading days. The cross-section of traders consists of the young (those

who remember few trading days and have dispersed beliefs) and the old (those who

remember many trading days and have concentrated beliefs). The mixture distribution

over such demographics is not Normal, which leads to equilibrium prices that are not

Normal. This is the second key takeaway from the paper: we have identified a novel

mechanism for generating prices with excess kurtosis. Extreme prices result from the

small chance that all traders trading on a given day are young.
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Appendix A

Proof of Lemma 1. The posterior according to memory-constrained Bayes’ Rule (2)

and weights (6) is given by

f(µ|pt−pt−1, , ..., pt−T+1−pt−T ) ∝
∏
t∈Ki

f(pt − pt−1|µ)γT/|K
i|

︸ ︷︷ ︸
Memorable

∏
t/∈Ki

f(pt − pt−1|µ)(1−γ)T/(T−|Ki|)

︸ ︷︷ ︸
Non-memorable

As T → ∞, this posterior approaches the one that would have been generated from i.i.d.

draws from a distribution − call it G − where, with probability γ/|Ki|, (pt − pt−1) is

drawn for each t ∈ Ki; and with probability (1−γ), prices are drawn independently from

the price distribution. To see why, first consider the log of the non-memorable terms,

(1− γ)T

T − |Ki|
∑
t/∈Ki

ln[f(pt − pt−1|µ)]

and divide by (the log of) the product of (1 − γ)T densities evaluated at independent

prices.25 We claim that, as T → ∞, this ratio satisfies

(1−γ)T
T−|Ki|

∑
t/∈Ki ln[f(pt − pt−1|µ)]∑(1−γ)T

t=1 ln[f(pt − pt−1|µ)]
=

1
T−|Ki|

∑
t/∈Ki ln[f(pt − pt−1|µ)]

1
(1−γ)T

∑(1−γ)T
t=1 ln[f(pt − pt−1|µ)]

→ 1 a.s.

where the equality follows from algebra and the convergence follows from the strong law

of large numbers. This line of reasoning justifies replacing non-memorable terms in the

posterior with the product of (1 − γ)T densities evaluated at independent prices. Next

consider the log of each memorable term,

γT

|Ki|
ln[f(pt − pt−1|µ)], for t ∈ Ki

which trivially equals (the log of) the product of γT
|Ki| densities evaluated at the same

memorable price, (pt − pt−1) for t ∈ Ki. Putting arguments altogether, the frequencies

(1−γ) and γ/|Ki| observed in the posterior precisely match those of the proposed mixture

G. Mixture distributions have an expected value that is equal to the mixture of the

25If (1−γ)T is not an integer, the same argument applies to floor[(1−γ)T ]. This comment also applies
to the number of densities associated with memorable prices, γT

|Ki| .
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expected values:

EG[µ] =
γ

|Ki|
∑
t∈Ki

(pt − pt−1) + (1− γ)µ

By the theorem of Doob (1949), the posterior mean µi converges to EG[µ] almost surely.

Proof of Proposition 1. As n grows, so does the equilibrium variance. As mentioned

in the main text, we normalize the equilibrium variance to one, and find a market maker

constant, c, consistent with that normalization. Let Ki denote the set of memorable

periods for trader i, so |Ki| = ki. By Lemma 1, as T → ∞, we have that

µi → γ

ki

∑
t∈Ki

(pt − pt−1) a.s.

In equilibrium we will confirm that, indeed, the price drift µ = 0. Let Mk denote the set

of traders who remember k periods (so
∑

k |Mk| = M), and let Pk denote their proportion

in the population (so |Mk|
M

= Pk). The empirical distribution of beliefs can be written

FM(t) =
1

M

M∑
i=1

1µi≤t =
K∑
k=1

Pk

|Mk|
∑
i∈Mk

1µi≤t

For each k, the empirical distribution approaches N(0, γ2/k) almost surely. The en-

tire empirical distribution is a mixture of these Normal distributions, weighted by Pk,

which need not be Normal. However, a direct calculation yields a mean of zero and

variance
∑K

k=1 Pk
γ2

k
. If a randomly selected subset of size n trades each period, then the

Lindeberg-Lévy theorem can be applied to the market maker (3) as n → ∞, ensuring

that prices follow a discrete time Brownian motion with mean zero and variance one

when c = ρ

γ
√

n
∑

k Pk/k
.

