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1 Introduction

Economists have long debated the question of how to anchor inflation expectations. Much progress

has been made on this question since the introduction of rational expectations models in the 1970s.

This literature has much to say about the conditions under which monetary policy guarantees a

unique rational expectations equilibrium. But, it was soon understood that rational expectations

leaves unanswered the key question of how, or even whether, non-cooperative agents would coordinate

their beliefs on a rational expectations equilibrium (see, for example, Lucas (1978, section 6) and

Guesnerie (1992)). We derive sufficient conditions for expectations to be anchored in a model that is

globally tractable, and yet has the flavor of conventional monetary models used to analyze monetary

policy.1 We also derive necessary conditions for expectations to be anchored using local approximation

methods that can be applied very generally. The analysis suggests a simple economic principle to

guide policymakers seeking to anchor the public’s expectations to a particular target.

The focus of our analysis is on the monetary policy advocated by John Taylor in a series of papers.

We refer to this policy as the Taylor strategy. The best known part of that strategy is the Taylor

rule. According to this rule, policymakers move the market interest rate more than one-for-one in

response to an increase in inflation. Taylor (1996) argues that this policy can work well in normal

times,2 but points out that there are times when the rule might lead the economy awry. For example,

that could occur if a rise in inflation leads to a rise in the interest rate which then creates, by a

Fisher-type channel, expectations of even higher inflation. In this case, policymakers applying the

Taylor rule could inadvertently become part of an inflation spiral. Taylor (1996) notes that the

converse, a deflation spiral, could happen too. With these considerations in mind, Taylor (1996, page

37) suggests what we call the Taylor strategy: follow the Taylor rule under normal circumstances

but if inflation gets out of hand, invoke an escape clause and switch to a money growth rule to get

inflation under control.3

There exist studies that lend support to the Taylor strategy, by showing that it can produce a

globally unique rational expectations equilibrium in which inflation corresponds to the policymaker’s

target.4 But, as noted above, existence and uniqueness of an equilibrium is no guarantee that agents

will coordinate on that equilibrium. That is, it does not ensure that expectations are anchored.

The literature also suggests that a monetary growth rule is not necessarily the right rule to switch

to in the event that things go wrong in the Taylor rule regime.5 For example, one could also consider

switching to an Obstfeld and Rogoff (1983; 2017)-type strategy or a variant on the fiscal theory of

1The competitive equilibrium of the model is observationally equivalent to the models in Benhabib et al. (2001a),
Woodford (2003, chapter 2) and Cochrane (2011).

2The model-based case that the Taylor rule works well can be made in the New Keynesian model with price-setting
frictions and shocks. For additional discussion, see Section 2.2.2 below.

3In Taylor’s words, “...I would argue that interest rate rules need to be supplemented by money supply rules in
cases of either extended deflation or hyperinflation.”

4See Benhabib et al. (2002) and Christiano and Rostagno (2001). These papers build on the work of Obstfeld and
Rogoff (1983). For more recent work, see Atkeson et al. (2010).

5In many models equilibrium is not unique under a money growth rule. In these models, switching to money growth
rule would not anchor expectations.

1



the price level (see, e.g., Leeper (1991)). Still, the simplicity and familiarity of a money growth rule

is convenient for illustrating principles which guarantee that inflation expectations are anchored.6

To understand how expectations come to be anchored, we obviously must drop the assumption

that agents coordinate on the rational expectations beliefs. We instead assume that each agent is

rational, understands the environment, and that these are common knowledge among agents (CK).

Agents form their beliefs independent of each other by a private, logical reasoning process. To model

the formation of beliefs by rational agents with CK, we exploit the mapping between a competitive

equilibrium and a Nash equilibrium of a non-cooperative game.7 This mapping puts us in a position

to answer our anchoring question by making use of the seminal game-theoretic papers of Bernheim

(1984) and Pearce (1984). They argue that in forming their beliefs, rational agents with CK only

entertain beliefs that they deem ‘reasonable’. By reasonable, Bernheim (1984) and Pearce (1984)

mean that the belief is rationalizable. So, we ask what restrictions are required for the Taylor

strategy to ensure that policymakers’ desired rate of inflation is the unique rationalizable belief.

When those restrictions are satisfied, we say that policymakers have successfully managed to anchor

agents’ expectations.

A key principle that determines unique rationalizability is that policy gives rise to a reduced

form which features what we call ‘leaning against the wind’. In our context, the word ‘lean’ and

its connotations are crucial. The word literally means to ‘to push back’, and, accordingly, we find

that having a coefficient on inflation bigger than unity in the Taylor rule is an important part of

successful policy design. However, the word, ‘lean’, also carries the connotation that the push-back

should be more like a gentle nudge and not be overly aggressive. Thus, we show that to anchor

inflation expectations the coefficient on inflation in the Taylor rule should also not be too big. In

addition, it is important that when policy switches to the money growth rule in case the escape clause

is activated, the resulting recession must not be too deep. So, for the Taylor strategy to successfully

anchor expectations, both the interest rate rule and money growth rule must be consistent with the

principle of leaning against the wind, but not too aggressively.8

The outline of the paper is as follows. Section 2 provides a simple example that summarizes

the results in our dynamic model. In addition, this section discusses the relationship between our

paper and the literature. As part of that discussion, we derive necessary conditions for anchoring

expectations in a simple New Keynesian model. Our methods for evaluating necessary conditions can

be generalized to empirically relevant models. For space reasons, the technical details are relegated

6As is standard in the recent literature on monetary policy rules, we assume that monetary policy is active, fiscal
policy is passive and the government never reneges on its policy. By ‘active’ and ‘passive’ we have in mind the ideas
in Leeper (1991).

7For discussions of this mapping, see Bernheim (section 7 (b), 1984), Guesnerie (1992), Evans and Guesnerie (1993),
Guesnerie (2002), Bassetto (2002; 2005), Evans and Guesnerie (2005), Atkeson et al. (2010), as well as the papers that
they cite.

8The desirability of ‘leaning against the wind’ is well known in the macroeconomics literature and, indeed, it is
stressed by Taylor (1996). It is also known, though by a different name, in the game-theoretic research that inspires
the analysis in this paper. What we mean by ‘leaning against the wind, but not too aggressively’ corresponds to the
idea behind Guesnerie (2002, page 456)’s conclusion, ‘Coordination is favored whenever agents’ actions are not too
responsive to expectations’.
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to Online Appendix E. Section 3 introduces the dynamic model and shows that the competitive

equilibrium is globally unique under the Taylor strategy. This result is already known, but we

include it here for completeness and set the stage for the later analysis. Section 4 reformulates the

competitive equilibrium as the Nash equilibrium of a particular game. Section 5 provides our main

results, by deriving sufficient conditions for expectations to be anchored. Section 6 introduces two

shocks into the analysis, a money demand shock and trembles. Each allows us to show, in different

ways, the superiority of the Taylor strategy to alternatives encountered in our analysis. A brief

conclusion appears at the end.

2 Static Example and Literature Review

In this section we consider a drastically simplified, static version of our model which illustrates all

the important aspects of our analysis and allows us to clarify the relationship between our work and

the literature. We use the static model to show how (i) we can map the competitive equilibrium

of a market economy into the Nash equilibrium of a particular game; (ii) the game can be used to

formalize how agents form beliefs; and (iii) the game allows us to identify a principle (‘leaning against

the wind, but not too aggressively’) which guarantees that the belief of each agent about inflation

is anchored to the target chosen by the policy maker. To make the discussion as simple as possible,

many of the economic relations are expressed in reduced form. In the main analysis, beginning in

the next section, all features of the model are made explicit.

2.1 Example

Each of a continuum of intermediate good firms, i ∈ [0, 1], sets its price, pi, simultaneously and

without communicating with the others. We assume that the optimal decision by the ith firm is to

set pi = W, where W is the nominal marginal cost of production. The aggregate price index, P , is

the average over each price setter’s decision:

P =

∫ 1

0

pidi. (1)

Note that we can express W as P × w, where w is real marginal cost. Resources are scarce, in the

sense that w is increasing in the level of aggregate economic activity. We assume that the government

can influence the level of aggregate activity by changing the nominal rate of interest, R. High R slows

down economic activity (say, by reducing demand), which in turn reduces w. Monetary policy sets

R as an increasing function of inflation, so that (for a given level of the lagged aggregate price level),

R = f (P ) . Here, f is an increasing function. In this way, we can express the nominal wage rate as

follows:

W = Pw (f (P )) . (2)
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In a competitive equilibrium each firm faces the same wage, so equation (1) implies pi = P for

each i. A competitive equilibrium is a P ∗ that satisfies P ∗ = P ∗w (f (P ∗)), or,

w (f (P ∗)) = 1. (3)

We assume that w (·) and f (·) imply that the competitive equilibrium, P ∗, is unique.

The question of how agents form their beliefs lies at the heart of the problem of how to design

monetary policy, f, to ensure that each agents’ belief is anchored at the policy maker’s target.

This question is sidestepped in equilibrium theory by the simple and unexplained assumption called

‘clairvoyance’ by Guesnerie (2002): agents believe prices take on their competitive equilibrium values.

For many purposes, this assumption about beliefs may be a powerful and useful shortcut. But, for

our purposes clairvoyance assumes away the problem of interest. By transforming the environment

into a game we are able to exploit the formal tools developed in epistemic game theory for thinking

about how agents form their beliefs.

The ith firm without clairvoyance finds itself in a conundrum. Note from equation (2) that the

nominal wage is itself a function of P, which is the aggregate of the prices set by the other firms

(see equation (1)). As a result, the ith firm cannot actually see P (hence, W ) until after firms have

set their price. So, the ith firm must set its price based on a belief, pbi , about the prices being set

simultaneously by the other firms.9 We maintain the spirit of rational expectations in that we assume

each firm understands the functions w (·) and f (·), knows that other firms face a symmetric problem,

and understands that this knowledge is common knowledge (CK).

Conditional on a candidate belief, pbi , the ith firm computes the continuation equilibrium in which

the nominal wage is pbiw
(
f
(
pbi
))

.10 So, the best response for the ith firm with belief, pbi , is

pi = pbiw
(
f
(
pbi
))
≡ F

(
pbi ; f

)
, (4)

where the notation is designed to highlight the dependence of F on monetary policy, f . A Nash

equilibrium is a P ∗ such that P ∗ = F (P ∗; f). Since any such P ∗ satisfies equation (3), we have in

effect transformed the competitive equilibrium into the Nash equilibrium of a large game in which

each player’s best response function is given by F . For the purpose of the example, we assume that

F is linear.

In forming its belief, pbi , the ith firm is led to consider a range of possible values of pbi . If the slope

of f is sufficiently small then F is increasing and crosses the 45◦ line from above, as in Figure 1a.11

9In this example, it is immaterial whether (i) pbi corresponds to a belief about what each other firm will do; or (ii)
pbi is simply a belief about the average decision of the other firms. In our dynamic model (i) and (ii) are very different
and we adopt assumption (i).

10The aggregate price index in the continuation equilibrium is P = pbi .
11This diagram bears a resemblance to the one associated with the seminal work of Barro and Gordon (1983). It

is indeed very similar, but recall that we assume policymakers have the ability to commit to their policy strategy,
while Barro and Gordon (1983) assume they do not have the ability to commit. Also, the object on the vertical axis
of Figure 1a corresponds to the decision of an atomistic agent, while in Barro and Gordon (1983) the object on the
vertical axis pertains to the aggregate price level. In addition, the graph in Figure 1a implicitly assumes that price
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The anchoring question is whether each firm, i ∈ [0, 1] , will independently and without coordination

arrive at the same belief, pbi = P ∗. If the answer is ‘yes’, we say that expectations are anchored.

In forming its belief, pbi , will the ith agent choose the Nash equilibrium belief, or some other belief?

One justification for the Nash equilibrium belief is that it is the unique belief, pbi , such that if everyone

held that belief then no firm would ex post regret its action, pj = P ∗. The Nash equilibrium belief

has the property that everyone has perfect foresight (‘clairvoyance’). But, ex post considerations are

irrelevant for justifying a Nash equilibrium because beliefs must be formed ex ante.12 If a firm believed

pbi = 1.5 ex ante then that firm would expect to feel regret if it did not choose pi = F (1.5; f) < P ∗.

So, although each agent knows that P ∗ is the unique Nash equilibrium, there is no prima facie reason

to think that agents would form the belief, pbi = P ∗. For the Nash belief (or, rational expectations

equilibrium) to occur requires that f be properly designed.

We follow the seminal work of Bernheim (1984) and Pearce (1984) in supposing that firms will

only entertain beliefs that they deem to be rationalizable. To understand this approach to belief

formation, consider the best response function, F, displayed in Figure 1a. Suppose firms only consider

beliefs in the compact interval, A. In this example the exact boundaries of A are irrelevant for the

outcome of the analysis, except that A must include the Nash equilibrium, pbi = P ∗. Because F is

only a little flatter than the 45◦ line, monetary policy leans against the wind very slightly. The ith

intermediate good firm would never choose pi ∈ A/B (see the set B on the vertical axis in Figure

1a).13 Understanding that the other agents are in the same situation, the ith firm deletes the beliefs,

pbi ∈ A/B from further consideration. No rational agent would believe that its opponent would take

an action that is under no circumstances a best response. Using the 45◦ line to map B onto the

horizontal axis, we see that B is strictly interior to A. The ith firm applies the same reasoning to

the set of beliefs, B, and is driven to delete additional beliefs from further consideration. It is easily

verified that, given the shape of F, this process leads to deleting all beliefs, except the Nash belief.

So, in this case beliefs are uniquely anchored at pbi = P ∗ for each i ∈ [0, 1].

The reason inflation expectations are anchored is: (a) monetary policy leans against inflation and

(b) policy does so in a ‘non-aggressive’ way, in the sense that the range of best responses is smaller

than any given range of beliefs. To explore (b), consider now the case where policy, f, leans against

inflation more aggressively. Suppose the slope of f is so large that F is downward-sloping (see Figure

1b), but flatter than the 135◦ line (the dashed line).14 If we ask, ‘what beliefs are rationalizable’

and we apply the same iterated deletion argument as before, we conclude once again that the only

rationalizable belief is the Nash equilibrium. However, if monetary policy is even more aggressive,

so that F is steeper than the 135◦ line, then (b) is violated. In this case all beliefs are rationalizable

setting is characterized by strategic complementarity. Here, the nature of monetary policy plays a central role in
determining whether price setting is characterized by complementarity or substitutability.

12This is a one-period model, so each firm is in a ‘first play’ situation. There is no history or ‘norm’ to coordinate
on. The first play perspective is squarely in the spirit of rational expectations because those models are used to explore
the consequences of policy strategies that differ from the ones currently in place.

13Here the set A/B ≡ {x : x ∈ A, x 6= B} .
14Here, we ignore any zero lower bound (ZLB) on the nominal rate of interest. In our dynamic example we do take

into account the ZLB.

5



Figure 1: Anchored Expectations
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and inflation expectations are not anchored.

Our conclusion is that for expectations to be anchored two conditions are sufficient: the best

response function should cross the 45◦ line only once, so that there is a unique Nash equilibrium;

and the best response function lies inside the butterfly-shaped diagram formed by the area between

the 45◦ and 135◦ degree lines.15 The second condition is our formalization of the idea that policy

‘leans against the wind, but not too aggressively’.16 For example, in the model described in the next

section the coefficient, φ, on inflation in the Taylor rule must be greater than unity to help guarantee

a unique equilibrium. But, if φ is too large then policy is too aggressive and inflation expectations

become unanchored despite the uniqueness of the competitive equilibrium.17 In this case, there is no

reason to expect that the coordination assumed by competitive equilibrium will occur.

An important input into the above analysis is that F
(
pbi ; f

)
is well-defined over a reasonable range

of values of pbi . If the best response functions in the Nash equilibrium representation of a competitive

equilibrium are well defined, then we say that the competitive equilibrium is a strategy equilibrium.

As is evident from the example, for inflation expectations to be anchored at pbi = P ∗ for each i ∈ [0, 1]

it is necessary, but not sufficient, that the equilibrium be a strategy equilibrium.

The main finding of the paper is that for inflation expectations to be anchored, it is sufficient

that monetary policy is consistent with the ‘leaning again the wind, but not too aggressively’ prin-

15For a precise statement of the ‘butterfly’, see section 5.3. That section shows that being inside the butterfly
diagram is sufficient for unique rationalizability. It also discusses necessity (see Proposition 10).

16Condition (iii) of Proposition 9 below provides a mathematical statement of the proposition that a sufficient
condition for unique rationalizability requires that F lie inside the butterfly diagram. Lying inside the butterfly diagram
is what we mean by ‘leaning against the wind, but not too aggressively’. The discussion immediately after Proposition
9 explains that unique rationalizability depends the graph of F lying inside the butterfly, for some transformation of
the domain and range of F . Although the upper and lower bounds that we placed on beliefs in our example played
a role in the argument in the text, the precise value of those bounds does not affect the conclusion that pbi = 1 is the
only rationalizable belief. The bounds do raise technical issues, which we address in Section 5.2. This type of bound
issue is also considered in Kocherlakota (2018) and we relate our analysis to his in Footnote 76.

17A detailed discussion appears in section 5.5.
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ciple. This principle guarantees that atomistic and non-cooperative agents arrive at the same beliefs

independently, and that the desired rational expectations equilibrium is the unique outcome.

2.2 Relation to the Literature

2.2.1 Strategy Equilibrium

Many previous authors have stressed that for policy to be successful, it is necessary that the equi-

librium be what we call a strategy equilibrium. Diamond and Dybvig (1983) make this point in case

of bank runs.18 Bassetto (2005) stresses the importance of strategy equilibrium for implementation

of Ramsey optimal allocations. Atkeson et al. (2010) and Cochrane (2011) consider the issue in an

environment very similar to ours.19 Notably, Cochrane (2011) presents a model in which the Taylor

strategy produces a unique equilibrium, but it is not a strategy equilibrium. He correctly concludes

that the Taylor strategy does not anchor inflation expectations in his model. However, we show that

his conclusion is valid only because he assumes an endowment economy, in which the real interest

rate must be the same on and off equilibrium paths. In our model the real interest rate can vary on

out-of-equilibrium paths and this plays a key role to ensure that the unique equilibrium under the

Taylor strategy in our model is a strategy equilibrium.

2.2.2 Rationalizability, Implementation and Leaning Against the Wind

The papers summarized in the previous subsection do not discuss rationalizability. But, a series of

other papers has introduced rationalizability into macroeconomic analysis.20 Those papers clearly

state the insight that a relatively flat best response function helps to promote unique rationalizabil-

ity.21 However, the papers do not apply the insight to the policy design problem, as we do here.

Our analysis is closely related to the literature on policy implementation. Loosely, we say that a

policy uniquely implements a desired equilibrium if the following three conditions are satisfied: (i) the

unique (Nash) equilibrium is the desired equilibrium; (ii) the equilibrium is a strategy equilibrium;

and (iii) the beliefs associated with the unique equilibrium are uniquely rationalizable.22 If these

conditions are satisfied then inflation expectations (as well as expectations about other variables) are

18Diamond and Dybvig (1983, section V) make a powerful case that the desired equilibrium must be a strategy
equilibrium. They argue that although it is formally true that deposit insurance rules out the bank run equilibrium,
it is important to study the off-equilibrium path in which a bank run occurs, to verify that the deposit insurance fund
would have enough resources in that case. One supposes that if the no-run equilibrium were not a strategy equilibrium
then agents would in fact not adopt the equilibrium belief that their money is safe in the bank.

19Bassetto (2005) refers to what we call a strategy equilibrium as a Schelling timing equilibrium, or a sequential
equilibrium. Atkeson et al. (2010) call it a sophisticated equilibrium.

20See Guesnerie (1992), Evans and Guesnerie (1993), Guesnerie (2002), and Evans and Guesnerie (2005). For a
review, see Desgranges (2014).

21Recall in particular the reference to Guesnerie (2002) in Footnote 8.
22A formal definition of our implementation concept is provided in Definition 10. In the body of the paper, we

follow Atkeson et al. (2010) in working with one-shot sequential game representations of our dynamic equilibrium. We
extend the one-shot concept of implementation to multiple shots in Definition 11 in the Online Appendix.
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anchored. Our approach to implementation differs from existing approaches in the macroeconomics

literature.

There exist at least two approaches to implementation in macroeconomics. One approach focuses

on (i) only, by designing policy so that the rational expectations equilibrium is unique and has

desirable characteristics.23 The second approach requires (ii) in addition to (i). This is the approach

advocated in Bassetto (2005) and Atkeson et al. (2010). But, the two approaches to implementation

just described do not answer our anchoring question: ‘what is required for policy to ensure that

agents uniquely coordinate on the equilibrium beliefs?’. This question is answered by our approach

to implementation. Our approach to implementation requires condition (iii), in addition to (i) and

(ii).

In addition to anchoring expectations, condition (iii) has another feature that is of interest. In

particular, condition (iii) provides a formal foundation for ruling out policies that seem intuitively

peculiar, even though they satisfy (i) and (ii). We provide two examples. In the first example, high

expected inflation is ruled out by a commitment to make actual inflation even higher (see section

5.5). In terms of Figure 1a this corresponds to a scenario in which the best response function is

steeper than the 45o line. Intuitively, one might expect such an odd dynamic to manifest itself in the

form of some kind of expectational instability, but (i) and (ii) offer no way to contemplate such a

possibility. In contrast, in this example the unique equilibrium fails to be uniquely rationalizable (i.e.,

(iii) fails) precisely because an expectational instability prevents iterated deletion from eliminating

all but the competitive equilibrium expectations. Our second example is the opposite of the first

because that example involves a best response function with slope steeper than minus unity.24 The

example is a simple version of the New Keynesian model with Calvo-style price-setting frictions and

two shocks. A known property of that model is that for a sufficiently large value of the coefficient

on inflation, φ, in the Taylor rule, the locally unique equilibrium allocations approach the first-best

allocations.25 Intuitively, it may seem peculiar that a central bank commitment to respond to inflation

with arbitrarily large force could move the economy arbitrarily close to first-best. One might expect

that some form of instability would occur instead. But, there is no room to consider any kind of

instability in the implementation concepts, (i) and (ii). Under condition (iii), a form of instability

indeed does occur when φ is too large.26 A policymaker contemplating high values of φ would expect

good results under (i) and (ii) alone. But, a policymaker that incorporates (iii) when designing

policy would realize that when φ is large enough, expectations become unanchored and control over

the economy is lost.

23For examples of this approach see what Atkeson et al. (2010, p. 49) refer to as ‘unsophisticated implementation’.
24In terms of Figure 1b the best response cuts the 135o line from above.
25The fact that, in equilibrium, a sufficiently high value of φ can close the gap between actual and first best output

reflects in part that the model incorporates a tax subsidy that neutralizes a monopoly distortion in non-stochastic
steady state (for completeness, all results for the New Keynesian model are proved in Online Appendix E). Our analysis
of this model assumes that exists an escape policy which ensures that the locally unique equilibrium is also globally
unique.

26For details, see Online Appendix E.
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2.2.3 Coordination

From a broader perspective, our analysis is part of an effort that began well before the rational

expectations revolution. Walras and Marshall in the 19th century also struggled to understand how

markets coordinate on equilibrium prices. The work in recent decades on how agents manage to coor-

dinate their beliefs is loosely divided by Binmore (1987) into two approaches: the eductive approach

and evolutive approach. The former imagines that agents undergo a private, mental reasoning process

in a pre-period to arrive at a set of beliefs. The eductive approach was illustrated in the example

above. The second, evolutive, approach assumes that agents form their beliefs based on observing

data as they accumulate over time. No doubt, the correct approach is a combination of the two.27

More recently, Evans et al. (2018) make a convincing case that realistic models cannot completely

avoid the evolutive approach.

As noted above, the standard rational expectations approach in macroeconomics sidesteps the co-

ordination question altogether by simply assuming that coordination occurs (e.g., Guesnerie (2002)’s

‘clairvoyance’).28 As we explain below, tractability drives us to use a combination of the eductive

approach and clairvoyance. We take a step away from full rational expectations towards eduction

(rather than the evolutive approach) because it is closest in spirit to the rational expectations frame-

work used in the analysis of monetary policy rules.

2.2.4 Escape Clauses

Finally, our analysis is related to the general topic of escape clauses. Escape clauses allow governments

to deviate from normal policy (which might work well in normal times) to an alternative policy in case

things go wrong. An escape clause may work well by anchoring the normal equilibrium, even if the

policy under the escape clause is not very efficient. For example, in the last section of the paper we

introduce money demand shocks, so that a money growth rule is not efficient for the classic reasons

spelled out in Poole (1970). Still the commitment to deviate to that money growth rule in the event

that an inflation monitoring range is violated (as long as it is designed properly), may ensure that

the conditions that trigger the escape clause never happen in the first place, as in the Diamond and

Dybvig (1983) analysis of deposit insurance. Another example is the ‘suspension clause’ in the United

States Constitution (Article I, Section 9, Clause 2), which gives the United States Congress the right

to suspend habeas corpus ‘...in cases of rebellion or invasion [when] the public safety may require

it.’ An example that applies to monetary policy is the ‘unusual and exigent circumstances’ clause,

Section 13.3, in the Federal Reserve Act, used to rationalize the use of unconventional monetary

policy in the wake of the 2008 Financial Crisis and during the current COVID-19 crisis. The policy

to which the government deviates under the escape clause might not be optimal in normal times, but

27For example, Binmore (1987, p. 185) states, “It is not denied that the middle ground between these extremes is
more interesting than either extreme.”

28This approach is also dominant in practical applications of game theory. It is common to assume that agents
simply know (without further explanation) that everyone else will play the Nash strategy.
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the mere existence of the escape clause may reduce chance that undesired equilibria form in the first

place.

3 Competitive Equilibrium

Our monetary model is designed to allow us to make the points summarized in the previous section,

and to facilitate comparability with the related monetary policy literature (see especially Cochrane

(2011) and Atkeson et al. (2010)). Versions of the model have been studied extensively in a series of

papers and the variant we consider is closest to the model used in Christiano and Rostagno (2001).29

3.1 Households

The economy is composed of a large number of identical households. The representative household

solves the following problem:

max
{ct,lt,mt,dt}∞t=0

∞∑

t=0

βt

[
c1−γ
t

1− γ −
l1+ψ
t

1 + ψ

]
, γ > 0, γ 6= 1, ψ ≥ 0 (5)

s.t. mt = R̄t (Xt + dt) +mt−1 − dt +Wtlt − Ptct + Tt, (6)

Ptct ≤ mt−1 − dt +Wtlt (7)

m−1 given,

where ct ≥ 0 and lt ≥ 0 denote consumption and employment, respectively. Also, mt−1 denotes the

quantity of currency held by the household at the beginning of period t. The right side of equation

(6) represents the household’s period t sources of currency. The first source of currency takes the

form of interest and principle, R̄t (Xt + dt) , received on bank deposits, Xt + dt, at the end of period

t after goods markets have closed. Here, Xt denotes a government transfer of currency directly into

the household’s bank deposit at the start of period t. Also, 0 ≤ dt denotes currency deposited by

the household into a bank at the start of period t and R̄t denotes the gross nominal rate of interest.

