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Abstract. We investigate the problem of approximating an incomplete preference relation

≿ on a finite set by a complete preference relation. We aim to obtain this approximation

in such a way that the choices on the basis of two preferences, one incomplete, the other

complete, have the smallest possible discrepancy in the aggregate. To this end, we use the

top-difference metric on preferences, and define a best complete approximation of ≿ as a

complete preference relation nearest to ≿ relative to this metric. We prove that such an

approximation must be a maximal completion of ≿, and that it is, in fact, any one completion

of ≿ with the largest index. Finally, we use these results to provide a sufficient condition for

the best complete approximation of a preference to be its canonical completion. This leads

to closed-form solutions to the best approximation problem in the case of several incomplete

preference relations of interest.

1. Introduction

While rationality of preferences is often captured by their transitivity, their completeness

is rather about the trait of decisiveness. Incomplete preferences are thus encountered in

economic models to account for a rational individual’s potential indecisiveness about the

comparative appeal of two or more alternatives. This may arise due to lack of information,

uncertainty, perception difficulties (as in just-noticeable differences), or a fundamental in-

ability of comparing certain objects of choice with multiple attributes. There is a substantial

literature in decision theory, whose beginning is clearly marked by the seminal work of Au-

mann [1], which provides various methods of representing incomplete preferences, and which

develops theories of choice that emanate from the maximization of them.

Even when the modeler is confident that a person’s preferences over a given set of alterna-

tives are complete, they may lack data to know how some of the alternatives compare to each

other in the eyes of that person. This sort of a situation arises often in models of computa-

tional social choice. In that literature, preferences of a voter are taken as incomplete simply

because the observed voting data provides only partial information about voters’ preferences,
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thereby identifying only a part of the true preferences of a voter.1 Finally, when the decision-

making unit is, in fact, a multi-agent, say, a committee, or a family, whose preferences arise

from the aggregation of several individual preferences, a prudent approach would be to model

the preferences of that unit as incomplete (due to potential disagreements between its con-

stituents). The most prominent example of this is the familiar Pareto ordering, which is a

preference relation (for the group in question) that is obtained by intersecting the preferences

of the involved agents.

Whatever is the cause of the incompleteness of a preference relation ≿ (i.e. a reflexive and

transitive binary relation), a natural question is how one may best approximate it by means

of a complete preference relation. This query, which does not seem to be addressed in the

literature, is relevant for applications for a multitude of reasons. First, one may wish to

replace the primitive, but incomplete, preferences with their best complete approximations,

and derive sharper predictions about the choices of indecisive agents. Indeed, provided they

are completions of the original preference relation ≿, one may use these approximations

to refine the set of maximal elements in a menu relative to ≿. Second, in voting type

of applications we mentioned above, one may replace the individual preferences with their

best complete approximations, and “solve” collective choice problems by standard means

accordingly. Third, as we will discuss later, one can use the distance between a preference

relation and its best complete approximation to measure the extent of indecisiveness of that

preference relation.

Viability of such applications rests on knowing how one may best approximate a preference

relation by a complete one; this is precisely the problem we study in the present paper. To

this end, we need to first agree on a way of measuring the distance between two preference

relations on a given set X of alternatives. In this paper, we take X as a nonempty finite

set, and view preferences as a means toward making choices from various menus (namely,

nonempty subsets of X). Consequently, we wish to measure the distance between any two

preference relations ≿ and ⊵ on X by comparing what they entail in the way of choice (which,

as usual, we take as the set of maximal elements) in each S ⊆ X. Thus, for each menu S,

the discrepancy (i.e. set difference) between the set M(S,≿) of ≿-maximal elements of S and

the set M(S,⊵) of ⊵-maximal elements of S, contributes to the “distance” between ≿ and

⊵. If we concentrate on the case where there is no a priori reason to distinguish between the

alternatives, a natural way of quantifying this discrepancy is by looking at the cardinality

of the symmetric difference between M(S,≿) and M(S,⊵), that is, the cardinality of the

1See, for instance, Conitzer and Sandholm [9] and Konczak and Lang [19]. This issue becomes particularly

pressing in low-stakes, high-frequency voting environments, such as web search and product recommendation.

For a nice survey on voting theory with such partial information, and hence with incomplete preferences, see

Boutilier and Rosenschein [7].
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union of these sets minus that of their intersection. Denoting this number by ∆S(≿,⊵), the

(semi)metric we work with in this paper is defined by the formula:

D(≿,⊵) :=
∑
S⊆X

∆S(≿,⊵).

This (semi)metric is called the top-difference (semi)metric. It was recently introduced, and

examined from both axiomatic and computational viewpoints, in Nishimura and Ok [21].

It is distinguished from other metrics for preference relations on finite sets, such as the

venerable Kemeny-Snell-Bogart metric dKSB, by its insistence on comparing preferences from

the perspective of choice. (See Section 2 for a brief comparison of D and dKSB and its

variants.)

Put informally, we aim to approximate preference relations by complete preference relations

in a way to minimize the discrepancy of what these preferences entail for choices in potential

menus. As D is primed to capture this discrepancy, we are prompted to define a best complete

approximation (bca) of a preference relation ≿ on X as any complete preference relation ≿∗

on X that minimizes D(≿,⊵) over all complete preference relations ⊵ on X. We introduce

this concept more formally in Section 3.1 and follow it with various examples to illustrate

how it actually works.

It stands to reason that a best complete approximation of a preference relation ≿ be a

completion of that relation.2 While the definition of D does not readily suggest this con-

tention, it turns out that this is indeed the case. The first, and in our view, the deepest,

main result of this paper (Section 4.1) is: Every best complete approximation of a preference

relation is a (maximal) completion of that relation.

While the set of completions of a preference relation on X is much smaller than that of all

complete preference relations on X, it is still very large even when X is of a modest size. This

makes it rather difficult to calculate best complete approximations. To confront this problem,

we introduce in Section 4.2 the notion of index for a preference relation, and then use our

first main result to deduce the following duality theorem: A complete preference relation on

X is a best complete approximation of ≿ if, and only if, it is a completion of ≿ with the

maximum index (Section 4.3). As the index of a complete preference relation is given by

an explicit formula – it is simply the sum of the powers of 2 where the powers run through

the cardinalities of the lower-contours (i.e. down-sets) of all alternatives – this theorem,

2There is no reason to expect the converse be true, of course. To give an extreme example, suppose ≿

cannot compare any two distinct alternatives. We then simply have no way of making choice predictions on

the basis of ≿. It is thus in the nature of things that the best complete approximation of ≿ is the “everywhere

indifferent” relation which matches the choice predictions (or lack of them thereof) of ≿ perfectly. And yet,

every complete preference relation on X is a completion of ≿.
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which converts our original minimization problem to a maximization problem, simplifies the

computation of best complete approximations to a considerable extent.

Section 5 is devoted to some applications of our duality theorem. First, we use this result

to obtain a sufficient condition for the unique best complete approximation of a preference

relation to be its canonical completion.3 Next, we show that several interesting partial orders

satisfy this condition. In particular, we find that the best complete approximation of the

containment order, which plays essential roles in the literatures on menu preferences and

rankings of opportunity sets, is the cardinality ordering. Second, we show that the only

bca of the refinement order on the set of all partitions of a finite set – this order is routinely

encountered in information economics as an unanimous “preference for information” – is based

solely on the number of cells that a partition possesses. Third, we prove that the only bca of

any prefix ordering, which are encountered in syntactical models of information transmission,

is its canonical completion. (For instance, the best complete approximation of the word-order

turns out to be the length-of-word-order.) Finally, we show that the coordinatewise ordering

on a finite two-dimensional lattice is obtained by summing up the coordinates (as in utilitarian

aggregation).

We conclude the paper by pointing out a number of interesting research directions con-

cerning best complete approximations of preference relations.

2. Metric Spaces of Preference Relations

2.1. Terminology. We begin with reviewing the order-theoretic jargon that we adopt in

this paper.

Preference Relations. Let X be a nonempty set, which we think of as a set of mutually

exclusive choice alternatives. By a preference relation ≿ on X, we simply mean a preorder

(i.e., a reflexive and transitive binary relation) on X. As usual, we denote the asymmetric

and symmetric parts of ≿ by ≻ and ∼, respectively. For any x, y ∈ X, we say that x and

y are ≿-comparable if either x ≿ y or y ≿ x holds. For any nonempty subset Y of X, the

restriction of ≿ to Y is denoted by ≿Y or ≿ |Y , that is, ≿ |Y ≡ ≿Y := ≿ ∩ (Y × Y ).

If ≿ is a preference relation on X such that any two alternatives in X are ≿-comparable

(i.e., when ≿ is a total preorder), we refer to ≿ as a complete preference relation on X. The

set of all preference relations on X, and that of all complete preference relations on X, are

3The canonical completion of ≿ is obtained by declaring the ≿-maximal elements in X as indifferent, and

then dropping them from X and declaring the ≿-maximal elements in the remaining set as indifferent, and so

on. Every member of any set obtained this way are ranked below those that belong the sets that come before

it, while the ≿-maximal elements in X are put on top.
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denoted as P(X) and PC(X), respectively. Any antisymmetric ≿ in P(X) is said to be a

partial order on X. If, in addition, ≿ is total, it is called a linear order on X.

Completions. Let ≿ be a preference relation on X. By a completion of ≿, we mean a total

preorder ≿∗ on X such that ≿ ⊆ ≿∗ and ≻ ⊆ ≻∗. This definition ensures that a completion

of a preference relation is faithful to that relation in terms of both indifference and strict

preference. (Obviously, ≿ is its own completion iff it is complete to begin with.) We refer to

a completion ≿∗ of ≿ as a strict completion if either x ≻∗ y or y ≻∗ x holds for any x, y ∈ X

that are not ≿-comparable. (In particular, any strict completion of a partial order is, per

force, a linear order.) Finally, by a maximal completion of ≿, we mean a completion of ≿

which is not properly contained in any other completion of ≿. For instance, every complete

preorder on X is a completion of the equality relation on X, while the unique maximal

completion of = on X is the everywhere-indifferent relation X ×X.

Maxima. For any ≿ ∈ P(X) and nonempty S ⊆ X, we denote the set of all ≿-maximal

elements in S by M(S,≿), that is, x ∈ M(S,≿) iff x ∈ S and y ≻ x holds for no y ∈ S.

On the other hand, the set of all ≿-maximum elements in S is denoted by m(S,≿), that is,

m(S,≿) := {x ∈ S : x ≿ y for all y ∈ S}. Clearly, m(S,≿) ⊆ M(S,≿) in general, and when

S is finite, the latter set is nonempty. In addition, if S is finite and M(S,≿) happens to be a

singleton, we have m(S,≿) = M(S,≿). Of course, this equality holds when ≿ is a complete

preference relation, regardless of the cardinality of the latter set.

2.2. Metrics on P(X). There are several ways one can metrize the set of all preferences on

a set X. We quickly review the two standard approaches of doing this, and then introduce

the metric we will adopt here instead.