Proof of Lemma 2. By Chebyshev’s Inequality, for each t

Pr

(∣∣∣∣ 1M
M∑
i=1

1µi≤t − F (t)

∣∣∣∣ ≥ ε

)
≤

Var(
∑M

i=1 1µi≤t)

M2ε2
(11)
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where F (t) denotes the expected value of the empirical distribution. But now consider

the variance of an arbitrary 1µi≤t in the cross section. It is

E[12µi≤t]− E[1µi≤t]
2 = Pr(µi ≤ t)− Pr(µi ≤ t)2 ≤ 1

where the inequality follows from probabilities being between zero and one. Repeat the

exercise but for an arbitrary covariance.

E[1µi≤t1µj≤t]− E[1µi≤t]E[1µj≤t] = Pr(µi ≤ t and µj ≤ t)− Pr(µi ≤ t)Pr(µj ≤ t) ≤ 1

With these two bounds, we continue the line of reasoning in (11)

Var(
∑M

i=1 1µi≤t)

M2ε2
=

∑M
i=1 Var(1µi≤t) +

∑
i ̸=j Cov(1µi≤t, 1µj≤t)

M2ε2

≤ M +M(n− 1)K

M2ε2

→ 0

as M → ∞. The inequality above firstly uses the previously derived variance and co-

variance bounds. Secondly, it uses an upper bound for the number of covariance terms,

which is attained when all traders remember K periods. When traders remember K

periods, their beliefs overlap with up to (n− 1)K other traders.

Proof of Theorem 1. To prove the first claim, the mean of demand (assuming the

trader remembers k periods) is

E
[ γ

k

∑
t∈Ki(pt − pt−1) + (1− γ)µ

ρΣ2

]
=

µ

ρΣ2

where µ denotes the equilibrium price drift. Note that this value does not differ across

generations, and hence proportions Pj do not enter into the calculation. Taking the

expectation of the market maker (3):26

cnµ

ρΣ2
= µ ⇐⇒ µ = 0 (12)

26The equilibrium variance is given by Σ2 = cγ
ρ

√
n
∑K

k=1 Pk/k. Then the constant that multiplies µ

in expression (12), cn
ρΣ2 , is always greater than one when n > 1.
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Next we consider excess kurtosis. If the trader drawn from the cross section remembers

k periods, the fourth moment of demand would be

E

[( γ
k

∑
t∈Ki(pt − pt−1)

ρΣ2

)4
]
= γ4kµ

4 + 3k(k − 1)(Σ2)2

k4ρ4(Σ2)4

because the price history is independently drawn and prices have mean zero. Since the

cross section is distributed according to (Pj)
K
j=0, each demand has fourth moment

E[xi(pt)
4] =

K∑
k=1

Pkγ
4kµ

4 + 3k(k − 1)(Σ2)2

k4ρ4(Σ2)4

=γ4µ
4 − 3(Σ2)2

ρ4(Σ2)4

K∑
k=1

Pk

k3
+

3γ4

ρ4(Σ2)2

K∑
k=1

Pk

k2

First we confirm equality in the case n → ∞. The fourth price moment is given by the

expression

µ4 = c4(nE[xi(pt)
4] + 3n(n− 1)E[xi(pt)

2]2) (13)

because demands are independently drawn from the cross-section and have mean zero.

We divide (13) by (Σ2)2 and plug in two terms: first, the fourth moment of demand from

above and, second, the demand variance,
∑K

k=1 PkE
[( γ

k

∑
t∈Ki (pt−pt−1)

ρΣ2

)2]
:

3 = lim
n→∞

c4
(

3nγ4

ρ4(Σ2)2

∑K
k=1

Pk

k2
+ 3n(n− 1)

(∑K
k=1 Pk

γ2

kρ2Σ2

)2)
(Σ2)2

(14)

Using the fact that (Σ2)2 = c2γ2n
ρ2

∑K
k=1

Pk

k
,

3 = lim
n→∞

c4
(

3nγ4

ρ4

∑K
k=1

Pk

k2
+ 3n(n− 1)

(∑K
k=1Pk

γ2

kρ2

)2)
c4γ4n2

ρ4

(∑K
k=1Pk/k

)2
Because the denominator is O(n2), from the numerator, only O(n2) terms remain which

proves the desired equality. Next we show that price kurtosis, µ4/(Σ2)2, is always greater

than 3 when n is finite. We follow similar steps as in the infinite case, recalculating the
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RHS of (14)

µ4

(Σ2)2
=

c4
(

γ4nε
ρ4(Σ2)2

∑K
k=1

Pk

k3
+ 3nγ4

ρ4(Σ2)2

∑K
k=1

Pk

k2
+ 3n(n− 1)