The currency that the household carries over from period t− 1 is denoted by mt−1, so that mt−1− dt
represents the currency that the household chooses to keep on hand at the start of period t. Other

currency available to the household at the start of period t is the wage bill, Wtlt, which it receives

before work begins. The household spends currency, Ptct, in the goods market, subject to the cash

constraint, (7). Finally, after the goods market closes, the household receives Tt, which denotes firm

profits net of government taxes.30

29The model was originally constructed by Fuerst (1992), which in turn was inspired by Lucas (1990). See also
Christiano (1990), Christiano and Eichenbaum (1992), Chari et al. (1995), Christiano and Eichenbaum (1995) and
Christiano et al. (1997).

30Nothing substantial depends on our assumption, γ 6= 1. We discuss this case later.
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According to equation (6) and equation (7), the trade off between consumption and leisure offered

to the household by the market is a function of the real wage, Wt/Pt. Similarly, the tradeoff between

consumption in different periods is determined by the real rate of interest, R̄t/π̄t+1.

It is easily verified that under these conditions, the first order conditions associated with household

employment, deposits and the cash constraint are, respectively,

Wt

Pt
= cγt l

ψ
t , (8)

c−γt = βc−γt+1

R̄t

π̄t+1

, (9)

0 =
(
R̄t − 1

)
(mt−1 − dt +Wtlt − Ptct) . (10)

In equation (10), each expression in braces is non-negative. The transversality condition is:

lim
j→∞

qjmj = 0, (11)

where qj is 1 for j = 0 and
(∏j−1

s=0 R̄s

)−1

. In Online Appendix A.5, we show that, under the

boundedness conditions, the first order conditions and transversality condition are necessary and

sufficient for household optimization.

3.2 Production

A final output good is produced by a competitive, representative firm using the CES production

function with the elasticity of substitution κ > 1 :

Yt =

(∫ 1

0

Y
(κ−1)/κ
i,t di

)κ/(κ−1)

.

Let pi,t denote the price of intermediate good, Yi,t, i ∈ [0, 1]. The firm takes the price of output, Pt,

and the prices of the inputs, pi,t, i ∈ [0, 1] as given. The first order conditions associated with the ith

firm’s profit maximization problem is:

Yi,t = Yt

(
Pt
pi,t

)κ
. (12)

The first order conditions, together with the production function, impose a restriction across the

aggregate price index and the price of intermediate goods:

Pt =

[∫ 1

0

p1−κ
i,t di

] 1
1−κ

. (13)
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The ith intermediate good, Yi,t, is produced by a monopolist with the following production function,

Yi,t = li,t. Here, li,t denotes the labor input employed by the ith firm.

We assume that the ith intermediate good firm must pay its period t wage bill, Wtli,t, at the

beginning of the period, before it has obtained its period t receipts. The firm borrows Wtli,t from the

bank and must repay R̄tWtli,t after the goods market closes. At that time, the government provides

a subsidy, τt, to the firm so that its post-subsidy end-of-period wage bill is (1− τt) R̄tWtli,t. Since

the firm wants to borrow an infinite amount when R̄t < 1, equilibrium requires R̄t ≥ 1. The ith firm

maximizes end-of-period profits by setting its price as a markup over marginal cost, (1− τt) R̄tWt :

pi,t =
κ

κ− 1
(1− τt) R̄tWt = Wt, (14)

for each i. The second equality in equation (14) reflects our assumption that τt is selected to neutralize

the interest rate and monopoly power distortions in the model. We neutralize the monopoly power

distortion to streamline notation and we neutralize the interest distortion to ensure that Cochrane

(2011)’s model is a special case of ours (see below).31 Because the marginal cost for i is the same for

all the other firms, all intermediate good firms set the same price, pi,t. As a result, by equation (13)

the intermediate good firm equilibrium condition is:

Pt = Wt. (15)

3.3 Government Policy

The government’s monetary transfer, Xt, to households at the start of t satisfies

Xt = (µ̄t − 1) M̄t−1, µ̄t = M̄t/M̄t−1. (16)

Here, M̄t denotes the end-of-period t per capita stock of money and µ̄t denotes the gross money

growth rate. Monetary policy selects a sequence, {µ̄t}∞t=0, so that, in equilibrium,

R̄t = max

{
1, R̄∗

( π̄t
π̄∗

)φ}
, π̄t+1 ≡

Pt+1

Pt
, R̄∗ ≡ π̄∗/β, (17)

where π̄∗ ≥ 1 and R̄∗ are the desired inflation and interest rate. Here, we assume that φ > 1. In
addition, when the lower bound on R̄t is binding, we assume that the government sets M̄t = Ptct,
where ct denotes aggregate consumption.

In addition, the government levies a lump sum tax, T gt , on households to finance the subsidy in

equation (14) to firms. Thus, T gt = τtR̄tWtlt,where τt = 1− (κ− 1) /κR̄−1
t . The government does not

purchase any goods, or issue debt.32

31See Christiano and Rostagno (2001) for an extended analysis of the case, (1− τt)κ/ (κ− 1) = 1.
32A number of interesting issues concerning fiscal policy are left out of the analysis. For example, a property of

our model is that a non-negative money growth rate rules out a zero interest rate equilibrium. In the presence of
government debt, this result is not necessarily true. For further discussion and a defense of the position taken here,
see Christiano and Rostagno (2001, Section 2.4).

12



3.4 Market Clearing and Equilibrium

The goods, labor, money and loan market clearing conditions are:

ct = Yt,

∫ 1

0

li,t = lt, M̄t = mt, Xt + dt = Wtlt, (18)

for t ≥ 0, respectively. Also, household profits net of taxes are Tt =
∫
i

[
pi,tYi,t − R̄tWt (1− τt) li,t

]
di−

T gt . Equations (12) and (14) imply, using equation (18):

ct = lt. (19)

To ensure that households are identical, we require m−1 = M̄−1.

Let the time t variables be denoted by:

āt =
(
lt, ct, Pt, R̄t,Wt, µ̄t, M̄t,mt, dt

)
. (20)

To simplify notation, we delete reference to pi,t and li,t because these are simply equal to Pt and lt,

respectively, for each i ∈ [0, 1]. We define a competitive equilibrium that starts at date 0 as follows:33

Definition 1. A competitive equilibrium under the Taylor rule is a sequence, (āt)
∞
t=0 , that satisfies,

for t ≥ 0, (i) intermediate good firm optimality; (ii) final good firm optimality; (iii) household

optimization, conditional on m−1; (iv) government policy; and (v) market clearing.

For purposes of equilibrium characterization, it is useful to note that condition (i) corresponds

to equation (14); condition (ii) corresponds to equation (12) and equation (13); condition (iii) corre-

sponds to equation(8) - equation (11); condition (iv) corresponds to equation (16) - equation (17);

and condition (v) corresponds to equation (18).

We define competitive equilibrium under alternative monetary policies by obvious adjustments to

Definition 1. For example, we can define a competitive equilibrium under constant money growth, by

replacing equation (16) - equation (17) with a constant value for µ̄t. Similarly, we can define a com-

petitive equilibrium under the Taylor strategy. The Taylor strategy was discussed in the introduction,

and will be defined formally in Section 3.6 below.

3.5 Properties of Competitive Equilibrium Under the Taylor Rule

We now obtain a dynamic equation that can be used to identify all the equilibria in our model. It

turns out that the analysis of equilibrium is greatly simplified by scaling and logging the variables.

Later, when we discuss how rational agents coordinate their expectations, the log transform will also

be very convenient.34

33To shorten the definition, we refer to our equilibrium concept as a competitive equilibrium. We do this even though
some of the agents in our model are not competitive.

34See the discussion of Proposition 9 below.
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Combining equation (15) and equation (18), we conclude that for all t ≥ 0, ct = lt = 1. As a

result, the intertemporal Euler equation reduces to the Fisher equation:

Rt = πt+1, (21)

where Rt = ln
(
R̄t/R̄

∗) , πt+1 = ln (π̄t+1/π̄
∗) . Also, µ̄∗ = π̄∗ is the money growth level in the desired

equilibrium. We can also express the Taylor rule in scaled and logged form:

Rt = max {Rl, φπt} , M̄t = Ptct, if Rt = Rl, (22)

where Rl ≡ ln
(

1/R
∗
)

and ct denotes aggregate consumption. It is also useful to define the scaled

and logged money growth rate:

µt ≡ ln

(
µ̄t
µ̄∗

)
. (23)

Combining equation (21) and equation (22) we obtain the following first order difference equation:

πt+1 = max {Rl, φπt} . (24)

Combining the loan market clearing condition, equation (18), the household Kuhn-Tucker condition,

equation (10), and monetary policy in the zero lower bound, we have the equilibrium cash condition:

M̄t = Ptct. (25)

Also, the transversality condition, taking into account the equilibrium conditions, (18) and the con-

stant consumption level, corresponds to:

lim
T→∞

βT
M̄T−1

PT
= 0. (26)

Equation (24) is useful for studying the equilibria in the model for the following reason:

Proposition 1. For any sequence, (πt)
∞
t=0 that satisfies the difference equation, (24), it is possible

to construct the other equilibrium variables in such a way that all the conditions for a competitive

equilibrium are satisfied.

That a model which has an equilibrium characterization of the form in equation (24) has multiple

equilibria, is well-known. For completeness, we include a proof in Online Appendix A.4.35

Figure 2, a variant on the well-known figure in Benhabib et al. (2001b, Fig. 1), depicts equation

(24). From this figure it is easy to see that the model has many equilibria, each indexed by the

value of π0. The desired equilibrium corresponds to πt = 0 for t ≥ 0. Consider the two inflation

35Other work that studies models with the equilibrium characterization, equation (24), include Benhabib et al.
(2001a), Woodford (2003, chapter 2) and Cochrane (2011). The model underlying these characterizations is an
endowment economy, while ours is not. This distinction plays an important role in our analysis.
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rates marked in Figure 2 by πl and πu. We refer to this interval as the inflation monitoring range.

Note that, due to the high value of φ, there is exactly one equilibrium, the desired equilibrium, in

which inflation is always in the monitoring range, πt ∈ [πl, πu] for t ≥ 0. This observation plays an

important role in the analysis below.

Figure 2: Fisher Equation and Taylor Rule

πl πu
ln

(
β

π̄∗

)

Rl

Rl

φ

π t+
1
=
m
ax
{ R

l ,φ
π t
}

πt

πt+1

45
◦

3.6 Taylor Strategy

The fact that the unique equilibrium with πt ∈ [πl, πu] is the desired equilibrium for all t ≥ 0 is an

important motivation for the following policy:

Definition 2. Taylor strategy : if t = 0, or if πs ∈ [πl, πu] for s ≤ t − 1, for t > 0, then follow the

Taylor rule, (22), with φ > 1 in period t. Otherwise, monetary policy sets (scaled and logged) money

growth to µt = µ+ ρ ln ct for t ≥ 0, where µ ∈ [πl, πu]. Here, πl and πu are two constants satisfying

max

{
Rl

φ
, ln

1

µ̄∗

}
< πl ≤ 0 ≤ πu <∞. (27)

Note our money growth rule responds to (aggregate) consumption. The parameter, ρ, is irrelevant

for establishing uniqueness of competitive equilibrium. It is important later when we consider off-

equilibrium paths (see Section 5 below). We will see in Section 4.2 that the value of ρ plays a role

in guaranteeing unique implementation of the desired equilibrium. The restriction on µ guarantees

that if the escape clause is activated, then inflation will be brought to the interior of the monitoring

range.

A competitive equilibrium under a Taylor strategy is unique and it is the desired equilibrium. This

result is established in three steps. First, we establish that the economy has a unique equilibrium

under our money growth rule:

Lemma 1. Suppose M̄−1 is given and monetary policy sets M̄t = µ̄cρt M̄t−1 for t ≥ 0, where µ̄ > 1.

There exists a unique competitive equilibrium with the properties:

R̄t = β−1µ̄ > 1, ct = 1, π̄t+1 = µ̄, for t ≥ 0, and P0 = M̄−1µ̄.
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For the proof, see Online Appendix A.5.

If Lemma 1 were not true and an equilibrium did not exist, it would be impossible to meaningfully

ask what would happen if πt /∈ [πl, πu] , because agents would not know how to form expectations

about t+ 1.36 The second step shows that there is no competitive equilibrium in which πt /∈ [πl, πu] :

Lemma 2. Consider the case in which monetary policy is the Taylor strategy defined in Definition

2. An equilibrium has the following property: πt ∈ [πl, πu] for t ≥ 0.

The intuition for the proof is straightforward given Figure 2. A formal proof appears in Online

Appendix A.5.

The basic result of this section is:

Proposition 2. Suppose monetary policy is governed by the Taylor strategy. The only equilibrium

is the desired equilibrium.

Proof. Suppose, to the contrary, that π0 6= 0. From Lemma 2 equilibrium has the property that the

monitoring range is never violated, i.e., πt ∈ [πl, πu]. The Taylor rule, (22), the Fisher equation, (21),

and πl >
Rl

φ
, imply that in equilibrium: πt+1 = φπt. Evidently, π0 6= 0 implies πt /∈ [πl, πu] for some t,

given φ > 1. This contradicts Lemma 2. We conclude that π0 = 0, establishing the proposition.

The result follows almost immediately from Lemma 2 and Figure 2. The former says that there

is no equilibrium with πt /∈ [πl, πu] . The latter indicates that the only equilibrium with πt ∈ [πl, πu]

is πt = 0 for all t ≥ 0.

Proposition 2 in effect assumes φ > 1 because that is included in our definition of the monetary

policy rule (see Definition 2). It is interesting to note that φ > 1 is not necessary for a unique

equilibrium in the extreme case, πl = πu = µ = 0. In this case, uniqueness is guaranteed for any

φ 6= 0 (this result was shown in Atkeson et al. (2010)). To verify this, simply retrace the proof

of Lemma 2, which is the heart of the proof of Proposition 2. We discuss the implications of this

proposition for policy and for the Taylor principle in Section 6 below. We refer to this policy as

follows:

Definition 3. The zero monitoring range strategy is a version of the policy in Definition 2 with

πl = πu = µ = 0 and φ 6= 0.

Following is a formal statement of the uniqueness result:

Proposition 3. Suppose monetary policy is the zero monitoring range policy. The only equilibrium

is the desired equilibrium.

36For our analysis it is convenient that we have a unique equilibrium under the money rule, but we have not
investigated whether uniqueness is necessary for our conclusions.
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4 The Market as a Game

This section transforms the market economy of the previous section into a large, non-cooperative

game among the atomistic intermediate good producers. In period t, the ith intermediate good firm’s

payoff is a function of its own action (its price), the history of the economy, ht−1, as well as its

belief about the price set by other intermediate good firms. As in the example in Section 2, the ith

firm’s belief about the price set by other firms matters. This is because what the other firms do

determines the continuation equilibrium of the economy, which in turn affects the ith firm’s payoff.

In contemplating the continuation equilibrium, the intermediate good firms think of households as

optimizers with clairvoyance about market prices, so that their decisions satisfy first order conditions

and clear markets.37 In addition, each firm understands the monetary policy strategy. The first

section below explains how ht−1 and the ith firm’s belief map - via a continuation equilibrium - into

the ith firm’s optimal choice of its own price. This mapping defines the firm’s best response function.

We show that in contemplating the various continuation equilibria associated with alternative beliefs,

the firm’s best response function depends on the nature of monetary policy. This result may at first

seem surprising, since we do not impose any exogenous price setting or other nominal frictions in the

model. Monetary policy matters when intermediate good firms form expectations because, as they

contemplate different prices set by others, the continuation equilibrium behaves like a sticky price

model.

The first subsection below studies the price setting decision of the ith intermediate good producer,

as a function of an arbitrary belief and history. The second and third subsections formally define and

then discuss the strategy equilibrium of the model.

4.1 The Price Decision of the ith Intermediate Good Producer

As explained in Section 3.2, the ith optimizing intermediate good firm wishes to set its price, pi,t, to

the aggregate wage rate. In the first subsection below we describe the conundrum discussed intuitively

in Section 2. The conundrum implies that to make its price decision, the ith firm must form a belief

about how other intermediate good firms are setting their date t price. The second subsection defines

histories in terms of our scaled variables. The third subsection describes the reasoning that allows the

ith firm to combine its knowledge of the past history of the economy with its belief about others’ prices

to map into a belief about the nominal wage rate, Wt. This mapping, which is used to define the ith

firm’s best response function, is represented analytically in Proposition 4. The key ingredient of the

best response function is an
(
ht−1, π

b
i,t

)
continuation equilibrium. The fourth and fifth subsections

provide explicit derivations and economic interpretations of the best response functions.

37Recall the discussion about clairvoyance in Section 2.2.3. By assuming that households have clairvoyance we mean
that they have rational expectations, i.e., their beliefs correspond to the competitive (continuation) equilibrium.
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4.1.1 The Role of Beliefs in a Firm’s Price Setting Decision

Intermediate good firms set their prices simultaneously and without coordination. Recall from equa-

tion (14) that firms would like to set their price, pi,t, equal to the nominal wage rate. For the reasons

described in Section 2, it is not possible for the ith firm to literally observe Wt at the time that it

sets its price. This is because Wt is determined in an equilibrium in which the state is composed of

the observed past history, ht−1, as well as the aggregate price level, Pt. The aggregate price level is

necessary for wage determination in the labor market because, for example, households care about

Wt/Pt, and not Wt per se. That the ith firm cannot observe Pt at the time it chooses pi,t is obvious

from equation (13), which indicates that Pt is the consequence of the prices set by all intermediate

good firms. The ith firm cannot observe the consequences, Pt, of the other firms’ actions until after

those actions have been taken. It follows that when the ith firm sets its price, it must do so based on

a belief about how other firms set their price.

We make the following symmetry assumption about beliefs: the ith firm believes that all other

firms set the same price, and we denote that price by pbi,t. The symmetry assumption is automatically

satisfied in a competitive equilibrium. There, each firm’s belief about how others set their price is

correct and, hence, identical. An implication of our symmetry assumption is that a given belief, pbi,t,

maps trivially into a belief about the aggregate price index via equation (13).

4.1.2 History, ht−1, and Scaling the Variables

We begin by providing a formal definition of a history, ht−1. A history consists of events observed

until the end of date t− 1. Formally,

ht−1 =





(
P−1, M̄−1

)
t = 0

(ht−2, at−1) t ≥ 1
.

The two variables in h−1 are the initial state of the household (e.g., m−1 = M̄−1) and the lagged

price level needed to define period 0 inflation in the Taylor rule. Also,

at =
(
lt, ct, πt, Rt, wt, µt, M̄t,mt, dt

)
. (28)

Here, πt corresponds to Pt in āt, which is the unscaled version of at (see equation 20). We obtain πt

from Pt by scaling the latter with Pt−1µ̄
∗and logging the result. Similarly, Rt, µt correspond to R̄t, µ̄t

in āt, after scaling and logging. Finally,

wt ≡ ln

(
Wt

Pt−1µ̄∗

)
. (29)
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Let pbi,t denote the scaled and logged price that the ith firm believes the other firms set:38

πbi,t ≡ ln

(
pbi,t

Pt−1µ̄∗

)
. (30)

Let xi,t denote the scaled and logged price set by the ith intermediate good firm:

xi,t = ln

(
pi,t

Pt−1µ̄∗

)
. (31)

4.1.3
(
ht−1, π

b
i,t

)
Continuation Equilibria: Definition and Characterization

A continuation equilibrium associated with
(
ht−1, π

b
i,t

)
is formally defined as follows:

Definition 4. A
(
ht−1, π

b
i,t

)
continuation equilibrium is a sequence, (ai,t+s)

∞
s=0, that satisfies (i) all

time t+ s equilibrium conditions, s > 0 and (ii) all time t equilibrium conditions except the period t

optimality condition for the intermediate good firm, equation (15).

We use the i subscript on the period t and future a’s to highlight that these variables correspond

to the beliefs of the ith firm. Past a’s (hence, ht−1) do not require an i subscript because they are

public information. For a list of all the equilibrium conditions in the model, see the discussion after

Definition 1. We obviously must place at least mild regularity restrictions on πbi,t for the analysis

to be interesting. In particular, the notion that the ith firm might entertain the thought that other

firms set a negative or zero price is uninteresting because no continuation equilibrium could exist in

that case.39 This is true, independent of the nature of monetary policy. So, we exclude any belief as

unreasonable unless it satisfies:

πbi,t > −∞. (32)

We place no restrictions on ht−1or πbi,t, apart from equation (32). For example, we do not require

that the variables in ht−1 satisfy the date t− 1 and earlier equilibrium conditions. But, we do allow

configurations of
(
ht−1, π

b
i,t

)
that correspond to the unique competitive equilibrium under the Taylor

strategy.40

Most of the discussion below is devoted to the construction of ai,t in the
(
ht−1, π

b
i,t

)
continuation

equilibrium. This is because the mapping from
(
ht−1, π

b
i,t

)
to (ai,t+s)

∞
s=1 is straightforward due to

38It is easy to establish that
(
ht−1, p

b
i,t

)
and

(
ht−1, π

b
i,t

)
span the same information. First, we show that, given ht−1

and pbi,t, it is possible to compute πbi,t in equation (30). Note that Pt−1 = π̄t−1 × · · · × π̄0P−1 for t ≥ 0 and that π̄t−s,
1 ≤ s ≤ t, can be recovered from ht−1 because π̄t−s = exp (πt−s) µ̄∗ (see the discussion after equation (21)). This
establishes that Pt−1can be recovered from ht−1, so that we have our first result. Second, it trivial to verify that, given
ht−1 and πbi,t, one can derive pbi,t.

39This corresponds to πbi,t being a complex number or −∞, respectively.
40A history would correspond to an equilibrium if (i) the elements of ht−1 are composed of allocations and prices

up to date t − 1 in competitive equilibrium under the Taylor strategy; and (ii) πbi,t = πt, the inflation rate in this
equilibrium. In this case, the continuation equilibrium is simply the date t + s, s ≥ 0 allocations and prices in the
unique competitive equilibrium under the Taylor strategy.
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Lemma 1 and Proposition 2. In addition, we have a special interest in a particular element of ai,t,

namely the time t wage rate. We denote the mapping, F, from
(
ht−1, π

b
i,t

)
to the scaled and logged

wage, wi,t, defined in equation (29) by

wi,t = F
(
ht−1, π

b
i,t

)
. (33)

In this notation, if the ith firm believes πbi,t then it sets its price as follows (recall equation (14)):

xi,t = wi,t = F
(
ht−1, π

b
i,t

)
. (34)

Thus, in our environment, F can also be interpreted as ith intermediate good firm’s best response

function. That is, F
(
ht−1, π

b
i,t

)
is the firm’s optimal choice of its own price, conditional on other

firms setting their price to πbi,t.

Before formally stating the function, F, it is convenient to repeat our restrictions on preferences

(see equation (5)) and on the parameters of the monetary policy rule (see Definition 2):

ψ ≥ 0, γ > 0, γ 6= 1, (35)

φ > 1,max

{
Rl

φ
, ln

1

µ̄∗

}
< πl ≤ 0 ≤ πu, µ ∈ [πl, πh] . (36)

Then,

Proposition 4. If monetary policy is governed by the Taylor strategy (i.e., equations (35) and

(36) are satisfied) and the money growth rule parameter, ρ, satisfies ρ < min {1, γ}, then a unique(
ht−1, π

b
i,t

)
continuation equilibrium exists, with F given by

(i) if ht−1 has the property that the inflation monitoring range has never been violated, then F

takes the following form:

F
(
ht−1, π

b
i,t

)
=





[
1− φ

γ
(γ + ψ)

]
πbi,t πbi,t ∈ [πl, πu]

πbi,t − γ+ψ
γ−1

[
min

{
Rl, φπ

b
i,t

}
− µ

]
πbi,t /∈ [πl, πu] ,

(37)

(ii) if ht−1 has the property that the inflation monitoring range has been violated at least once, then

F takes the following form:

F
(
ht−1, π

b
i,t

)
=





(
1− γ+ψ

1−ρ

)
πbi,t + γ+ψ

1−ρ

(
µ+ ln M̄t−1

Pt−1

)
πbi,t ∈ D (ht−1)

(
ρ+ψ
ρ−γ

)
πbi,t + γ+ψ

γ−ρ

[
µ+ ln M̄t−1

Pt−1
+ µ−Rl

]
otherwise

, (38)

where

D (ht−1) ≡
{
πbi,t :

1− γ
1− ρ

(
µ+ ln

M̄t−1

Pt−1

− πbi,t
)

+ µ > Rl

}
(39)
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and D (ht−1) corresponds to the values of πbi,t having the property that the nominal interest rate

in the
(
ht−1, π

b
i,t

)
continuation equilibrium is positive.

The proof of Parts (i) and (ii) appear in Sections 4.1.4 and 4.1.5, respectively.41 The graph of F

in equations (37) and (38), for the indicated parameter values, is displayed in Figure 3. The figure

Figure 3: Best Response Function, µ = 0, γ > 1, M̄t−1

Pt−1
= 1, ρ = 0

(a) Taylor Rule Regime

πu
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1− φ (γ + ψ)

γ

]
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(b) Money Growth Regime
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i,t +

γ + ψ

1− ρ

(
µ+ ln

Mt−1

Pt−1

)

xi,t =
(
ρ+ ψ
ρ− γ

)
π b
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µ+ ln
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Pt−1
+
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1− γ
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xi,t

πb
i,t

Note: panel (a) refers to histories, ht−1, in which the inflation monitoring range has never been violated. Panel (b) refers to histories,
ht−1, in which the inflation monitoring range has been violated at least once.

in each panel indicates that the best response function crosses the 45 degree line exactly once, at

the origin.42 This crossing, or fixed point, corresponds to the unique Nash equilibrium: if every firm

had the same Nash belief about what others do, then the actions of all the firms would validate

that belief. The existence and uniqueness of the Nash equilibrium in equation (37) does not depend

on the values of the parameters, as long as they satisfy equations (35) and (36). Section 4.2 below

establishes existence and uniqueness of the fixed point of F (ht−1, ·) for general ht−1.

4.1.4
(
ht−1, π

b
i,t

)
Continuation Equilibria: ht−1 in Which the Monitoring Range Has

Never Been Violated

We now consider F for ht−1 in which the Taylor rule is in place in period t (see Figure 3a ). Because

of our symmetry assumption about beliefs, equation (13) implies that Pi,t = pbi,t in the continuation

equilibrium. It follows that the third entry in ai,t, which is period t scaled and logged inflation, πi,t,

has the property,

πi,t = πbi,t. (40)

Here, πbi,t is defined in equation (30). Turning to the wage rate, note that,

Wi,t = Pi,t
Wi,t

Pi,t
= pbi,t (ci,t)

ψ+γ , (41)

41As we note in Section B.1 below, we leave one part of the proof for Online Appendix B.
42In the case of Panel (b), the unique Nash equilibrium would be at a point different from the origin if µ 6= 0 or

M̄t−1/Pt−1 6= 1.
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where, ci,t and Wi,t/Pi,t denote time t consumption and the real wage in the continuation equilibrium

implied by
(
ht−1, π

b
i,t

)
. The second equality in equation (41) uses the fact that Pi,t = pbi,t and substi-

tutes out the real wage, using the household intratemporal Euler equation, equation (8). In addition,

equation (41) uses the equilibrium condition that consumption equals labor, equation (19).43

After scaling the variables in equation (41) by Pt−1µ̄
∗, using equation (30) and taking logs, we

obtain

wi,t = πbi,t + (γ + ψ) ln ci,t. (42)

Evidently, to compute wi,t we require ci,t.