The Hausdorff Metric. An important branch of mathematical economics that started with

Debreu [11] takes X as a topological space, and then considers topologizing the space of

preorders on X by using some hyperspace topology, such as the one that is induced by the

Hausdorff metric.4 This approach is best suited for situations where X is an infinite set, and

is primed toward studying (topological) problems of preference convergence as opposed to

(metric) problems of approximation of preferences. As such, it is not suitable for our present

purposes. One can, of course, endow a finite set X with the discrete metric, and then metrize

P(X) by using the Hausdorff metric, but this is the same thing as endowing P(X) with the

discrete metric which is, obviously, too coarse to be of practical use.5

4For a recent contribution to this literature, as well as an overview of it, see Pivato [23].
5This approach becomes more interesting if X is endowed with a metric different than the discrete metric,

but that situation falls outside the scope of the present paper where we consider the choice alternatives in X

as symmetric entities as in candidates in voting scenarios, or stable matchings in matching environments.



6 HIROKI NISHIMURA AND EFE A. OK

Henceforth, X stands as an arbitrarily fixed finite set with at least two elements.

The Kemeny-Snell-Bogart Metric. The most standard approach toward metrizing P(X) is

by means of counting the pairwise disagreements between any two preference relations. This

approach was introduced in the seminal work of Kemeny and Snell [17] where it was put

on axiomatic footing in the case of linear orders on X. Bogart [6] later extended this metric

to the context of all partial orders on X by means of a modified system of axioms. The

resulting distance function, which we call the Kemeny-Snell-Bogart metric, and denote by

dKSB, readily extends to the set of all preorders on X. Put precisely, it is defined on P(X)

by assessing the distance between any two preorders ≿ and ⊵ on X as the cardinality of the

symmetric difference between them, that is,

dKSB(≿,⊵) = |≿ △ ⊵| .

In particular, the distance between two linear orders according to dKSB is simply twice the

total number of involved rank reversals.

While dKSB is surely an interesting metric, and figure prominently in the literatures on

social choice theory and operations research, it fails to capture a decision-theoretic aspect

which is of great importance for economic analysis. In economics at large, a preference

relation ≿ is viewed mainly as a means toward making choices in the context of various

menus (nonempty subsets of the grand set X), where a “choice” in a menu S on the basis of

≿ is defined as a maximal element of S with respect to ≿. Consequently, the more distinct

the induced “choices” of two preference relations across menus are, there is reason to think

of those preferences as being less similar. The following example highlights in what sense the

dKSB metric does not fully reflect this viewpoint.

≿

sssss

x1

x2

x3

x4

x5

≿1

sssss

x2

x1

x3

x4

x5

≿2

sssss

x1

x2

x3

x5

x4

Figure 1

Example 1. Let X := {x1, ..., x5}, and consider the linear orders ≿, ≿1 and ≿2 on X whose

Hasse diagrams are depicted in Figure 1. Both ≿1 and ≿2 are obtained from ≿ by reversing

the ranks of two alternatives, namely, those of x1 and x2 in the case of ≿1 and those of x4

and x5 in the case of ≿2. Consequently, the Kemeny-Snell-Bogart metric judges the distance

between ≿ and ≿1 and that between ≿ and ≿2 the same: dKSB(≿,≿1) = 2 = dKSB(≿,≿2).
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But this is not supported from a choice-theoretic standpoint. Consider a person whose

preferences are represented by ≿. This person would never choose either x4 or x5 in any

menu S ⊆ X with the exception of S = {x4, x5}. Consequently, their choice behavior would

differ from that of a person with preferences ≿2 in only one menu, namely, {x4, x5}. By
contrast, the choice behavior entailed by ≿ and ≿1 are distinct in every menu that contains

x1 and x2. So if we observed the choices made by two people with preferences ≿ and ≿1,

we would see them make different choices in eight separate menus. From the perspective of

induced choice behavior, then, it is only natural that we classify “≿ and ≿1” as being less

similar than “≿ and ≿2.”
6 □

This example is taken from Nishimura and Ok [21] who offer several other examples to

suggest that there is room for looking at alternatives to dKSB and its variants, especially if we

wish to distinguish between preferences on the basis of their implications for choice. It points

to the fact that, at least from the perspective of implied choice behavior, the dissimilarity

of two preferences depends not only on the number of rank reversals between them, but

also where those reversals occur. In Section 3.3 we will show that another major problem

with dKSB is that it is too coarse to be useful for finding best complete approximations of a

preference relation, the primary objective of the present paper.

The Top-Difference Metric. As an alternative to the Kemeny-Snell-Bogart metric,

Nishimura and Ok [21] propose to aggregate instead the sizes of the differences in choices

induced by preferences across all menus, where by a “choice induced by a preference ≿ in

a menu S,” one means, as usual, any ≿-maximal element in S.7 On a given menu S, the

dissimilarity of any two preference relations ≿ and ⊵ on X is thus captured by comparing

the sets M(S,≿) and M(S,⊵). A particularly simple way of making this comparison is, of

course, just by counting the elements in M(S,≿) that are not in M(S,⊵), as well as those

in M(S,⊵) that are not in M(S,≿). The number of elements in the symmetric difference

M(S,≿)△M(S,⊵) tells us how different ≿ and ⊵ are in terms of the choice behavior they

entail at the menu S. We denote this number by ∆S(≿,⊵), that is,

∆S(≿,⊵) := |M(S,≿)△M(S,⊵)| .

6There are some well-known alternatives to dKSB, such as the metrics of Blin [5], Cook and Seiford [10],

and Bhattacharya and Gravel [4]. These variants are also based on the idea of counting the rank reversals

between two preferences in one way or another, and also yield the same conclusion as dKSB in the context of

this example.
7For a decision-theoretic justification of defining “choices induced by ≿” this way, see Eliaz and Ok

[13]. Their work also offers a method of revealing an incomplete preference relation (thereby distinguishing

indifference and incomparability) from choice observations, which we can view as the primitives of this paper.
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Then, summing over all menus yields the semimetric D on P(X) defined as

D(≿,⊵) :=
∑
S⊆X

∆S(≿,⊵).

As in [21], we refer to D as the top-difference semimetric.8 Unlike dKSB, this metric is

primed to evaluate the dissimilarity of preference relations from the perspective of choice.

For instance, sitting square with intuition, we have D(≿,≿1) = 16 > 2 = D(≿,≿2) in the

case of Example 1.

We note that D is a bona fide metric on the set PC(X) of all complete preference relations

on X, as well as on the set of all partial orders on X. However, it serves only as a semimetric

on P(X). After all, the D distance between any two preference relations on X with the same

asymmetric part is zero. For instance, the distance between the equality relation on X and

the everywhere-indifferent relation X ×X is assessed by D as 0.

The interpretation, and hence the appeal, of the top-difference semimetric is evident at the

level of its definition. For a thorough analysis of it at a foundational level, we refer the reader

to [21] where a basic axiomatization for D, as well as alternative means of computing it, are

provided. In what follows, we will use D to approximate preference relations with complete

preference relations. This problem is described next.

3. Best Complete Approximations

3.1. Best Complete Approximation of a Preorder. For any preference relation ≿ on

X, we say that a complete preference relation ≿∗ on X is a best complete approximation

of ≿ if

D(≿,≿∗) = min{D(≿,⊵) :⊵∈ PC(X)}.

Given that X is finite, a best complete approximation for any ≿ ∈ P(X) always exists, but it

need not be unique. We denote the set of all best complete approximations of ≿ by bca(≿),

that is,

bca(≿) := {≿∗∈ PC(X) : D(≿,≿∗) ≤ D(≿,⊵) for all ⊵∈ PC(X)} .

Clearly, bca is a nonempty set-valued map from P(X) onto PC(X) such that {≿} = bca(≿)

for any ≿ ∈ PC(X).

8One could assess the size ofM(S,≿)△M(S,⊵) by using a measure on 2X other than the counting measure;

this generalization is pursued in [21] as well. However, in this paper we only consider the situation where the

choice alternatives are symmetric, so measure the size of the difference of choice sets simply by counting the

alternatives in their symmetric difference.
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3.2. Examples. Put compactly, our purpose in this paper is to investigate the map bca.

We begin with looking at some examples. Each of the following examples aim to highlight a

different property of this map.

Example 2. Let X = {x, a, a1, a2}, and consider the partial order ≿ on X whose asymmetric

part is given as a ≻ a1 ≻ a2; the Hasse diagram of ≿ is depicted in the left-most part of

Figure 2.

x s
≿

s

s
s
a

a1

a2

≿0

s

s
s
a, x

a1

a2

≿1

s

s
s
a

a1, x

a2

≿2

s

s
s
a

a1

a2, x

≿3

s

s
ss
x

a

a1

a2

≿4

s

s
ss
a

x

a1

a2

≿5

s
sss

a

a1

x

a2

≿6

s
sss

a

a1

a2

x

Figure 2

This partial order has exactly seven completions ≿0, ..., ≿6 whose Hasse diagrams are also

shown in Figure 2. Here we have D(≿,≿0) = 3, D(≿,≿1) = 5, and D(≿,≿2) = 6, and

D(≿,≿i) = 7 for i = 3, ..., 6. As we shall prove below that any best complete approximation

of a preorder is a completion of that preorder, it follows that bca(≿) = {≿0}. Incidentally,

this example illustrates that two completions – in fact, even two maximal completions – of

a partial order may stand at substantially varying distances from that partial order (relative

to D). □

Example 3. Let X = {x, a, a1, a2}, and consider the partial order ≿ on X whose asymmetric

part is given as a ≻ a1 ≻ a2 and a ≻ x; the Hasse diagram of ≿ is depicted in the left-most

part of Figure 3.

s
s s

s
a1

a2

a

x

s

s
s
a

x, a1

a2

s

s
s
a

a1

x, a2

≿ ≿0 ≿1

Figure 3
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This partial order has exactly two maximal completions ≿0 and ≿1 whose Hasse diagrams

are depicted in Figure 3. As we shall prove below that any best complete approximation

of a preorder is a maximal completion of that preorder, the one that is closer to ≿ is the

best complete approximation of ≿.9 As D(≿,≿0) = 1 < 2 = D(≿,≿1), therefore, bca(≿) =

{≿0}. This example illustrates that it is essential to determine exactly which incomparable

alternatives are to be declared indifferent when searching for a best complete approximation

of a given preference relation. □

Example 4. Let X = {x, y, a1, ..., ak}, where k ≥ 2. The best complete approximation of the

partial order ≿ whose Hasse diagram is given in Figure 4 is the preorder ≿0 whose Hasse

diagram is also given in Figure 4.

s
s

s ak
s

x

a1 a2
q q q q

≿ ≿0

s
y

s

s
s
x

a1, a2, ..., ak

y

Figure 4

Here we have D(≿,≿0) = 0, witnessing to the semimetric structure of D. □

Example 5. Let X = {x, a, a1, a2}, and consider the partial order ≿ on X whose asymmetric

part is given as a ≻ a1 and a ≻ a2; the Hasse diagram of ≿ is depicted in the left-most part

of Figure 5.

s
s

s
s
a2

x

a

a1

s

s

x, a

a1, a2

s

s

a

x, a1, a2

≿ ≿0 ≿1

Figure 5

9For this reason, non-maximal completions of ≿ are omitted in Figure 3. They are ruled out as candidates

for the bca of the preference relation ≿ by Theorem 2 in Section 4.
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This partial order has two maximal completions ≿0 and ≿1 whose Hasse diagrams are also

depicted in Figure 5. Consequently, by Theorem 2 (below), the one that is closer to ≿ is

the best complete approximation of ≿. Since D(≿,≿0) = 4 = D(≿,≿1), therefore, bca(≿

) = {≿0,≿1}. This example demonstrates that a partial order may have more than one best

complete approximation. □

Remark. Let X = {x, a1, ..., a9}, and let ≿ be the preorder on X such that

a1 ≻ a2 ∼ a3 ≻ a4 ∼ a5 ∼ a6 ∼ a7 ∼ a8 ∼ a9

with x being incomparable with any other element of X. Let ≿1 be the completion of ≿ such

that x ∼ a1, ≿2 the completion of ≿ such that x ∼ a2, and ≿3 the completion of ≿ such that

x ∼ a4. Then, D(≿,≿1) = D(≿,≿2) = D(≿,≿3), and indeed we have bca(≿) = {≿0,≿1,≿2

}. This construction can be generalized in the obvious way to show that for every positive

integer k, there is a preorder that has k many best complete approximations.

