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Abstract

The present paper studies infinitely repeated games where each player decides whether

to monitor the other players’ actions or not in each period. The monitoring is costless

and private. We ask whether optional monitoring enlarges the equilibrium payoff vector

set, in comparison with the standard model of automatic monitoring. For that purpose,

we focus on a case where all players have an identical payoff function. Under automatic

monitoring, some infinitely repeated games with equivalent payoffs are known to have the

smallest equilibrium payoffs which are bounded away from the players’ minmax values

irrespective of the discount factor. We show that this failure of a folk theorem does not

extend to optional monitoring. For a class of repeated games with identical payoffs, the

discrepancy between the smallest equilibrium payoff and the minmax value remains under

automatic monitoring and vanishes under optional monitoring, if the discount factor goes

to one. In other words, optional monitoring expands the environment for the folk theorem

to hold.
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1 Introduction

The present paper studies repeated games with optional monitoring, first formulated and stud-

ied by Miyahara and Sekiguchi [5] for finitely repeated games, and extends their formulation

to infinitely repeated games. Both papers assume that each player decides whether to monitor

the other players’ actions or not in each period. In comparison, the standard model of repeated

games with perfect monitoring assumes that each player automatically learns the other players’

actions in each period, so that we shall call this information structure automatic monitoring.
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An important assumption in Miyahara and Sekiguchi [5] and in the present paper is that

monitoring is costless and private, where the latter assumption means that each player does not

obtain any signal of the other players’ monitoring decisions. A consequence of this assumption

is that the players never hurt from exercising their monitoring options. Monitoring enables

them to make a better decision in the future and never causes a future punishment. Hence,

as [5] formally proves for the case of any finite horizon, any equilibrium payoff outcome of a

repeated game with automatic monitoring is an equilibrium payoff outcome of the repeated

game with the same stage game, the same number of periods, the same discount factor, and

optional monitoring. This is because the players can reproduce the equilibrium strategies under

automatic monitoring by strategies where they always exercise there monitoring options.

The present paper thus asks whether optional monitoring enlarges the equilibrium payoff

vector set of an infinitely repeated game in the sense of set inclusion. Miyahara and Sekiguchi [5]

addresses the same question for finitely repeated games and presents an affirmative answer.

More concretely, [5] shows that some finitely repeated games with a unique stage-game equi-

librium and optional monitoring possess multiple sequential equilibrium payoff vectors under a

finite horizon and even admit a folk theorem under a finite but very long horizon. Note that a

unique static equilibrium leads to a unique equilibrium under any finite horizon if the monitor-

ing is automatic. Hence, the result implies that optional monitoring expands the environment

for a folk theorem to hold in finitely repeated games.

The present paper focuses on a class of infinitely repeated games where the folk theorem

under automatic monitoring by Fudenberg and Maskin [2] and Abreu, Dutta, and Smith [1]

fails. [2] is the first to present an example of such failure of the folk theorem, where all three

players have an identical stage-game payoff function. Irrespective of the discount factor, the

smallest equilibrium payoff (common to all players because of the identical payoffs) is bounded

away from their common minmax value, which implies that some feasible and individually

rational payoffs are not (even approximately) sustained by an equilibrium under any level of

patience. [1] shows that a necessary condition of the failure of the folk theorem is for the stage

game to have equivalent payoffs, where a player’s stage-game payoff function is a positive affine

transformation of another player’s. Wen [7] presents a stronger necessary condition, which

is for the players with equivalent payoffs to have greater effective minmax values than their

standard minmax values. [7] also proves a generalization of the folk theorem which applies

to any stage game, by simply redefining individual rationality as dominance over the effective

minmax values.

A main result of the present paper is to show that the failure of the folk theorem under

automatic monitoring does not extend to optional monitoring. We prove a folk theorem under

optional monitoring for a class of repeated games which includes the example of Fudenberg and

Maskin [2], by showing that any feasible and individually rational payoff vector is sustained

by an equilibrium if the players are sufficiently patient. Hence for this class, the discrepancy

between the smallest equilibrium payoff and the minmax value remains under automatic mon-

itoring and vanishes under optional monitoring, if the discount factor goes to one. In other

words, as Miyahara and Sekiguchi [5] show for finitely repeated games, optional monitoring

expands the environment for a folk theorem to hold in infinitely repeated games.