We consider πbi,t on two segments of the real line. These segments are motivated by the fact

that πbi,t maps directly into period t (scaled and logged) inflation in a continuation equilibrium (see

equation (40)). We refer to the segment, πbi,t /∈ [πl, πu] , as violation of the inflation monitoring range

and refer to the segment, πbi,t ∈ [πl, πu], as moderate inflation.

Violation of the inflation monitoring range

Because the inflation monitoring range is violated in period t, period t + 1 is the first period of

the money growth regime. According to Definition 2 the gross money growth rate, µ̄, is greater than

unity, so that Lemma 1 guarantees existence and uniqueness of (ai,t+s)
∞
s=1. To obtain the remaining

elements of ai,t it is useful to note that, according to Lemma 1, ci,t+1 = 1 and M̄i,t+1 = Pi,t+1. Dividing

the latter by the period t equilibrium cash constraint, (25), M̄i,t = ci,tPi,t, we obtain44

µ̄ =
π̄i,t+1

ci,t
. (43)

Here, π̄i,t+1 denotes the gross inflation rate from t to t+ 1 in the continuation equilibrium associated

with
(
ht−1, π

b
i,t

)
. Substituting equation (43) into the household’s intertemporal Euler equation, (9),

we obtain ci,t =
(
β/µ̄R̄i,t

)1/(1−γ)
. Because ht−1 has the property that the inflation monitoring range

has not been violated in the past, the Taylor rule, (17), is in operation in period t. Substituting the

Taylor rule into the latter equation and rearranging, we obtain, after scaling and taking logs,

ln ci,t =
1

1− γ
[
min

{
Rl, φπ

b
i,t

}
− µ

]
, (44)

where µ is the scaled and logged value of µ̄. In equation (44) we used the fact that inflation, πi,t, in

the continuation equilibrium is πbi,t. Substituting from equation (44) into equation (42), we obtain:

wi,t = πbi,t −
(
γ + ψ

γ − 1

)[
min

{
Rl, φπ

b
i,t

}
− µ

]
= F

(
ht−1, π

b
i,t

)
. (45)

43Our symmetry assumption on beliefs plays a role in equation (41) by ruling out a price dispersion term that would
appear otherwise.

44Note that we assume the cash constraint is satisfied as a strict equality, regardless of whether or not the interest
rate is at the zero lower bound. When the interest rate is positive, equality reflects reflects household optimality,
equation (10). When the interest rate is zero, equality reflects our assumption that in that case, monetary policy sets
the aggregate money stock equal to the current nominal value of aggregate consumption.
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This completes our discussion of the mapping from
(
ht−1, π

b
i,t

)
to the continuation equilibrium for

the case in which the inflation monitoring range is violated for the first time in period t. Equations

(44) and (45) provide explicit expressions for ci,t and wi,t in the
(
ht−1, π

b
i,t

)
continuation equilibrium.

The other variables in the
(
ht−1, π

b
i,t

)
continuation equilibrium are straightforward to derive.

There is a point of contact in our environment between models in which (i) prices are flexible and

monetary policy is neutral and (ii) sticky price models. In the competitive equilibrium of our model,

real variables are determined independent of monetary policy. By contrast, from the perspective of an

intermediate good agent contemplating different πbi,t’s, when γ > 1 the world behaves in period t like

a simple sticky price New (or, old) Keynesian model, in which monetary policy is not neutral. To see

this, consider the ith intermediate good firm contemplating a lower (scaled and logged) price set by

other firms, πbi,t, in the range where the zero lower bound on the interest rate is not binding, πbi,t > Rl/φ

(see Figure 3a). The firm in effect contemplates how the
(
ht−1, π

b
i,t

)
continuation equilibrium changes

with an exogenous decrease in the aggregate price level, ignoring the equilibrium condition, (15).45

There are two channels by which the nominal wage in the continuation equilibrium changes in response

to a change in πbi,t. The first channel is an inflation channel. In the continuation equilibrium inflation,

πi,t, falls by the same amount as πbi,t because of equation (13) and our symmetry assumption on beliefs.

The inflation channel is captured by the first term on the right of the equality in equation (45). It

reflects that, holding the real wage constant, the nominal wage falls by the same amount, in log

terms, as inflation. The interest rate channel reflects that a cut in πi,t results in a fall in the nominal

interest rate, via the Taylor rule. Other things the same, this cut in the interest rate has a direct

positive impact on consumption via the Euler equation, (9). This direct impact on consumption of

the interest rate cut is amplified by general equilibrium effects when γ > 1. In particular, the initial

rise in consumption raises πi,t+1 (see equation (43)). This reduces the real interest rate, triggering

a secondary positive effect on consumption, which raises πi,t+1 further, and so on. With γ > 1 each

successive general equilibrium jump in consumption is smaller and the sum of the effects is finite.

Thus, a fall in πbi,t triggers a jump in ci,t.
46 The resulting rise in the demand for labor produces a rise

in the equilibrium (scaled and logged) real wage (see the second term after first equality in equation

(45)). Because the interest rate effect on the real wage dominates the inflation effect of a fall in πbi,t,

the nominal wage rate rises. The ith firm best-responds by raising the price that it sets. This is why

the ith firm’s best response function has a negative slope when γ > 1.47

Now suppose that the firm contemplates a reduction in πbi,t when the zero lower bound on the

interest rate is binding, φπbi,t < Rl. With the nominal interest rate at its lower bound, interest rate

45In this section, we allow for arbitrary πbi,t and we temporarily ignore any restrictions that optimizing behavior by

other agents may imply for πbi,t. We consider such restrictions in Section 5 below.
46The sum of the direct and indirect effects referred to in the text can be expressed as a geometric sum involving

1/γ. It can be verified that the term, 1/ (1− γ) in equation (44) can be interpreted as reflecting the application of the
geometric sum formula.

47It is easy to verify that when γ > 1, 1−φ (γ + ψ) / (γ − 1) < 0. Later, we explain why the model is not interesting
if 0 < γ ≤ 1. Throughout the analysis, we assume ψ ≥ 0. We also assume φ > 1 except when we consider consider the
special case, πl = πu = µ = 0,as in Proposition 3.
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channel described in the previous paragraph is shut down. With only the inflation channel operative,

the best response function is parallel to the 45◦ line (see equation (45)). Reductions in πbi,t when the

interest rate is at its lower bound have no impact on real wage, real interest rate, consumption and

employment.

We have carefully discussed the case, γ > 1. When γ < 1 the
(
ht−1, π

b
i,t

)
continuation equilibrium

is still well defined and the best response function continues to have a unique fixed point at zero.

However, the global behavior of the best response function is qualitatively very different. For example,

F
(
ht−1, π

b
i,t

)
is strictly increasing in πbi,t when γ < 1.48 In Section 5 we will argue that γ < 1 is

economically uninteresting in this model.

Moderate inflation

The analysis of moderate inflation in period t is qualitatively similar to the case just considered

when γ > 1 (again, see Figure 3a). The difference is that here, period t+1 inflation in the continuation

equilibrium is perfectly anchored at its desired level of zero (thus, equation (45) does not enter the

analysis). The reason is that the Taylor rule will be in operation in t + 1, which implies from

Proposition 2 that πi,t+1 = 0 and ci,t+1 = 1. With πi,t+1 fixed in this way, the best response function

does not exhibit the sensitivity to whether γ is greater or less than unity that we see in equation 5.

Substituting πi,t+1 = 0 and ci,t+1 = 1 into the period t household intertemporal Euler equation,

(9), we obtain (after scaling and logging),

− γ ln ci,t = Ri,t = φπbi,t, (46)

after making use of the Taylor rule, (17). Substituting into equation (42) and collecting terms, we

obtain:

wi,t =

[
1− φ

γ
(γ + ψ)

]
πbi,t = F

(
ht−1, π

b
i,t

)
. (47)

For the range of πbi,t’s considered here, the zero lower bound is not encountered. Apart from that,

the analysis is qualitatively the same as in the version of previous discussion with γ > 1. There

is a quantitative difference because period t + 1 inflation is anchored at its desired level when the

monitoring range is not violated in the current period. This weakens the interest rare channel by

eliminating what we called the general equilibrium effects associated with a change in consumption.

Still, we can see in equation (47) that the interest rate channel still dominates the inflation channel,

because φ (γ + ψ) /γ > 1. This completes our discussion of the mapping from
(
ht−1, π

b
t

)
to the

continuation equilibrium for the moderate inflation case.

48One way to understand the dramatic impact of γ is to recall our geometric sum argument in the case, γ > 1.
The standard geometric sum formula underlies the coefficient, (1/γ) / (1− 1/γ), in equation (45). The geometric sum
formula ‘works’ whether the infinite sum converges or not, but it switches sign from positive to negative when it is
misused. In fact, the infinite sum formula was only used in the text to convey intuition. The mathematical computation
of the continuation equilibrium did not use that formula. In Section 5.5 we argue that the model is not economically
interesting when γ < 1 (see also Proposition 11, which rules γ < 1 out).
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4.1.5
(
ht−1, π

b
i,t

)
Continuation Equilibria: ht−1 in Which the Monitoring Range Has Been

Violated

We now consider histories, ht−1, in which the economy is in the money growth regime from time t and

into the future (see Figure 3b). The values of Pi,t and πi,t in the
(
ht−1, π

b
i,t

)
continuation equilibrium

follow immediately from equation (13) and the symmetry assumption on beliefs. Lemma 1 describes

the part of the
(
ht−1, π

b
i,t

)
continuation equilibrium beginning in t + 1, (ai,t+s)

∞
s=1.49 In particular,

ci,t+1 = 1 and Pi,t+1 = M̄i,tµ̄,using the fact that the cash constraint is binding in t+ 1 and using the

monetary policy rule (see Lemma 1). Then,

ln ci,t+1 = 0, Pi,t+1 = M̄i,tµ̄, πi,t+1 = µ+ ln
M̄i,t

Pi,t
, ln

M̄i,t

Pi,t
= µ+ ρ ln ci,t − πbi,t + ln

M̄t−1

Pt−1

, (48)

where the fourth term is the period t money rule after taking logs and rearranging. We do not

include the i subscript on lagged real balances because they are contained in ht−1, which is public

information.

We suppose that the zero lower bound on the interest rate in the
(
ht−1, π

b
i,t

)
continuation equilib-

rium is strictly non-binding, i.e., Ri,t > Rl. Then, the period t cash constraint (10) is binding, which,

when combined with the loan market clearing condition (see equation (18)), implies ln ci,t = M̄i,t/Pi,t.

Substituting out for M̄i,t/Pi,t using the monetary policy rule and rearranging, we obtain:

ln ci,t =
1

1− ρ

[
µ+ ln

M̄t−1

Pt−1

− πbi,t
]
. (49)

Using (49) to substitute out for ln ci,t in equation (42), we conclude that the (scaled and logged) wage

is given by

F
(
ht−1, π

b
i,t

)
= πbi,t +

γ + ψ

1− ρ

(
µ+ ln

M̄t−1

Pt−1

− πbi,t
)
. (50)

We now derive a necessary and sufficient condition on πbi,t to guarantee that the zero lower bound on

the interest rate is not violated. The household intertemporal Euler equation (9) implies, using (48)

and (49),

Ri,t =
1− γ
1− ρ

[
µ+ ln

M̄t−1

Pt−1

− πbi,t
]

+ µ.

This expression shows that Ri,t is strictly greater than Rl if, and only if, πi,t ∈ D (ht−1) as defined in

equation (39).

Now consider the case in which the zero lower bound binds, namely, πi,t /∈ D (ht−1) . The Euler

equation (9) in the zero lower bound is, after rearranging and using equation (48),

49 Period t+ 1 corresponds to period 0 in the lemma.
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ln ci,t =
1

γ − ρ

[
µ− πbi,t + ln

M̄t−1

Pt−1

+ µ−Rl

]
. (51)

Using equation (42), the time t wage in the
(
ht−1, π

b
i,t

)
continuation equilibrium is given by

F
(
ht−1, π

b
i,t

)
=

(
ρ+ ψ

ρ− γ

)
πbi,t +

γ + ψ

γ − ρ

[
µ+ ln

M̄t−1

Pt−1

+ µ−Rl

]
. (52)

In Online Appendix B.1, we show that the household cash constraint is satisfied in period t in the(
ht−1, π

b
i,t

)
continuation equilibrium constructed above.

As in Section 4.1.4, the intuition behind F is very simple, and we describe it in loose terms here.

To simplify the discussion, we assume that ρ = 0.50 The ‘model’ used by the ith intermediate good

firm to construct the continuation equilibrium corresponding to a particular belief, πbi,t, resembles a

standard sticky price model. The model is essentially static, because the firm assumes that starting in

period t+1 all variables jump to their competitive equilibrium continuation values. We first consider

the case in which the zero lower bound on the interest rate is not binding, i.e., πbi,t ∈ D (ht−1) .

Suppose the ith intermediate good firm contemplates a reduction in the (scaled and logged) price set

by other firms, πbi,t. As in Section 4.1.4, this variation in beliefs operates through two channels. The

first channel, the inflation channel, drives the nominal wage down one-for-one in log terms (see the

first term after the equality in equation (50)). The second channel operates through the interest rate.

With the time t money stock a function of ht−1, a fall in the time t aggregate price level raises time

t real balances. The household would not be content with its previous deposit decision because that

now entails carrying non-interest bearing cash in excess of what is needed for consumption. So, the

intermediate good producer imagines the household would respond to the drop in πbi,t by increasing

deposits, di,t, in equation (7). This increased supply in the loan market drives the interest rate down

and encourages households to raise consumption. Another factor that raises consumption derives

from the fact that the period t+ 1 price level is determined by ht−1 when ρ = 0 (see equation (48)).51

So, the fall in the period t price level raises πi,t+1,thus reducing the real interest rate even more.

The resulting sharp increase in the demand for labor raises the real wage. The interest rate channel

is stronger than the inflation channel when γ > 1, so a fall in πbi,t raises the nominal wage in the

continuation equilibrium (again, see equation (50)). The ith firm best-responds by raising its own

price level. Further reductions in πbi,t eventually make the zero lower bound on the interest rate bind.

The positive impact of such reductions in πbi,t on consumption are now somewhat smaller because

only the inflation channel is operative and the interest rate channel is gone. Thus, reductions in πbi,t

in the region of the zero lower bound raise consumption and the wage, but not as strongly as when

50This parameter will play an important role in the analysis in the next section, and will be discussed there.
51According to equation (48), Pi,t+1 is a function of M̄i,t. When ρ = 0 then M̄i,t = µ̄M̄t−1 (see Lemma 1). The

object, M̄t−1, can be recovered from ht−1.
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πbi,t ∈ D (ht−1).52

Although we think of the money growth rule and the interest rate rule as part of one regime, it

is interesting how similarly the economy behaves under each rule. In each case, the mapping from

beliefs about inflation to actual price decisions is heavily influenced by an interest rate channel. In

this respect, our model provides an example of an argument developed in Taylor (1999). He shows

that monetary arrangements that are apparently very different can all have the same property that

a rise in the nominal interest rate acts as device to moderate (or, even reverse) a rise in inflation.

In his discussion, Taylor (1999) includes not only the types of interest rate and money growth rules

discussed here, but also the operation of the specie-flow mechanism under the Gold standard. We

return to this theme in Section 6.

4.2 Strategy Equilibrium

It is convenient to define the following equilibrium concept:

Definition 5. An ht−1 continuation equilibrium is a sequence, (at+s)
∞
s=0, that satisfies all time t+ s

equilibrium conditions, s ≥ 0.

We now focus on Nash equilibria, in which all intermediate good firms have the same beliefs. So,

we can drop the subscript, i. A Nash equilibrium belief is a πbt with the property, πbt = F
(
ht−1, π

b
t

)
.

We denote such a πbt by πb (ht−1). In principle, πb (ht−1) can be empty or it can be a set-valued

function of ht−1. In the next proposition, we show that πb (ht−1) is single-valued for all ht−1. In

an addition, the following result establishes properties of an ht−1 continuation equilibrium, and its

relation to an
(
ht−1, π

b
t

)
continuation equilibrium:

Proposition 5. If γ > 0, γ 6= 1, and ρ < min {γ, 1}, our model has the following properties:

(i) for every history, ht−1, there exists a unique continuation equilibrium,

(ii) an ht−1 continuation equilibrium is an
(
ht−1, π

b
t

)
continuation equilibrium iff πbt ∈ πb (ht−1),

(iii) the mapping, πb (ht−1) , is single-valued for each ht−1,

(iv) for histories, ht−1, in which the inflation monitoring range has never been violated, the unique

fixed point of F is πbt = 0.

52The best response function has slope, −ψ/γ, when the zero lower bound is binding and it has slope 1− (γ + ψ) ,
when it is not binding. To see that it is flatter when the zero lower bound is binding, we show that −ψ/γ > 1−(γ + ψ) .
To see that this is the case, add ψ/γ to both sides and collect terms in γ+ψ, so that the previous inequality is equivalent

to 0 > − (ψ + γ)
(

1− 1
γ

)
, which is true when γ > 1. The same result is true for the values of ρ allowed in the monetary

growth rule (see Definition 2). We explain the economic rationale the restriction on ρ in section 5.5.
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For the proof, see Online Appendix B.2.

The above properties of continuation equilibria are crucial for an equilibrium concept that plays

an important role in our analysis:

Definition 6. A competitive equilibrium is a Strategy Equilibrium if the model has the following two

properties: (i) for each possible history, ht−1, there is a well-defined ht−1 continuation equilibrium;

and (ii) for each possible
(
ht−1, π

b
t

)
with πbt > −∞, there is a well defined

(
ht−1, π

b
t

)
continuation

equilibrium.

Our Strategy Equilibrium is substantively not different from the ‘sophisticated equilibrium’ con-

cept used in Atkeson et al. (2010). It has a different name because the equilibrium objects in Atkeson

et al. (2010) are functions while they are sequences here. We use the name, ‘strategy equilibrium’

even though all the agents in our model are atomistic and they know their decisions have no impact

on economic aggregates. Still, the reasoning of our intermediate good firms has a strategic aspect to

it. They contemplate different beliefs about the actions of others and the impact that others’ actions

have on economic aggregates. For an equilibrium to be a strategy equilibrium, it is necessary that

the continuation equilibrium associated with each belief is well-defined.

It is easily established Definition 6 is satisfied by our model:

Proposition 6. The Taylor rule equilibrium with an escape clause is a strategy equilibrium for γ > 0,

γ 6= 1 and ρ < min {γ, 1} .

Proof. The result is immediate by Proposition 4, (i) and Proposition 5, (i).

It is also interesting to construct the best response function, F, under the under the zero mon-

itoring range policy in Definition 3, with πl = πu = µ = 0 and φ 6= 0. In this case, we know from

Proposition 3 that the desired equilibrium is the only competitive equilibrium. Consider the case,

ht−1, in which the inflation monitoring range has never been violated. The best response function,

F, in this case is the second expression in equation (37) for all πbi,t. In the case of ht−1 in which there

has been a violation of the monitoring range, the function, F, is given in equations (38) and (39).

This establishes that the equilibrium for this monetary policy is a strategy equilibrium. Formally,

Proposition 7. Suppose (i) monetary policy is governed by the zero monitoring range strategy, and

(ii) γ > 0, γ 6= 1 and ρ < min {γ, 1}. Then, the unique equilibrium is a strategy equilibrium.

This proposition was established in Atkeson et al. (2010). The economic intuition underlying

F in the case of the policy considered here is essentially the same as it is for the case, πl < πu

discussed in Sections 4.1.4 and 4.1.5. This is obviously true for histories, ht−1, in which there has

been a past deviation, because the escape clause is irrelevant in this type of history. It is also true

for histories, ht−1, in which there never has been a deviation. For those histories, the best response

function is the function graphed in Figure 3a, where the middle segment is shrunk to a singleton at

the origin. Whether that middle segment is simply a point at the origin, or has positive length, as
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in Figure 3a, has no significant impact on the underlying economic intuition a described above. So,

the policy referred to in Proposition 7 is yet one more example of Taylor (1999)’s observation that

seemingly different policy arrangements could nevertheless assign an important role to the interest

rate for stabilizing inflation. This observation may at first seem surprising, since Proposition 7 allows

for φ > 0 but arbitrarily small. In Section 5, we argue that φ < 0 is not economically interesting.

4.3 Observations About the Strategy Equilibrium

The requirement that an equilibrium be a strategy equilibrium places restrictions on the model

parameters (see Propositions 6 and 7). We illustrate this with two examples in which the parameter

restrictions are not satisfied and the equilibrium fails to be a strategy equilibrium. Our first example

considers the log specification of utility, γ = 1. Our second example considers a particular set of

restrictions which in effect convert our economy into an endowment economy. Consistent with the

results in Cochrane (2011), the unique competitive equilibrium corresponding to the Taylor strategy

is not a strategy equilibrium in the endowment economy case. The reason is that the Taylor strategy

implements the desired equilibrium by changing the real interest rate in the event that the economy

leaves the desired allocations. In an endowment economy such a policy is not a strategy equilibrium,

because there exists no monetary policy that can change the real interest rate. Of course, this logic

does not apply to our model because it is a production economy in which it is possible for monetary

policy to change the real interest rate.

First, consider the following proposition:

Proposition 8. Suppose γ = 1. The competitive equilibrium associated with the Taylor strategy is

not a strategy equilibrium.

Proof. It suffices to show that there exists an
(
ht−1, π

b
t

)
for which there does not exist a continuation

equilibrium. Thus, suppose ht−1 is a history in which the monitoring range has never been violated.

Consider πbt /∈ [πl, πu] . In period t+ 1 the escape clause will be invoked and the economy will switch

to the money growth regime. By Lemma 1, we have

ln ct+1 = 0. (53)

The cash constraint is binding in periods t and t+ 1, so equation (43) is satisfied and

πt+1 = ln ct + µ, (54)

after scaling and logging. Taking into account that in the continuation equilibrium, πt = πbt /∈ [πl, πu],

it follows that in the scaled and logged Taylor rule,

Rt = φπt /∈ [πl, πu] , (55)
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because φ > 1. After scaling and logging the household intertemporal Euler equation, (9),

ln ct = ln ct+1 − [Rt − πt+1] . (56)

Substituting equations (53), (54), into equation (56) we obtain

Rt = µ ∈ [πl, πu] , (57)

which contradicts equation (55).

We infer from this example that the Taylor strategy would not be an effective way to exclude un-

desired equilibria if γ = 1. A different policy would be necessary to implement the desired equilibrium

in this case.

Another closely related example is the version of the model in which γ > 0 and in which households

supply labor inelastically, lt = 1. In this case, the model economy is effectively an endowment economy,

as in Cochrane (2011). By essentially the same logic as in the γ = 1 case, the Taylor strategy is

not a strategy equilibrium.53 So, using the escape clause to eliminate undesired equilibria in an

endowment economy is, once again, uninteresting.54 If the model economy does not have γ = 1

or is not an endowment economy, then equations (55) and (56) do not imply a contradiction. A

suitable adjustment in ln ct can reconcile the two equations. Indeed, Proposition 6 implies that such

an adjustment would occur in our model (which is not an endowment economy) with γ 6= 1. The

economics of the adjustment in ln ct will be discussed in the next section.

5 Rationalizable Implementation

This section derives sufficient conditions and a necessary condition for policy to uniquely implement

the desired equilibrium. We begin, in the first subsection, by providing a standard definition of

rationalizability and relating it to the concept of iterated deletion discussed in Section 2. The second

subsection motivates a refinement of the concept of rationalizability, robust rationalizability, which

we use in our analysis. The third subsection provides sufficient conditions for rationalizability, as

well as a necessary condition. These conditions are the formal representation of the ‘leaning against

the wind, but not too aggressively’ principle discussed in Section 2. To establish our conditions for

rationalizability, we must generalize existing results in the literature (see Desgranges (2014)). To

our knowledge, the literature does not address models with best response functions like ours. The

53The proof by contradiction in the endowment economy requires a minor adjustment to the argument in the text.
The argument leading to equation (55) is unchanged. Equation (57) also holds, but in the endowment economy it is
derived from the fact, ln ct = ln lt = 0, for all t. In particular, πt+1 = µ by equation (54) and Rt = πt+1 by equation
(56) implies equation (57).

54As noted in the introduction, this observation was first made in Cochrane (2011). The endowment economy
assumption is made in Cochrane (2011, p. 574) and our proof by contradiction argument (see Footnote 53) coincides
with the argument in Cochrane (2011, p. 584).
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best response function in our model lacks differentiability, continuity and has a segment which has

slope unity (see Figure 3). The fourth and fifth subsections make use of our rationalizability result to

establish sufficient conditions for unique implementation of the desired equilibrium. We also provide

a necessary condition. We obtain these results for the Taylor strategy, defined in Definition 2, and

also for the zero monitoring range strategy defined in Definition 3.

Our analysis in this paper follows Atkeson et al. (2010) by focusing on one-period deviations

from an arbitrary history, ht−1. We have extended the analysis to multi-period deviations.55 For

space reasons, that analysis is reported in Online Appendix C.6. Conceptually, the extension to

multiperiod deviations is straightforward. However, because of the segmented structure of our best

response function, the type of global analysis that we do in the body of the paper is less tractable. So,

Online Appendix C.6 proceeds in the style of Evans et al. (2018) by doing the multi-period analysis

locally to the unique Nash equilibrium of the relevant game, for arbitrary ht−1. We obtain a set

of necessary and sufficient conditions for the local, multi-period analog of unique implementation.

Those conditions are slightly weaker than the conditions in the one-period setting.56 We do so for

both monetary policies studied in the paper: the Taylor strategy and the zero monitoring range

strategy.

5.1 Rationalizability

In our environment, intermediate good firms choose an action which is a best response to a belief

about the price set by other firms.57 We are interested in determining what belief would be reasonable,

or rationalizable, for an individual firm under CK. To this end, it is useful to first define the set of

possible beliefs, Π0 = (−∞,∞). These are the beliefs for which there exists a well defined continuation

equilibrium (see the discussion before equation (32)). We also define a justified belief:

Definition 7. An agent’s belief, πbi,t, about the actions of others is justified if (i) πbi,t ∈ Π0 and (ii)

πbi,t is itself a best response to some belief in Π0 by everyone else.

Rationalizability has the following recursive definition:

Definition 8. We say that a belief, πbi,t ∈ Π0, is rationalizable if (i) πbi,t is justified and (ii) the belief

to which πbi,t is a best response is also justified.