Example 6. Let X = {x1, ..., x6}. Consider the partial orders ≿1 and ≿2 whose Hasse

diagrams are depicted in Figure 6. In the jargon of order theory, ≿1 is called the 6-fence,

and ≿2 the 6-crown.

s
s
s

s s
sx2 x4 x6

x1 x3 x5

s
s
s

s s
sx2 x4 x6

x1 x3 x5

s

s

x2, x4, x6

x1, x3, x5

≿1 ≿2 ≿3

Figure 6

The only maximal completion of either ≿1 or ≿2 is the preorder ≿3 whose Hasse diagram

is shown in the right-most part of Figure 6. By Theorem 2 (below), ≿3 is thus the best

complete approximation to both ≿1 and ≿2. □

3.3. Best Complete Approximations relative to dKSB. The best complete approxima-

tion problem is one of computing the metric-projection operator from P(X) onto PC(X),

and it is meaningful relative to any metric on P(X). Given the motivation sketched above

and in [21], we work in this paper only with the top-difference metric D. However, as the

Kemeny-Snell-Bogart metric is the standard of the field, it should be instructive to point out

what the best complete approximations of a partial order on X with respect to dKSB look

like. This is the content of the next observation.
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Proposition 1. Let ≿ be a preference relation on X. Then,

dKSB(≿,≿∗) = min{dKSB(≿,⊵) :⊵∈ PC(X)}

for every strict completion ≿∗ of ≿.

Recall that a strict completion of a preference relation completes that relation in a way

that strictly ranks any two previously incomparable alternatives. The upshot of Proposition

1 is that every such completion of ≿ is a nearest complete preference relation to ≿ relative

to the Kemeny-Snell-Bogart metric.

As it is mainly of side interest for the present paper, we leave the (easy) proof of this result

to the reader. We presented it here because it demonstrates that dKSB is too coarse a metric

to be useful for the best complete approximation problem. There may be vastly dissimilar

relations in the set of all strict completions of a preference relation on X, but dKSB qualifies

any of these as a best complete approximation of that preference relation.

In particular, relative to dKSB, every linear completion of a partial order is a best complete

approximation of that partial order. For instance, in the case of the preference relation ≿ of

Example 2, ≿3,≿4,≿5 and ≿6 are all best complete approximations of ≿ relative to dKSB.

These are quite distinct from each other (even by the assessment of dKSB), witnessing the

coarseness of dKSB. This example also shows how differently D and dKSB behave with respect

to the best complete approximation problem.

4. Dual Characterization of Best Complete Approximations

4.1. The Main Theorem. A bca ≿∗ of a preference relation ≿ on X is chosen from the set

of all complete preference relations on X. It seems reasonable, even desirable, that ≿∗ be a

completion of ≿. While it is not at all designed with this goal in mind, it does deliver this

property.

Theorem 2. Every best complete approximation of a preference relation ≿ on X is a maximal

completion of ≿.

Determining the bca of a preference relation ≿ on X requires minimizing D(≿, ·) on the

set PC(X). Foremost, Theorem 2 says that we can take as the feasible set of this problem

as the set of all completions of ≿. This set is much smaller than PC(X), so Theorem 2

provides substantial information about where the metric-projection of ≿ is actually located

within PC(X). However, for large X, the number of completions of a preorder may still be
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very large.10 To counter this, Theorem 2 provides a second pointer regarding the location

of bca(≿); it says that it suffices to look only at the maximal completions of ≿. We have

already seen in Examples 3, 5 and 6 how useful this pointer may be.

It is not hard to prove that among the completions of a preference relation ≿ on X only

the maximal ones can be a best complete approximation of ≿. The crux of Theorem 2 is

really the fact that bca(≿) is contained entirely within the set of completions of ≿. We

found proving this to be a difficult exercise. When comparing a completion ≿∗ of ≿ with

another complete preference relation ⊵, it is often the case that there are many menus S for

which M(S,≿) and M(S,⊵) are closer to each other (in the sense of symmetric difference)

than M(S,≿) and M(S,≿∗) are. Consequently, proving that the sum of the cardinalities of

M(S,≿)△M(S,⊵) exceeds that of M(S,≿)△M(S,≿∗), where the sums run over all menus

S, requires a rather intricate combinatorial argument. This is responsible for the long proof

of Theorem 2 which is presented in the Appendix.

4.2. Index of a Preorder. We aim to use Theorem 2 to provide an operational character-

ization of the bca map. To this end, we need to develop some order-theoretic machinery.

Let ≿ be a transitive relation on X. For any x ∈ X, we denote the down-set (or the

principal ideal) and the up-set (or the principal filter) of x with respect to ≿ by x↓,≿ and

x↑,≿, respectively. That is,

x↓,≿ := {y ∈ X : x ≿ y} and x↑,≿ := {y ∈ X : y ≿ x}

for any x ∈ X. In turn, we define the ≿-score of any x ∈ X as the cardinality of the family

of all subsets of the down-set of x with respect to ≿. We denote this number by score(x,≿),

that is,

score(x,≿) := 2|x
↓,≿|, x ∈ X.

The index of a complete preorder ≿ on X is defined as the sum of ≿-scores of the elements

of X. We denote this number by I(≿), that is,

I(≿) :=
∑
x∈X

score(x,≿).

This defines the index under the completeness hypothesis. We extend the index to the set of

all preorders ≿ on X as:

I(≿) := max{I(≿) :≿∗∈ PC(X,≿)},

10For an arbitrary finite set X, an exact formula for this number is not known. It is, however, shown

by Brightwell and Winkler [8] that the problem of counting all linear completions of a partial order is #P-

complete (so it is at least as hard as an NP-complete problem). It is not known if any #P-complete problem –

in particular, determining the number of linear completions of a preorder – can be solved in polynomial time.
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where PC(X,≿) stands for the family of all completions of ≿.

We emphasize that I is an increasing map on PC(X) relative to the containment order.

(Indeed, for any complete preorders ≿ and ⊵ on X such that ≿ ⊆ ⊵, we have x↓,≿ ⊆ x↓,⊵

for every x ∈ X, whence I(≿) ≤ I(⊵).) Consequently, we have the following more economic

characterization of the index: For any preorder ≿ on X:

I(≿) := max{I(≿) :≿∗∈ P∗
C(X,≿)},

where P∗
C(X,≿) stands for the family of all maximal completions of ≿.

To give a few immediate examples, let us assume that X has n elements. As the score of

any element of X with respect to the everywhere-indifferent relation X ×X is 2n, we have

I(X ×X) = n2n; this is the largest index any preorder on X may have. Since X ×X is the

only maximal completion of the equality relation on X, we also have I(=) = n2n. At the other

extreme are linear orders. Let ≿ be a linear order on X, and enumerate X as {x1, ..., xn}
where xn ≻ · · · ≻ x1. Then, clearly, score(xi,≿) = 2i for each i = 1, ..., n. It follows that

the index of any linear order ≿ on X is
∑n 2i, that is, I(≿) = 2(2n − 1); this is the smallest

index any preorder on X may have.

These examples identify the lower and upper bounds on I which are worth putting on

record:

(1) 2(2n − 1) ≤ I(≿) ≤ n2n for any ≿∈ P(X)

where n is the cardinality of X. We will use the second of these bounds shortly.

Before looking at less trivial examples, we should explain why we are interested in the

notion of the index for preorders.

4.3. A Duality Theorem. Our objective is to obtain an operational method of computing

best complete approximations of a preference relation on X. To this end, we will utilize the

following alternative method of computing the top-difference semimetric D.

Lemma 3. For any preorders ≿ and ⊵ on X, we have

(2) D(≿,⊵) =
∑
x∈X

[
2n−|x↑,▷|−1 + 2n−|x↑,≻|−1 − 2αx(≿,⊵)+1

]
where αx(≿,⊵) is the total number of a ∈ X\{x} such that neither a ≻ x nor a ▷ x holds.

This formula does not have the elegance, let alone the intuition, of the original definition

of D. It is, however, exceptionally operational, especially when combined with Theorem 2.

To see what we mean by this, fix an arbitrary preorder ≿ on X, and recall that PC(X,≿)
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denotes the set of all completions of ≿. We know from Theorem 2 that bca(≿) ⊆ PC(X,≿),

so

bca(≿) = argmin{D(≿,≿∗) :≿∗∈ PC(X,≿)}.

In view of Lemma 3, therefore,

bca(≿) = argmin

{∑
x∈X

2n−|x↑,≻∗ |−1 −
∑
x∈X

2αx(≿,≿∗)+1 :≿∗∈ PC(X,≿)

}
.

But, clearly, n− |x↑,≻∗ | = |x↓,≿∗ | for every ≿∗∈ PC(X) and x ∈ X. Therefore,

bca(≿) = argmin

{∑
x∈X

2|x
↓,≿∗ |−1 −

∑
x∈X

2αx(≿,≿∗)+1 :≿∗∈ PC(X,≿)

}
.

Moreover, for any ≿∗∈ PC(X,≿),

not a ≻∗ x implies not a ≻ x

so, since ≿∗ is total,

{a ∈ X : not a ≻ x and not a ≻∗ x} = {a ∈ X : not a ≻∗ x} = x↓,≿
∗
.

Consequently, αx(≿,≿∗) =
∣∣x↓,≿∗∣∣− 1. It follows that

bca(≿) = argmin

{∑
x∈X

2|x
↓,≿∗ |−1 −

∑
x∈X

2|x
↓,≿∗ | :≿∗∈ PC(X,≿)

}
.

Since 2k−1 − 2k = −2k−1 for every nonnegative integer k, we thus find

bca(≿) = argmin

{
−

∑
x∈X

2|x
↓,≿∗ |−1 :≿∗∈ PC(X,≿)

}
.