(∑K
k=1Pk

γ2

kρ2Σ2

)2)
(Σ2)2

where

ε ≡ µ4 − 3(Σ2)2

(Σ2)2

Again plugging in (Σ2)2 = c2γ2n
ρ2

∑K
k=1

Pk

k
and simplifying,

µ4

(Σ2)2
=

c4
(

γ4nε
ρ4

∑K
k=1

Pk

k3
+ 3nγ4

ρ4

∑K
k=1

Pk

k2
+ 3n(n− 1)

(∑K
k=1 Pk

γ2

kρ2

)2)
(

c2γ2n
ρ2

∑K
k=1

Pk

k

)2
=3 +

nε
∑K

k=1
Pk

k3
+ 3n

∑K
k=1

Pk

k2
− 3n

(∑K
k=1Pk

1
k

)2
(
n
∑K

k=1
Pk

k

)2
Plugging in the value of ε and solving for the excess kurtosis,

µ4

(Σ2)2
= 3 +

3

(∑K
k=1

Pk

k2
−
[∑K

k=1
Pk

k

]2)
n
(∑K

k=1
Pk

k

)2
−
∑K

k=1
Pk

k3

(15)

and we call

N(P) ≡
∑K

k=1
Pk

k3(∑K
k=1

Pk

k

)2
so that n > N(P) guarantees that the denominator on the RHS of (15) is positive. Then

for the desired result, it suffices to show that

K∑
k=1

Pk

k2
−

(
K∑
k=1

Pk

k

)2

≥ 0

with inequality strict when (Pj)
K
j=0 is nondegenerate. But this inequality can be rewrit-

ten E[X2] − E[X]2 ≥ 0, where probabilities are given by Pk and the random variable

takes on values 1
k
. The variance is, indeed, strictly positive when the distribution is

nondegenerate.
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Proof of Proposition 2. We begin with the first claim, which follows from the closed-

form solution for the equilibrium variance from the proof of Theorem 1:

Σ2 =
cγ

ρ

√√√√n

K∑
k=1

Pk

k

The second claim follows immediately from the closed form solution (15) from Theorem

1.

Proof of Proposition 3. The price variance Σ2 must solve the following fixed point

condition

Σ2 =
c2γ2n

ρ2Σ4

K∑
k=1

Pk

k2

[∫ 0

−∞
x2fk(x− kr/γ)dx+

∫ ∞

0

x2fk(x+ kr/γ)dx

]
,

where f(x) denotes the price density and fk(x) denotes its k-fold convolution. The RHS of

the condition above is the variance of a distribution where the middle range [−kr/γ, kr/γ]

of beliefs has been removed, and the tails (−∞,−kr/γ) ∪ (kr/γ,∞) have been shifted

inwards toward the origin. Note that the term kr/γ follows from the following rewriting

of demand (assuming that the trader remembers k periods)

xi(pt) =


γ
k

∑
t∈Ki (pt−pt−1)−kr/γ

ρΣ2 , if
∑

t∈Ki(pt − pt−1) > kr/γ

γ
k

∑
t∈Ki (pt−pt−1)+kr/γ

ρΣ2 , if
∑

t∈Ki(pt − pt−1) < −kr/γ

0, otherwise

Denote the function g(r,Σ) as

g(r,Σ) ≡ c2γ2n

ρ2

K∑
k=1

Pk

k2

[∫ 0

−∞
x2fk(x− kr/γ)dx+

∫ ∞

0

x2fk(x+ kr/γ)dx

]
− Σ6

First we make the change of variable, u = x−kr/γ (for the second integral, u = x+kr/γ)

g(r,Σ) =
c2γ2n

ρ2

K∑
k=1

Pk

k2

[∫ −kr/γ

−∞
(u+ kr/γ)2fk(u)du+

∫ ∞

kr/γ

(u− kr/γ)2fk(u)du

]
− Σ6
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and, applying the Leibniz integral rule, we have that

∂g

∂r
=

c2γn

ρ2

K∑
k=1

Pk

k

[∫ −kr/γ

−∞
2(u+ kr/γ)fk(u)du−

∫ ∞

kr/γ

2(u− kr/γ)fk(u)du

]
< 0

where the inequality follows from the fact that, in the first (second) integral, u is always

evaluated below −kr/γ (above kr/γ). When r is near zero, we also have that

∂g

∂Σ
≈c2γ2n

ρ2

K∑
k=1

Pk

k2

∂

∂Σ

[∫ ∞

−∞
u2fk(u)du

]
− 6Σ5

=
c2γ2n

ρ2

K∑
k=1

Pk

k

∂

∂Σ

[∫ ∞

−∞
u2f(u)du

]
− 6Σ5

=
c2γ2n

ρ2

K∑
k=1

Pk

k
2Σ− 6Σ5

where the second line follows from the fact that the variance of the k-fold convolution is

k times the price variance. But because the derivative is evaluated near r = 0, we know

that the equilibrium Σ2 ≈ cγ
ρ

√
n
∑K

k=1Pk/k. Squaring this term then plugging in,

∂g

∂Σ
≈ 2Σ5 − 6Σ5 < 0

Altogether, by the implicit function theorem, we have that ∂Σ
∂r

= − ∂g/∂r
∂g/∂Σ

< 0.