It is well known that there are two ways to determine the rationalizability of a given belief, chain

of justification and iterated deletion. Both play an important role in our analysis, and so we define

them formally here.

55We do not appeal to the ‘one-shot-deviation principle’ in game theory (see e.g., Fudenberg and Tirole (Section 4.2,
1991)) because our setting is different from the environment in which that principle is derived. In that environment
there is a large agent who makes a decision which affects the evolution of the economy (see, e.g., Chari and Kehoe
(1990)). In our environment all agents are atomistic, so that their own decisions are inconsequential.

56See equations (63) and (67) below.
57We continue to maintain our symmetry assumption on beliefs.
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Given the recursive nature of Definition 8, a belief, πbi,t, is rationalizable if it is possible to construct

a chain of justification for πbi,t. To define this chain we first construct a sequence of sets. The

first element in the sequence is the singleton, πbi,t. The lth element in the sequence, for l > 1, is

F−l
(
ht−1, π

b
i,t

)
:58

{
πbi,t, F

−1
(
ht−1, π

b
i,t

)
, ..., F−l

(
ht−1, π

b
i,t

)
, ...
}
. (58)

A chain of justification for the belief, πbi,t, is a sequence of beliefs in equation (58) such that each

element belongs to Π0. In there exists such a sequence, then πbi,t is rationalizable according to

Definition 8. Rationalizability can fail if F−l
(
ht−1, π

b
i,t

)
∩ Π0 is empty for some l. This constructive

method for verifying that πbi,t is rationalizable is called the chain of justification method.

The iterated deletion method is the one used in the example in the Section 2. It identifies the

entire set of rationalizable beliefs. As such, it represents a second method for determining whether

a given belief is rationalizable. Suppose that the firm starts out with the set of possible beliefs, Π0.

Then, F (ht−1,Π0) denotes the set of best responses associated with all possible beliefs, Π0. Consider

an element, xi ∈ Π0 such that xi /∈ F (ht−1,Π0) . The ith firm knows that there is no circumstance

in which it would choose xi and it realizes that others would never choose xi either. So, the ith firm

would drop xi from the set of possible beliefs, Π0. That is, the ith individual would restrict its beliefs

about what others do to Π1 = Π0

⋂
F (Π0).59

This process can be repeated, leading to a sequence, Πk+1 = Πk

⋂
F (ht−1,Πk), for k ≥ 0. Notice

that by construction, the sequence is non-increasing, Πk+1 ⊆ Πk for k ≥ 0. Consider the set of beliefs,

πbi,t ∈ Π0, such that they remain undeleted even as k →∞:

Π∗ (Π0;F ) =
∞⋂

k=0

Πk. (59)

We specify Π0 and F as arguments of Π∗ because we will have occasion to evaluate the operator, Π∗,

for sets other than, Π0, and functions other than F . We do not include the argument, ht−1, in Πk

and Π∗ in order to simplify notation.

As is well known, the set, Π∗ (Π0;F ), coincides with the set of rationalizable beliefs in the sense

of Definition 8. For completeness, we present a proof in Online Appendix C.1.60

For each possible ht−1 we envision that every intermediate good firm constructs a set of ratio-

nalizable beliefs using either the chain of justification or the iterated deletion method, or even a

combination of the two. This private mental process used by firms to restrict their beliefs (perhaps

to a singleton) is called eduction (see Binmore (1987, page 184)).

58Here, x ∈ F−1
(
ht−1, π

b
i,t

)
if πbi,t = F (ht−1, x). Also, F−l

(
ht−1, π

b
i,t

)
is defined similarly for l ≥ 2.

59The reason we define Π1 = Π0

⋂
F (Π0) and not simply Π1 = F (Π0) is because our analysis must be robust to

situations in which F (Π0) ( Π0, in which case F 2 (Π0) is not well defined.
60For a textbook treatment, see Mas-Colell et al. (1995, Section 8.C).
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5.2 Rationalizability with Refinement

Our paper is about designing policy so that agents’ expectations are uniquely anchored to the desired

equilibrium. As it turns out, a technicality prevents achieving this kind of uniqueness in the model

described up to now. The technicality is the assumption implicit in our analysis that intermediate

good agents can discriminate between an exact zero and an infinitesimally small number. Intuitively,

our refinement assumes that there exists an arbitrarily small positive number, such that agents

cannot distinguish between it and zero. With this refinement, there is still a nontrivial policy design

problem, but failure of expectations to be anchored only occurs for economically interesting reasons.

The version of rationalizability which incorporates our refinement, robust rationalizability, is defined

below.

To understand the motivation for our refinement, let ht−1 be a history in which the inflation

monitoring range has never been violated. Consider the rationalizability of a particular belief, πbi,t <

Rl/φ. This belief lies in the region bounded on the right by the kink point in the best response

function where the zero lower bound on the interest rate is binding (see Figure 3a). For any such πbi,t,

there is a unique chain of justification belonging to the set of sequences in equation (58). That chain

is constructed by iterating on the inverse of the segment of F that is parallel to the 45◦ line and has

the property that the zero lower bound is binding.61 If we exponentiate each element in that chain

of justification, the resulting sequence corresponds to a sequence of beliefs for the ith intermediate

good firm about the (scaled) prices set by others. The limiting belief in that sequence is not justified,

because it corresponds to a belief that others set their price to zero. However, technically that limit

is never actually reached. For this reason, all beliefs, πbi,t < Rl/φ, are in fact rationalizable (see

Definition 8). We find this result economically uninteresting. Although the limiting belief is never

reached, the sequence of beliefs in the chain of justification does enter any arbitrarily small interval of

zero in finite steps. So, rationalizability of beliefs, πbi,t < Rl/φ, rests critically on the assumption that

agents have the capacity to differentiate infinitesimally small numbers from an exact zero. We drop

this assumption and replace it by the assumption that intermediate good firms have an ε cognitive

impairment. In particular, we assume that an intermediate good firm mentally records a number

smaller than ε > 0 as an exact zero, where ε can be arbitrarily small.62

61At least for small values of l, F−l
(
ht−1, π

b
i,t

)
, generally contains two elements. However, candidate chains of

justification constructed using the greater of the two elements inevitably reach a point where no inverse exists. Such
candidates are therefore not part of a chain of justification for πbi,t.

62For a recent discussion of limitations on the ability of people to distinguish numbers that are very close to each
other, see Woodford (2019). For an early discussion in a decision-theoretic context, see Luce (1956). Interestingly
computers have the same cognitive ‘problem’ because they can only register a finite set of numbers. For example,
MATLAB registers positive numbers equal to 10−324 or less, as an exact zero. Computers also have a symmetric
problem with large numbers (in MATLAB, numbers larger than 10309 are registered as +∞). So, in principle we
could adopt a refinement which posits a cognitive impairment in thinking about large numbers. For example, we could
suppose that there exists an arbitrarily small δ, with δ > 0, such that x > 1/δ cannot be distinguished from 1/δ.
Online Appendix C.3 studies such a refinement and its implications for on- and off- equilibrium paths in our model.
In any case, our analysis in the body of this paper does not require any further refinement beyond the one discussed
in the text. That is because, for model parameterizations that satisfy necessary and sufficient conditions for unique
implementation, our environment places a natural upper bound on beliefs about inflation (see the discussion after
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Under the assumption that an intermediate good firm is ε impaired, the firm (mistakenly) con-

cludes that the chain of beliefs discussed in the previous paragraph does in fact reach zero.63 With

this refinement, the best response function, F, changes to F ε:

F ε
(
ht−1, π

b
i,t

)
≡ max

{
F
(
ht−1, π

b
i,t

)
, ln ε

}
, for πbi,t ≥ ln ε, (60)

for any ht−1. When πbi,t < ln ε, F ε
(
ht−1, π

b
i,t

)
is not defined.64 This is because an ε impaired firm

contemplating πbi,t < ln ε perceives that other firms set their price to zero. The firm’s decision problem

is not well-defined for such a belief because there does not exist a continuation equilibrium.65 The

rationale for the max operator in equation (60) is as follows. Recall that F
(
ht−1, π

b
i,t

)
corresponds to

the (logged and scaled) nominal wage rate in the continuation equilibrium associated with
(
ht−1, π

b
i,t

)
.

Suppose that F
(
ht−1, π

b
i,t

)
< ln ε. The firm would in this case perceive the nominal wage to be zero.

With a zero marginal cost of production the profit maximizing firm is led to set its price to the lowest

positive value. In the absence of the cognitive impairment there is no solution to this problem.66

However, with our cognitive impairment the firm would choose to set its price to the unique smallest

price that it can perceive, which is greater than zero. That price is ln ε. This explains why xi = ln ε

when F
(
ht−1, π

b
i,t

)
< ln ε.67

Let Πε
0 denote the set of ε possible beliefs, πbi,t, about actions by others which has the property

that a continuation equilibrium exists when intermediate good firms are ε impaired. That is:

Πε
0 = [ln ε,∞), 0 < ε < eπ

b(ht−1). (61)

We think of ε > 0 as being arbitrarily small. Here, πb (ht−1) is the unique fixed point of F (ht−1, ·) ,
which is the version of the best response function in which agents have no cognitive impairment (see

Proposition 5). Similarly, we define ε justifiability and ε rationalizability analogously to Definitions

7 and 8, respectively.

We now provide the formal definition of robust rationalizability. This definition formalizes the

intuition described above, which is that our refinement does not commit to any particular value of

ε, other than that ε is small and positive. We begin by considering a specific value of ε satisfying

Proposition 11 below). As a result, extending our refinement to large numbers would have no impact on the analysis
of rationalizability.

63The situation is reminiscent of the literature on the amount of time, T, required for the neoclassical model to
converge to its steady state. The mathematically correct answer is that convergence never occurs (i.e., there is no
finite T large enough so that the capital stock is mathematically equal to its steady state value). Practical analysts
understand this, but they also understand that the amount of time needed to get within any ε > 0 region of the steady
state is finite. So, in practice, one defines ‘time to arrive in steady state’ as the amount of time, Tε, needed to enter
some specified ε neighborhood of steady state. Our refinement assumes that the agents in our model adopt this type
of logic when examining a sequence of prices that converges to (but does not actually reach) zero.

64There are alternative representations of ε impairment. For example, we could suppose that for ε > 0 but small,
agents perceive 0 ≤ x ≤ ε as x = ε. This does not change our results.

65Recall the discussion before equation (32).
66Recall equation (12).
67Our conclusion implicitly makes use of the quasi-concavity of the intermediate good firm’s objective function.
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0 < ε < eπ
b(ht−1). Let Π∗ (Πε

0, F
ε) denote the associated set of rationalizable beliefs.68 For notational

simplicity, we denote the correspondence from ε to Π∗ (Πε
0, F

ε) by Π∗ (ε) . The set, Π∗ (0) , is the set

of rationalizable beliefs in the sense of Definition 8. It is easy to verify that Π∗ (ε) is weakly increasing

as ε declines for all ε ≥ 0.69 It follows that the limit, Π∗,r, of Π∗ (ε) as ε goes to zero is given by:

Π∗,r =
⋃

0<ε≤eπb(ht−1)

Π∗ (ε) . (62)

We suppress the dependence of Π∗,r on ht−1 to simplify notation. Rationalizability under our refine-

ment is defined as follows:

Definition 9. We say that a belief, πbi,t, is robustly rationalizable if πbi,t ∈ Π∗,r, where Π∗,r is defined

in equation (62).

The fact that Π∗ (ε) is lower- but not upper- hemicontinuous at ε = 0 provides an alternative

perspective on our refinement and explains our use of the adjective, robust, in Definition 9. Consider

a robustly rationalizable belief, πbi,t ∈ Π∗,r. It follows from the weakly increasing property of Π∗ (ε) ,

that πbi,t ∈ Π∗ (0). Thus, a belief, πbi,t ∈ Π∗,r, has the robustness property that πbi,t is rationalizable

whether or not the ith agent has an ε cognitive impairment, as long as ε is small enough. By contrast,

consider a belief having the properties, πbi,t ∈ Π∗ (0) ,πbi,t /∈ Π∗,r. Such a belief is rationalizable when

firms have no cognitive impairment, ε = 0. But, it is not rationalizable for any cognitive impairment,

ε > 0, no matter how small ε is. In this sense, rationalizability of such a belief lacks robustness.

5.3 Sufficient and Necessary Conditions for Rationalizability

This section provides a result which plays a central role in the next section, where we establish

conditions for unique rationalizability. It is convenient to temporarily use a simpler notation which

abstracts from our specific economic setting. Accordingly, suppose the best response of a player in

a large game is given by G. Let L and l denote the actions, respectively, of the others and of the

individual. So, l = G (L) . Suppose that the graph of the function is, with one exception, strictly

interior to the butterfly-shaped, shaded area in Figure 4a. The exception is the point market with

a dot, where the boundaries of the butterfly meet. The boundaries are defined by the dashed lines

with angles 45◦ and 135◦. The domain, Ω, of the function G is defined by projecting the butterfly

onto the horizontal axis. The dot in the figure corresponds to a Nash equilibrium, a value of L such

that L∗ = G (L∗).

The proposition below provides conditions under which the sequence of sets, Gk (Ω), k = 1, 2, ...

converges to the singleton, L∗:

68See equation (59) for the definition of the operator, Π∗.
69A simple way to see the weakly increasing result is by induction. Trivially, x ∈ Πε

0 implies x ∈ Πε′

0 for ε′ < ε.

Similarly, F (Πε
0) ⊆ F

(
Πε′

0

)
. The result follows by repeating this type of argument and using the definition of Π∗ in

equation (59).
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Proposition 9. Suppose that a function G satisfies the following properties:

(i) the domain of G, Ω, is a bounded set on the real line containing L∗,

(ii) L∗ is a fixed point for G,

(iii) supL∈Ω\{L∗}
|G(L)−L∗|
|L−L∗| < 1.

Then we have Π∗ (Ω;G) = limk→∞G
k (Ω) = {L∗}.

Here, Π∗ (Ω;G) is defined in equation (59). The role of the boundedness condition in (i) will be

explained below. It is easy to see that conditions (ii) and (iii) imply that the fixed point of G is

unique. Condition (iii) is the mathematical statement that the function, G, lies inside the butterfly.70

We use the ‘sup’ operator in condition (iii) because the ‘max’ operator may not be well defined with

the type of best response function, F , in our model, because it is not a continuous function.

A formal proof of the proposition appears in Appendix A. In the special case that Ω is a bounded

interval, the intuition is straightforward. In this case, condition (iii) implies Gk (Ω) ⊆ Gk−1 (Ω) for

k = 2, 3, ... . It is easy to verify that because this sequence of sets is weakly shrinking, it is guaranteed

that Π∗ (Ω;G) = limk→∞G
k (Ω) . That the limit is L∗ can be verified using the kind of logic used in

the discussion of Figure 1a in Section 2.

The sufficient conditions of Proposition 9 are somewhat more general than they might at first

appear. In particular, these conditions may not be satisfied for the natural economic representation

of the model variables, but they may be satisfied after a suitable transformation. In this case, the

70An alternative, equivalent, version of condition (iii) is: ∃ρ < 1 such that for all L ∈ Π1 \ {L∗} , |F (L)− L∗| <
ρ |L− L∗|. To see this, suppose first that the previous condition holds. Then |F (L)− L∗| / |L− L∗| < ρ. Taking the
supremum, we have supL∈Π1\{L∗} |F (L)− L∗| / |L− L∗| ≤ ρ < 1. So, (iii) in Proposition 9 holds. Second, suppose
that condition (3) holds. Then let δ = supL∈Π1\{L∗} |F (L)− L∗| / |L− L∗| and ρ = (1 + δ) /2 > δ. It follows that
|F (L)− L∗| / |L− L∗| ≤ δ < ρ for all L ∈ Π1. Therefore |F (L)− L∗| ≤ δ |L− L∗| < ρ |L− L∗| for all L ∈ Π1 \ {L∗} .
The two results establish our equivalence result.
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conclusion of Proposition 9 also applies to the original variables.71 In the case of our monetary model,

we have been working with the equilibrium conditions expressed in log form. This transformation

was convenient in our analysis of the competitive equilibrium of the model. As we shall see below,

the piecewise linearity of F in our model when the variables are expressed in log form makes it easy

to apply the sufficient conditions of Proposition 9.

To see that the conditions are sufficient but not necessary, consider the piecewise-linear function in

Figure 4b (see the solid line). That function does not lie in the butterfly, but it can easily be verified

that Π∗ (Ω;G) = {L∗} anyway. For the purpose of our analysis, there does exist one particularly

useful necessary condition:

Proposition 10. If G (·) has a linear segment passing through L∗ then unique rationalizability,

Π∗ (Ω;G) = {L∗} , implies that the slope of the linear segment has slope less than unity in absolute

value.

The function, G̃ (L), in Figure 4b does not satisfy the necessary condition of Proposition 10 and

so unique implementation does not occur. It is easy to verify that values of L close enough to L∗ are

all rationalizable.

5.4 Implementation

We seek restrictions on the monetary policy parameters which guarantee that private agents uniquely

coordinate (or, anchor) their beliefs on the desired equilibrium. If the restrictions are satisfied, then

monetary policy achieves unique implementation. We begin with the following definition:

Definition 10. A competitive equilibrium satisfies unique implementation if the model has the

following two properties: (i) it is a strategy equilibrium and (ii) for each ht−1 there exists a unique

robustly rationalizable belief, πbi,t.

In the first subsection we discuss unique implementation under the Taylor strategy (see Definition

2). The second subsection considers the zero monitoring range policy in Definition 3.

5.4.1 Taylor Strategy

We now state the following result:

Proposition 11. Consider the model in which monetary policy is governed by the Taylor strategy

(see Definition 2) and the money growth rule parameter, ρ, satisfies ρ < min {1, γ}. A sufficient

71Here is a simple illustration. Let l = G (L) = L−1/2, with domain Ω = [Ll, Lu] , where 0 < Ll < Lu. This function,
G, has a unique fixed point at L = 1. In addition, it is easy to verify that Gk (Ω) → {1}, as k → ∞. However, G
does not satisfy condition (iii) of Proposition 9. To see this, note that as L→ 0, G (L)→∞, thus breaking out of the
butterfly in Figure 3. However, if l and L are replaced by their logs, then the system is linear, ln l = −1/2× lnL, with
domain, Ω = [lnLl, lnLu] . This system does satisfy the sufficient conditions of 9.
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condition for unique implementation of the unique equilibrium of that model is:

∣∣∣∣1− φ
γ + ψ

γ − 1

∣∣∣∣ < 1, 1− (γ + ψ) < ρ < 1− γ + ψ

2
. (63)

A necessary condition for unique implementation is:

∣∣∣∣1− φ
γ + ψ

γ

∣∣∣∣ < 1, ρ < 1− γ + ψ

2
. (64)

Before sketching the proof of Proposition 10, we discuss the sufficient conditions in equation (63)

and the necessary conditions in equation (64). We stress three observations about the sufficient

conditions. First, there is no restriction on the boundaries of the inflation monitoring range πl and

πu, beyond the (modest) restrictions stated in Definition 2. Second, depending on the values of the

parameters associated with the private sector, γ and ψ, it is possible that there is no value for the

monetary policy parameter, φ, that satisfies the sufficient conditions for unique implementation. Note

that φ > 1 implies that the first expression in equation (63) is equivalent to:72

φ < 2
γ − 1

γ + ψ
, (65)

which cannot be satisfied if γ < 1. Equation (65) indicates that the sufficient conditions can also

be violated in case γ > 1 and ψ is large enough. The third interesting feature of the conditions,

(63), is the restriction on ρ. Condition (65) implies, via the second condition in equation (63),

that ρ < 0. Thus, a version of the Taylor strategy which switches to a constant money growth rule

(i.e., ρ = 0) when the escape clause is activated does not satisfy the sufficient conditions for unique

implementation. In the next section we provide an example with ρ = 0 in which the Taylor strategy

fails to anchor expectations.

Now, consider the two necessary conditions in equation (64). The first and second of these

conditions correspond to Proposition 10 applied to the Taylor rule and the money growth rule,

respectively, in the Taylor strategy. Given that φ, γ, ψ are positive, the first condition in equation 64

is equivalent to

φ <
2

1 + ψ/γ
. (66)

Note that ψ and γ play similar, though opposite, roles in determining the upper bound on φ. With an

increase in ψ, or a decrease in γ, a given value of φ corresponds to a more aggressive response in the

Taylor rule to inflation. To see this, suppose a firm contemplates a higher belief about the prices set

by others. In the continuation equilibrium, this implies a higher level of the interest rate, dependent

on the given value of φ. For a fixed value of γ, this implies a particular drop in consumption (see

72To see this, note that the first condition in equation (63) implies −1 < 1−
(
γ+ψ
γ−1

)
φ < 1. Subtracting 1 from each

term and multiplying the result by −1, we obtain 2 >
(
γ+ψ
γ−1

)
φ > 0. Given φ > 1 > 0, the second inequality in the

last expression implies γ > 1, so that the first condition in equation (63) coincides with equation (65).
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equation (46)). This drop in consumption produces a greater fall in marginal cost, the higher is

ψ (see equation (47)). Similarly, for a fixed value of ψ, a lower value of γ increases intertemporal

substitution in consumption. This leads to a larger drop in consumption and reduces marginal cost

by more (see equations (46) and (47)). This is why a higher value of ψ/γ increases the likelihood

that a given φ leans against the wind too aggressively.

The upper bound in equation (66) may appear surprisingly low, given the values of ψ and γ often

used in practice. There is reason to think that in the type of models that work well empirically, this

upper bound might be higher. For example, Online Appendix E presents a version of our model with

Calvo-style price-setting frictions. In that model, only a subset of the intermediate good firms adjust

their price in a given period. When the number of such firms is small, then the upper bound on φ is

higher. The intuition for this resembles the intuition for γ and ψ just described. In particular, when

a price setter considers higher prices set by other price setters, the impact on aggregate inflation

(hence, on policy) is smaller, the smaller is the number of price setters. With fewer price setters

(more stickiness in prices), policy is less aggressive for given value of φ, so that an upper bound like

the one in equation (66) is higher.73

To prove Proposition 11, we first consider the type of history, ht−1, in which the inflation monitor-

ing range has never been violated. Because φ in the monetary policy rule is positive, the conditions

(65) in Proposition 11 require γ > 1. Proposition 6 then implies that the equilibrium is a strategy

equilibrium, so that part (i) of Definition 10 is satisfied. The key result used to establish part (ii) of

Definition 10 is Proposition 9, with G (·) = F ε (ht−1, ·) ,for a specific, small value of ε > 0. To meet

condition (i) of Proposition 9, we must identify a suitable bounded set, Ω. We define Ω as the result

of the first iteration in the iterated deletion method: Ω = Πε
0 ∩ F (ht−1,Π

ε
0) .74 That Ω is bounded

below follows from the lower bound on Πε
0 (see equation (61)). The set, Ω, is also bounded above,

given the parameter restrictions, (63). This is because there is a maximal value of F (ht−1, ·) (see,

for example, Figure 4). It is straightforward to verify that the parameter restrictions also imply that

F ε (ht−1, ·) lies inside the butterfly in Figure 4a. That is, conditions (ii) and (iii) of Proposition 9 are

satisfied, where the unique fixed point of F ε (ht−1, ·) is L∗ = πb (ht−1) . It follows from Proposition

9 that Π∗ (Ω;F ε) =
{
πb (ht−1)

}
for each ε > 0. Since Π∗ (ε) = Π∗ (Ω;F ε) it follows that the set of

robustly rationalizable beliefs (see Definition 9), Π∗,r, is composed of the singleton,
{
πb (ht−1)

}
. It

follows that part (ii) of Definition 10 is satisfied. We conclude that πb (ht−1) is the only robustly

rationalizable belief.

Now consider the type of history, ht−1, in which the inflation monitoring range has been violated

at least once. Lemma 18 in Online Appendix C.4 establishes that equation (63) implies F
(
ht−1, π

b
i,t

)

is bounded above and satisfies the conditions in Proposition 9. Thus, unique rationalizability is

established for this type of history, so that Proposition 11 holds.

73See equation (151) in Online Appendix E.
74See the discussion in the paragraph before equation (59) for a demonstration that a rational firm would ignore any

belief that is in Πε
0, but not in Ω.
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Figure 4: Best Response Function, F ε, with µ = 0
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Notes: The graph displays F ε
(
ht−1, πbi,t

)
for πbi,t ∈ Ω, where Ω is the horizontal segment from ln ε to πmax and πmax =

maxx∈Πε
0
F ε (ht−1, x) and Πε0 is defined in equation (61). Also, F ε

(
ht−1, πbi,t

)
is constructed using F and ε according to equation

(60). The shaded area corresponds the shaded area in Figure 4a. Also, ht−1 corresponds to a history in which the inflation monitoring
range has never been violated.

5.4.2 Zero Monitoring Range Policy

It is also of interest to consider the zero monitoring range policy in Definition 3, with πl = πu = µ = 0

and φ 6= 0. Consider the case, ht−1, in which the inflation monitoring range has never been violated.

The best response function for this type of history is the function graphed in Figure 4, with the middle

segment shrunk to a singleton at the origin. Alternatively, it is the second element of F in equation

(37) for all πbi,t. So, for this type of ht−1, |1− (γ + ψ)φ/ (γ − 1)| < 1 guarantees that the best response

function lies in the butterfly. This in turn is sufficient to guarantee unique implementation in the

sense of Definition 10. In the case of ht−1 in which there has been a violation of the monitoring range,

the result in Proposition 11 applies. We summarize these observations in the form of a proposition

as follows:

Proposition 12. Suppose monetary policy is the zero monitoring range policy (see Definition 3).

Unique equilibrium of the model satisfies unique implementation if and only if

|1− (γ + ψ)φ/ (γ − 1)| < 1, ρ < 1− γ + ψ

2
. (67)

then unique equilibrium of the model satisfies unique implementation.

Note that unique implementation requires γ 6= 1 and φ 6= 0. Interestingly, negative or small

positive values of φ are consistent with unique implementation. The logic behind unique implemen-

tation of the above policy is essentially the same as it is for the policy considered in Proposition

11. The policy has the effect that if a particular intermediate good producer believes others set high

prices, then - via the interest rate channel - the continuation equilibrium is such that that agent’s

best response is to post low prices. What is crucial for unique implementation is that variations in
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beliefs generate relatively small responses. Formally, the responses must be small enough that the

best response function lies inside the butterfly. This result is guaranteed when the model parameters

satisfy equation (67).

5.5 Discussion of Proposition 11

We now discuss cases where the necessary and sufficient conditions in Proposition 11 are not satisfied,

so that unique implementation fails. We describe a baseline set of parameter values which satisfies the

conditions of Proposition 11. We then consider perturbations in which the conditions are not satisfied.

In the perturbations, the competitive equilibrium is still unique and it is a strategy equilibrium. This

discussion goes to the core message of the paper: the finding that an equilibrium is unique and that

it is a strategy equilibrium is not sufficient for unique implementation. For a policy to satisfy unique

implementation requires stronger restrictions on policy parameters.