Recalling that score(x,≿∗) := 2|x
↓,≿∗ | for any x ∈ X, we conclude that bca(≿) is the set of

all completions of ≿ with the largest index. Thus:

Theorem 4. For any preference relation ≿ on X,

bca(≿) = {≿∗∈ P∗
C(X,≿) : I(≿) = I(≿∗)} .

The bca of a preference relation is defined as the solution set of a constrained minimization

problem. Theorem 4 is a duality theorem in the sense that it characterizes the bca of any

preference relation as the solution set of a constrained maximization problem. To find the

best complete approximations of a given preference relation ≿ on X, it is evidently enough

to identify those maximal completions of ≿ with the largest index. While the definition of

bca(≿) makes it transparent why this concept is useful, it is not conducive to computing it.

By contrast, the dual characterization of bca(≿) given in Theorem 4 is significantly easier
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to compute. The next two examples aim to illustrate this point. We will provide more

substantial applications of this duality approach in Section 5.

Example 7. Let X = {x, a, a1, ..., ak} where k ≥ 2, and consider the partial order ≿ on X

whose asymmetric part is given as a ≻ ai for each i = 1, ..., k; the Hasse diagram of ≿ is

depicted in the left-most part of Figure 7.

s
s

s
ss q q q
ak

x

a

a1 a2

s

s

x, a

a1, ..., ak

s

s

a

x, a1, ..., ak

≿ ≿0 ≿1

Figure 7

Clearly, in any completion of ≿, we must have a above the alternatives a1, ..., ak. In turn,

a1, ..., ak can be ranked in any way among themselves (regardless of where x is ranked). But

if ≿∗ is a maximal completion of ≿, we must have a1 ∼∗ · · · ∼∗ ak. (Suppose this is false,

and let i be the smallest number in {1, ..., k} such that aj ≻∗ ai for some j ∈ {1, ..., k}, and
let j be the smallest such number. Then, “moving up” ai to the rank of aj (that is, declaring

them indifferent) while keeping all other rankings the same, yields another completion of ≿

which contains ≿∗ as a proper subset, contradicting the maximality of ≿∗.)

It remains to determine where x is ranked in a maximal completion ≿∗ of ≿. The fact that

≿∗ is a completion of ≿ does not give any clues about this, because x is not ≿-comparable

with any of the other alternatives in X. But, again due to the maximality of ≿∗, it must be

the case that either x ∼∗ a or (exclusive) x ∼∗ a1 ∼∗ · · · ∼∗ ak. Consequently, by Theorem

2, we are sure to have bca(≿) ⊆ {≿0,≿1}, where ≿0 is the completion that corresponds to

the first case and ≿1 is the completion that corresponds to the second; see Figure 7.

The indices of ≿0 and ≿1 are readily computed: I(≿0) = 2(2k+2)+k2k and I(≿1) = 2k+2+

(k+1)2k+1. For k = 2, these numbers both equal 40, so Theorem 4 says bca(≿) = {≿0,≿1},
verifying what we have already seen in Example 5. Moreover, dividing both sides of the

inequality I(≿0) < I(≿1) by 2k, we see that this inequality holds iff 8+ k < 4+2(k+1), that

is, 2 < k. By Theorem 4, therefore, bca(≿) = {≿1} whenever k ≥ 3. □

Remark. Example 7 illustrates that the set of maximal elements relative to a preference

relation ≿ may be a proper superset of the set of maximum elements relative to the best

complete approximation of ≿. Maximizing the best complete approximation of a preference
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relation on feasible set may thus provide a sharper prediction than maximizing that relation

itself.

Example 8. Let X := {α, x, y, a, b, c, d}, and consider the partial order ≿ on X whose Hasse

diagram is depicted in Figure 8.

s
s s

s
x

y

α

a

s s s
b c d

s

s
s
α

a, x

b, c, d, y

s

ss
sαa
b, c, d, x

y

s

ss
sαx
a, y

b, c, d

≿ ≿0 ≿1 ≿2

Figure 8

Reasoning as in the previous example, one can show that ≿ has exactly three maximal

completions ≿0, ≿1 and ≿2 whose Hasse diagrams are also presented in Figure 8. It is

not readily apparent in this example which of these complete preference relations on X is

closer to ≿ (relative to D). This matter is readily settled by Theorem 4. Indeed, I(≿0

) = 27 + 2(26) + 4(24) = 27 + 192, I(≿1) = 27 + 26 + 4(25) + 2 = 27 + 194, and I(≿2) =

27 + 26 + 2(25) + 3(23) = 27 + 152. We thus conclude that bca(≿) = {≿1}. □

5. Applications

In this section we compute the best complete approximations of a few well-known partial

orders at a general level. In particular, we look at the all-important containment order on an

arbitrary power set and the refinement order on the set of all partitions of a finite set. We

also consider the prefix order which is used in dynamic analysis and problems of information

processing, as well as the standard coordinatewise ordering of R2, restricted to any finite

grid. These applications are, in fact, special cases where the best complete approximation

of a given preorder is of a particular form (which we call the canonical completion). We

thus start this section by establishing a general result that gives a sufficient condition for

“the” best complete approximation of a partial order to be of this form. The partial orders

mentioned above are then shown to satisfy this condition. The said general result, and hence

the applications of this section, rely imperatively on our duality theorem (Theorem 4).

5.1. Canonical Completions. Among the maximal completions of a preorder on X, an

important one is its canonical completion. This is obtained by first identifying the maximal
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elements of X and then dropping those elements from X, and identifying the maximal ele-

ments of the remaining subset of X, and continuing this way inductively until the entire X is

exhausted. One then declares all alternatives within each of these maximal sets indifferent,

and rank the first maximal set strictly above all others, the second strictly above all others

but the first one, and so on.

To define things formally, let ≿ be a preorder on X. Define

M
≿
1 := M(X,≿) and M

≿
i+1 := M(X\(M≿

1 ∪ · · · ∪M
≿
i ),≿), i = 1, 2, ...

Let us denote by m(≿) the largest integer m such that M
≿
m ̸= ∅. Obviously, {M≿

1 , ...,M
≿
m(≿)}

is a partition of X. Consequently, the binary relation ≿∗ on X is well defined by

x ≿∗ y iff (x, y) ∈ M
≿
i ×M

≿
j with i ≤ j.

It is plain that ≿∗ is a maximal completion of ≿; we call this total preorder the canonical

completion of ≿.

Canonical completion of a preorder is relatively easy to compute. Indeed, the definition

of this completion is algorithmic to begin with. It is thus natural to ask under what sorts

of conditions the canonical completion of a preference relation is indeed the best complete

approximation to that preference relation. We next offer a sufficient condition for this (which

is imposed on an arbitrary preference relation ≿ on X).

Condition (∗). For any i ∈ {1, ...,m(≿)} and nonempty proper subset S of M
≿
i ,

I(≿Y ) < 2|S|+|Y |

where Y is the set of all y ∈ X such that x ≻ y for some x ∈ S but x ≻ y for no x ∈ Mi\S.11

Admittedly, this condition does not steal one’s heart at first sight. It is, however, fairly

straightforward to check in specific instances. In particular, it is trivially satisfied by any

linear order. It is also readily checked that it is satisfied in Examples 2, 3, 4 and 6. In the

case of Example 5, it is weakly satisfied. (In that example, for i = 1 and S := {a}, we have

Y = {a1, a2}, so I(≿Y ) = 2(22) = 21+2 = 2|S|+|Y |.) In Example 7, the condition is again

weakly satisfied for k = 2. However, it fails for any k ≥ 3. To see this, note that m(≿) = 2

and M
≿
1 = {x, a} and M

≿
2 = {a1, ..., ak} in that example. Then, for i = 1 and S = {a}, we

11Here Y of course depends on both i and S; we do not use a notation that makes this explicit only to

simplify the statement of the condition. We also recall that ≿Y stands for the restriction of ≿ to Y (Section

2.1). In addition, it is understood here that I(≿∅) = 0 so that the required inequality is trivially satisfied

when Y = ∅.
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have Y = {a1, ..., ak}, so I(≿Y ) = k2k > 21+k = 2|S|+|Y | whenever k > 2. A similar analysis

shows that the partial order of Example 8 fails Condition (∗) as well.12

Out interest in Condition (∗) stems from the following fact, which is the final main result

of the present work.

Theorem 5. The only best complete approximation of a preference relation ≿ on X that

satisfies Condition (∗) is the canonical completion of ≿.13

This result is a showcase for the use of our duality theorem (Theorem 4). It seems inpenetrable

with the principal definition of best complete approximations. Its proof, and thus all of our

subsequent applications, are based on Theorem 4.

5.2. Complete Approximation of the Containment Order. Let Z be any nonempty

finite set, which we view as mutually exclusive choice prospects. A menu-preference is

simply a preorder on the power set 2Z . A major branch of decision theory, which was started

by the seminal work of Kreps [20], is dedicated to the investigation of such preferences. In

this literature, a menu is at present evaluated from the perspective of what will potentially

be chosen from it at a later date. Menu preferences also figure prominently in social welfare

theory where menus are interpreted as sets of (unquantifiable) opportunities (such as rights,

freedoms, etc.). In this literature, a menu is valued on its own right.

Insofar as one wishes to consider menu preferences that value “flexibility” from the decision-

theoretic perspective, and/or consider the elements of Z as “desirable” from the social welfare

perspective, a natural condition to impose on a preference ≿ on 2Z is that it be increasing

relative to the containment ordering, that is, A ≿ B for every A,B ⊆ Z with A ⊇ B.

Obviously, the smallest menu-preference that respects this condition is the containment order

⊇ on 2Z itself.14 This is a very intuitive partial order whose use is, of course, ubiquitous.

(After all, every finite Boolean algebra is a power set ordered by ⊇.) It is thus natural

to inquire into the best way we can approximate the containment order on 2Z by a total

preorder. Our next result provides the answer.

12Example 8 also demonstrates that a preference relation may have the unique best complete approximation

that do not coincide with its canonical order in general.
13The proof of this result, which we present in the Appendix, will actually deliver a bit more. It will show

that if Condition (∗) is satisfied weakly (in the sense that some (or all) of its required strict inequalities hold

as equalities), then the canonical completion of the preference relation ≿ belongs to bca(≿), but it may not

be the only member of bca(≿).
14Ergin [14] characterizes all completions of this ordering from a decision-theoretic perspective.
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Proposition 6. Let Z be a nonempty finite set and ⊇ the containment order on 2Z . Then,

bca(⊇) = {≥card}

where ≥card is the cardinality ordering on 2Z .

Thus, the total preorder on 2Z that is closest to the containment order on 2Z from the

perspective of menu choices is the one that ranks menus simply on the basis of the number

of elements they contain. Curiously, the cardinality ordering is one of the ordering meth-

ods that has received attention in the social choice literature on preferences over sets; see,

for example, Pattanaik and Xu [22] for an axiomatic characterization of this ordering, and

Barberà, Bossert, and Pattanaik [3] for an excellent overview of the related literature.

In passing, we emphasize that Proposition 6 is not meant as an argument for using the

cardinality ordering in practice. If there are a priori reasons to distinguish between the

significance of the elements of Z, one would of course not pay much heed to this ordering

(cf. [18]). Proposition 6 instead says that if we take the flexibility motive as the only arbiter

of evaluating menus, then from the perspective of menu-choice, the one complete preference

whose implied choices (in the aggregate) come closest to those that are based on that motive

alone is none other than ≥card.