2



To understand our result and its difference from the automatic monitoring case, recall that a

key to the folk theorem is to construct an equilibrium where a player to be punished is (nearly)

held to his minmax value but the other players are rewarded in order to have an incentive to

punish. This may require a punishing player to receive a continuation payoff bounded away

from her minmax value. If the punished player and the punishing player have equivalent payoffs,

however, the punished player also receives a continuation payoff bounded away from his minmax

value. This “curse of equivalent payoffs” would deny the folk theorem.

Optional monitoring may overcome the curse, because we can construct a target equilibrium

path where a potential deviator is monitored only by a proper subset of the other players.1 If

the potential deviator actually deviated, the continuation play is not commonly believed among

all players because some player did not notice the deviation and consistently believes the play to

be on the path. The deviator and the players who noticed the deviation mutually optimize, and

payoff equivalence among them may impose some restriction on the equilibrium construction.

However, the players who did not notice the deviation do not know the actual continuation

play and therefore may not recognize a temptation to deviate. This weakens the incentive

constraints of the equilibrium construction, which enables us to prove a folk theorem in our

model.

Our result implies that the effective minmax values by Wen [7] are not a lower bound

of the equilibrium payoffs of repeated games with optional monitoring. For the stage games

studied in this paper, the standard minmax values are a tight lower bound of the repeated-

game equilibrium payoffs. We do not know to what extent this property extends to other stage

games.

The rest of the present paper is organized as follows. Section 2 sets up our model of repeated

games. Section 3 starts with a basic result about the discrepancy between the standard and

effective minmax values in our model and then proves a folk theorem under optional monitoring.

2 Model: Repeated Games with Identical Payoffs

The set of the players is N ≡ {1, 2, . . . , n}. At the beginning of each period t ∈ {0, 1, 2, . . .},
the players simultaneously choose their stage-game actions. The set of player i’s stage-game

actions is finite and is denoted by Ai. We define A =
∏n

i=1 Ai. All players have an identical

stage-game payoff function, and we denote it by U : A → R.
At the end of each period t, the players simultaneously decide whether to exercise their

monitoring options or not. This decision entails no additional benefit or cost and is completely

unobservable to the other players. If player i exercises the option, she learns the other players’

stage-game actions of that period, denoted by a−i = (aj)j ̸=i. If player i does not exercise it, she

receives no information about a−i. Note that this assumption implies that the players do not

receive stage-game payoffs at the end of each period. This is because otherwise, a player who

did not monitor the other players may still (at least partially) learn their stage-game actions

from his stage-game payoff. More formally, we regard the players’ discount factor (defined

1This idea also appears in Miyahara and Sekiguchi [5].

3



later) as a probability that the repeated game continues and assume that the players receive

their stage-game payoffs in total when it terminates.

For each i, let Ii be the set of information player i obtains in one period. Formally, we have

Ii = A∪Ai, where (i) a ∈ Ii means that player i selected ai and learned that the other players

selected a−i by monitoring them, and (ii) ai ∈ Ii means that player i selected ai and did not

monitor the other players. For each i, let Hi ≡
⋃∞

t=0(Ii)
t, where (Ii)

0 is an arbitrary singleton

which is disjoint with any (Ii)
t with t ≥ 1. Each element of Hi corresponds to player i’s private

history at the beginning of some period.2 A strategy of player i maps each element of Hi to a

mixed stage-game action, that is, a probability distribution over Ai, and a subsequent, random

choice of his monitoring decision which depends on his stage-game action of that period.

Given a strategy profile of all players, each player’s payoff of the repeated game is the

average, discounted sum of all stage-game payoffs with a common discount factor δ ∈ (0, 1).

That is, if the strategy profile yields a sequence of the expected stage-game payoffs (Ut)
∞
t=0,

each player’s repeated-game payoff is (1− δ)
∑∞

t=0 δ
tUt. The equilibrium concept of the present

paper is sequential equilibrium.