Proof of Proposition 4. The price variance solves the following fixed point condi-

tion

Σ2 = c2n
K∑
k=1

Pk

[
γ2

k2ρ2Σ4

∫ kbρΣ2/γ

−kbρΣ2/γ

x2fk(x)dx+

∫ ∞

kbρΣ2/γ

b
2
fk(x)dx+

∫ −kbρΣ2/γ

−∞
b
2
fk(x)dx

]

where f(x) denotes the price density and fk(x) denotes its k-fold convolution. The first

term on the RHS corresponds to traders unconstrained by the borrowing constraint. The

second and third terms on the RHS correspond to all extreme traders whose demands

have been truncated by the borrowing constraint. Note that the limits of integration

follow from the following rewriting of demand (assuming that the trader remembers k
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periods)

xi(pt) =


b, if

∑
t∈Ki(pt − pt−1) > kbρΣ2/γ

−b, if
∑

t∈Ki(pt − pt−1) < −kbρΣ2/γ
γ
∑

t∈Ki (pt−pt−1)

kρΣ2 , otherwise

Define the function g(b,Σ) as

g(b,Σ)

≡c2n
K∑
k=1

Pk

[
γ2

k2ρ2

∫ kbρΣ2/γ

−kbρΣ2/γ

x2fk(x)dx+ Σ4

∫ ∞

kbρΣ2/γ

b
2
fk(x)dx+ Σ4

∫ −kbρΣ2/γ

−∞
b
2
fk(x)dx

]
− Σ6

and we apply the Leibniz integral rule.

∂g

∂b
= c2n

K∑
k=1

PkΣ
4

[∫ ∞

kbρΣ2/γ

2bfk(x)dx+

∫ −kbρΣ2/γ

−∞
2bfk(x)dx

]
> 0

where the inequality follows from direct computation of the integrals. Applying the

Leibniz integral rule once again,

∂g

∂Σ

=c2n
K∑
k=1

Pk
∂

∂Σ

[
γ2

k2ρ2

∫ kbρΣ
2
/γ

−kbρΣ
2
/γ

x2fk(x)dx+ Σ
4
∫ ∞

kbρΣ
2
/γ

b
2
fk(x)dx+ Σ

4
∫ −kbρΣ

2
/γ

−∞
b
2
fk(x)dx

]
− 6Σ5 + ε

≈c2γ2n

ρ2

K∑
k=1

Pk

k2

∂

∂Σ

[∫ ∞

−∞
x2fk(x)dx

]
− 6Σ5 + ε

=
c2γ2n

ρ2

K∑
k=1

Pk

k

∂

∂Σ

[∫ ∞

−∞
x2f(x)dx

]
− 6Σ5 + ε

=
c2γ2n

ρ2

K∑
k=1

Pk

k
2Σ− 6Σ5 + ε

where Σ
2
denotes the equilibrium variance but held constant (with respect to the partial

derivative), and the approximate equality holds when b is large. Note that the second-to-

last line follows from the fact that the variance of the k-fold convolution equals k times

the price variance. The variable ε denotes an error term, which we will show disappears

when b is large. Before that, because the expression above is evaluated for a large value
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of b, we know that the equilibrium Σ2 ≈ cγ
ρ

√
n
∑K

k=1Pk/k. Plugging in the square of

this expression,
∂g

∂Σ
≈ 2Σ5 − 6Σ5 + ε < 0

when ε is small. By the implicit function theorem, we have that ∂Σ
∂b

= − ∂g/∂b
∂g/∂Σ

> 0. The

last step is to confirm that ε → 0 when b → ∞. Without limits, it is

ε ≡4c2nΣ3

K∑
k=1

Pk

[∫ ∞

kbρΣ2/γ

b
2
fk(x)dx+

∫ −kbρΣ2/γ

−∞
b
2
fk(x)dx

]
(16)

The entire term (16) tends to zero because∫ ∞

kbρΣ2/γ

b
2
fk(x)dx ≤

∫ ∞

kbρΣ2/γ

(
xγ

kρΣ2

)2

fk(x)dx → 0, as b → ∞

where the inequality holds because x ≥ kbρΣ2/γ. The same argument applies to the

second term on the RHS of (16), except now x ≤ −kbρΣ2/γ.
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