Remark. It may be worth noting that the conclusion of Proposition 6 is not at all what one

would get if we used the Bogart-Kemeny-Snell metric instead of the top-difference metric. To

wit, consider the case where Z := {x, y}. Then, there are two best complete approximations

of ⊇ on 2Z with respect to dKSB, neither of which is the cardinality ordering. Denoting these

approximations by ≿1 and ≿2, we have {x, y} ≻1 {x} ≻1 {y} ≻1 ∅ and {x, y} ≻2 {y} ≻2

{x} ≻2 ∅.

Let us now turn to the proof of Proposition 6. All we need is:

Lemma 7. Let Z be a nonempty finite set. The containment order ⊇ on 2Z satisfies Condition

(∗).

Proof. We have m(⊇) = |Z| + 1 and M⊇
i = {S ⊆ Z : |S| = |Z| + 1 − i} for each

i = 1, ...,m(⊇). Fix an arbitrary i in {1, ...,m(⊇)}. Since M⊇
1 is a singleton (consisting only

of Z), we only need consider the case i > 1. To simplify the notation, put m := |Z|+ 1− i;

note that m < |Z|. Now take any nonempty proper subset T of M⊇
i , and define

Y := {S ⊆ Z : S ⊂ T for some T ∈ T and S ⊈ T for any T ∈ M⊇
i \T }.
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We wish to show that |Y | < 2|T |. Since I(⊇Y ) ≤ |Y | 2|Y | – recall (1) – this will complete the

proof of the lemma.

We first observe that for any S ∈ Y and any x ∈ Z\S, there is an m-element subset T ′ of

Z such that S ⊂ T ′ but x /∈ T ′. Indeed, for any such S and x, there is a T ∈ T with S ⊂ T.

Since T ⊆ M⊇
i , and every element of M⊇

i has m elements, |T | = m < |Z| , which means

Z\T ̸= ∅. Then, for any y ∈ Z\T,

T ′ :=

{
T, if x /∈ T,

(T\{x}) ∪ {y}, if x ∈ T,

is an m-element subset of Z that does not contain x.

Now consider the map f : Y → 22
Z
with f(S) := {T ⊆ Z : S ⊂ T and |T | = m}. By the

first part of the definition of Y, f(S) is nonempty for every S ∈ Y. By the second part of

that definition, for any S ∈ Y and T ∈ f(S), we have T ∈ T . Thus: f(Y ) ∈ 2T . Besides,

by definition of f, we have S ⊆
⋂
f(S) for every S ∈ Y. In turn, what we have found in the

previous paragraph entails that the converse containment holds as well. Thus: S =
⋂
f(S)

for every S ∈ Y. But then, obviously, f(S) = f(S′) implies S = S′ for any S, S′ ∈ Y. This also

shows that, for any T ∈ T , there is no S ∈ Y with f(S) = {T}; otherwise, S =
⋂
f(S) = T

while |S| < m = |T |. We conclude that f is a non-surjective injection from Y into 2T , which

means |Y | < 2|T |, completing our proof. ■

Combining Theorem 5 and Lemma 7, we see that the only best complete approximation

of the containment order on the power set of a given nonempty finite set Z is its canonical

completion. But it is plain that the canonical completion of the containment order on 2Z is

the cardinality ordering on 2Z . Proposition 6 is thus proved.

5.3. Complete Approximation of the Refinement Order. Let Z be again a nonempty

finite set, but this time let us view it as a state space in a context of uncertainty. In this

context, information about the (unobserved) states is often modeled as partitions of Z.

While its origins go about ten years earlier in the mathematics literature, this approach was

pioneered in economics by Aumann [2]. Let Par(Z) denote the family of all partitions of Z.

We refer to the elements of a partition of Z as cells of that partition, and denote by Par(Z, i)

the family of all partitions of Z that have exactly i many cells, where i = 1, ..., |Z|.
The refinement order ⊒ is the partial order on Par(Z) with S ⊒ T iff for every T ∈ T

there is an S ∈ S such that S ⊇ T. (When S ⊒ T , we say that T is at least as fine as S.)
This serves as an unambiguous criterion of informativeness; if S ⊒ T , then T is “at least

as informative as” S. In other words, the reverse of the partial order ⊒ can be viewed as a

natural “preference for information.” According to this interpretation, the most informative



22 HIROKI NISHIMURA AND EFE A. OK

partition is the ⊒-minimum of Par(Z), namely, {{z} : z ∈ Z}, while the least informative

partition is the ⊒-maximum of Par(Z), namely, {Z}.15

In this section, our goal is to determine the best complete approximation of ⊒ . Let us

begin with the end result:

Proposition 8. Let Z be a nonempty finite set. The best complete approximation of the

refinement order ⊒ on Par(Z) is the complete preorder ⊒∗ on Par(Z) with

S ⊒∗ T iff S has at most as many cells as T .

We will prove this along the same lines as we proved Proposition 6 above. Indeed, it is

easy to see that the order ⊒∗ is none other than the canonical completion of the refinement

order on Par(Z). Consequently, Proposition 8 will follow from Theorem 5, provided we can

show that ⊒ satisfies Condition (∗).
Before we do this, let us note that Par(Z) becomes a lattice when endowed with ⊒.16

Relative to this order, the greatest lower bound of any nonempty subset P of Par(Z) – as

usual, we denote this by
∧
P – is the partition obtained by intersecting all the cells of all the

members of P. In other words, a nonempty subset S of Z is a cell of
∧
P iff it is the largest

subset of Z that fits within a single cell from each member of P. (The lowest upper bounds

of subsets of Par(Z) are a bit harder to describe, but we will not need them here.)

Observe that m(⊒) = |Z| and M⊒
i = Par(Z, i) for each i = 1, ..., |Z|. Fix an arbitrary

i in {1, ..., |Z|}. Since M⊒
1 and M⊒

|Z| are singletons, we only need consider the case where

|Z| > i > 1. Now take an arbitary nonempty proper subset T of M⊒
i , and let Y stand for

the set of all partitions S of Z such that T ⊐ S for some T ∈ T but not T ⊐ S for any

T ∈ M⊒
i \T. (We assume Y is nonempty, for otherwise there is nothing to prove.) We wish to

show that |Y | < 2|T|. In view of the arbitrary choice of i and T, and because I(⊒Y ) ≤ |Y | 2|Y |

by (1), this will complete the proof that ⊒ satisfies Condition (∗).
Define the map f : Y → 2Par(Z) by

f(S) := {T ∈ Par(Z, i) : T ⊐ S}.

15This way of thinking about “preference for information” is quite common in theoretical information

economics. Dubra and Echenique [12], for instance, refer to any complete preference relation on Par(Z) that

extends the reverse of ⊒ as monotone, and investigate the utility-representations of such relations.
16This lattice is called the partition lattice, and it is, in fact, universal. Indeed, a famous result of lattice

theory, the Pudlák-Tûma theorem, says that every finite lattice can be (lattice-)embedded in a finite partition

lattice.
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By the first part of the definition of Y, f(S) ̸= ∅ for every S ∈ Y. And by the second part

of that definition, for every S ∈ Y and T ∈ f(S), we have T ∈ T. Thus, the range of f is

contained in 2T, which means we can consider f as a map from Y into 2T.

Now take any S ∈ Y, and enumerate it as {S1, ..., Sk}. Since S ∈ Y, there is a partition

T of Z with i many cells such that T ⊐ S. Clearly, this implies k > i ≥ 2. Moreover, by

definition of f, we have T ⊐ S for every T ∈ f(S), that is, S is a ⊒-lower bound for f(S).
Let R be another ⊒-lower bound for f(S). We claim that S ⊒ R. To see this, take any cell

R of R. To derive a contradiction, suppose R is not contained in any of the cells of S. Then,
R must intersect at least two cells of S. Relabelling if necessary, let us suppose R intersects

S1 and Sk. Then, for T := {S1, ..., Si−1, Si ∪ · · · ∪ Sk}, we have T ∈ Par(Z, i) and T ⊐ S
(whence T ∈ f(S)) but not T ⊐ R. This contradicts R being a ⊒-lower bound for f(S),
thereby proving our claim. We thus conclude that S =

∧
f(S).

In view of what we have just found, f(S) = f(S ′) implies S = S ′, that is, f is an injection.

Besides, for any T ∈ T, there is no S ∈ Y with f(S) = {T }, for, otherwise, S =
∧
f(S) = T ,

but this is impossible because T ⊐ S. We conclude that f is a non-surjective injection from

Y into 2T, which means |Y | < 2|T|, as we sought.

5.4. Complete Approximation of Prefix Orders. A partial order ≿ on a nonempty

finite set X is said to be a prefix order if for any x, y, z ∈ X with x ≿ y and x ≿ z,

the elements y and z are ≿-comparable. Such partial orders generalize tree-orders, and are

used to model “time” in models of dynamics. For, their defining condition, which is called

downward totality, corresponds to the idea that while the “future” of a system may branch

out in various ways from a given point in time, its “past” is totally ordered. In computer

science, prefix orders arise also in models of information transmission, as the next example

illustrates.

Example 9. Let n be any positive integer, and A a finite set of n elements. For an arbitrarily

fixed k ∈ N, we put Σk := A ∪ A2 ∪ · · · ∪ Ak. We may interpret the elements of X as

the information encoded in n-ary form. In this context, A is called an alphabet and Σk is

viewed as the words that can be obtained by means of this alphabet. The length of a word is

simply the number of letters it contains. In turn, we think of longer words containing more

information with a k-long word being the most informative one. This is captured by the

partial order ≿ on Σk defined by

x ≿ y iff y is an initial substring of x,



24 HIROKI NISHIMURA AND EFE A. OK

where the latter statement means that if y is of the form (a1, ..., ai), then either x = y or x is

of the form (a1, ..., ai, ai+1, ..., aj) for some integer j ∈ {i+ 1, ..., k}. It is plain that ≿, which

is sometimes called the word-order, is a prefix order on Σk. □

The structure of a prefix order is quite different than the containment ordering. But it

turns out that their best complete approximations are obtained in the same way. This is

because:

Lemma 9. Every prefix order ≿ on a finite set X satisfies Condition (∗).

Proof. Fix an arbitrary i in {1, ...,m(≿)}, take any nonempty proper subset S of M
≿
i , and

define

Y := {y ∈ X : x ≻ y for some y ∈ S and x ≻ y for no y ∈ M
≿
i \S}.

Let us enumerate S as {x1, ..., xk}, and put Sj := {y ∈ Y : xj ≻ y}, j = 1, ..., k. For

each j, the downward totality property of ≿ entails that the restriction of ≿ (and hence

of ≿Y ) to Sj is total; we enumerate Sj as {y1,j , ..., ynj ,j} where y1,j ≻ · · · ≻ ynj ,j . Now

let ⊵ be any completion of ≿Y . Then, for each j = 1, ..., k and t = 1, ..., nj , we have

y↑,▷t ⊇ {yt−1, ..., y1, xj}, so |y↑,▷t | ≥ t. Given that ⊵ is total, and letting n := |Y |, this

means |y↓,⊵t | − n = −|y↑,▷t | ≤ −t, that is, score(yt,⊵) ≤ 2n2−t for each such j and t. Since

Y ⊆ S1 ∪ · · · ∪ Sk, it follows that

I(⊵) =
∑
y∈Y

score(y,⊵) ≤ 2n
k∑

j=1

nj∑
t=1

2−t ≤ 2n
k∑

j=1

1 = k2n ≤ 2k+n.