3 Results

Our analysis starts with minmax value concepts. Let us extend the domain of U to allow mixed

stage-game actions. The standard minmax value for each player i is defined by

V i ≡ min
s

max
ai

U(ai, s−i),

where s = (si)
n
i=1 and each si is a probability distribution on Ai. Any repeated-game equilibrium

under a given discount factor guarantees each player i her minmax value V i. Since the payoffs

are identical, this implies that any repeated-game equilibrium under a given discount factor

gives at least maxi V i to each player. We define

V ≡ max
i

V i

and simply call V the minmax value.

Wen [7] defines the following effective minmax value.

V E ≡ min
s

max
i

max
ai

U(ai, s−i).

From the definitions, it follows that V E ≥ V i for any i, which implies that V E ≥ V .

Example 1 (Coordination games) Suppose n is odd, and we sometimes write n = 2k + 1.

Let Ai ≡ {−1, 1} for each i. U is any function satisfying the following.

(i) U(a) ∈ [0, 1] for any a ∈ A.

(ii) U(a) = 1 if a1 = a2 = · · · = an.

2More precisely, each element of (Ii)
t corresponds to player i’s private history at the beginning of period t.
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(iii) U(a) = 0 if and only if
∣∣∑n

i=1 ai
∣∣ = 1.

The stage games in Example 1 are a coordination game which severely punishes a split.

Namely, each player’s stage-game payoff attains a maximum when all players coordinate their

stage-game actions. Further, each player’s stage-game payoff attains a minimum when and only

when the two stage-game actions are selected by k players and by k + 1 players, respectively

(recall that n = 2k+ 1). The payoffs under the other stage-game action profiles are arbitrary.3

Against a−1 ∈
∏

i≥2 Ai such that
∑

i≥2 ai = 0, the assumption (iii) implies that player 1’s

stage-game payoff is 0 irrespective of his stage-game action. Combining this with the assump-

tion (i), we see that V 1 = 0. Due to symmetry, we have V = 0.

We also have V E > 0 = V in this game. To see that, suppose on the contrary that V E = 0.

Then s = (sj)
n
j=1 exists such that for any i,

max
ai

U(ai, s−i) = 0.

Due to the assumptions (i) and (iii), these hold only when each si is pure and, if we represent

s by a ∈ A, we have
∑

j ̸=i aj = 0 for any i. Summing this up over i, we obtain
∑n

i=1 ai = 0.

However, this is impossible because n is odd.

We compare our model with the infinitely repeated games with automatic monitoring, whose

sole difference from our model is that the players make no monitoring decision. That is, they

automatically learn all other players’ past stage-game actions. Then the following result is an

easy consequence of Wen [7], so we omit the proof.

Proposition 1 Let us assume automatic monitoring. Under any discount factor, any subgame-

perfect equilibrium payoff of each player is at least V E. Consequently, any payoff vector of the

form (V, V, . . . , V ), where V ∈ (V , V E), is feasible and individually rational, but not a subgame-

perfect equilibrium payoff vector under any discount factor.

Proposition 1 implies that if V E > V as in the games in Example 1, the folk theorem by

Fudenberg and Maskin [2] does not hold under automatic monitoring. The main contribution of

the present paper is to show that the folk theorem sometimes holds under optional monitoring.

The next proposition is a key result, which shows when any feasible and individually rational

payoff vector which is sufficiently close to the minmax value is sustained by an equilibrium. We

will later see how this result establishes a folk theorem. In what follows, the set of player i’s

mixed best responses against a mixed stage-game action profile s−i is denoted by BRi(s−i).

Proposition 2 Let us assume optional monitoring. Further, suppose a proper subset of N ,

denoted by N1, and four mixed stage-game action profiles, denoted by (βH , βL, γH , γL), exist

such that

(i) βH
j = γH

j and βL
j = γL

j for any j ∈ N1,

(ii) U(βH) > V ≥ max
{
U(βL), U(γH), U(γL)

}
,

3The payoff function of the example in Fudenberg and Maskin [2] for which their folk theorem fails has n = 3
and satisfies the assumptions.
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(iii) if j ∈ N1 or if βH
j is not pure, βH

j ∈ BRj(β
H
−j),

(iv) if j ∈ N1 or if βL
j is not pure, βL

j ∈ BRj(β
L
−j),

(v) for any i /∈ N1, γ
H
i ∈ BRi(γ

H
−i) and γL

i ∈ BRi(γ
L
−i).