Our baseline parameter values are:

ψ = 1/2, γ = 6, φ = 1.5, ρ = −2, µ = 0

The value of ρ implies that if consumption goes up by 1 percent, then monetary policy in the money

growth regime reduces the money stock by 2 percent. Table 1 summarize the restrictions required to

guarantee various equilibrium properties. The baseline parameters satisfy all properties in Table 1.

We now perturb the value of each parameter so that unique implementation fails.

Table 1: Parameter Restrictions

(a) Taylor strategy

φ ρ γ ψ

Uniqueness of competitive equilibrium (CE) φ > 1 No Restriction γ > 0 ψ ≥ 0

CE is a strategy equilibrium None ρ < min {1, γ} γ 6= 1 None

CE is uniquely implemented φ < 2 γ−1
γ+ψ ρ < −ψ γ > 2 + ψ

(b) Zero monitoring range policy

φ ρ γ ψ

Uniqueness of competitive equilibrium (CE) φ > 0 No Restriction γ > 0 ψ ≥ 0

CE is a strategy equilibrium None ρ < min {1, γ} γ 6= 1 None

CE is uniquely implemented 0 < γ+ψ
γ−1 φ < 2 ρ < 1− γ+ψ

2

Note: in each table, the first row indicates parameter restrictions used to establish uniqueness of equilibrium for our model (Proposition
2); subsequent rows indicate incremental restrictions to obtain the results in the first column (these correspond to Propositions 6 and 11).
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Consider φ first. Given our baseline model parameters, the upper bound on φ is 1.53. The

impact on the best response function of a φ larger than this upper bound can be seen in Figure 5a.

Note that this change causes the best response function to have a slope that is steeper −1. With a

higher value of φ an increase in πbi,t is associated with a bigger increase in Ri,t in the continuation

equilibrium, which in turn results in a bigger drop in ci,t and, hence, the wage. The result is that

the ith firm’s best response function no longer lies interior to the butterfly, and so it violates our

sufficient condition for unique robust rationalizability (see Proposition 9). Intuitively, a high value

of φ has the consequence that the ith firm’s action is more sensitive to variations in its beliefs, a

phenomenon that makes unique (robust) rationalizability less likely. Consistent with our discussion

in Section 2, when φ is too large, the ‘leaning against the wind, but not too aggressively’ principle

is violated. To see that unique rationalizability does not hold, consider a belief, πbi,t 6= 0, that lies

inside the monitoring range (see Figure 5a). Because the best response function has a slope steeper

than −1, the inverse of F has a slope less than unity in absolute value. Thus, a chain of justification

can be constructed for the posited πbi,t which converges into the Nash equilibrium (i.e., the origin in

the figure). Since the Nash equilibrium is justified, the entire chain of beliefs is justified and so the

posited πbi,t is rationalizable.75 We conclude that when φ lies above its upper bound, then rationality

and CK are not sufficient for agents to coordinate on the unique competitive equilibrium. When φ

is too large, inflation expectations are not anchored.

Next we consider a perturbation in γ. Figure 5b displays what happens if γ < 1 but close

to unity. There is a segment of the best response function that lies interior to the butterfly, but

the best response dramatically leaves the butterfly outside the inflation monitoring interval, [πl, πu].

The reason for this very sharp change in the best response function is the presence of 1 − γ in the

denominator of F outside the monitoring range. The switch in the value of γ relative to unity reflects

the switch in the sign of the response of equilibrium consumption to a change in the nominal interest

rate. With γ < 1 a rise in πbi,t drives Ri,t up, but the real rate down, and so induces households

to increase consumption (see equation (44)). This in turn raises the wage rate and induces the ith

intermediate good firm to increase its price by even more than the rise in πbi,t (see equation (45)).

So, the Taylor strategy violates the leaning against the wind principle discussed in Section 2 and

unique rationalizability fails. I also fails because there is a second Nash equilibrium.76 The failure of

75Note that the inverse of F actually has two elements. In the text we focused on the upper element, while the other
element has to do with the region to the left of the zero lower bound, Rl/φ. For rationalizability, one need only find
one chain of justification (see Definition 8), so that nothing was lost in the text when we ignored the lower element in
the inverse of F .

76This example is reminiscent of the example in the introduction to Kocherlakota (2018), which motivates his
analysis. Essentially, his example is version of the example in our Figure 1a, in which the best response function cuts
the 45◦ line from below. Suppose we apply our cognitive refinement for a specific ε > 0 but small. In this case, the
best response function becomes horizontal for expected inflation, πbi , at or below ln ε (see equation (60) and also the
horizontal segment in Figure 5b). The horizontal segment extends from the best response function to the 45◦ line,
so that the cognitive gives rise to a second Nash equilibrium. If we introduce an analogous cognitive impairment in
perceiving large numbers (see Online Appendix C.3), then a similar horizontal segment would appear for sufficiently
high inflation. This change would give rise to a third Nash equilibrium. In this example the cognitive impairment has
the effect of compactifying the space of expected inflation. As in Kocherlakota (2018)’s discussion, this compactification
increases the number of Nash equilibria. This effect on the number of Nash equilibria reflects that a best response
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the leaning against the wind principle in this example was discussed informally in Subsection 2.2.2

above.

Figure 5: Best Response Functions with Perturbations on Baseline Parameter Values
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Next, we turn to rationalizability in histories, ht−1, in which the inflation monitoring range has

been violated at least once. According to Table 1 the money growth rule must have a ‘leaning against

the wind’ feature, ρ < −ψ. Since ψ ≥ 0, there is no way that ρ = 0 can satisfy the sufficient conditions

for implementation. To see why this is the case consider Figure 5c. The slope of the best response

function, F, reflects the assumptions, ρ = 0 and ψ > 0. The best response of intermediate good

function cutting the 45◦ line from below violates the butterfly condition, (iii) in Proposition 9. For example, when the
best response function cuts the 45◦ from above, so the butterfly condition is satisfied, then it is easily verified that our
refinement and even its extension to large numbers does not affect the number of Nash equilibria. Kocherlakota (2018)
argues that analysis in models where the number of Nash equilibria is not robust to compactification can be very
misleading. We reach a similar conclusion: analysis of the competitive equilibrium of a model in which the butterfly
condition is not satisfied is misleading because there is no basis for the notion that the equilibrium would actually
occur. For that equilibrium to occur it is necessary for the butterfly condition to be satisfied.
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producers is very sensitive to variations in their beliefs. We discussed the case, ρ = 0, in Section 4.1.5.

There, we explained that when a firm contemplates a low value of πbi,t, the associated continuation

equilibrium has a low real interest rate, thus stimulating consumption and raising marginal cost. This

is why the best response function has a negative slope. As it turns out, when ρ = 0 that slope is

steeper than −1. This is too steep to allow iterated deletion to do its work and so is not compatible

with rationalizability. By making ρ < 0, the problem is fixed. As ci,t rises with a low πbi,t then the

period t money stock is reduced and this mitigates the decline in the real rate, flattening the best

response function. When ρ < −ψ the best response lies inside the butterfly diagram and we obtain

unique implementation.

6 The Taylor Strategy Versus Two Alternatives

We have identified parameter restrictions, equation (63), under which three apparently different

monetary policy regimes uniquely implement77 desired inflation: (i) the Taylor strategy - φ > 1 and

πl ≤ πu; (ii) the zero monitoring range strategy - φ 6= 0 and πl = πu = µ = 0;78 and (iii) a pure

money growth rule (see Lemma 1). We explain how these three different policy strategies illustrate the

observation in Taylor (1999) that many apparently different policy arrangements, including the Gold

Standard and money growth rules, can be thought of as interest rate rules which stabilize inflation by

raising the interest rate in case inflation rises.79 According to Taylor (1999), the important question

is which interest rate policy works best. In the deterministic model described thus far, each of our

three policies performs equally well because it supports the same desired allocations.

In this section we introduce two modifications which, while preserving much of the tractability of

the existing model, allows us to also incorporate considerations that make the model more realistic.

With these changes, the model suggests that the best policy among those considered here is the Taylor

strategy, with πl < πu. We make the argument in two steps. First, we point out that zero monitoring

range policy, (ii), has a knife edge property: remaining in the Taylor rule regime is not robust to

arbitrarily small trembles by an arbitrarily small number of intermediate good firms. Without further

changes, this is of no importance in our existing model because the monetary growth rule to which

the economy switches under trembles also uniquely implements the desired equilibrium. Our second

change is to introduce money demand shocks which, since at least the classic paper of Poole (1970),

are an important motivation for interest rate rules. The idea is that the interest rate rule implicit

in a money growth rule implies excessive, welfare-reducing volatility in the interest rate when there

77Here, by implementation we mean Definition 10.
78Notice unique implementation is consistent with φ < 0 under policy (ii). However, in this case unique implemen-

tation requires γ < 1 (see equation (63)). Perhaps surprisingly, the Taylor logic works in this case as well, though
it does so via the real interest rate, not the nominal rate. This can be seen by retracing the logic in the subsection,
‘Violation of the inflation monitoring range’ in Section 4.1.4, for the case, φ < 0 and γ < 1.

79Recall the discussion of the interest rate channel in the case of the Taylor strategy (see the discussion after equation
(45)); in the case of the zero monitoring rate strategy (see the discussion after Proposition 7); and in the case of the
pure money growth rule (see the discussion after equation (52)).
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are substantial shocks to money demand. As we show below, our model with money demand shocks

captures the Poole (1970) idea. A policy of the type, (i), is welfare superior to a money growth rule

like (iii) or to (ii) when there is the possibility of a tremble.

6.1 Trembles

We consider a history, ht−1, in which no deviation from the inflation monitoring range has occurred.

We imagine that in period t a tiny subset (mass) of firms make a tiny mistake when they set their

prices. When such mistakes happen, then inflation jumps out of the monitoring range under policy

(ii), triggering a regime shift to the money growth rule.

Formally, suppose that intermediate good firms form their beliefs as they do in previous sections,

without imagining the possibility of trembles. They arrive at a unique set of beliefs by iterated

deletion, as in Section 5.80 However, when the time comes for firms to post their period t price,

a small fraction of them make a tiny mistake. Say, the hand of each of these firms trembles as it

endeavors to write its price the menu. As in Section 4.1.1, let pbi,t denote the ith firm’s expectation of

how other firms post their price. Then the optimal price chosen by ith firm is

pi,t = pbi,t (ci,t)
γ+ψ υi,t, (68)

where ci,t denotes consumption in the continuation equilibrium associated with pbi,t. Suppose pbt is

the unique belief that survives iterated deletion, so that all firms, i ∈ [0, 1], adopt it. Then, each

firm (not being aware that a tremble might occur) resolves to set its own price to pbt . This being the

Nash belief, it follows that ci,t = 1 in the continuation equilibrium imagined by each of the i firms.81

Next, suppose that there is a tremble in the form of the additional variable, υi,t, on the right side of

equation (68). That tremble is a unit mean random variable which is drawn independently by each

firm. The distribution of υi,t has two parameters, Jt, δt ∈ [0, 1]. With probability 1− Jt, the ith firm

does not tremble at all, so that υi,t ≡ 1. With probability Jt the ith firm draws υi,t from a uniform

distribution with support, [1− δt, 1 + δt]. We can allow both Jt > 0 and δt > 0 to be arbitrarily close

to zero.

According to equation (13), the actual price index in the
(
ht−1, p

b
t

)
continuation equilibrium is

determined as follows:

Pt =

[∫ 1

0

(
pbtυi,t

)1−ε
di

] 1
1−ε

= pbt exp (κt) (69)

where

exp (κt) =

[
1− Jt + Jt

(1 + δt)
2−ε − (1− δt)2−ε

2δt (2− ε)

] 1
1−ε

.

80We assume that the parameter restrictions required for Proposition 11 are satisfied.
81As was discussed earlier, ci,t = 1 in the continuation equilibrium associated with the Nash equilibrium belief. See

equation (46)
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As expected, κt → 0 as Jt → 0 or δt → 0. Divide both sides of equation (69) by µ̄∗Pt−1 take logs and

make use of the definition of ln
(
pbt/ (µ̄∗Pt−1)

)
in equation (30) to obtain:

πt = πbt + κt, (70)

where πbt = 0, the uniquely rationalizable belief.82 Since realized inflation at date t is different from

zero, πt = κt 6= 0. Since the inflation monitoring range is violated, the tremble pushes the economy

into the money growth regime.83

6.2 Money Demand Shocks

In the model as it is set up now, the regime shift does not matter from a welfare standpoint. The

same desired equilibrium outcomes occur whether the economy is following the Taylor rule or the

money growth rule. But, if we assume money demand shocks are realized after firms set their prices,

then there is a substantial loss in switching from the Taylor rule to the money growth rule. The

assumption that the money demand shocks are realized after firms set their prices is a way to capture

the notion that money demand shocks operate at a higher frequency than price changes. The model

is a variant of the sticky price model in Christiano et al. (1997), where time t prices are predetermined

when time t shocks are realized.

We introduce money demand shocks, νt, by inserting them into the cash constraint, equation (7):

Ptct ≤ (mt−1 +Wtlt − dt) exp (νt) .

We assume νt is a mean-zero stochastic process, distributed independently over time. With this

change in the model, it is no longer analytically tractable. As a result, we study a log-linear ap-

proximation of the model in a neighborhood of the desired equilibrium. We redo all the analysis in

previous sections, using local versions of the concepts of equilibrium, rationalizability and implemen-

tation studied in the previous sections. The results are similar and are provided in Online Appendix

D. We establish the following:

Proposition 13. Consider the version of the model with trembles (see Section 6.1) and with suf-

ficiently small shocks, νt. Welfare under the zero monitoring range strategy (Definition 3) is lower

than welfare under the Taylor strategy with πl < πu.

As discussed in the introduction to this section, this result is in effect a formalization of the finding

in Poole (1970).

82See (iv), Proposition 5.
83Atkeson et al. (2010) find that their model is robust to trembles. That is because in their model the mapping from

intermediate good prices to the aggregate price index is linear.
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7 Concluding Remarks

This paper analyzes a monetary policy strategy in which an interest rate rule is adopted in normal

times and switches to a monetary growth rule if inflation gets out of hand. We present a model

and describe sufficient conditions, as well as some necessary conditions, under which the inflation

expectation of each agent is firmly anchored at its desired level. The concept of implementation that

we use takes into account that agents take an active role in forming their expectations.

To derive sufficient conditions for expectations to be anchored requires that our analysis be global

and so tractability required that we limit ourselves to a simple model. In our model we identified

a principle - leaning against wind, but not too aggressively - which guarantees that expectations

are anchored. We conjecture that this principle generalizes to the type of models used in empirical

and policy analysis. Our analysis of the necessary conditions for expectations to be anchored in a

simple New Keynesian model with price-setting frictions lends support to our conjecture.84 Since the

methods used to identify necessary conditions are based on linear approximations in a neighborhood

of steady state, they can be generalized to the kinds of models used in practice.
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A Appendix: Proof for Proposition 9

In order to prove Proposition 9, we use the following lemma.

Lemma 3. Suppose that F satisfies the conditions in Proposition 9. Then for any set C ⊂ X1,

sup
x∈C
|F (x)| < sup

x∈C
|x| . (71)

Proof. Let δ = supx∈X1\{0}
|F (x)|
|x| < 1. Then for all x ∈ C,|F (x)| ≤ δ |x| . Taking the supremum of

the right-hand-side, we have for all x ∈ C,|F (x)| ≤ δ supx∈C |x| . Now taking the supremum of the

left-hand-side, we have

sup
x∈C
|F (x)| ≤ δ sup

x∈C
|x| < sup

x∈C
|x| .

The last inequality holds because δ < 1. We establish equation (71).

The following is a proof for Proposition 9.

Proof. Since 0 ∈ Xn for all n ≥ 1, 0 ∈ limn→∞Xn =
⋂∞
n=1 Xn. So it suffices to show that there

exists a decreasing sequence of {Yn}∞n=1 such that Xn ⊂ Yn, and Yn → {0} . We define recursively

Yn as follows. Set Y1 as follows: Y1 = [−α1, α1] , where α1 = supx∈Y1
|x|. For all n ≥ 2, set

Yn = [−αn, αn] ,where

αn = sup
x∈Yn−1

|f (x)| (72)

Then it is trivial that Xn ⊂ Yn for all n. Also notice that αn is also expressed as follows:

αn = sup {|x| ;x ∈ Yn} = sup {|f (x)| ;x ∈ Yn−1} . (73)

We show that αn is strictly decreasing and converging to 0.

Suppose that αn is not strictly decreasing. So there exists k such that 0 < αk ≤ αk+1. From

equation (72), αk ≤ supx∈[−αk,αk] |f (x)| . Equation (71) in Lemma (71) implies that

αk ≤ sup
x∈[−αk,αk]

|f (x)| < sup
x∈[−αk,αk]

|x| = αk,

which is a contradiction. Therefore αk > αk+1.

A decreasing sequence bounded by below has a limit αk ↓ α∗. Now we show that α∗ = 0. Suppose

that α∗ > 0. Then again equation (71) in Lemma (71) implies that

α∗ = sup
x∈[−α∗,α∗]

|f (x)| < sup
x∈[−α∗,α∗]

|x| = α∗,

which is a contradiction again. Thus, α∗ is 0. Thus we conclude that Xn ⊂ Yn ↓ {0} so that

Xn → {0} as n→∞.
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B Appendix: Proof of Proposition 11

Proof. That the equilibrium is a strategy equilibrium follows from the fact that conditions (i) and (ii)

of the Definition of a strategy equilibrium (see Definition 6) are guaranteed by Proposition 5. This

establishes part (i) of Definition 10. It remains to establish part (ii) of that definition. We restrict

the domain of F (ht−1, ·) to Πε
1. This domain satisfies condition (i) of Proposition 9. By (iii) of

Proposition 5, the fixed point, π (ht−1), of F (ht−1, ·) exists and is unique, so that (ii) of Proposition 9

is satisfied. Online Appendix C.4 formally establishes that conditions (63) guarantees that condition

(iii) of Proposition 9 is satisfied for any ht−1. It is easy to see this informally for histories, ht−1, in

which there has never been a violation of the inflation monitoring range. In this case, the graph of F

is strictly interior to the butterfly graph except at the unique Nash equilibrium (see Figure 4). With

the three conditions of Proposition 9 satisfied, we conclude that F k (ht−1,Π
ε
1)→ π (ht−1) as k →∞.

The object on the right of (iii) in Proposition 16, Πε
1

⋂(⋂∞
k=1 F

k (ht−1,Π
ε
1)
)
,is the set containing the

singleton π (ht−1). Condition (iii) of that proposition then implies that Π∗ (Πε
1) = {π (ht−1)} for each

π (ht−1) > ε > −∞. It follows trivially that

⋃

−∞<ε≤π(ht−1)

Π∗ (Πε
1) = {π (ht−1)} .

Also, π (ht−1) is rationalizable because it is a Nash equilibrium, π (ht−1) = F k (ht−1, π (ht−1)). So,

conditions (i) and (ii) of Definition 10 are verified. This establishes that conditions (i) and (ii) of

Definition 10 are satisfied. The result follows.

51



Online Appendix to ‘Anchoring Inflation Expectations’

Lawrence J. Christiano and Yuta Takahashi

For convenience, the title of each section below has the form, ‘Appendix: XX’, where XX corre-

sponds to the title of a manuscript section.

A Appendix: Competitive Equilibrium

In this section we establish results for Section 3 in the paper. The first three subsections below derive

various properties of the competitive equilibrium. In the first subsection we describe restrictions on

market prices that are necessary for an equilibrium to exist. Moreover, for the household problem

to be well defined in an equilibrium, it is necessary that prices have the property that all budget-

feasible choices of the household result in finite discounted utility. The second subsection takes these

restrictions as given and establishes conditions on household choices that are necessary and sufficient

for their optimization problem.

A.1 Equilibrium Restrictions

We derive six properties of the set of equilibrium prices. To describe the first property, for convenience,

we repeat the representative household’s objective and constraints:

lim
T→∞

T∑

t=0

βt

[
c1−γ
t

1− γ −
l1+ψ
t

1 + ψ

]
, γ > 0, γ 6= 1, ψ > 0 (74)

s.t. mt ≤ R̄t (Xt + dt) +mt−1 − dt +Wtlt − Ptct + Tt, (75)

Ptct ≤ mt−1 − dt +Wtlt (76)

m−1 given,

A budget-feasible sequence, (ct, lt,mt, dt)
∞
t=0, has the property that, given

(
Pt, R̄t,Wt, Tt, Xt

)∞
t=0

and

m−1, it satisfies the flow budget constraints (75), the cash constraints (76), and the following non-

negativity constraints

0 ≤ (ct, lt,mt, dt) , lt ≤ N. (77)

Here, N > 0 denotes the household’s endowment of time.

We define a feasible sequence, (ct, lt,mt, dt)
∞
t=0, as a budget-feasible sequence for which the limit of

partial sums in equation (74) is finite. The household problem is to maximize equation (74) over the
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set of feasible sequences. Our first property of prices is that the feasible set of sequences is non-empty.

If this were not so, then there would not be an equilibrium.

We briefly discuss why we restrict ourselves to a subset of the set of budget-feasible sequences. In

the case, γ > 1 restricting ourselves to the set of feasible sequences is done without loss of generality.

In this case, the elements in the partial sum in equation (74) are all negative. As a result, the

sequence of partial sums either converges to a finite, non-positive number or to −∞. We can ignore

sequences which generate −∞ utility because the household would always prefer one of the feasible

sequences. In case of γ < 1 the limit of partial sums in equation (74) is bounded above and below.

The reason is that we only consider equilibrium prices. In an equilibrium it must be that ct = lt > 0

and lt ≤ N , so that period utility is bounded above and below.

Our second property of prices is that Pt > 0 for all t. If in any period Pt ≤ 0, then no feasible

sequence is optimal for the household. For any sequence of consumptions, higher consumption would

also be feasible and it would generate higher utility. Third, consider the nominal interest rate. In

many models, R̄t < 1 cannot be an equilibrium because households could in that case be able to

turn the loan market into a money pump, allowing unbounded consumption in t + 1. In our model

households cannot borrow, so their optimization problem may be well-defined for R̄t < 1. However,

as discussed in Section 3.2, the fact that firms borrow implies R̄t ≥ 1 in any equilibrium. If the

R̄t < 1 in some period, then it is the intermediate good firm that can turn the loan market into a

money pump in that period. With R̄t < 1 the firm problem has no solution. For any high level of

borrowing it would earn even more profits by borrowing more. After paying off the extra principle

and interest on any borrowing, it would have extra money left over which it could send as additional

profits to its owner. Fourth, Wt > 0 is necessary for an equilibrium. If the condition were not met,

then for any level of employment the firm could earn more profits by hiring more workers.

Fifth, it will be useful for us to use the concept of a date 0 price of a time t good, qt, defined in

the following way:

qt =





1 t = 0
∏t

s=1 R̄
−1
s t ≥ 1

. (78)

Because R̄t > 1 it follows that qt > 0 for all t. Taking into account equation (77) we also know

that qtmt ≥ 0 for each t. Sixth, firm optimization implies Pt = Wt and the resource constraint and

technology imply ct = lt. Summarizing, we have

Wt, Pt > 0, Pt = Wt, ct = lt, R̄t ≥ 1, qtmt ≥ 0, (79)

for each t.

A.2 Restatement of the Household Problem

We find it convenient to reformulate the household problem in the canonical form used by Stokey et

al. (1989). This allows us, in the next section, to easily apply the arguments in Stokey et al. (1989)
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and Kamihigashi (2002) to obtain the necessary and sufficient conditions for household optimality.

Of course, we solve the household problem under the assumption that prices correspond to those in

an equilibrium.

We impose (obviously, without loss of generality) the flow budget constraint, (6), as a strict

equality. We use that equation to solve for lt :

lt =
mt −

(
R̄t (Xt + dt) +mt−1 − dt + Tt − Ptct

)

Wt

, (80)

for all t ≥ 0. We denote the date t choice variables by the 3× 1 column vector xt :

xt = (ct,mt, dt)
′ ,

We denote the period utility function in the reformulated system by the function, F :

F (xt−1, xt) = u

(
ct,
mt − R̄t (Xt + dt)−mt−1 + dt − Tt + Ptct

Wt

)
. (81)

Note that F is concave and differentiable in (xt−1, xt) since u is has these properties in c and l.

Obviously, the function, F (xt−1, xt) , is not only determined by the household choice variables

(xt−1, xt), but also by the other variables,
(
Pt, R̄t,Wt, Tt, Xt

)
and m−1, which are beyond the control

of the household. To keep the notation simple, we do not make the dependence of F on the latter

variables explicit.

We now consider the various inequality constraints in the model. By equation (80), the upper

and lower bound constraints on labor imply:

0 ≤ mt −
(
R̄t (Xt + dt) +mt−1 − dt + Tt − Ptct

)
≤ WtN, (82)

for all t ≥ 0. These inequalities are not binding on the households at equilibrium prices. Equilibrium

conditions guarantee that the first inequality is strict at equilibrium prices. To see this, recall from

equation (79) that, in an equilibrium, Pt = Wt. So, equality of the household marginal rate of

substitution with the real wage implies cγt l
ψ
t = Wt/Pt = 1. From this it follows that ct and lt are

strictly greater than zero. The second inequality in equation (82) is strict because we do not restrict

the magnitude of N.

We express the household’s cash constraint (after substituting out for Wtlt from equation 80) as

well as the restrictions, mt ≥ 0 and dt ≥ 0,respectively, as follows:

Atxt ≥ bt. (83)
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Here, At and bt are sequences taken as given by the household:

At =




0 1 −R̄t

0 1 0

0 0 1


 , bt =



R̄tXt + Tt

0

0


 .

In any equilibria, bt becomes positive, so that we assume that bt ≥ 0. We do not include the restriction,

ct ≥ 0, in equation (83) because we showed above that it is non-binding at equilibrium prices. Another

inequality in the model is the last condition in equation (79):

qtÃtxt ≥ 0, ÃT =
[

0 1 0
]
. (84)

The date 0 problem of the household given equilibrium prices is:

max
{xt}∞t=0∈C

limT→∞

T∑

t=0

βtF (xt−1, xt) , (85)

subject to the restriction in equation (83). Here, C denotes the set of sequences for which the limit of

partial sums is finite. We assume the set, C, is non-empty for otherwise there would be no equilibrium.

The set, C, is a function of the equilibrium prices, but to keep the notation simple we do not make

that dependence explicit.

A.3 Necessary and Sufficient Conditions for Household Optimality

In this section we discuss the necessary and sufficient conditions for household optimization at equilib-

rium prices. That the first order conditions (see equations (8), (9) and (87)) are part of the necessary

and sufficient conditions is easy to verify and we do not discuss that here. Instead, we focus on the

sufficiency and necessity of a transversality condition.