In view of the arbitrary choice of ⊵, we thus conclude that I(≿Y ) ≤ 2|S|+|Y | which was to be

proved. ■

Combining Lemma 9 and Theorem 5 yields:

Proposition 10. The only best complete approximation of a prefix order on a finite set is its

canonical completion.

Thus, in the context of Example 9, the unique best complete approximation of the word-

order ≿ is the complete preorder ≿∗ on Σk defined as x ≿∗ y iff the length of the word x

exceeds that of y.

Remark. In the context of Example 9, the unique best complete approximation of ≾ is its

canonical completion as well. But ≾ does not satisfy Condition (∗), unless k = 1. We thus see
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that Condition (∗) is a sufficient, but not necessary, requirement for the canonical completion

of a preorder to be its unique complete approximation.

Remark. The partial orders we have considered so far in this section are structurally distinct

from each other, so Propositions 6, 8 and 10 are not nested. For any nonempty finite set

Z, the poset (2Z ,⊇) is a distributive (even, Boolean) lattice, while it is well-known that

(Par(Z),⊒) is not modular unless |Z| < 4, let alone distributive. And endowing a nonempty

finite set with a prefix order does not even yield a lattice in general.

5.5. Complete Approximation of the Coordinatewise Ordering. The most common

way of ordering finite-dimensional vectors is by means of comparing them coordinate by

coordinate. Restricting our attention to the two-dimensional case for simplicity, this ordering

ranks a 2-vector higher than another 2-vector iff each component of the first vector is at least

as large as the corresponding components of the second vector. To bring it into the realm of

the present paper, we look at the restriction of this ordering to a finite (but arbitrary) grid

in R2. Formally, take any m ∈ N, and denote by zi for the ith component of any 2-vector z.

We define the coordinatewise order ≿m on {1, ...,m}2 by x ≿m y iff x1 ≥ y1 and x2 ≥ y2.

(If we interpret the coordinates in this setting as the utility scales of two individuals, this is

none other than the familiar Pareto ordering.) Our question is: What is the best complete

approximation of this partial order?

There are, of course, numeous ways in which one can complete the coordinatewise order

(when m > 1). Among these, particularly interesting is the one that aggregates the coordi-

nates additively. We denote this total preorder by ≿+
m, that is, x ≿+

m y iff x1+x2 ≥ y1+y2. It

turns out that this preference relation is the only best complete approximation of the coordi-

natewise order on Xm. (If, again, we look at the coordinates as utility scales, this result says

that the unique bca of the Pareto ordering is obtained by means of utilitarian aggregation.)

Proposition 11. For any positive integer m, bca(≿m) = {≿+
m}.

Once again one can prove this result by first verifying that ≿m satisfies Condition (∗), and
then invoking Theorem 5. The required verification is not difficult, but a tad bit tedious. For

brevity, we leave it to the reader.

6. Future Research

The problem of approximating incomplete preferences with complete ones is a largely

unexplored area. The present paper provides only an initial investigation, and precipitates

several directions for future research.
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First, it seems desirable that we expand the set of preference relations with closed-form

best complete approximations. All of the applications we reported in Section 5 have these

approximations in the form of canonical completions. (Best approximations that are not

canonical completions are of interest, because the maxima of such an approximation would

be a proper subset of the maxima of the original (incomplete) preference relation on some

menus, thereby leading to more refined predictions of choice behavior.) In particular, a

concrete open problem in this regard is to determine the best complete approximations of

semiorders (and even interval orders) in general, as these are not covered by our Theorem 5

and play an important role in decision theory.

Second, the best complete approximation approach leads to a natural method of quan-

tifying how decisive a preference relation is. This is a fairly elusive problem. It is related

to the issue of measuring the extent of incompleteness of a preference relation, but it is not

quite the same problem. For instance, it is only natural that we qualify the “cannot compare

anything” relation and “everywhere indifferent” relation equally decisive, because both of

these relations are maximally indecisive, deeming anything choosable in any menu.17

The approach we outlined in this paper suggests that one may use the distance (relative to

the top-difference metric) between a preference relation on X and its best complete approxi-

mation as a measure of its indecisiveness. This seems quite reasonable, but it can meaningfully

compare two preference relations only when the domains of them have equal cardinality. To

be able to compare the decisiveness of two preference relations that are defined on alternative

spaces of varying cardinality, we need to normalize the minimum-distance computations with

the largest possible minimum-distance that can be obtained in the environment. This factor

is precisely the covering radius of PC(X) in P(X), that is, max{D(≿,≿∗) : ≿ ∈ P(X) and

≿∗ ∈ bca(≿)}). We do not presently know how to compute this radius for an arbitrary X.

Third, given that we work with a finite alternative space X here, it is only natural to look

for algorithms to sort out the best complete approximation problem, at least with respect

to some interesting classes of preference relations on X. The canonical completions can be

computed algorithmically, but other than that, little is known about how to tackle the best

approximation problem from a computational viewpoint.

Finally, we recall that the alternative spaces of most economic models are infinite, as in

consumer choice theory, time preferences, or decision theory under risk and uncertainty. In

these contexts, X is typically not finite, and often has itself an intrinsic metric structure. To

study the best complete approximation problem in such environments, one must thus first

17Karni and Vierø [16] have recently attacked the problem of measuring the incompleteness of preferences

(under risk or uncertainty) over two-outcome acts/lotteries. While very interesting, this approach does not

apply to our finitistic setting (as it is based on certainty equivalences). Furthermore, it aims at measuring the

extent of completeness of a preference relation, not its decisiveness across menus.
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extend the top-difference metric to the realm of preferences defined on an arbitrary metric

space, which is hardly a trivial matter. With this sort of an extension at hand, or when

an alternative distance function on preferences is chosen, the best complete approximation

problem becomes well-defined, but solving it will require an entirely new approach. This is

another wide open avenue of research which we hope to take in the future.

7. Proofs

The purpose of this section is to provide proofs for Theorem 2, Lemma 3, and Theorem 5.

7.1. Proof of Theorem 2. We divide the argument into two parts.

Lemma A.1. Let ≿ be a preorder on X, and ≿0 a best complete approximation of ≿. Then, ≻ ⊆
≻0.

Proof. By way of contradiction, let us assume that ≻ ⊆ ≻0 is false. As ≿0 is total, this means

B := {b ∈ X : a ≻ b ≿0 a for some a ∈ X}

is a nonempty set. We pick any ≿0-minimal element y of B and any x ∈ X with x ≻ y ≿0 x.

Let ≿1 be the preorder on X obtained from ≿0 by pulling down the ranking of y just below x.

Formally, ≿1 is the binary relation on X such that

≿1 |X\{y} = ≿0 |X\{y}

and {
a ≻1 y, if a ≿0 x

y ≻1 a, if x ≻0 a.

It is plain that≿1 is a total preorder onX such that x ≻1 y but there is no z ∈ X with x ≻1 z ≻1 y.Our

goal is to show thatD(≿,≿1) < D(≿,≿0); this will contradict≿0 being a best complete approximation

of ≿.

Consider the following sets:

A :=
{
S ∈ 2X : y /∈ m(S,≿0)

}
,

B :=
{
S ∈ 2X : {y} = m(S,≿0)

}
,

and

C :=
{
S ∈ 2X : y ∈ m(S,≿0) ̸= {y}

}
.

Obviously, 2X = A ⊔ B ⊔ C. We partition B further into the sets

B1 := {S ∈ B : z ≿0 x for some z ∈ S\{y}} and B2 := B\B1,

and C further into the sets

C1 := {S ∈ C : y ∈ M(S,≿)} and C2 := C\C1.
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Obviously,

2X = A ⊔ B1 ⊔ B2 ⊔ C1 ⊔ C2.

Now, if S ∈ A, then the definition of ≿1 implies readily that m(S,≿0) = m(S,≿1). On the other

hand, if S ∈ B2, then x /∈ S and y ≿0 x ≻0 S\{y}, whence m(S,≿0) = {y} = m(S,≿1) by definition

of ≿1. Thus, for any S ∈ A ⊔ B2, we have M(S,≿)△m(S,≿0) = M(S,≿)△m(S,≿1), so

(3) D(≿,≿1)−D(≿,≿0) =
∑

S∈B1⊔C1⊔C2

(∆S(≿,≿1)−∆S(≿,≿0)) .

We will next evaluate the sum of ∆S(≿,≿1)−∆S(≿,≿0) over B1, C1 and C2 separately.

Let S ∈ B1, and take any a ∈ m(S,≿1). By definition of B1, there is a z ∈ S\{y} with z ≿0 x. It

then follows from the definition of ≿1 that a ≻1 y. (In particular, a ̸= y.) But again by definition of

≿1, there is no w ∈ X with x ≻1 w ≻1 y. As ≿1 is total, therefore, we must have a ≿1 x, and hence,

a ≿0 x.

Now if y ≻ a, then since x ≻ a, we get x ≻ a ≿0 x, that is, a ∈ B. If, on the other hand, b ≻ a for

some b ∈ S\{y}, then since a ≿1 b (and both a and b are distinct from y), we get a ≿0 b, so we again

find a ∈ B. In other words, if a is not ≿-maximal in S, it must belong to B, but in that case, since

y was chosen as a ≿0-minimum of B, we get a ≿0 y which means {y} ̸= max(S,≿0), contradicting

S ∈ B. Since a was chosen arbitrarily in m(S,≿1), this argument proves:

m(S,≿1) ⊆ M(S,≿).

It follows that

∆S(≿,≿0) = |M(S,≿)△{y}| ≥ |M(S,≿)| − 1

while

∆S(≿,≿1) = |M(S,≿)\m(S,≿1)| ≤ |M(S,≿)| − 1.

Conclusion:

(4) ∆S(≿,≿1)−∆S(≿,≿0) ≤ 0 for every S ∈ B1.

Now take any S ∈ C1. In this case y ∈ m(S,≿0) ̸= {y} (because S ∈ C) so m(S,≿0) = m(S,≿1)⊔y.

Thus, since y is ≿-maximal in S (by definition of C1), we have

(M(S,≿)△m(S,≿0)) ⊔ y = M(S,≿)△m(S,≿1),

whence ∆S(≿,≿0) = ∆S(≿,≿1)− 1. Conclusion:

(5)
∑
S∈C1

(∆S(≿,≿1)−∆S(≿,≿0)) =
∣∣C1

∣∣ .
Finally, take any S ∈ C2. In this case we again have m(S,≿0) = m(S,≿1) ⊔ y (because S ∈ C).
Therefore, since now y is not ≿-maximal in S (by definition of C2), we have

M(S,≿)△m(S,≿0) = (M(S,≿)△m(S,≿1)) ⊔ y,
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whence ∆S(≿,≿0) = ∆S(≿,≿1) + 1. Conclusion:

(6)
∑
S∈C2

(∆S(≿,≿1)−∆S(≿,≿0)) = −
∣∣C2

∣∣ .
Combining (3), (5), and (6), we find

(7) D(≿,≿1)−D(≿,≿0) =
∑
S∈B1

(∆S(≿,≿1)−∆S(≿,≿0)) + (
∣∣C1

∣∣− ∣∣C2
∣∣).