Then for any V ∈
(
V , U(βH)

)
, δ ∈ (0, 1) exists such that any repeated game with δ ≥ δ has

a sequential equilibrium whose payoff vector is (V, V, . . . , V ).

Proof. Let M = N \ N1, and fix V ∈
(
V , U(βH)

)
. In Appendix A, we show existence of

δ1 ∈ (0, 1) such that for any δ ≥ δ1, the repeated game with δ has a path of mixed stage-game

action profiles π =
(
s(t)

)∞
t=0

such that s(t) ∈ {βH , βL} for any t ≥ 0, and

(1− δ)
∞∑
t=0

δtU
(
s(t)

)
= V, (1)

inf
T≥1

(1− δ)
∞∑
t=T

δt−TU
(
s(t)

)
> V . (2)

From (1) and (2), we see that the path π attains the target payoff vector (V, V, . . . , V ) and has

the continuation payoffs bounded away from the minmax value vector (V , V , . . . , V ).4

Fix a repeated game with discount factor δ ≥ δ1. For each i, let σi be the following strategy

of player i.

(I) In any period, suppose player i found any player in M (including himself) selected a

stage-game action in the support of the mixed stage-game action specified by π in all past

periods he monitored the other players. Then he chooses his stage-game action according

to π. Subsequently, he monitors the other players irrespective of his stage-game action

if i ∈ M , and he does not monitor the other players regardless of his stage-game action

if i ∈ N1.

(II) In any period, suppose player i ∈ M found a player in M (including himself) selected

a stage-game action not in the support of the mixed stage-game action specified by π

in a past period he monitored the other players. Then he chooses his stage-game action

according to γH if π specifies βH in the current period, and according to γL if π specifies

βL in the current period. Subsequently, he monitors the other players irrespective of his

stage-game action.

(III) In any period, suppose player i ∈ N1 found a player in M selected a stage-game action

not in the support of the mixed stage-game action specified by π in a past period he

monitored the other players. Then he chooses a best response against γH if π specifies

βH in the current period, and a best response against γL if π specifies βL in the current

period. Subsequently, he does not monitor the other players irrespective of his stage-game

action.

4While the idea of this construction is attributed to Sorin [6] and Fudenberg and Maskin [3], Appendix A
reproduces it for the readers’ convenience.
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Let σ ≡ (σi)
n
i=1. If the players follow σ, the stage-game action profile path is π.

Thus, the proof is complete if we show that σ forms a sequential equilibrium together with

a consistent system of beliefs. Let us fix a consistent system of beliefs satisfying the following

two conditions.

(A) At any player’s any private history, he believes that any player in M monitored the other

players in all past periods and that any player in N1 never monitored the other players in

all past periods.

(B) At any player’s any private history such that he found any player in M (including himself)

selected a stage-game action in the support of the mixed stage-game action specified by π

in all past periods he monitored the other players, he believes that all other players in M

followed π in all past periods.

These beliefs can be made consistent by trembles satisfying the following two conditions.

(a) Each player is far less likely to deviate in his monitoring decision than to deviate in his

stage-game action.

(b) Any player in M is far less likely to deviate than any player in N1.

The condition (a) supports the condition (A), and the condition (b) supports the condition

(B).5 In what follows, we verify sequential rationality given the system of beliefs.

Fix any period and any player i. First, suppose player i found any player in M (including

himself) selected a stage-game action in the support of the mixed stage-game action specified

by π in all past periods he monitored the other players. By the condition (B), he believes

that all other players in M followed π in all past periods.6 Hence by (I), player i believes that

the continuation stage-game action profile path is the continuation path of π from the current

period. Therefore, by (2), the continuation payoff exceeds V .

We have two cases to consider.