The first order conditions are:

F2 (xt−1, xt) + µt × At + βF1 (xt, xt+1) = 0, (86)

diag (µt) (Atxt − bt) = 0, (87)

µt ≥ 0, (88)

plus equation (83). Here, F1 and F2 denote 1 × 3 row vectors of derivatives with respect to the

first and second arguments, respectively. Also, µt is the 1 × 3 row vector of multipliers on the cash

constraint, Atxt ≥ bt. diag (µt) is the 3× 3 square matrix whose diagonal elements are µt.

The transversality condition is:

lim
T→∞

βTF1 (xT−1, xT )xT−1 = 0. (89)
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To interpret (89) in terms of our underlying model, note

βTF1 (xT−1, xT )xT−1 = βT
−ul,T
WT

mT−1 =
c−γ0 R̄T

P0R0

qT−1mT−1 ≥ 0. (90)

We let ul,t and uc,t denote the partial derivatives of household utility with respect to lt and ct,

respectively. The first equality in equation (90) uses the definition of F in equation (81). The

second equality uses the labor first order condition, ul,T = −uc,TWT/PT , the intertemporal first order

condition,

β
uc,t
Pt
× Pt−1

uc,t−1

= R̄t−1,

and the definition of qt in equation (78) for t = 1, 2, ..., T . The inequality in equation 90 follows from

equation (79). According to equation (90), equation (89) requires that the present value of money

should be zero in the limit as T →∞.

A.3.1 Sufficiency of Transversality Condition

According to the following proposition, if a budget-feasible sequence, {xt}∞t=0, satisfies (86), (87) and

(88) for t ≥ 0 and the transversality condition, (89), then that sequence solves the household problem

in that there is no other feasible sequence that generates higher utility.

Proposition 14. Suppose prices correspond to a competitive equilibrium and let {x∗t}∞t=0 and {µt}∞t=0

denote a sequence of decisions and multipliers associated with the household problem. If the decisions

and multipliers satisfy (86), (87), (88), and (89), then the sequence, {x∗t}∞t=0, solves the household

problem, (85).

Proof. The rest of the proof style follows that of Theorem 4.15 in Stokey et al. (1989). Let {xt}∞t=0

denote an arbitrary feasible sequence. Define

DT =
T∑

t=0

βt
[
F
(
x∗t−1, x

∗
t

)
− F (xt−1, xt)

]
.

We wish to show that

lim
T→∞

DT ≥ 0.

First, concavity of F implies:

F (xt−1, xt) ≤ F1

(
x∗t−1, x

∗
t

) (
xt−1 − x∗t−1

)
+ F2

(
x∗t−1, x

∗
t

)
(xt − x∗t ) .

Then,

DT ≥
T∑

t=0

βt
[
F1

(
x∗t−1, x

∗
t

) (
x∗t−1 − xt−1

)
+ F2

(
x∗t−1, x

∗
t

)
(x∗t − xt)

]
.
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Collecting terms

DT ≥ F1

(
x∗−1, x

∗
0

) (
x∗−1 − x−1

)
+

T−1∑

t=0

βt
[
F2

(
x∗t−1, x

∗
t

)
+ βF1

(
x∗t , x

∗
t+1

)]
(x∗t − xt) + βTF2

(
x∗T−1, x

∗
T

)
(x∗T − xT ) .

or, after using equation (86):

DT ≥ F1

(
x∗−1, x

∗
0

) (
x∗−1 − x−1

)
+

T−1∑

t=0

βt [−µtAt (x∗t − xt)] + βTF2

(
x∗T−1, x

∗
T

)
(x∗T − xT ) .

It is easy to show that

T−1∑

t=0

βt [−µtAt (x∗t − xt)] =
T−1∑

t=0

βt [(−µt (Atx
∗
t − bt) + µt (Atxt − bt))] .

By the complementary slackness condition, (87), µt (Atx
∗
t − bt) = 0 for all t. Also since {xt}∞t=0 is

budget-feasible, Atxt− bt ≥ 0 for all t ≥ 0. Thus, combining with the fact that µt ≥ 0 and x∗−1 = x−1,

we get

DT ≥ βTF2

(
x∗T−1, x

∗
T

)
(x∗T − xT ) .

Again using equation (86) again, we have

DT ≥ βTF2

(
x∗T−1, x

∗
T

)
(x∗T − xT )

= βT
(
−βF1

(
x∗T , x

∗
T+1

)
− µTAT

)
(x∗T − xT )

≥ −βT+1F1

(
x∗T , x

∗
T+1

)
x∗T + βT+1F1

(
x∗T , x

∗
T+1

)
xT .

The transversality condition, (89), and feasibility of xt imply that, respectively,

lim
T→∞

βTF1

(
x∗T−1, x

∗
T

)
x∗T = 0, lim

T→∞
βT+1F1

(
x∗T , x

∗
T+1

)
xT ≥ 0.

We conclude that

lim
T→∞

DT ≥ 0.

DT is the difference between two partial sums and the regularity conditions in (i) guarantee that

those partial sums converge. This establishes our result.

A.3.2 Necessity of Transversality Condition

We turn to the necessity of 89. We establish the result using the argument in Kamihigashi (2002).

We show that his argument applies almost without change, even though he works with a version of

the Stokey et al. (1989) model, while ours is a monetary model with a cash constraint.
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Proposition 15. Suppose prices correspond to a competitive equilibrium and {x∗t}∞t=0 is a solution

to the household problem, (85). Then, {x∗t}∞t=0 satisfies (89).

Proof. Consider a class of perturbations, {xt (λ, T )}∞t=0, on the optimal path, {x∗t}∞t=0:

xt (λ, T ) =




x∗t t ≤ T

λx∗t t > T
,

where γ ≤ λ < 1. Also, γ is a scalar, 0 < γ < 1, having the property that {xt (λ, T )} is a feasible

interior sequence with finite discounted utility value for each λ ∈ [γ, 1). Feasibility is trivial and

imposes no restriction on γ, since Atx
∗
t ≥ bt implies Atxt (λ, T ) ≥ bt for all t ≥ 0, and each λ ∈ [γ, 1).

Similarly, the natural debt limit, (84), also places no restriction on γ. To see this, note that

lim
T→∞

qtÃtxt (λ, T ) = λ lim
T→∞

qtÃtx
∗
t ≥ bt.

That we can always choose a value of γ (perhaps very near to unity) so that {xt (λ, T )}∞t=0 has finite

discounted utility follows from continuity of F.

Since {x∗t} is optimal, it follows that:

∞ >
∞∑

t=0

βtF
(
x∗t−1, x

∗
t

)
≥

∞∑

t=0

βtF (xt−1 (λ, T ) , xt (λ, T )) . (91)

Kamihigashi (2002)’s argument exploits a property of concavity. In particular, the fact that the slope

of a concave function, f : [γ, 1]→ R, is declining implies

f (1)− f (λ)

1− λ ≤ f (1)− f (γ)

1− γ , (92)

for λ ∈ [γ, 1) (see Kamihigashi (2002), Lemma 3). Rearranging 91, we obtain

βT+1F
(
x∗T , λx

∗
T+1

)
− F

(
x∗T , x

∗
T+1

)

1− λ ≤
∞∑

t=T+1

βt+1F
(
x∗t , x

∗
t+1

)
− F

(
λx∗t , λx

∗
t+1

)

1− λ

≤
∞∑

t=T+1

βt+1F
(
x∗t , x

∗
t+1

)
− F

(
γx∗t , γx

∗
t+1

)

1− γ , (93)
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where the second inequality is an application of (92). Note

βT+1F
(
x∗T , λx

∗
T+1

)
− F

(
x∗T , x

∗
T+1

)

1− λ
λ↑1→ − βT+1F2

(
x∗T , x

∗
T+1

)
x∗T+1

=βT+2F1

(
x∗T+1, x

∗
T+2

)
x∗T+1 + βT+1µT+1

(
AT+1x

∗
T+1 − bT+1

)
+ βT+1µT+1bT+1

=βT+2F1

(
x∗T+1, x

∗
T+2

)
x∗T+1 + βT+1µT+1bT+1 ≥ 0.

Here, the limit result follows from differentiability of F , the equality uses (90) and the weak inequality

reflects feasibility.

Driving λ→ 1 in (93) and using the latter result, we obtain,

0 ≤ βT+2 F1

(
x∗T+1, x

∗
T+2

)
x∗T+1︸ ︷︷ ︸

≥0

+βT+1 µT+1bT+1︸ ︷︷ ︸
≥0

≤
∞∑

t=T+1

βt+1F
(
x∗t , x

∗
t+1

)
− F

(
γx∗t , γx

∗
t+1

)

1− γ .

As T → ∞, the term on the right converges to zero since the both infinite sums are finite when

summed over all t ≥ 0. This establishes (89).

A.4 Proposition 1

Proof. For each π0 > 0, there is a sequence of inflation, {πt}∞t=1 , that satisfies (22) in which inflation

explodes to ∞. The interest rate associated with such a sequence is greater than unity for each t,

so that (25) is binding, M̄T/PT = cT = 1, for all T . Trivially, the transversality condition, (26), is

satisfied.

βT
M̄T−1

PT
= βT

1

πT
→ 0.

Similarly, a sequence that satisfies (24) with π0 < 0 converges to ln (β/π̄∗), so that actual gross

inflation converges to β. To see that this sequence satisfies (26) note that πt converges in finite time

to its fixed point, πt = ln (β/π̄∗). Suppose convergence occurs at t = t̄ ≥ 0. Then, for T > t̄, RT = 1

so (9) implies PT = βT−t̄Pt̄. Setting M̄T = βT−t̄M̄t̄ for all T > t̄ so that M̄T/PT = M̄t̄/Pt̄, a constant

≥ cT for all T > t̄, we have that the cash constraint, (25), is satisfied and

lim
T→∞

βT
M̄T−1

PT
= lim

T→∞

βT−t

PT/Pt︸ ︷︷ ︸
=1

βt
M̄T−1

Pt
=
βt

Pt
lim
T→∞

M̄T−1 > 0

so that (26) is satisfied too. The uniqueness result is stated in Proposition 1.

Appendix:
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A.5 Taylor Strategy

Following is a proof of Lemma 1. For convenience, we restate Proposition 1 here:

Lemma 4. Suppose M̄−1 is given and monetary policy sets M̄t = µ̄cρt M̄t−1 for t ≥ 0,where µ > 1.

There exists a unique competitive equilibrium with the properties:

R̄t = β−1µ̄ > 1, ct = 1, for t ≥ 0, and P0 = M̄−1µ̄.

Proof. First, equations (8), (15) and (19) imply ct = 1, so that monetary policy sets money growth

to µ̄. Second, we show that in any equilibrium, R̄t > 1 for all t. Suppose, to the contrary, that R̄t = 1

for some t ≥ 0. Then it follows that R̄t+1 = 1. To see this, note that π̄t+1 = β by equation (9) so

that Pt+1 < Pt. Note also that M̄t+1/M̄t = µ̄ > 1. Combining equations (10), (16), (18) and ct = 1

we have M̄t ≥ Pt. The results, Pt+1 < Pt and M̄t+1/M̄t > 1 then imply (using ct+1 = 1) M̄t+1 > Pt+1.

The complementary slackness condition, (10), then implies that R̄t+1 = 1. By induction, we conclude

that R̄t = 1 implies R̄t+s = 1 and π̄t+s+1 = β for s ≥ 0. Finally,

qT = qt,

for all T ≥ t (see the equation after (11)). Note that for any fixed t,

qTM̄T = qtM̄T →∞,

because qt is fixed and M̄T is increasing in T . This contradicts the transversality condition (11), so

we conclude that in any equilibrium, R̄t > 1 for all t ≥ 0.

Third, we show that with R̄t > 1, for all t ≥ 0, the equilibrium conditions uniquely determine

all variables. Equation (25) implies that the cash constraint binds, M̄t − Pt = 0, for each t ≥ 0, so

π̄t+1 = µ̄ for all t ≥ 0. Fourth, the Fisher equation, (9), implies

R̄t = β−1π̄t+1 =
µ̄

β
> 1.

The cash constraint, c0 = 1 and R̄0 > 1 implies

P0 = M̄0 =⇒ P0 = M̄−1
M̄0

M̄−1

= M̄−1µ̄.

We have established the results desired.

Following is a proof of Lemma 2:

Proof. Suppose not, so that there exists an equilibrium with πT /∈ [πl, πu] where T ≥ 0 is the first

date in which the monitoring range is violated. Consider the case, πT > πu. The Taylor rule implies
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RT = φπT > πu. Using Lemma 1, it is easy to verify that πT+1 = µ ≤ πu, so that85

RT − πT+1 > 0, (94)

violating the Fisher equation, (21). This contradicts the assumption of equilibrium.

Next, consider the case πT < πl. Then, RT = max
{
Rl, φπT

}
≤ 0. But, Rl < φπl < πl, so RT < πl.

Also, it is easy to verify πT+1 ≥ µ ≥ πl, so that86

RT − πT+1 < 0, (95)

violating the Fisher equation, (21). This contradicts the assumption of equilibrium. This establishes

the result sought.

B Appendix: The Market as a Game

B.1 Proposition 4

Here, we we consider the cash constraint in the
(
ht−1, π

b
i,t

)
continuation equilibrium in Proposition

(4). The proposition considers two types of histories, ht−1 : those in which the inflation monitoring

range has never been violated (see Part (i)) and those in which the inflation monitoring range has

been violated at least once (Part (ii)). The cash constraint is always satisfied as an equality in Part (i)

by the design of our monetary policy rule. However, our construction of the
(
ht−1, π

b
i,t

)
continuation

equilibrium (see Section 4.1.5) in the second type of history ignored the time t cash constraint. This

is not an issue when the equilibrium interest rate is positive. But, needs to be verified in the case

that the interest rate is zero. We do that here.

According to Proposition (4), the zero lower bound is binding for πbi,t /∈ D (ht−1), or, more

explicitly,
1− γ
1− ρAi,t + µ ≤ Rl, (96)

where

Ai,t ≡ µ+ ln
M̄t−1

Pt−1

− πbi,t.

For convenience, we repeat the relevant equilibrium conditions derived in the text. Equation (48)

combines the period t+ 1 equilibrium allocations as well as the period t and t+ 1 money growth rule

85The (unsurprising) result, πT+1 = µ, follows from four observations. Observation #1 (see Definition 2) is that the
escape clause is invoked in period T + 1. Observation #2 is that observation #1 and Lemma 1 imply PT+1 = µM̄T .
Observation #3 is that the unscaled interest rate, R̄T , exceeds unity. The latter can be seen from: the definition
after (21), R̄T ≡ R̄∗ exp (RT ); our assumption, R̄∗ > 1; and our assumptions φ, πT > 0 which imply RT = φπT > 0.
Observation #4 is that observation #3, (25) and the equilibrium condition, ct = 1, imply PT = M̄T . The result follows
from observations #2 and #4.

86The result, πT+1 ≥ µ, is straightforward. As in Footnote (85), Lemma 1 implies PT+1 = µM̄T . Combining
equation (15) and equation (18), ct = 1 for all t ≥ 0. So the cash constraint, (25), implies M̄T ≥ PT . The result
follows.
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to obtain:

πi,t+1 = µ+ ρ ln ci,t + Ai,t. (97)

The household Euler equation in the zero lower bound, making use of the fact, ln ci,t+1 = 0, is

πi,t+1 = Rl + γ ln ci,t, (98)

where Rl denotes the scaled and logged interest rate at the zero lower bound (see Section 3.5).

Combining the loan market clearing condition, Wtlt = Xt+dt, (see equation (18)) with the household

cash constraint, equation (7), we obtain:

ln
M̄i,t

Pi,t
≥ ln ci,t (99)

Finally, the money growth rule is, expressed in terms of real balances,

ln
M̄i,t

Pi,t
= ρ ln ci,t + At. (100)

Equations (97), (98) and (100) are the three equations used in the text to solve for the three

unknowns, M̄i,t, ci,t, πi,t+1. These are solved given Ai,t, Pi,t implied by
(
ht−1, π

b
i,t

)
which have the

property that the equilibrium nominal rate of interest is at its lower bound (i.e., Ai,t satisfies equation

(96). Here, we verify that in the equilibrium constructed in in the text, the household cash constraint,

(99) is satisfied when ρ < min {γ, 1}.
Combining equation (97) and (98), we can solve for ln ci,t:

ln ci,t =
µ−Rl + Ai,t

γ − ρ . (101)

Also, after substituting out for ρ ln ci,t + At in equation (97) from equation (100) we obtain πi,t+1 =

µ+ ln
M̄i,t

Pi,t
, which, when combined with (98) yields

γ ln ci,t = ln
M̄i,t

Pi,t
+ µ−Rl ≥ ln ci,t + µ−Rl,

where the weak inequality uses (99). Collecting terms, we have

(γ − 1) ln ci,t ≥ µ−Rl. (102)

Substituting out for ln ci,t in (102) using (101), we obtain,

(γ − 1)
µ−Rl + Ai,t

γ − ρ ≥ µ−Rl. (103)

11



This establishes that the equilibrium conditions, (97), (98), (97) and the cash constraint, (99) imply

equation (103). It is easily verified that if equation (103) and the equilibrium conditions, (97), (98),

(97), are satisfied, then the cash constraint, (99) is satisfied. We conclude that equation (103) is

equivalent to the cash constraint, given our three equilibrium conditions. For this reason, in this

appendix we refer to (103) as the cash constraint.

With this characterization result in hand, we ask whether the cash constraint, (103), is satisfied

at the equilibrium values of ci,t and πi,t+1 derived in the text, for Ai,t such that the nominal interest

rate is at its lower bound (i.e., that satisfy (96)), given our restrictions on γ and ρ.

Consider first the case, γ > 1 and ρ < 1. The interest rate being at its lower bound places the

following bound on Ai,t (see equation (96)):

Ai,t ≥
1− ρ
1− γ (Rl − µ) . (104)

The coefficient on Ai,t in the cash constraint, (103), is positive so the term on the left of that inequality

is minimized by minimizing the value of Ai,t. Putting Ai,t at the minimum consistent with the interest

being at its zero lower bound (see equation (104)), we obtain

(γ − 1)
µ−Rl + Ai,t

γ − ρ ≥ (γ − 1)
µ−Rl + 1−ρ

1−γ (Rl − µ)

γ − ρ = µ−Rl.

We conclude that the cash constraint, (103), is satisfied.

Now consider the case, γ < 1 and ρ < γ. The bound on Ai,t implied by the interest rate being at

its lower bound is (e.g., equation (96)) is

Ai,t ≤
1− ρ
1− γ (Rl − µ) . (105)

The coefficient on Ai,t in the cash constraint, (103), is negative, so the term on the left of that

inequality is minimized by maximizing the value of Ai,t. Putting it at the maximum consistent with

the interest rate being at its lower bound is (see equation (105)), we obtain:

(γ − 1)
µ−Rl + Ai,t

γ − ρ ≥ (γ − 1)
µ−Rl + 1−ρ

1−γ (Rl − µ)

γ − ρ = µ−Rl.

We conclude that the cash constraint, (103), is satisfied. This establish the result we set out to prove.

B.2 Proof of Proposition (5)

Result (i) follows from Lemma 1 and Proposition 2. Now consider (ii). Suppose we have a πbt that has

the fixed point property in (ii). The only thing that distinguishes an ht−1 continuation equilibrium and

an
(
ht−1, π

b
t

)
continuation equilibrium (see Definition 4) is that the latter does not necessarily satisfy

the time t intermediate good equilibrium condition, Pt = Wt (see equation (15)). This difference can

12



be described in terms of F . Suppose πbt is an arbitrary belief about how other firms set their (scaled

and logged, as in equation (30)) prices. In the continuation equilibrium associated with
(
ht−1, π

b
t

)
,

the (scaled and logged) aggregate price index is simply πbt itself. The (scaled and logged) wage rate

in the
(
ht−1, π

b
t

)
continuation equilibrium is F

(
ht−1, π

b
t

)
(see equation (33)). So, a fixed point of F

corresponds to a sequence, (at+j)
∞
j=0 , that satisfies all equilibrium conditions in periods t,t + 1, ....

Hence the sequence is an ht−1 continuation equilibrium. Now consider the converse in part (ii). Let

(at+j)
∞
j=0 denote an ht−1 continuation equilibrium. By definition, all period t, t + 1, ... equilibrium

conditions (including equation (15)) are satisfied. Let πt denote period t inflation in this equilibrium

and set πbt = πt. Because equation (15) is satisfied, it follows that πbt = F
(
ht−1, π

b
t

)
. This establishes

(ii).

Consider (iii). First, we establish existence of a fixed point for F, for any ht−1. According to

part (i) there is a unique ht−1 continuation equilibrium. By the converse proof of part (ii) above,

it then follows that there exists a fixed point for F. To see that this fixed point is unique, suppose

it is not. If there were two fixed points of F for some history, ht−1, each corresponds to a distinct

ht−1 continuation equilibrium. This contradicts (i). Finally, consider (iv). Condition (iii) implies

there exists a unique fixed point of F, and condition (ii) implies that the
(
ht−1, π

b
t

)
continuation

equilibrium associated with that fixed point coincides with the ht−1 continuation equilibrium. Since,

by Proposition 2, inflation in the ht−1 continuation equilibrium is πt = 0, it follows that the same is

true in the
(
ht−1, π

b
t

)
continuation equilibrium. But, πbt = πt in the latter equilibrium, establishing

(iv).

C Appendix: Rationalizable Implementation

C.1 Iterated Deletion and Rationalizability

Let L denote an action taken by others and let l = F (L) denote the individual’s best response to

L. In terms of this notation, Definition 7 is expressed as follows. Consider the following sequence of

sets: {
F−k (L)

}∞
k=0

. (106)

Here, F−1 (L) denotes the set of beliefs, Ω, for which L is a best response. That is, F (Ω) = L. Also,

F−2 (L) ≡ F−1 (Ω) .

The set, F−2 (L) , is the set of beliefs which justify the actions corresponding to each element in Ω. The

sets, F−n (L) , for n > 2 are defined similarly. Finally, F−0 (L) ≡ {L} . If, for all n, F−n (L) 6= {∅},
then there exists at least one sequence of numbers in equation (106) that is a chain of justified beliefs

that supports L. If so, then according to Definition 7, we say that L is rationalizable.

Under the method of iterated deletion, the agent’s initial candidate set of beliefs corresponds to
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the set of justified beliefs, which we denote by Π1. Then F (Π1) denotes the set of best responses

associated with some justified belief. Suppose there is a value of l ∈ Π1 which is not a best response

to any L ∈ Π1, so that there no circumstances in which the individual would choose l. Under CK,

the individual would also expect that others would never choose such an action, and so it would be

deleted from the set of candidate beliefs. Specifically, the individual would restrict its beliefs about

what others do to Π2 = Π1

⋂
F (Π1). 87

This process can be repeated, leading to a sequence, Πk+1 = Πk

⋂
F (Πk), for k = 1, 2, ... . Notice

that by construction, the sequence is non-decreasing, Πk ⊆ Πk−1 for k = 2, ... . Consider the set of

elements, L ∈ Π1, such that they remain undeleted even as k →∞:

Π∗ (Π1) =
∞⋂

k=1

Πk. (107)

So, the set, Π∗ (Π1) , is composed of the beliefs in Π1 that survive iterated deletion. We will also

have occasion to apply Π∗ to sets different from the set of justified beliefs, Π1. When the argument

of Π∗ (·) is Π1, we economize on notation by dropping the argument. Following is a characterization

of the relationship between Π∗ and the set of rationalizable beliefs:

Proposition 16. The following hold:

(i) L is rationalizable if and only if L ∈ Π∗;

(ii) if there exists a set Π having the property, F (Π) = Π, then each element in Π is rationalizable;

(iii) Π∗ (Π) ⊆ Π
⋂(⋂∞

k=1 F
k (Π)

)
for any set, Π, that is a subset of the domain of F . 88

The proof is provided in the next section.

Result (i) is useful because sometimes it is more convenient to study rationalizability by chain

of justification and at other times iterated deletion is more convenient. Part (ii) of Proposition 16

provides another characterization of rationalizability that is useful for us below. Part (iii) will be

very useful for us below. It implies that if the object on the right of ‘⊆’ is a singleton when Π = Π1,

then Π∗ (Π1) is a singleton too, and we have (by part (i)), unique rationalizability. 89

C.2 Proof of Proposition 16

Proof. (i) (Sufficiency) Suppose, to the contrary, that L /∈ Π∗ but L is rationalizable according to

Definition 8. By rationalizability, L ∈ Π1. The fact, L /∈ Π∗, implies by equation (107), that there

exists a k such that L /∈ Πk but L ∈ Πk−1. Since L is rationalizable, F−k (L) is not empty and is a

87If C is a set, then g (C) = {y : y = g (x) , for x ∈ C} . Also, A
⋂
B means {y : y ∈ A, y ∈ B}.

88Here F 2 (A) ≡ F (F (A)) , and F k (A) is recursively as follows: F k (A) = F
(
F k−1 (A)

)
for all k ≥ 2.

89If F (Π) ⊆ Π then, the ‘⊆′ can be replaced by an equality.
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subset of Π1. It then follows that L ∈ F k (Π1) . In particular, there exists a sequence of {L′s}k−1
s=1 such

that

L = F
(
L′k−1

)
, L′s = F

(
L′s−1

)
, L′1 ∈ Π1,

for all s ≤ k − 1. Note that Ls ∈ Πs for all s ≤ k − 1 by construction. So, L ∈ Πk, a contradiction.

(Necessity) Suppose that L ∈ Π∗, but is not rationalizable. If follows by Definition 7 that there

does not exist a chain of justified beliefs that supports L. This means that there exists a k ≥ 1 such

that F−k (L) = {∅} and F−s (L) 6= {∅} for all s ≤ k − 1. It follows that F k−1 (L) /∈ Π1 and, if k > 1,

F s (L) ∈ Π1 for all s ≤ k − 1. So, L /∈ Πk, a contradiction.

(ii) Consider an arbitrary L1 ∈ Π, where F (Π) = Π. There exists a L2 ∈ Π which justifies L1. By

induction, we can construct a sequence, {Lk}∞k=1, recursively. Therefore L1 is rationalizable.

(iii) The claim immediately holds since Πk+1 ⊂ F (Πk) for all k ≥ 1.

C.3 Impact of Refinement on Competitive Equilibria

In the body of the paper we show that our refinement has the effect of trimming economically

uninteresting off-equilibrium paths under the Taylor rule with an escape clause. Could it be that

the refinement trims all undesired competitive equilibria, eliminating the need for the escape clause

in the first place? Here, we show that the answer is ‘no’. The set of equilibria with the Taylor rule

and no escape clause is essentially the same with or without our refinement. Section 3.5 indexes the

equilibria by the initial gross rate of inflation, π̄0 > 0.90 The refinement eliminates a minuscule set of

equilibria by trimming those with π̄0 < π̄∗ε for arbitrarily small ε > 0.91

But, what if we extend our refinement so that intermediate good firms have a similar cognitive

impairment which prevents them from being able to distinguish large numbers? Suppose we adopt

a cognitive impairment which results in a cap on the price level. Such an impairment would not be

interesting because it would rule out all equilibria in which inflation is positive, such as our desired

equilibrium. An alternative approach results in an arbitrarily high, but finite, cap, π̄cap, on inflation.