Now note that if S ∈ C1, then x /∈ S. Moreover, in this case y /∈ M(S ⊔ x,≿) (because x ≻ y), so

S ⊔ x ∈ C2. Therefore, S 7→ S ⊔ x is an injection from C1 into C2, and hence

(8)
∣∣C1

∣∣ ≤ ∣∣C2
∣∣ .

To conclude the proof of Lemma 1, recall that y ≿0 x, so either y ≻0 x or y ∼0 x. In the latter case,

we have {x, y} ∈ C2 while {y} /∈ C1, which shows that S 7→ S ⊔ x is not a surjection from C1 onto C2,

whence
∣∣C1

∣∣ < ∣∣C2
∣∣. In view of (4) and (7), therefore, we have D(≿,≿1) < D(≿,≿0) when y ∼0 x. On

the other hand, if y ≻0 x, we have {x, y} ∈ B1 and ∆{x,y}(≿,≿1) = 0 < 2 = ∆{x,y}(≿,≿0) (because

M({x, y},≿) = {x} while {y} = m({x, y},≿0)). Combining this observation with (4) yields∑
S∈B1

(∆S(≿,≿1)−∆S(≿,≿0)) < 0,

and hence, in view of (8) and (7), we find D(≿,≿1) < D(≿,≿0) when y ≻0 x as well. The proof of

Lemma A.1 is now complete. ■

Lemma A.2. Let ≿ be a preorder on X, and ≿0 a best complete approximation of ≿. Then, ∼ ⊆
∼0.

Proof. By way of contradiction, let us assume that ∼ ⊆ ∼0 is false. As ≿0 is total, this means

that there exist x, y ∈ X such that

y ∼ x ≻0 y.

We let ≿1 stand for the preorder on X obtained from ≿0 by pulling down the ranking of x to the

same level with y, and ≿2 for the preorder on X obtained from ≿0 by pushing up the ranking of y to

the same level with x. Formally, ≿1 and ≿2 are the binary relations on X such that

≿1 |X\{x} = ≿0 |X\{x} and ≿2 |X\{y} = ≿0 |X\{y}

and {
a ≿1 x, if a ≿0 y

x ≻1 a, if y ≻0 a
and

{
a ≿2 y, if a ≿0 x

y ≻2 a, if x ≻0 a.

It is plain that ≿1 and ≿2 are total preorders on X.

Take any S ⊆ X. By Lemma A.1, we have m(S,≿0) ⊆ M(S,≿). The same is true for ≿1 and ≿2

as well. To see this, suppose a is not ≿-maximal in S, that is, b ≻ a for some b ∈ S. If b = x, then

y ∼ x ≻ a, so y ≻0 a by Lemma A.1, and hence b = x ≻1 a by definition of ≿1. If a = x, then b ≻0 x

(Lemma A.1), so b ≻1 x = a by definition of ≿1. On the other hand, we have b ≻0 a (Lemma A.1),
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so b ≻1 a surely holds when both a and b are distinct from x. We conclude that a is not ≿1-maximal

in S, as we claimed. Since the analogous reasoning applies to ≿2 as well, we conclude:

(9) m(S,≿i) ⊆ M(S,≿) for every S ⊆ X and i = 0, 1, 2.

In what follows, our objective is to prove that

(D(≿,≿1)−D(≿,≿0)) + (D(≿,≿2)−D(≿,≿0)) < 0.

This will imply that either D(≿,≿1) < D(≿,≿0) or D(≿,≿2) < D(≿,≿0), and yield the desired

contradiction to the hypothesis ≿0∈ bca(≿). With this goal in mind, we note that (9) implies

∆S(≿,≿1)−∆S(≿,≿0) = (|M(S,≿)| − |m(S,≿1)|)− (|M(S,≿)| − |m(S,≿0)|)

for each S ⊆ X. We thus have

(10) D(≿,≿1)−D(≿,≿0) =
∑
S⊆X

(|m(S,≿0)| − |m(S,≿1)|) ,

and similarly,

(11) D(≿,≿2)−D(≿,≿0) =
∑
S⊆X

(|m(S,≿0)| − |m(S,≿2)|) .

We will evaluate these sums by partitioning 2X suitably.

We start with (10). First, we define

A := {S ∈ 2X : x /∈ S or {x} = S}.

Next, we partition X into the following sets (some of which may be empty):

X1 := {a ∈ X : a ≻0 x} and X2 := {a ∈ X : a ∼0 x},

X3 := {a ∈ X : x ≻0 a ≻0 y},

and

X4 := {a ∈ X : a ∼0 y} and X5 := {a ∈ X : y ≻0 a}.

Then, we define

Bi := {S ∈ 2X\{∅} : x /∈ S and m(S,≿0) ⊆ Xi}

for each i = 1, ..., 5, and observe that

2X = A ⊔ {S ⊔ x : S ∈ B}

where B := B1 ⊔ B2 ⊔ B3 ⊔ B4 ⊔ B5.

Now, if S ∈ A, then m(S,≿0) = m(S,≿1). On the other hand,

m(S ⊔ x,≿0) =

{
m(S ⊔ x,≿1), if S ∈ B1 ⊔ B5

m(S ⊔ x,≿1) ⊔ x, if S ∈ B2,

while

m(S ⊔ x,≿0) = {x} and m(S ⊔ x,≿1) = m(S,≿0)



BEST COMPLETE APPROXIMATIONS 31

if S ∈ B3, and

m(S ⊔ x,≿0) = {x} and m(S ⊔ x,≿1) = m(S,≿0) ⊔ x

if S ∈ B4. Using this information in (10) yields

D(≿,≿1)−D(≿,≿0) =
∣∣B2

∣∣+ ∑
S∈B3

(1− |m(S,≿0)|)−
∑
S∈B4

|m(S,≿0)|

=
∣∣B2

∣∣+ ∣∣B3
∣∣− ∑

S∈B3⊔B4

|m(S,≿0)| .

Now note that S ∈ B2 ⊔B3 iff S = E ⊔F for some nonempty E ⊆ (X2 ⊔X3)\{x} and some (possibly

empty) F ⊆ X4 ⊔X5. It follows that∣∣B2
∣∣+ ∣∣B3

∣∣ = ∣∣B2 ⊔ B3
∣∣ = (2|X

2|+|X3|−1 − 1)2|X
4|+|X5|,

whence

(12) D(≿,≿1)−D(≿,≿0) = (2|X
2|+|X3|−1 − 1)2|X

4|+|X5| −
∑

S∈B3⊔B4

|m(S,≿0)| .

We now turn to evaluating (11). To this end, we define

A′ := {S ∈ 2X : y /∈ S or {y} = S},

and

Ci := {S ∈ 2X\{∅} : y /∈ S and m(S,≿0) ⊆ Xi}

for each i = 1, ..., 5. Clearly,

2X = A ⊔ {S ⊔ y : S ∈ C}

where C := C1 ⊔ C2 ⊔ C3 ⊔ C4 ⊔ C5.

Now, we have m(S,≿0) = m(S,≿2) if S ∈ A′, and m(S ⊔ y,≿0) = m(S ⊔ y,≿2) if S ∈ C1 ⊔ C5,

while

m(S ⊔ y,≿2) = m(S ⊔ y,≿0) ⊔ y

if S ∈ C2. On the other hand,

m(S ⊔ y,≿0) = m(S,≿0) and m(S ⊔ y,≿2) = {y}

if S ∈ C3, and

m(S ⊔ y,≿0) = m(S,≿0) ⊔ y and m(S ⊔ y,≿2) = {y}

if S ∈ C4. Using this information in (11) yields

D(≿,≿2)−D(≿,≿0) = −
∣∣C2

∣∣+ ∑
S∈C3

(|m(S,≿0)| − 1) +
∑
S∈C4

|m(S,≿0)|

= −
∣∣C2

∣∣− ∣∣C3
∣∣+ ∑

S∈C3⊔C4

|m(S,≿0)| .

Now note that S ∈ C2⊔C3 iff S = E ⊔F for some nonempty E ⊆ X2⊔X3 and some (possibly empty)

F ⊆ (X4 ⊔X5)\{y}. It follows that∣∣C2
∣∣+ ∣∣C3

∣∣ = ∣∣C2 ⊔ C3
∣∣ = (2|X

2|+|X3| − 1)2|X
4|+|X5|−1,
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whence

(13) D(≿,≿2)−D(≿,≿0) = −(2|X
2|+|X3| − 1)2|X

4|+|X5|−1 +
∑

S∈C3⊔C4

|m(S,≿0)| .

We next observe that

(2|X
2|+|X3|−1 − 1)2|X

4|+|X5| − (2|X
2|+|X3| − 1)2|X

4|+|X5|−1 = −2|X
4|+|X5|−1.

As y ∈ X4 ⊔X5, this number is negative, so combining (12) and (13) yields

(D(≿,≿1)−D(≿,≿0)) + (D(≿,≿2)−D(≿,≿0)) <
∑

S∈C3⊔C4

|m(S,≿0)| −
∑

S∈B3⊔B4

|m(S,≿0)| .

But if S ∈ C3 ⊔ C4, then S is nonempty and x ≻0 m(S,≿0), and it follows that x /∈ S, which means

S ∈ B3 ⊔ B4. Thus, C3 ⊔ C4 ⊆ B3 ⊔ B4, and combining this fact with the above inequality yields

(D(≿,≿1)−D(≿,≿0)) + (D(≿,≿2)−D(≿,≿0)) < 0,

as we sought. ■

The proof of Theorem 2 is now easily completed. Indeed, by Lemmata A.1 and A.2, we already

know that ≿0 is a completion of ≿. It thus remains only to show that ≿0 is a maximal completion of

≿. Again towards a contradiction, suppose there is a completion ≿1 of ≿ that properly contains ≿0.

Then, there exist x, y ∈ X with x ≿1 y but not x ≿0 y. As ≿0 is total, we have y ≻0 x. Since y ≻0 x

and ≿0 ⊆ ≿1, we have y ≿1 x. Thus, we have x ∼1 y. In turn, since ≿1 is a completion of ≿, this

implies that either x and y are not ≿-comparable or x ∼ y. It follows that m({x, y},≿0) = {y} while

m({x, y},≿1) = {x, y} = M({x, y},≿), whence

(14) ∆{x,y}(≿,≿1)−∆{x,y}(≿,≿0) = −1 < 0.

On the other hand, since ≿0 ⊆ ≿1 and ≿1 is a completion of ≿, we have

m(S,≿0) ⊆ m(S,≿1) ⊆ M(S,≿) for every S ⊆ X,

and hence

(15) ∆S(≿,≿1)−∆S(≿,≿0) ≤ 0 for every S ⊆ X.