• Suppose i ∈ M . A deviation from σ may increase his stage-game payoff at most by

maxa U(a) − mina U(a). By (I), player i believes any other player j ∈ M to notice the

deviation and any other player j ∈ N1 not to notice it. By the definition of π and

(I)–(III), player i believes any other player to follow γH in any subsequent period π

specifies βH and to follow γL in any subsequent period π specifies βL, regardless of his

continuation strategy. By the assumption, any continuation strategy gives him at most

V . This establishes that any player i’s deviation is not profitable for all sufficiently large

δ. Hence, δ2 ≥ δ1 exists such that player i’s continuation play given the current history

is optimal if δ ≥ δ2.

5The condition (a) is an application of an idea in Miyagawa, Miyahara, and Sekiguchi [4], who study repeated
games where it is costly to monitor the other players’ actions.

6The condition (B) matters when player i found deviations by players in N1, which may be interpreted as
their responses to a deviation by a player in M in a period player i did not monitor the other players. The
condition denies such an interpretation.
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• Suppose i ∈ N1. By the definition of βH and βL, player i is prescribed to choose a

statically optimal stage-game action. Further, σ is defined so that he believes that his

continuation play does not affect the other players’ continuation play. Therefore, player i’s

continuation play given the current history is optimal.

Next, suppose player i found a player in M (including himself) selected a stage-game action

not in the support of the mixed stage-game action specified by π in a past period he monitored

the other players. By (A), player i believes any other player j ∈ M to notice the deviation

and any other player j ∈ N1 not to notice any deviation by a player in M from π in any past

period. By the definition of π and (I)–(III), player i believes any other player to follow γH in

any subsequent period π specifies βH and to follow γL in any subsequent period π specifies βL,

regardless of his continuation strategy. Given the belief, it is optimal to choose a static best

response against the mixed stage-game action profile in each period. Since γH
i ∈ BRi(γ

H
−i) and

γL
i ∈ BRi(γ

L
−i) for any i ∈ M , the prescribed continuation strategy of each player i ∈ M is

optimal. Further, the prescribed continuation strategy of each player i ∈ N1 is optimal due to

its construction.

Finally, we examine each player’s monitoring decision given his private history and his

stage-game action in that period. Any player i ∈ M is prescribed to monitor the other players,

which is optimal because he never suffers from exercising his monitoring option. Any player

i ∈ N1 believes that the other players’ continuation strategies do not depend on the outcomes

on the path. Hence he has nothing to learn from monitoring the other players. This makes his

monitoring decision, not to monitor the other players, optimal.

This proves sequential rationality of σ combined with the system of beliefs, which completes

the proof. Q.E.D.

Before proceeding to more discussions, we verify that all stage games in Example 1 satisfy

the conditions in Proposition 2. Recall that the number of the players is odd, and hence we

may write n = 2k + 1. Then we choose N1 = {k + 2, k + 3, . . . , n}, and

(i) βH is a profile where all players choose 1, and βL is a profile where the players in

{1, 2, . . . , k} choose −1 and the players in {k + 1, k + 2, . . . , n} choose 1, and

(ii) γH and γL are such that the players in {1, 2, . . . , k + 1} choose −1 and the players in

{k + 2, k + 3, . . . , n} choose 1.

It is easy to see that all conditions in Proposition 2 hold. Appendix B provides another example.

We explain the idea of this equilibrium construction. We first construct the equilibrium path

attaining the target payoff level, so that it consists of two mixed stage-game action profiles, βH

and βL. Further, any player in a proper player subset N1 does not monitor the other players

in any period, and any player in the complement M ≡ N \ N1 monitors the other players in

any period.7 The two mixed stage-game action profiles are chosen so that any player in N1 or

any player who is not prescribed a pure stage-game action is best responding and hence does

not have a short-run incentive to deviate.8

7M denotes the set of the monitors.
8We require any randomizing player to be best responding because it is not easy to provide incentives to

randomize over all stage-game actions on the support.
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Given the path, any deviation in terms of stage-game actions is monitored only by the

players in M . After such a deviation on the path by a player in M , the players in M switch

to punishing mixed stage-game action profiles, γH and γL. γH is specified in any period the

equilibrium path specifies βH , and γL is specified in any period the equilibrium path specifies

βL. Since the players in N1 do not monitor the other players, they are unable to respond to

the deviation. Thus, βH and γH specify a common mixed stage-game action to each player in

N1, and βL and γL specify a common mixed stage-game action to each player in N1. This is

reflected in the condition (i) in Proposition 2.