We explore this approach in detail and conclude that this refinement does not trim a substantial

number of equilibria and thus is not a substitute for the escape clause.

One might suppose that a cap on inflation would trim competitive equilibria in which the initial

inflation rate, π̄0, is larger than its desired value, π̄∗.92 A rationale for that conjecture might be the

argument in Section 3.5 which shows that, absent any refinement and absent the escape clause, all

equilibria with π̄0 > π̄∗ lead to exploding inflation rates. We argue that such a conjecture is wrong.

In fact there are many equilibria with π̄0 > π̄∗. The only equilibria that are ruled out are the ones

with π̄0 > π̄cap. This does not significantly trim the number of equilibria since π̄cap can be arbitrarily

large.

90Obviously, there can be no equilibrium with π̄0 ≤ 0, since π̄0 = P0/P−1, where Pt denotes the price of consumption
in period t.

91Recall, π̄∗ denotes the gross inflation rate in the desired equilibrium.
92A cap on inflation, π̄cap, would have no impact on our analysis of rationalizability in off-equilibrium paths because

we find that there is a natural upper bound on inflation on those paths.
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With the refinement and no escape clause there remains an equilibrium corresponding to π̄∗ <

π̄0 ≤ π̄cap. Each equilibrium exhibits ‘exploding inflation’ in the sense that in each equilibrium

inflation converges to the very high number, π̄cap. The key reason that inflation does not literally

explode to infinity is that when the cognitive impairment becomes binding, the Euler equation ceases

to be the Fisher equation. We proceed now to make these observations formal.

In our analysis, only the intermediate good firms have a cognitive impairment. All other agents

solve their equilibrium conditions exactly. A cognitive impairment may prevent the intermediate good

firm from setting its period t price equal to the actual period t wage rate.93 We assume that there is

an arbitrarily small value of δ, where δ lies in the interval, (0, 1) , such that when the intermediate

good firm is confronted with a wage rate, Wt, with the property, Wt > (Pt−1π̄
∗) /δ, then it actually

perceives the wage to be (Pt−1π̄
∗) /δ. Absent our refinement, optimization leads firms to set Pt = Wt

(see equation (15)). With our refinement, the equation characterizing firm optimization, (15), is

replaced by the following complementary slackness-type condition:

(Wt − Pt) (ln (1/δ)− πt) = 0, Wt ≥ Pt, ln (1/δ) ≥ πt. (108)

Here, recall that πt is the logged and scaled inflation rate, πt = ln (Pt/ (Pt−1π̄
∗)). In terms of scaled

and logged inflation, the inflation cap is the third term in equation (108).

The representative household’s Euler equation for employment, equation (8), together with the

resource constraint, ct = lt, corresponds to

Wt

Pt
= cγ+ψ

t , γ > 0, ψ ≥ 0. (109)

Given Pt > 0, equations (108) and (109) are equivalent to:

(ct − 1)

(
ln

1

δ
− πt

)
= 0, ct ≥ 1, ln (1/δ) ≥ πt. (110)

The intertemporal Euler equation, equation (9), combined with the Taylor rule, equation (17), is:

ln (ct+1/ct) =
1

γ
(φπt − πt+1) . (111)

We now consider the set of equilibria for the model. As in Section 3 equilibria can be indexed by

π0. Obviously, the equilibria associated with π0 ≤ 0 are the same with or without the refinement.

Also, equilibria associated with π0 > ln (1/δ) no longer exist. This is a small set of equilibria, since

δ > 0 can be arbitrarily small. We now consider the equilibria associated with π0 ∈ (0, ln (1/δ)] .

In particular, we construct a sequence,{ct, πt}∞t=0 , corresponding to each π0 ∈ (0, ln (1/δ)] which

93Recall, we are studying the competitive equilibrium, in which it is assumed (recall the clairvoyance assumption
discussed at the end of Section 15) that the firm directly observes the actual equilibrium wage rate. The cognitive
impairment results in a possible distinction between the wage rate that is observed and the wage rate that is perceived.
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satisfies equations (111) and (110) for t ≥ 0.94 After that we show that each of these sequences is an

equilibrium because it satisfies the transversality condition of the household, equation (11).

Consider t = 0. Since 0 < π0 ≤ ln (1/δ), equation (110) is satisfied by setting c0 = 1. Compute

πt for t = 1, ..., T + 1 using

πt = φtπ0,

where t = T + 1 is the first date when πt > ln (1/δ) .95 Since π0 > 0 and φ > 1, a finite T ≥ 1 exists.

Then, the computed πt, along with ct = 1, for t = 0, ..., T, satisfy equations (111) and (110).

Now consider equation (111) for t = T , setting πT+1 = ln (1/δ):

ln (cT+1) =
1

γ
(φπT − ln (1/δ)) > 0, (112)

so that cT+1 > 1. Then, for t > T + 1, set πt = ln (1/δ) and

ct+1

ct
= (1/δ)

1
γ

(φ−1) . (113)

with cap on price level. With {ct, πt}∞t=0 computed in this way, equations (110) and (111) are satisfied

for all t.

To verify the transversality condition, note that for j > 1 equations (112) and (113) imply:

cT+j = cT+1 (1/δ)(j−1) 1
γ

(φ−1) .

In the transversality condition, equation (11), we have that mj = Pjcj and qj is proportional to

βju′ (cj) /Pj, where u′ (cj) denotes the marginal utility of consumption. Note that qjmj is proportional

to βT cTu
′ (cT ) = βT c1−γ

T ,thus ensuring that βT cTu
′ (cT ) → 0 if γ ≥ 1. We have established the

following result:

Proposition 17. Suppose γ ≥ 1 and that the intermediate good firm has the cognitive impairment

defined in this subsection. There exists an equilibrium corresponding to each π0 ∈ (−∞, ln (1/δ)]. The

equilibrium associated with each −∞ < π0 ≤ 0 coincides with the corresponding equilibrium without

the refinement (see Proposition 1). The constructed equilibrium associated with each 0 < π0 ≤ ln (1/δ)

has an inflation rate that converges to ln (1/δ) in finite steps.

With this cognitive impairment there are multiple equilibria, including equilibria with very high

inflation, as in the version of the model with no refinement and no escape clause. The nature of the

equilibria are someone different, however, even if the number of equilibria is roughly the same. Most

importantly, without the refinement all the equilibria generate the same amount of welfare. With the

refinement welfare associated with high inflation is very low. This is because consumption growth is

94Equilibria in which π0 > − ln δ are ruled out by (110).
95Here, we drop the dependence of T on δ and π0 to simplify notation.
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eventually greater than unity and eventually becomes extraordinarily high (see equation (113)). This

is a large deviation from the desired equilibrium, which is first best.

C.4 Rationalizability When The Monitoring Range Has been Violated

Proposition 18. Consider an arbitrary history ht−1 in which the monitoring range has violated. If

condition (63) is satisfied, then there exists a unique robustly rationalizable belief.

Proof. Fix any arbitrary small 0 < ε ≤ eπ
b(ht−1). We show that for any such ε, the conditions for

Proposition 9 are satisfied for some set. Then Proposition 9 implies that Π∗ (ε) is a singleton for all

0 < ε ≤ eπ
b(ht−1). Since the Nash belief, πb (ht−1) , is included in Π∗ (ε) , we conclude that there exists

a unique robustly rationalizable belief.

In order to show that the three conditions for Proposition 4 are satisfied, we first show that

F
(
ht−1, π

b
i,t

)
has the following properties: (i) F

(
ht−1, π

b
i,t

)
is increasing in πbi,t for all πbi,t ≤ π̄b (ht−1)

and decreasing otherwise where π̄b (ht−1) is a unique value satisfying the following linear equation,

1− γ
1− ρ

(
µ+ ln

M̄t−1

Pt−1

− πbi,t
)

+ µ = Rl;

(ii) the slop of F
(
ht−1, π

b
i,t

)
is less than 1 in its absolute value.

In order to show (i), the conditions (63) imply that γ > 1 and ρ < 1. Therefore if πbi,t ≤ π̄b (ht−1) ,

then πbi,t /∈ D (ht−1) . Otherwise, πbi,t ∈ D (ht−1). Consider πbi,t ≤ π̄b (ht−1) . The slope of F
(
ht−1, π

b
i,t

)

is (ρ+ ψ) / (ρ− γ), which is given by (ii) in Proposition 4. Since ρ < γ from the assumption,

ρ− γ < 0. From the last condition in (63), we have

ρ+ ψ < 1− γ + ψ

2
+ ψ = 1− γ − ψ

2
. (114)

The first condition in (63) implies that

2 + ψ < γ. (115)

So, combining the above two equations (114) and (115), we obtain

ρ+ ψ < 1− γ − ψ
2

< 1− 2 + ψ − ψ
2

= 0.

Therefore, (ρ+ ψ) / (ρ− γ) is positive. Now consider πbi,t > π̄b (ht−1) . The slope of F
(
ht−1, π

b
i,t

)
is(

1− γ+ψ
1−ρ

)
, which is given by (ii) in Proposition 4. It is easy to show that the slope is negative since

1− (γ + ψ) < ρ.

Now we prove (ii). It is immediate that (ρ+ ψ) / (ρ− γ) < 1 since

(ρ+ ψ) > (ρ− γ) ,

and ρ− γ < 0. It is easy to show that 1− γ+ψ
1−ρ is bigger than −1 if ρ < 1− γ+ψ

2
.
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The two properties (i) and (ii) imply that πmax = maxπ∈[ln ε,∞) F (ht−1, π) <∞. Thus intermediate

firms can disregard any beliefs πbi,t > πmax. Set Ω = [ln ε, πmax]. Then all the conditions in Proposition

9 are satisfied. So we conclude that for all 0 < ε < exp (π (ht−1)) ,

Π∗ (ε) = π (ht−1) .

Therefore Πr,∗ = π (ht−1) , which is desired.

C.5 Local Rationalizability

In this section, we derive F (N)
(
ht−1, π

b
)

for the history in which the monitoring range has been

violated once and show that DF (N) is a lower triangular matrix whose diagonal elements are 1 −
(γ + ψ) / (1− ρ) .

Consider first ht−1 in which there has been a violation in the monitoring range. First notice that

at the Nash equilibrium belief, πb (ht−1) =
(
µ+ ln M̄t−1

Pt−1
, 0, · · · , 0

)
, the zero lower bound does not

bind. This comes from the fact that the interest rates at the equilibrium belief are given by Ri,t+j = µ

for all j ∈ {0, · · · , N − 1} . Therefore, we can choose a small neighborhood of πb (ht−1) so that for

any πb ∈ Π, the zero lower bound does not bind.

For πb ∈ Π, the money growth rule (see Definition 2) is in place in periods t+ j, for all j ≥ 0. We

know from Lemma 1 that ln ci,t+N = πi,t+N = 0. The period t+ j wage is the simple function of πbi,t+j

and ln ci,t+j given in equation (42). We obtain ln ci,t+j simply by iterating forward on the equilibrium

cash constraint (25) with the given initial real balance, ln Mt−1

Pt−1
. Iterating in this way yields:

ln ci,t+j =
1

1− ρ

[
µ− πbi,t+j +

j−1∑

s=0

(
µt+s

(
πbi,t, · · · , πbi,t+s

)
− πbi,t+s

)
+ ln

Mt−1

Pt−1

]
,

where µt+s (πt, · · · , πt+s) is recursively defined given the initial real balance ln Mt−1

Pt−1
:

µt+s (πt, · · · , πt+s) = µ+
ρ

1− ρ

[
µ− πbi,t+j +

s−1∑

k=0

(
µt+k

(
πbi,t, · · · , πbi,t+k

)
− πbi,t+k

)
+ ln

Mt−1

Pt−1

]
,

with the understanding that the summation is defined as zero if s− 1 < 0. So, we have for all t

F
(N)
j

(
ht−1, π

b
)

= πbt+j−1 +
γ + ψ

1− ρ

[
µ− πbi,t+j +

j−1∑

s=0

(
µt+s

(
πbi,t, · · · , πbi,t+s

)
− πbi,t+s

)
+ ln

Mt−1

Pt−1

]
.

It is clear that F
(N)
j

(
ht−1, π

b
)

is a linear function of πb and only depends on the past and current

inflation. So DF (N) is a lower triangular matrix. It is trivial show that the diagonal elements are

1− (γ + ψ) / (1− ρ) . We establish the desired.
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C.6 Multiple Shots

Our strategy equilibrium concept allows the ith intermediate good firm to entertain a wide range of

beliefs about what other firms do in period t when it makes its own period t price decision. But,

conditional on a given belief about what other firms do in period t, only one sequence of future

actions by all intermediate good firms (including the ith firm itself) is contemplated. These are the

actions in the unique
(
ht−1, π

b
t

)
continuation equilibrium. In effect, the ith firm treats the other firms

in period t as players in a large period t game, but all players (including the ith firm itself) are treated

as robots satisfying equilibrium conditions (or, playing Nash) in future periods.

A natural question is whether we obtain the same results when we consider N−period beliefs,

captured by the N × 1 vector, −→π b
i,t ≡

[
πbi,t, π

b
i,t+1, ..., π

b
i,t+N−1

]′
. The vector, −→π b

i,t, contains the beliefs

of the ith intermediate good firm about the prices set by the other intermediate good firms in periods

t + s, s = 0, ..., N − 1, for ∞ > N > 0. In this sense, the analysis up to now has only addressed

N = 1 period beliefs. For the ith firm to determine its best response when N > 1 requires that it

compute an
(
ht−1,

−→π b
i,t

)
continuation equilibrium. This is a sequence, (ai,t+s)

∞
s=0, that satisfies all

time t+ s equilibrium conditions, s ≥ 0, not including the firm optimality conditions, equation (15),

in periods t+s, for s = 0, ..., N −1. The variables in the continuation equilibrium that are of interest

to the ith firm are (wi,t, ..., wi,t+N−1) = F (N)
(
ht−1,

−→π b
i,t

)
. The firm’s best response is the analog of

(34), (xi,t, ..., xi,t+N−1) = F (N)
(
ht−1,

−→π b
i,t

)
, where xi,t+s is the (scaled and logged) price set by the

firm in period t+ s. The function, F (N) inherits the piecewise linear structure that it has for N = 1

(see Proposition 4). With N = 1, F (N) is composed of 5 linear segments. As N increases, the type

of global analysis we were able to do in the N = 1 case becomes unwieldy. Instead, we proceed as in

Evans et al. (2018) by doing a local analysis of implementation.

Let Π (ht−1, ε) denote an ε-cylinder around the Nash equilibrium, −→π b (ht−1) , defined by−→π b (ht−1) =

F (N)
(
ht−1,

−→π b (ht−1)
)
. Thus, Π (ht−1, ε) = −→π b (ht−1) +

{−→π b ∈ RN :
∣∣πbi
∣∣ ≤ ε, i = 1, ..., N

}
, where

ε > 0, but small.96 We will show that the N × 1 vector-valued function, F (N)
(
ht−1,

−→π b
i,t

)
, is linear

for −→π b
i,t ∈ Π (ht−1, ε) and has a unique zero for any ht−1. We will exploit this linearity property to

establish what we call local rationalizability.

Consider first ht−1 in which there never has been a violation in the monitoring range. For −→π b
i,t ∈

Π (ht−1, ε), the Taylor rule is in place in periods t+ j, for j ≥ 0. We know from Proposition (2) that

ln ci,t+N = πi,t+N = 0. The period t + j wage is the simple function of πbi,t+j and ln ci,t+j given in

equation (42). We obtain ln ci,t+j by iterating backward on the household Euler equation, with the

given initial conditions for ci,t+N and πi,t+N . Iterating in this way yields:

ln ci,t+j = −1

γ

N−2∑

k=j

(
φπbi,t+k − πbi,t+k+1

)
− φ

γ
πbi,t+N−1,

96For ht−1 in which the monitoring range has never been violated, we can choose ε = min {−πl, πu}. Otherwise, we
can choose the ε- cylinder so that the zero lower bound is never encountered. (See equation (39) for the restrictions
on πbt when N = 1.) For both types of ht−1, F

(N)
(
ht−1,

−→π bi,t
)

in our model is a linear function.
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where we define the summation as zero when j > N − 2. We have

F
(N)
j

(
ht−1,

−→π b
i,t

)
= πbt+j−1 −

(
γ + ψ

γ

)[ N−2∑

k=j−1

(
φπbt+k − πbt+k+1

)
+ φπbt+N−1

]
,

where j = 1 is the top element of the N×1 vector, F (N)
(
ht−1,

−→π b
i,t

)
. Evidently, the function is linear

in −→π b
i,t and F (N) has the following representation:

F (N)
(
ht−1,

−→π b
i,t

)
= DF (N) ×−→π b

i,t,

where DF (N) denotes an N×N upper diagonal matrix with 1−
(
γ+ψ
γ

)
φ along its diagonal. Equation

(63) implies that
∣∣∣1−

(
γ+ψ
γ

)
φ
∣∣∣ < 1. With its eigenvalues inside the unit circle, DF (N) is a convergent

matrix97, so that
[
DF (N)

]k
(Π (ht−1, ε)) → {0} as k → ∞.98 We adopt the idea of local rationaliz-

ability in Evans et al. (2018) by assuming that Π (ht−1, ε) is the set of justified beliefs and that this

is common knowledge.99 In that case, it follows trivially by the convergence property of DF (N) that
−→π b

i,t = 0 is the unique locally rationalizable belief. In this sense, we obtain a local version of unique

implementation.

In the case where ht−1 contains at least one violation of the inflation monitoring range, it is also

possible to construct F (N)
(
ht−1,

−→π b
i,t

)
locally for −→π b

i,t in an ε-cylinder, Π (ht−1, ε), about the Nash

equilibrium. The Nash equilibrium, −→π b (ht−1), exists and is unique because of the uniqueness of an

ht−1 continuation equilibrium (see Ii) of Proposition 5). Our linear characterization requires only

that the cylinder, Π (ht−1, ε) , be sufficiently ‘narrow’ that it excludes inflation rates low enough to

avoid the zero lower bound on the interest rate. In this case, the N × 1 vector-valued function,

F (N), can be written F (N)
(
ht−1,

−→π b
i,t

)
= DF (N) ×

[−→π b
i,t −−→π b (ht−1)

]
. The N × N matrix, DF (N),

is lower triangular with the scalar, 1 − (γ + ψ) / (1− ρ), in every entry on its diagonal. So, DF (N)

is a convergent matrix if |1− (γ + ψ) / (1− ρ)| < 1. This condition is satisfied under the parameter

restrictions, equation 63, sufficient for unique implementation (see Proposition 11).

We summarize the above results as follows. Consider first the analog of unique implementation

for arbitrary N :

Definition 11. Let Π (ht−1, ε) be an ε- cylinder about the unique Nash equilibrium. Suppose it is CK

that intermediate good firms only consider beliefs in the set, Π (ht−1, ε). A competitive equilibrium

satisfies locally unique N-shot implementation if there exists ε > 0 such that: (i) there is a continuation

equilibrium for each ht−1 and for each
(
ht−1,

−→π b
i,t

)
such that −→π b

i,t ∈ Π (ht−1, ε) and (ii) for each ht−1,

Π∗ (Π (ht−1, ε)) =
{−→π b (ht−1)

}
, where Π∗ is defined in 107.

97A convergent matrix, T, is a matrix that has the property, limk→∞ T k = 0. A matrix, T, is convergent iff its largest
eigenvalue is less than unity in absolute value (see Meyer (2000, p. 617)).

98
[
DF (N)

]
(Π) is defined as a set

{
DF (N)x;x ∈ Π

}
.
[
DF (N)

]k
(Π) is defined as recursively.

[
DF (N)

]k
(Π) =

[
DF (N)

] ([
DF (N)

]k−1
Π
)

for all k ≥ 2.
99Evans et al. (2018) refer to their idea as ‘local eductive stability’.
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Condition (i) corresponds to the requirement that the equilibrium locally be a strategy equilibrium

(see Definition 6). Condition (ii) requires that only the Nash equilibrium, −→π b (ht−1) , survives iterated

deletion of beliefs.

We now state the following result:

Proposition 19. Consider the model in which monetary policy is governed by the Taylor strategy

(see Definition 2). Then the competitive equilibrium satisfies locally unique N-shot implementation if

and only if

∣∣∣∣1−
(
γ + ψ

γ

)
φ

∣∣∣∣ < 1,

∣∣∣∣1−
(
γ + ψ

1− ρ

)∣∣∣∣ < 1. (116)

Suppose monetary policy is governed by the zero monitoring range policy (see Definition 3). Then the

necessary and sufficient conditions for locally unique N-shot implementation are the second condition

in equation (116) and the following:

∣∣∣∣1−
(
γ + ψ

γ − 1

)
φ

∣∣∣∣ < 1.

The first condition in equation (3) pertains to histories, ht−1, when the inflation monitoring range

has never been violated. The condition applies to the slope of the best response function in a small

neighborhood around the unique Nash equilibrium. When πl < πu, that slope is different than when

πl = πu (see, for example, Figure 5a). This is the reason for the different sufficiency conditions across

the two monetary policies considered in the Proposition 19.

D Appendix: The Taylor Strategy Versus Two Alternatives

This section describes the stochastic version of the model studied in the main text. The global

equilibrium analysis of this model under the Taylor strategy is more tedious than the analysis of the

deterministic model. While the equilibrium conditions in the deterministic model are linear in the

log of the variables, this is not the case in the stochastic version of the model. So, we work with

a version of the equilibrium conditions that have been log-linearized about the unique equilibrium

allocations in the deterministic version of the model. These allocations are also the allocations in the

locally unique stochastic version of the model.100 As in the analysis of Poole (1970), the Taylor rule

has the effect of preventing the money demand shock from having an impact on allocations. Under

the money growth rule, consumption and employment are a function of the realization of the money

demand shock. However, inflation is not a function of that shock (prices are set before the money

100In the deterministic model, the off-equilibrium path in which monetary policy is the money growth rule can have a
constant term, µ, that lies anywhere in a specific interval (see Definition 2). This means that we are somewhat flexible
in what the inflation rate and interest rate are in these off-equilibrium paths. In the stochastic model, we set µ = 0,
so that the inflation rate in the money growth regime is the same as it is in the interest rate regime. This ensures the
accuracy of our log-linear approximation.
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demand shock is realized) and has the consequence that much of the best response function analysis

in the main text goes through with relatively little modification.

The first section below in effect repeats all the analysis done in the paper for the stochastic

model. However, our various concepts are modified to reflect that our analysis is local to the Taylor

strategy equilibrium in the deterministic model. Thus, Section 3 below defines and analyzes a linear

competitive equilibrium under the Taylor strategy. We establish local uniqueness of that equilibrium.

Section 4 transforms the equilibrium into a game and describes the model best response functions.

We establish that the linear competitive equilibrium is a local strategy equilibrium. Finally, the third

subsection below establishes unique local implementation of the equilibrium. All this analysis pertains

to what we call one-period deviations in the introduction to Section 5. The extension to multi-period

(or, multi-shot) deviations discussed in Online Appendix C.6 applies equally to the stochastic model

discussed here. That is because, as we show below, the properties of the best response function, F ν ,

in the stochastic model are locally identical to the best response function, F, in the model without

shocks. The main reason for this is that prices are set before the realization of the current period

money demand shock, which is itself independent over time.

Finally, the results for trembles in Section 6.1 applies equally to the stochastic model studied

here. We evaluate welfare before t = 0 when the equilibrium starts up. When a tremble occurs, the

aggregate price level is perturbed as in equation (69)). Under the zero monitoring range strategy,

πl = πu, so that a tremble, no matter how small, induces a reversion to the constant money growth

regime. In the Taylor strategy with πl < πu, a tremble, if sufficiently small (or, if πu−πl is sufficiently

big), will never trigger the escape clause. Under the Taylor strategy, the equilibrium is first best with

ct = 1 for all t. Under the money growth regime, consumption fluctuates stochastically in response to

the money demand shock (see equation (122)). As a result, in the version of the model with trembles,

the zero monitoring range strategy is welfare inferior to the Taylor rule strategy with πl < πu. This

establishes We state the result for trembles in Proposition 13.

D.1 Money Demand Shocks

We introduce a shock to money demand, νt, that is realized after intermediate good firms set their

price:101

Ptct ≤ (mt−1 +Wtlt − dt) exp (νt) . (117)

All other time t variables are determined after the realization of νt. We modify our definition of a

history, ht−1, to include the record of all shocks up to, and including, period t − 1. For reasons

of tractability, we limit ourselves to an analysis of the log-linearized equilibrium conditions and we

ignore the non-negativity constraint on the interest rate.102 The equilibrium conditions, after log

linearizing in the neighborhood of the desired equilibrium, are:

101The model is a variant of the sticky price model in Christiano et al. (1997), where time t prices are predetermined
when time t shocks are realized.

102Our style of analysis in this section follows the approach in Atkeson et al. (2010).
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ln ct = Et ln ct+1 −
1

γ
(Rt − Etπt+1) (118)

0 = Et−1 ln ct (119)

ln ct = νt + ln
M̄t

Pt
(120)

Rt = φπt. (121)

Here, Et denotes the conditional expectation based on shocks up to period t. The first equation is

the log-linearized version of the household’s intertemporal optimality condition (9).103 The second

equation combines the intermediate good firm’s optimality condition (hence, the presence of Et−1)

with the household’s intra-temporal optimality condition, (8), and the resource constraint, equation

(19).104 The third equation is the equilibrium version of the cash constraint, (117), that takes into

account loan market clearing (see equation (18)). In our analysis in this section, we impose (120) as

a strict equality. The last equation is the version of the Taylor rule, (22), which ignores the lower

bound constraint on Rt.

As in Section 3.6, when the government conducts its monetary policy based on the money growth

rule, equation (121) is replaced with the money growth rule in Definition 2.

Monetary policy in the log-linearized economy is defined as a version of Definition 2 in which we

ignore the non-negativity constraint on the interest rate:

Definition 12. The Taylor strategy in the linearized economy is: (i) for histories, ht−1, in which

πs ∈ [πl, πu] for each s ≤ t − 1 the period t rule is given by (121) with φ > 1 and (ii) for the other

histories the money growth rule is the one in Definition 3.6.

We define a linear competitive equilibrium as follows:

Definition 13. A linear competitive equilibrium with an escape clause is an allocation a = (at)
∞
t=0

such that (i) a satisfies equations (118), (119), (120); (ii) monetary policy is given in Definition 12;

(iii) there exists a constant C > 0 such that var (πt) < C for all t ≥ 0.

By var(πt) we mean the variance of πt conditional on information available in period t = 0.

Condition (iii) in Definition 13 guarantees that the variance of all other real variables is also bounded.

D.1.1 Uniqueness of Competitive Equilibrium with Taylor Rule under Escape Clause

The analysis proceeds as follows. We begin by establishing a version of Lemma 1 which (as before)

helps to guarantee that inflation expectations are anchored in the long run. In particular, under the

103Log-linearization in this equation entails two approximation errors. First, we replace lnEt (1/ct+1) by Etln (1/ct+1)
after taking the log of equation (118). Second, we replace lnEt (1/π̄t) with Et ln (1/π̄t). We also scale inflation before
logging, but that involves no approximation error.