It follows from (14) and (15) that D(≿,≿1) < D(≿,≿0), which contradicts ≿0 being a best complete

approximation of ≿. Proof of Theorem 2 is now complete.
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7.2. Proof of Lemma 3. By direct computation,

D(≿,⊵) =
∑
S⊆X

△S(≿,⊵) =
∑
S⊆X

∑
x∈S

1△S(≿,⊵)(x) =
∑
x∈X

∑
S⊆X
S∋x

1△S(≿,⊵)(x)

In other words,

(16) D(≿,⊵) =
∑
x∈X

θx(≿,⊵)

where θx(≿,⊵) is the number of all subsets S of X such that x ∈ M(S,≿)△M(S,⊵).

Let us now fix any x ∈ X, and calculate θx(≿,⊵). To this end, let us define the following

three sets:

Ax(≿,⊵) := {a ∈ X\{x} : not a ≻ x and not a ▷ x},

and

Bx(≿,⊵) := {a ∈ X\{x} : a ≻ x but not a ▷ x},

and

Cx(≿,⊵) := {a ∈ X\{x} : a ▷ x but not a ≻ x}.

Note that αx(≿,⊵) = |Ax(≿,⊵)| by definition. Now, x ∈ M(S,≿)\M(S,⊵) iff S =

{x} ⊔ K ⊔ L for some K ⊆ Ax(≿,⊵) and some nonempty L ⊆ Cx(≿,⊵). There are ex-

actly 2αx(≿,⊵)(2|Cx(≿,⊵)|−1) many such sets. On the other hand, by the same logic, there are

2αx(≿,⊵)(2|Bx(≿,⊵)|− 1) many subsets S of X such that x ∈ M(S,⊵)\M(S,≿). It follows that

θx(≿,⊵) = 2αx(≿,⊵)(2|Bx(≿,⊵)| + 2|Cx(≿,⊵)| − 2).

Next, notice that Ax(≿,⊵) ⊔Bx(≿,⊵) = {a ∈ X\{x} : not a ▷ x}, whence

αx(≿,⊵) + |Bx(≿,⊵)| = n− |x↑,▷| − 1

where n := |X|, and as we defined in Section 2.1, x↑,▷ is the principal ideal of x with respect

to ▷. Of course, the analogous reasoning shows that αx(≿,⊵) + |Cx(≿,⊵)| = n− |x↑,≻| − 1

as well. Consequently,

θx(≿,⊵) = 2n−|x↑,▷|−1 + 2n−|x↑,≻|−1 − 2αx(≿,⊵)+1.

Combining this finding with (16) yields (2).
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7.3. Proof of Theorem 5. Define the function Ψ : PC(X) → [0,∞) by

Ψ(⊵) :=
∑
x∈X

2−|x↑,▷|,

and note that I(⊵) = 2|X|Ψ(⊵) for any ⊵ ∈ PC(X). In the context of the present proof, it

will be more convenient to work with Ψ instead of I.
Consider the function f : N ∪ N2 ∪ · · · → [0,∞) with f(n) := n for any n ∈ N, and

f(n1, ..., nk) := n1 +
k∑

i=2

ni2
−n1−···−ni−1

for any integer k ≥ 2 and n1, ..., nk ∈ N. Obviously, Ψ(X×X) =
∑

x∈X 2−|∅| = |X| = f(|X|).
In addition, for any ⊵ ∈ PC(X) distinct from X ×X, we have∑

x∈X
2−|x↑,▷| =

∑
x∈M1

2−|∅| +
∑
x∈M2

2−|M1| + · · ·+
∑
x∈Mk

2−|M1|−···−|Mk−1|

where k := m(⊵) > 1 and Mi := M⊵
i , i = 1, ..., k. Thus:

(17) Ψ(⊵) = f(|M1| , ...,
∣∣Mm(⊵)

∣∣) for every ⊵∈ PC(X).

In the foregoing argument we will make use of this formula as well as the following subaddi-

tivity property of the map f : For any k, l ∈ N with k < l, and any (n1, ..., nl) ∈ Nl,

(18) f(n1, ..., nl) = f(n1, ..., nk) + 2−n1−···−nkf(nk+1, ..., nl).

With these preparations at hand, we proceed to proving Theorem 5. Let ≿ be a preorder

on X, and denote the canonical completion of ≿ by ⊵. Now take any completion ≿∗ of ≿,

distinct from ⊵. Our objective is to show that ≿∗ cannot be a maximizer of I over PC(X,≿).

Since PC(X,≿) is finite, this will establish that argmax{I(≿′) :≿′∈ PC(X,≿)} = {⊵}. In
turn, by Theorem 4, this gives bca(≿) = {⊵}, proving Theorem 5.

To simplify the notation, we put Mi := M⊵
i and Ni := M

≿∗

i for every i ∈ N. Since ⊵ and

≿∗ are total, we have M1 ▷ · · · ▷ Mm(⊵) and N1 ≻∗ · · · ≻∗ Nm(≿∗), while any two elements

of Mi (resp., Ni) are indifferent relative to ⊵ (resp., ≿∗) for any i ∈ N.18 Moreover, since

≿∗ ̸= ⊵, the partitions M := {M1, ...,Mm(⊵)} and N := {N1, · · ·, Nm(≿∗)} of X are distinct.

Define

t := min{i ∈ N : Mi ̸= Ni},

and put M<t := M1 ∪ · · · ∪Mt−1 and N<t := N1 ∪ · · · ∪Nt−1 with the understanding that

M<1 = ∅ = N<1. By definition of t, we have M<t = N<t, so

Nt ⊆ MAX(X\N<t,≿) = MAX(X\M<t,⊵) = Mt

18For any transitive relation ▶ on X and nonempty subsets A and B of X, by A ▶ B we mean a ▶ b for

every (a, b) ∈ A×B.
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where the first containment holds because ≿∗ is a completion of ≿, and the first equality

holds because ⊵ is the canonical completion of ≿. Since N<t ̸= X – otherwise M and N
would not be distinct – it is plain that Nt ̸= ∅. As Nt ̸= Mt, therefore, Nt is a nonempty

proper subset of Mt. Since M<t = N<t, we thus have ∅ ̸= Mt\Nt ⊆ Nt+1 ∪ · · ·, so

s := min{i ∈ {t+ 1, ...} : Mt ∩Ni ̸= ∅}

is well-defined. We put

A := Ns\Mt and B := Mt ∩Ns.

Note that A ∩ B = ∅, A ∪ B = Ns and B ̸= ∅. In addition, Nt ∩ B = ∅, because B ⊆ Ns

and s > t.

In the remainder of the proof, we put a := |A| , b := |B| and ni := |Ni| for each i ∈ N. The
following claim is a key step in the argument.

Claim. f(nt+1, ..., ns−1, a) < 2nt (with the understanding that the left-hand side equals f(a)

if s = t+ 1).

Proof of Claim. Let Y be the set of all y ∈ X such that x ≻ y for some x ∈ Nt and

x ≻ y for no x ∈ Mt\Nt. By construction, we have Nt+1 ∪ · · · ∪ Ns−1 ∪ A ⊆ Y (with the

understanding that Nt+1 ∪ · · · ∪Ns−1 = ∅ if s = t+ 1). Consequently, by (17),

f(nt+1, ..., ns−1, a) ≤ Ψ(≿∗
Y ).

But, Ψ(≿∗
Y ) = 2−|Y |I(≿∗

Y ) ≤ 2−|Y |I(≿Y ) (since ≿∗
Y is a completion of ≿Y ), whereas I(≿Y ) <

2nt+|Y | because ≿ satisfies Condition (∗). Combining these inequalities yields our claim. ■

We write the remainder of the proof for the case where 2 < t + 1 < s < m(≿∗), but this

is only for expositional purposes. The arguments for the cases where t = 1, or (inclusive)

t + 1 = s, or (inclusive) s = m(≿∗), are entirely analogous (and actually have simpler

expressions).

Let ≿′ be the total preorder on X such that

N1 ≻′ · · · ≻′ Nt−1 ≻′ Nt ∪B ≻′ Nt+1 ≻′ · · · ≻′ Ns−1 ≻′ A ≻′ N ′
s+1 ≻′ · · · ≻′ Nm(≿∗)

with any two elements in any one of these sets being declared indifferent. By using (17), and

(18) twice,

Ψ(≿∗) = f(n1, ..., ns−1, a+ b, ns+1, ..., nm)

= f(n1, ..., nt−1) + 2−pf(nt, ..., ns−1, a+ b) + 2−p−qf(ns+1, ..., nm)

where

p := n1 + · · ·+ nt−1, q := nt + · · ·+ ns−1 + a+ b and m := m(≿∗).



36 HIROKI NISHIMURA AND EFE A. OK

Likewise,

Ψ(≿′) = f(n1, ..., nt−1, nt + b, nt+1, ..., ns−1, a, ns+1, ..., nm)

= f(n1, ..., nt−1) + 2−pf(nt + b, nt+1, ..., ns−1, a) + 2−p−qf(ns+1, ..., nm).

Since I(≿′) > I(≿∗) iff Ψ(≿′) > Ψ(≿∗), these calculations show that I(≿′) > I(≿∗) iff

(19) f(nt + b, nt+1, ..., ns−1, a) > f(nt, ..., ns−1, a+ b).

If we can establish this inequality, we may then conclude that ≿∗ does not maximize I on

PC(X,≿), thereby completing the proof of Theorem 5.

To prove (19), we first use (18) to write

f(nt + b, nt+1, ..., ns−1, a) = nt + b+ 2−nt−bf(nt+1, ..., ns−1, a).

On the other hand, with r := nt+1 + · · ·+ ns−1,

f(nt, ..., ns−1, a+ b) = nt + 2−ntf(nt+1, ..., ns−1, a+ b)

= nt + 2−nt(f(nt+1, ..., ns−1) + 2−r(a+ b))

= nt + 2−nt(f(nt+1, ..., ns−1) + 2−ra) + 2−nt−rb

= nt + 2−ntf(nt+1, ..., ns−1, a) + 2−nt−rb

where we again used (18) repeatedly. Therefore, f(nt+b, nt+1, ..., ns−1, a)−f(nt, ..., ns−1, a+

b) equals

(1− 2−nt−r)b− 2−nt(1− 2−b)f(nt+1, ..., ns−1, a) > (1− 2−nt−r)b− 2−nt(1− 2−b)2nt

= (1− 2−nt−r)b− (1− 2−b)

≥ b
2 − (1− 2−b).

Here we used the Claim above to get the strict inequality, while the final inequality holds

because nt + r > 1.

Now define the map F : [1,∞) → R by F (x) := x
2 − 1 + 2−x. Clearly, F (1) = 0 and

2xF ′(x) = 2x−1 − ln 2 ≥ 1 − ln 2 > 0 for all x ≥ 1. It follows that f(x) ≥ 0 for all x ≥ 1. In

particular, b
2 − (1 − 2−b) ≥ 0 for all b ∈ N. Combining this finding with the final inequality

of the previous paragraph yields (19), completing our proof.
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