The punishment must be sequentially rational. Since only the players in M know that

the play is on the punishment path, we require them to choose a static best response. This

establishes sequential rationality and is reflected in the condition (v) in Proposition 2.

This construction builds on optional monitoring and is not valid under standard automatic

monitoring. This is because under automatic monitoring, all players automatically notice any

deviation. Under any mixed stage-game action profile, at least one player can secure the effective

minmax value. This makes it impossible to hold all players below the effective minmax value

under automatic monitoring. However, in our construction under optional monitoring, we

specify γH and γL so that any player who can secure the effective minmax value is in N1. Since

any player in N1 is prescribed not to monitor the other players, she does not know the play is

on the punishment path after a deviation by a player in M . We can thus ignore the incentive

condition for that player, which cannot be ignored under automatic monitoring.

We next verify that Proposition 2 leads to a folk theorem, as is summarized by the following

result.

Proposition 3 Suppose the conditions in Proposition 2 all hold. Then for any V ∈ (V , U ],

where U ≡ maxa U(a), δ ∈ (0, 1) exists such that any repeated game with δ ≥ δ has a sequential

equilibrium whose payoff vector is (V, V, . . . , V ).

Proof. Note first that any solution of maxa U(a) is a Nash equilibrium of the stage game.

Hence, (U,U, . . . , U) is a sequential equilibrium payoff vector under any discount factor.

Thus, let us assume V ∈ (V , U). The proof of Proposition 2 shows existence of δ1 ∈ (0, 1),

v ∈ (V , V ), and v ∈ (v, V ) such that any (v, v, . . . , v) with v ∈ [v, v] is a sequential equilibrium

payoff vector of any repeated game with δ ≥ δ1. Now let us define

δ ≡ max

{
U − v

U − v
,
U − V

U − v
, δ1

}
. (3)

Fix a repeated game with δ ≥ δ. By (3), an integer T ≥ 1 exists such that

δT ≤ U − V

U − v
. (4)

Suppose we also have

δT <
U − V

U − v
, δT−1 >

U − V

U − v
. (5)
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Then from (5), we obtain

δ
U − V

U − v
<

U − V

U − v
,

and this is a contradiction against (3). Hence, an integer T ≥ 1 exists such that

U − V

U − v
≤ δT ≤ U − V

U − v
. (6)

From (6), z ∈ [v, v] exists such that

U − V

U − z
= δT , ∴ V = (1− δT )U + δT z.

Consider a strategy profile such that the players follow a solution of maxa U(a) in the first

T periods regardless of their histories and then play an equilibrium whose payoff vector is

(z, z, . . . , z) from period T on. Since any solution of maxa U(a) is a one-shot Nash equilibrium,

this strategy profile is a sequential equilibrium whose payoff vector is (V, V, . . . , V ). Since δ ≥ δ

is arbitrary, the proof is complete. Q.E.D.

To conclude, Proposition 2 presents a class of infinitely repeated games where the effective

minmax value concept by Wen [7] does not provide an effective lower bound of the sequential

equilibrium payoffs under optional monitoring. Further, the standard minmax value is a tight

lower bound of the sequential equilibrium payoffs as the discount factor goes to one in the class.

In other words, optional monitoring expands the environment for the folk theorem to hold in

infinitely repeated games. A much harder problem is to characterize the stage games where the

folk theorem fails under automatic monitoring and holds under optional monitoring, which is

left for future research.

A Appendix: Construction of π

Suppose the conditions in Proposition 2 all hold. Fix V ∈
(
V , U(βH)

)
. Recall that U(βL) ≤

V . Then a positive integer M and a sequence of M mixed stage-game action profiles BL ≡(
sL(0), sL(1), . . . , sL(M − 1)

)
exist such that sL(m) ∈ {βH , βL} for any m ∈ {0, 1, . . . ,M − 1},

and

U
(
sL(0)

)
≤ U

(
sL(1)

)
≤ · · · ≤ U

(
sL(M − 1)

)
, (7)

V <
1

M

M−1∑
m=0

U
(
sL(m)

)
< V. (8)

Then ε > 0 and δ1 ∈ (0, 1) exist such that

(δ1)
M >

1

2
, (9)
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and for any δ ≥ δ1, we have

V + ε <
1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
< V. (10)

Note that (10) follows from (8) and continuity.

Fix δ ≥ δ1. Let B
H ≡

(
sH(0), sH(1), . . . , sH(M −1)

)
be a sequence of M mixed stage-game

action profiles such that

sH(0) = sH(1) = · · · = sH(M − 1) = βH .

Then, the definition of BH and (10) imply unique existence of ζ ∈ (0, 1) such that

V = ζ
1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
+ (1− ζ)

1− δ

1− δM

M−1∑
m=0

δmU
(
sH(m)

)
. (11)

Consider the repeated game with δ. Define a path of mixed stage-game action profiles

π =
(
s(t)

)∞
t=0

in the following inductive way.

(
s(0), s(1), . . . , s(M − 1)

)
=

{
BH if ζ ≥ 1/2, and

BL if ζ < 1/2.

Next, suppose s(0), s(1), . . . , s(TM − 1) are already defined, where T ≥ 1. Further, suppose

for any T ′ < T ,
(
s(T ′M), s(T ′M + 1), . . . , s(T ′M +M − 1)

)
∈ {BH , BL}. Now define

ΘH
T =

{
T ′ < T :

(
s(T ′M), s(T ′M + 1), . . . , s(T ′M +M − 1)

)
= BH

}
,

ΘL
T =

{
T ′ < T :

(
s(T ′M), s(T ′M + 1), . . . , s(T ′M +M − 1)

)
= BL

}
.

Then (
s(TM), s(TM + 1), . . . , s(TM +M − 1)

)
=

{
BH if ζ −

∑
T ′∈ΘH

T
(1− δM)δT

′M ≥ 1− ζ −
∑

T ′∈ΘL
T
(1− δM)δT

′M , and

BL if ζ −
∑

T ′∈ΘH
T
(1− δM)δT

′M < 1− ζ −
∑

T ′∈ΘL
T
(1− δM)δT

′M .

For any T ≥ 1, we have

ζ −
∑

T ′∈ΘH
T

(1− δM)δT
′M − (1− δM)δTM + 1− ζ −

∑
T ′∈ΘL

T

(1− δM)δT
′M − (1− δM)δTM

= δTM(2δM − 1) > 0,

where the last inequality follows from (9). This implies that if
(
s(TM), s(TM+1), . . . , s(TM+

11



M − 1)
)
= BH , we have

ζ −
∑

T ′∈ΘH
T

(1− δM)δT
′M − (1− δM)δTM > 0,

and that if
(
s(TM), s(TM + 1), . . . , s(TM +M − 1)

)
= BL, we have

1− ζ −
∑

T ′∈ΘL
T

(1− δM)δT
′M − (1− δM)δTM > 0.

From these inequalities, we obtain

min

{
ζ −

∑
T ′∈ΘH

T+1

(1− δM)δT
′M , 1− ζ −

∑
T ′∈ΘL

T+1

(1− δM)δT
′M

}
> 0 (12)

for any T ≥ 1. Define

ΘH =
{
T :

(
s(TM), s(TM + 1), . . . , s(TM +M − 1)

)
= BH

}
,

ΘL =
{
T :

(
s(TM), s(TM + 1), . . . , s(TM +M − 1)

)
= BL

}
.

Then, by letting T → ∞ in (12), we obtain

min

{
ζ −

∑
T∈ΘH

(1− δM)δTM , 1− ζ −
∑
T∈ΘL

(1− δM)δTM

}
≥ 0. (13)

Note that ΘH ∪ΘL = {0, 1, 2, . . .}. It thus follows from (13) that

ζ =
∑

T∈ΘH

(1− δM)δTM . (14)

Now we can compute the repeated-game payoff of π as follows.

(1− δ)
∞∑
t=0

δtU
(
s(t)

)
=(1− δ)

{ ∑
T∈ΘH

δTM

M−1∑
m=0

δmU
(
sH(m)

)
+

∑
T∈ΘL

δTM

M−1∑
m=0

δmU
(
sL(m)

)}

=
∑

T∈ΘH

(1− δM)δTM 1− δ

1− δM

M−1∑
m=0

δmU
(
sH(m)

)
+

∑
T∈ΘL

(1− δM)δTM 1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
= ζ

1− δ

1− δM

M−1∑
m=0

δmU
(
sH(m)

)
+ (1− ζ)

1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
= V, (15)

where the equalities in (15) follow from (14) and (11). Thus (1) holds.
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For any t ≥ 1, let T̂ be the largest T such that t ≥ TM . If
(
s(T̂M), s(T̂M+1), . . . , s(T̂M+

M − 1)
)
= BH , we have

(1− δ)
∞∑
τ=t

δτ−tU
(
s(t)

)
≥ (1− δ)

∞∑
τ=(T̂+1)M

δτ−(T̂+1)MU
(
s(t)

)
≥ 1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
> V + ε,

where the last inequality follows from (10). If
(
s(T̂M), s(T̂M +1), . . . , s(T̂M +M − 1)

)
= BL,

it follows from (7) that

(1− δ)
∞∑
τ=t

δτ−tU
(
s(t)

)
≥ (1− δ)

∞∑
τ=T̂M

δτ−T̂MU
(
s(t)

)
≥ 1− δ

1− δM

M−1∑
m=0

δmU
(
sL(m)

)
> V + ε,

where the last inequality follows from (10). Hence, (2) holds, which completes the proof.

B Another Example

Let us consider a three-player game where A1 = A2 = A3 = {−1, 1} and U is represented by

the following matrices.

1 −1

1 X 0

−1 0 X

1

1 −1

1 0 X

−1 X 1

−1

We assume X ∈ (0, 1). In what follows, we denote any mixed stage-game action profile by

µ = (µ1, µ2, µ3), where µi is the probability for player i to select 1.

We first show that the minmax value is V = X/2. Note that any mixed stage-game action

profile of the form (1/2, µ2, µ3) guarantees the stage-game payoff X/2. Further, at the mixed

stage-game action profile (1/2, 1/2, 1), player 1 is best responding and obtains X/2. This proves

V = X/2.

We also show that the effective minmax value exceeds V . Define

µ∗ =
1 +

√
X

1 + 2
√
X
, U ∗ =

1 + 2
√
X + 2X

1 + 4
√
X + 4X

X.

Note that µ∗ > 1/2 and U∗ > V . Fix a mixed stage-game action profile µ arbitrarily. Suppose

for some i and j ̸= i, min{µi, µj} ≥ µ∗. Then, the remaining player’s stage-game payoff when

he chooses 1 is {
µiµj + (1− µi)(1− µj)

}
X ≥

{
(µ∗)2 + (1− µ∗)2

}
X = U∗,

where the inequality holds because the left-hand-side is increasing in µi and µj (note that

min{µi, µj} ≥ µ∗ > 1/2).
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Suppose otherwise. Then for some k and l, we have max{µk, µl} ≤ µ∗. The remaining

player’s stage-game payoff when he chooses −1 is{
µk(1− µl) + (1− µk)µl

}
X + (1− µk)(1− µl) ≥ 2µ∗(1− µ∗)X + (1− µ∗)2 = U∗,

where the inequality holds because the left-hand-side is decreasing in µk and µl.

Consequently, for any µ, some player can secure a stage-game payoff not smaller than U∗.

Further, any player is best responding at (µ∗, µ∗, µ∗) and obtains U∗. As a result, the effective

minmax value is U∗.

Finally, it is easy to see that the conditions in Proposition 2 are all satisfied under the

following specification. We set N1 = {3}, and

βH = (1, 1, 1), βL = (1, 1/2, 1/2), γH = (1/2, 1/2, 1), γL = (1, 1, 1/2).
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