104As in equation (118), the only approximation in equation (119) is that we replace lnEt−1ct with Et−1 ln ct .
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money growth rule in Lemma 1, there exists a unique linear competitive equilibrium. The equilibrium

allocations are similar those in Lemma 1, with the obvious exception that we have a money demand

shock.

Lemma 5. Suppose M̄−1 is given and the monetary rule is M̄t = cρt µ̄M̄t−1 for t ≥ 0. There exists a

unique linear competitive equilibrium with the properties:

Rt = µ+
ρ− γ
1− ρνt, ln ct =

1

1− ρνt, πt+1 = µ+
ρ

1− ρνt, for t ≥ 0, and P0 = M̄−1µ̄. (122)

Recall (see equation (23)) that µ is scaled and logged µ̄. The uniqueness proof is straightforward

and we include it here.105

Proof. Combining the cash constraint (120) with equation (119), Et−1 ln
(
M̄t/Pt

)
= 0. Rearranging

the latter and taking into account that Pt is contained in the t− 1 information set, we have

lnPt = Et−1 ln
(
cρt µ̄M̄t−1

)
= ln µ̄+ ln M̄t−1. (123)

The object in parentheses uses monetary policy to substitute out for M̄t. The second equality in

equation (123) uses equation (119). First differencing equation (123) and using the monetary policy

rule, we obtain

πt+1 = µ+ ρ ln ct (124)

for all t ≥ 0. Consumption is determined by combining equation (120), the monetary policy rule and

equation (123):

ln ct = νt + ln
M̄t

M̄t−1µ̄
= νt + ρ ln ct =

1

1− ρνt. (125)

Finally, the expression for Rt in equation (122) is determined by combining equations (119), (118)

and (124). Uniqueness follows by construction.

Next, we prove that in any linear competitive equilibrium with an escape clause, the inflation

monitoring range is not violated:

Lemma 6. Suppose monetary policy is given by Definition 12. Any linear competitive equilibrium

has the property that πt ∈ [πl, πu] for all t ≥ 0.

105The proof is simpler than the proof of Lemma 1 because that proof respects the lower bound constraint on the
nominal interest rate. To establish uniqueness, we have to consider the possibility that the lower bound is binding
and the cash constraint is not satisfied as an equality. To rule out this kind of equilibrium the proof of Lemma 1 uses
the transversality condition of the household (see equation (11)). When we ignore the lower bound on the interest
rate, as we do here, the transversality condition is not needed to establish uniqueness of the equilibrium under the
money growth rule. Interestingly, as long as the money demand shock, has a suitable lower bound, the non-negativity
constraint on the nominal interest rate, Rt ≥ Rl, is satisfied in the unique equilibrium.
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The proof appears in Online Appendix D.2 and essentially follows the proof of Lemma 3.6. Lemma

6 is crucial for establishing the analog of Proposition 2:

Proposition 20. Suppose monetary policy is given by Definition 12. The only linear competitive equi-

librium is the desired equilibrium. Money growth in this equilibrium is M̄t = exp (−νt + νt−1) M̄t−1µ̄.

Given Lemma 6, the proof is straightforward and is given in Online Appendix D.3. That proof

makes use of the variance condition, (ii) in Definition 13.

Comparing ct in the money growth equilibrium (see Lemma 5) with ct in the equilibrium in

which monetary policy is the interest rate rule in Definition 12, we can see the Poole (1970) result.

Under the money growth rule, consumption fluctuates inefficiently. By contrast, the interest rate

rule supports the desired allocations (i.e., ct = 1 and πt = 0, independent of νt), which are first-best

in our environment. Not surprisingly, there exists a money growth rule that can achieve the same

result. Indeed, Proposition 20 describes a money growth rule for which the only equilibrium is the

desired allocations. However, that rule requires observing the money demand shocks. The advantage

of the interest rate rule is that it does not require observing νt and nevertheless is able to cancel the

welfare-reducing effects of νt on ct.

D.1.2 Local Strategy Equilibrium

Now we consider a local strategy equilibrium, which is the analog of Definition 6.

Definition 14. Let Π (ht−1, ε) be an ε- neighborhood of the unique Nash equilibrium. A linear

competitive equilibrium is a local strategy equilibrium if there exists ε > 0 such that there is a linear

continuation equilibrium for each ht−1 and for each
(
ht−1, π

b
i,t

)
such that πbi,t ∈ Π (ht−1, ε).

As in Section 4, we show that for each ht−1 and πbi,t, there exists a continuation equilibrium. First

consider ht−1 in which the monitoring range has never been violated. We construct the
(
ht−1, π

b
i,t

)

continuation equilibrium for πbi,t ∈ [πl, πu]. The ith intermediate good firm wishes to set its price to

the expected value of the wage. As before, the realized time t nominal rate can be expressed as the

product of the real wage and the aggregate price level. The (scaled) aggregate price level is exp
(
πbi,t
)

by our symmetry assumption on beliefs and the price equation, (13). Households observe the realized

time t real wage at the time that they make their ct and lt decisions. It follows that the realized

period t real wage is cγ+ψ
i,t , after using the resource constraint, equation (19). So, the (scaled) price

set by the ith firm is set as follows:

exp (xi,t) = Et−1 exp ((γ + ψ) ln ci,t) exp
(
πbi,t
)
.

After linearizing this expression in terms of xi,t, ln ci,t and πbi,t around their values in the desired

equilibrium, we obtain:

xi,t = (γ + ψ)Et−1 ln ci,t + πbi,t. (126)
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The mapping from πbi,t to ci,t is obtained by an argument similar to the one used in Section 4.

According to the monetary policy rule, the Taylor rule (121) is operative at date t. Moreover, the

Taylor strategy will be in place in period t + 1 as well. According to Proposition (20), the unique

equilibrium beginning in t + 1 has the property, ci,t+1 = 1, πi,t+1 = 0 regardless of the realization

of νt and νt+1. Combining these facts with the intertemporal Euler equation, (118), and the Taylor

rule, (121), the mapping from πbi,t to ln ci,t is simply ln ci,t = −φ
γ
πbi,t, so that after substitution into

equation (126) we obtain

F ν
(
ht−1, π

b
i,t

)
=

[
1− φ (γ + ψ)

γ

]
πbi,t. (127)

Here, F ν denotes the segment of the ith firm’s best response function for the indicated ht−1 and for

πbi,t ∈ [πl, πu]. The superscript, ν, indicates that this is the best response function in the linearized

economy. This segment of the best response function coincides with the same segment in the (non-

linearized) version of our economy without ν shocks (compare equation (127) with the πbi,t ∈ [πl, πu]

segment of F in equation (37)). More broadly, it is easy to verify that F ν
(
ht−1, π

b
i,t

)
= F

(
ht−1, π

b
i,t

)

for all ht−1 and all πbi,t, except when the zero lower bound on the interest rate is binding in the non-

linearized model. It is easy to verify that F ν corresponds to the best response function in Proposition

4 in which the min operator is replaced by φRt and the set, D, is replaced by the real line. In terms

of Figure 3, F ν is F in which the ‘hook’ to the left of the origin is pushed off to −∞. We summarize

these findings as follows:

Proposition 21. In the linearized economy with monetary policy given in Definition 12, the unique

linear competitive equilibrium is a local strategy equilibrium with best response function, F ν, for the

following two types of history, ht−1:

(i) if ht−1 has the property that the inflation monitoring range has never been violated, then F ν

takes the following form:

F ν
(
ht−1, π

b
i,t

)
=





[
1− φ

γ
(γ + ψ)

]
πbi,t πbi,t ∈ [πl, πu][

1− φγ+ψ
γ−1

]
πbi,t + γ+ψ

γ−1
µ πbi,t /∈ [πl, πu]

, (128)

(ii) if ht−1 has the property that the inflation monitoring range has been violated at least once, then

F ν takes the following form:

F ν
(
ht−1, π

b
i,t

)
=

(
1− γ + ψ

1− ρ

)
πbi,t +

γ + ψ

1− ρ

(
µ+ ln

M̄t−1

Pt−1

)
, (129)

(iii) the set of fixed points of F ν, {x : x = F ν (ht−1, x)} , coincides with πb (ht−1) in part (iii) of

Proposition 5.

We established (i) above. For a proof of (ii), see Section D.4 below. Part (iii) follows from the

observation that F = F ν in a neighborhood of the unique Nash equilibrium of the version of the
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model without the money demand shock.

D.1.3 Unique Implementation

The definition of unique implementation suited to the framework in this Online Appendix is:

Definition 15. A linear competitive equilibrium satisfies unique local implementation if the model

has the following two properties: (i) it is a local strategy equilibrium and (ii) there exits ε such that

for each ht−1, Π∗ (Π (ht−1, ε)) =
{
πb (ht−1)

}
, where Π (ht−1, ε) is an ε- neighborhood of the unique

Nash equilibrium, πb (ht−1).

This definition of unique local implementation is essentially the same as the concept of ‘locally

strongly eductive stability’ in Evans et al. (2018, p. 831).

D.2 Lemma 6

Proof. Suppose not, so that there exists an equilibrium with πT /∈ [πl, πu] where T ≥ 0 is the first

date in which the monitoring range is violated. The Taylor rule implies RT = φπT /∈ [πl, πu] . The

money rule will be followed in period T + 1 and Lemma 5 implies PT+1 = M̄T µ̄. Dividing by PT and

using the period T cash constraint, we obtain πT+1 = µ + ln cT . By the period T Euler equation,

(118) we have, using (119) and (121),

ln cT = −1

γ
(RT − πT+1) = −1

γ
(φπT − πT+1) .

Substituting πT+1 = µ+ ln cT into the above equation,

ln cT = −1

γ
(φπT − µ− ln cT ) .

Taking the expectation as of time T − 1, using (119) and the facts, µ ∈ [πl, πu] , φ > 1 :

πT =
µ

φ
∈ [πl, πu] ,

a contradiction. This establishes the result sought.

D.3 Proposition 20

Proof. Suppose, to the contrary, that πt 6= 0 for some t. From Lemma 2 equilibrium has the property

that the monitoring range is never violated, i.e., πt ∈ [πl, πu]. The Taylor rule, (121), the first

order conditions by the representative household, (118) and firm optimality, (119), imply that in

equilibrium:

− γ ln ct = φπt − πt+1. (130)
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Taking the expectation as of date t− 1, we obtain

φπt = Et−1πt+1.

We can equivalently write this as

πt = φπt−1 + εt−1,

where {εt}∞t=0 independent over time, with Et−1εt = 0 and εt⊥πt−s, s ≥ 0. Then, after repeated

substitution, we obtain

πt = φtπ0 +
t∑

s=1

φs−1εt−s.

Then the variance of πt is

var (πt) =
t∑

s=1

φs−1var (εt−s) .

If var (εs) 6= 0 for some s, then the variance of πt goes up without bound since φ > 1. So, in any

local equilibrium, εt = 0 for all t ≥ 0.

πt = φtπ0. (131)

Then, if πt 6= 0 the inflation monitoring range will be violated eventually since φ > 1. But, that

would contradict Lemma 6. So, π0 = 0. Equation (131) implies that πt = 0 for all t = 0. Therefore

the nominal interest rate Rt is zero for all t. Also, equation (130) implies that the consumption ct

is zero for all t ≥ 0. Therefore, the desired allocation is the unique equilibrium under the Taylor

strategy.

D.4 Proof for Proposition 21

Proof. (i) Consider πbi,t such that it lies inside of the monitoring range. Suppose that πbi,t /∈ [πl, πu] .

Then according to Lemma 6, the price level at t+ 1 is lnPt+1 = ln M̄t + ln µ̄. Differencing (123) and

using the cash constraint (120), we obtain

πt+1 = µ+ ln ct − νt. (132)

Substituting this expression into the Euler equation (118), we get : ln ct = 1
1−γ

[
φπbi,t − µ+ νt

]
.So

the substituting the equation into equation (126),

F
(
ht−1, π

b
i,t

)
=

[
1− φγ + ψ

γ − 1

]
πbi,t +

γ + ψ

γ − 1
µ.
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Now we prove (ii). Combining the monetary policy and the cash constraint (126),

ln ct =
1

1− ρ

[
νt + µ− πbi,t + ln

M̄t−1

Pt−1

]
.

Substituting this equation into equation (126), we obtain F
(
ht−1, π

b
i,t

)
for the histories in which the

monitoring range has been violated in the past:

F
(
ht−1, π

b
i,t

)
=

[
1− γ + ψ

1− ρ

]
πbi,t +

γ + ψ

1− ρ

[
µ+ ln

M̄t−1

Pt−1

]
.

E Appendix: Conclusion

Here, we consider a simple version of the standard New Keynesian model with Calvo-style price

setting frictions. We start by describing the non-linear equations of the model and we derive the

best response functions for intermediate good firms in the game representation of the model. We

analyze the stochastic version of the model in a small neighborhood of its interior nonstochastic steady

state. We derive an upper bound on φ that is necessary for the desired equilibrium to be uniquely

implementable (the bound is the analog of the first expression in equation (64)). We show that this

upper bound is higher, the smaller is the set of marginal price setters. This substantiates a claim

made after equation (66) and in the conclusion of the main text. Our analysis provides a roadmap to

derive analogous necessary conditions in a wide range of specifications of the New Keynesian model.

We establish our results by working with the equilibrium conditions and the best response func-

tions linearized around non-stochastic equilibrium. Our logic is that if an equilibrium fails to be

uniquely rationalizable conditional on beliefs being within an arbitrarily small neighborhood of the

equilibrium, then unique rationalizability (hence, unique implementation) fails for the underlying

nonlinear system. Since our analysis is local, we have no need to specify our escape clause and the

inflation monitoring range must simply be an interval that contains the target inflation rate in its

interior.106 We must assume (though we do not display) that there exists an escape strategy which

guarantees global uniqueness of the equilibrium that we study.

E.1 Households

The representative household solves:

106Thus, we do not consider the zero monitoring range policy in Definition (3).
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max E0

∞∑

t=0

βt
(

logCt − exp (τt)
N1+ϕ
t

1 + ϕ

)

s.t. PtCt +Bt+1 ≤ WtNt +Rt−1Bt + Tt, (133)

where Bt denotes the beginning-of-period t stock of bonds, and Ct, Nt,Wt, Pt, Tt denote consumption,

employment, the nominal wage rate, the nominal price level, and the profits net of government

transfers and taxes, respectively. The exogenous disturbance to preferences, τt, had the following law

of motion:

τt = λτt−1 + ετt .

The first order optimality conditions are:

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1

eτtCtN
ϕ
t =

Wt

Pt
.

where π̄t ≡ Pt
Pt−1

.

E.2 Firms

E.2.1 Aggregate Output

Final goods are produced by a representative, competitive firm using the following production func-

tion:

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

.

Profit maximization leads to the following demand for Yi,t

Yi,t = Yt

(
Pt
Pi,t

)ε

where Pi,t is the price of Yi,t. Substituting the demand curve back into the production function and

rearranging, we obtain the following restriction across prices:

Pt =

(∫ 1

0

P
(1−ε)
i,t di

) 1
1−ε

. (134)

31



E.2.2 Intermediate Good Firm

The intermediate good,Yi,t, is produced by a monopolist using the following production function:

Yi,t = eatNi,t,

where

∆at = ρ∆at−1 + εat , ∆at ≡ at − at−1.

The monopolist chooses its price and output subject to the demand curve and the Calvo price friction:

Pi,t =

{
P̃t with probability 1− θ
Pi,t−1 with probability θ

. (135)

With probability 1 − θ the firm chooses its price, denoted by P̃t, optimally. We denote the real

pre-subsidy marginal cost by st:

st =
Wt

Pt

eat
= eτtCtN

ϕ
t /e

at ,

after using the household’s intratemporal Euler equation. The post-tax marginal cost is (1− ν) st,

so that the firm’s objective is:

Ei
t

∞∑

j=0

βj υt+j [Pi,t+jYi,t+j − Pt+j (1− ν) st+jYi,t+j] ,

where υt+j denotes the Lagrange multiplier on household budget constraint. Here, the superscript, i,

on the expectation operator is meant to signal that the expectation is over the idiosyncratic price

shock, in addition to aggregate variables. As is customary with the standard, simple New Keynesian

model, we set ν to eliminate the monopoly distortion in steady state:

ε

ε− 1
(1− ν) = 1.

Let P̃t denote the price set by the 1− θ firms who optimize at time t. These firms are referred to

as the ‘marginal price setters’. The expected value of future profits are the sum of two parts: future

states in which price is still P̃t, so P̃t matters, and future states in which the price is not P̃t, so P̃t is

irrelevant. In this way we can express the intermediate good firm objective as follows

Ei
t

∞∑

j=0

βjυt+j [Pi,t+jYi,t+j − Pt+j (1− ν) st+jYi,t+j]

=

Zt︷ ︸︸ ︷
Et

∞∑

j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+j (1− ν) st+jYi,t+j

]
+χt,
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where Zt is the present value of future profits over all future states in which the firm’s price is P̃t and

Xt is the present value over all other states, so dχt/dP̃t = 0. Also, the absence of the i superscript

on Et indicates that the expectation only involves aggregate variables, because the expectation over

idiosyncratic variables is captured explicitly by the presence of θj in the objective.

Substitute out demand curve in the firm’s objective, and ignoring χt,

Et

∞∑

j=0

(βθ)j υt+j

[
P̃tYi,t+j − Pt+j (1− ν) st+jYi,t+j

]

= Et

∞∑

j=0

(βθ)j υt+jYt+jP
ε
t+j

[
P̃ 1−ε
t − Pt+j (1− ν) st+jP̃

−ε
t

]
.

Take the FONC with respect to P̃t :

Et

∞∑

j=0

(βθ)j υt+jYt+jP
ε
t+j

[
(1− ε)

(
P̃t

)−ε
+ εPt+j (1− ν) st+jP̃

−ε−1
t

]
= 0,

so that

Et

∞∑

j=0

(βθ)j υt+jYt+jP
ε+1
t+j

[
P̃t
Pt+j

− st+j
]

= 0,

using the fact that the subsidy cancels the monopoly markup. Substitute out for the Lagrange

multiplier:

Et

∞∑

j=0

(βθ)j

= υt+j︷ ︸︸ ︷
u′ (Ct+j)

Pt+j
Yt+jP

ε+1
t+j

[
P̃t
Pt+j

− st+j
]

= 0.

and using the assumed log-form of utility, as well as the resource constraint, Yt+j = Ct+j, we obtain:

Et

∞∑

j=0

(βθ)j (Xt,j)
−ε [p̃tXt,j − st+j] = 0,

p̃t ≡
P̃t
Pt
,

π̄t ≡
Pt
Pt−1

, Xt,j =





1
π̄t+j π̄t+j−1···π̄t+1

j ≥ 1

1 j = 0
(136)

Xt,j = Xt+1,j−1
1

π̄t+1

j > 0. (137)

Solving the above expression:

P̃t =
Pte

τtp∗tN
1+ϕ
t + PtEt

∑∞
j=1 (βθ)j (Xt,j)

−ε st+j

Et
∑∞

j=0 (βθ)j (Xt,j)
1−ε
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p̃t =
Et
∑∞

j=0 (βθ)j (Xt,j)
−ε st+j

Et
∑∞

j=0 (βθ)j (Xt,j)
1−ε =

Kt

Ft
, (138)

say. Consider the numerator term:

Kt = Et

∞∑

j=0

(βθ)j (Xt,j)
−ε st+j

= st + βθEt

∞∑

j=1

(βθ)j−1




=Xt,j , ∵(137)︷ ︸︸ ︷
1

π̄t+1

Xt+1,j−1




−ε

st+j

= st + βθEt

(
1

π̄t+1

)−ε ∞∑

j=0

(βθ)j X−εt+1,jst+1+j

law of iterated expectations︷︸︸︷
= st + βθEtEt+1

(
1

π̄t+1

)−ε ∞∑

j=0

(βθ)j X−εt+1,jst+1+j

= st + βθEt

(
1

π̄t+1

)−ε
=Kt+1︷ ︸︸ ︷

Et+1

∞∑

j=0

(βθ)j X−εt+1,jst+1+j

so, we have,

Kt = st + βθEt

(
1

π̄t+1

)−ε
Kt+1(1) (139)

Similarly, for Ft:

Ft = 1 + βθEtπ̄
ε−1
t+1Ft+1 (2). (140)

E.3 Aggregate Restrictions

Evaluating equation x(134) using the assumption, equation (135):

Pt =
(

(1− θ) P̃ 1−ε
t + θP 1−ε

t−1

) 1
1−ε

,

or, after rearranging,

p̃t =

[
1− θ (π̄t)

ε−1

1− θ

] 1
1−ε

.

Let

Y ∗t ≡
∫ 1

0

Yi,tdi.
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Substituting out from the demand curve for Yi,t, we obtain:

Y ∗t = Yt

∫ 1

0

(
Pi,t
Pt

)−ε
di = YtP

ε
t (P ∗t )−ε ,

where P ∗t =
(∫ 1

0
P−εi,t di

)−1
ε

. We conclude

Yt = p∗t e
atNt,

where

p∗t =

(
P ∗t
Pt

)ε
, P ∗t =

(∫ 1

0

P−εi,t di

)− 1
ε

.

The variable, p∗t , is the distortion implied by price dispersion originally derived by Yun (1996).

Applying the Calvo result to P ∗t :

P ∗t =
[
(1− θ) P̃−εt + θ

(
P ∗t−1

)−ε]−1
ε

After rearranging,

p∗t ≡
(
P ∗t
Pt

)ε
=

[
(1− θ) p̃−εt + θ

π̄εt
p∗t−1

]−1

=


(1− θ)

[
1− θ (π̄t)

ε−1

1− θ

] −ε
1−ε

+ θ
π̄εt
p∗t−1



−1

(4)

E.4 Linearized Equilibrium Conditions

Collecting the 7 (non-linear) equilibrium conditions in our 7 endogenous variables:

Kt = st + βθEtπ̄
ε
t+1Kt+1 (1), st ≡

eτtCtN
ϕ
t

At

Ft = 1 + βθEtπ̄
ε−1
t+1Ft+1 (2),

Kt

Ft
=

[
1− θπ̄(ε−1)

t

1− θ

] 1
1−ε

(3)

p∗t =


(1− θ)

(
1− θπ̄(ε−1)

t

1− θ

) ε
ε−1

+
θπ̄εt
p∗t−1



−1

(4)

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1

(5), Ct = p∗t e
atNt (6)

Rt

R
=
( π̄t
π̄

)φ
(7),
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where the last equation is the monetary policy rule. We now log-linearize these equations about

nonstochastic steady state to obtain the standard three equation NK model.

It is worth noting that when θ = 0, the allocations and prices in the equilibria of the model

considered here coincides with the allocations and prices in the equilibria of the model considered

in the main manuscript (see Section 3). This is so, even though the underlying models are very

different.107 In the policy rule, (7), π̄ denotes the policy maker’s inflation target and R denotes the

nominal interest rate in non-stochastic steady state. As in the standard presentation of the three

equation NK model, we set π̄ = 1, the steady state is given by:

K =
1

1− βθ (1), s = 1, F =
1

1− βθ (2)

K

F
= 1 (3),

p∗ = 1 (141)

1 = β exp (−∆a)R (5)

c = N,

where ct = Ct/At and absence of a time subscript indicates non-stochastic steady state.

Let x̂t ≡ (dxt) /x, where dxt denotes a small deviation of xt from its steady state value. Then,

log linearizing equation (139) around steady state,

K̂t = ŝt (1− βθ) + βθ
(
ε̂̄πt+1 + K̂t+1

)
.

We conclude (after applying the same manipulations to the other price optimality conditions):

K̂t = (1− βθ) ŝt + βθEt

(
ε̂̄πt+1 + K̂t+1

)
(a) (142)

F̂t = βθEt

(
(ε− 1) ̂̄πt+1 + F̂t+1

)
(b) (143)

K̂t = F̂t +
θ

1− θ
̂̄πt. (c) (144)

Substitute out for K̂t in equation (142) using equation (144) and then substitute out for F̂t from

equation (143) to obtain:

107In the model in this appendix, we are not specific about what gives rise to money demand. One possibility, which
is consistent with all the equilibrium conditions described here, is that real balances enter additively in the utility
function and money accumulation is explicitly included in the household’s budget constraint, equation (133). At this
level, the model is obviously quite different from the one in the body of the paper, despite their being observationally
equivalent in terms of equilibrium prices, interest rates, employment and output.
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βθEt

(
(ε− 1) ̂̄πt+1 + F̂t+1

)
+

θ

1− θ
̂̄πt = (1− βθ) ŝt + βθEt

(
ε̂̄πt+1 + F̂t+1 +

θ

1− θ
̂̄πt+1

)
.

Collecting terms, we get :

̂̄πt =
(1− θ) (1− βθ)

θ
ŝt + βEt̂̄πt+1

Now, we go for ŝt. First, we rewrite st as follows:

st =
exp (τt)CtN

ϕ
t

At

=
exp (τt)

(p∗t )
ϕ

(
Ct
At

)1+ϕ

∵ Nt = Ct/ (p∗tAt)

=
1

(p∗t )
ϕ


 Ct

At exp
[
− τt

1+ϕ

]




1+ϕ

=
1

(p∗t )
ϕX

1+ϕ
t ,

where Xt is the ratio of actual consumption to what is easily verified to be its first-best level, C∗t :

Xt =
Ct
C∗t

=
Ct
At

exp

(
τt

1 + ϕ

)
= ct exp

(
τt

1 + ϕ

)
. (145)

Since π̄ = 1,

p̂∗t = θp̂∗t−1.

So, under the assumption that the economy started up long ago, to a first order approximation

(around the efficient steady state), we get p̂∗t = 0. Then,

ŝt =

[
1 + ϕ

s (p∗)ϕ
X1+ϕ

]
xt = (1 + ϕ)xt

where xt denotes the output gap, xt ≡ X̂t. The output gap here is the log deviation of actual output

relative to its first-best level, At exp
[
− τt

1+ϕ

]
. Our calculation takes into account that in non-stochastic

steady state, actual output and its first best level coincide. In this way, we have derived the Phillips

curve:

̂̄πt =
(1− θ) (1− βθ)

θ
(1 + ϕ)xt + βEt̂̄πt+1

Note that ̂̄πt = π̄t−π̄
π̄

= πt,

πt =
(1− θ) (1− βθ)

θ
(1 + ϕ)xt + βEtπt+1. (146)

37



We now derive the NK IS curve. The ‘interest rate’, R∗t , when consumption is at its first best

solves:

1 = R∗tEtβ
C∗t
C∗t+1

= R∗tEtβ
At exp

[
− τt

1+ϕ

]

At+1 exp
[
− τt+1

1+ϕ

] = R∗tEtβ
1

exp
[
∆at+1 − τt+1−τt

1+ϕ

] .

Multiplying the intertemporal Euler equation of the household by At:

Et

[
1

ct
− β 1

ct+1 exp (∆at+1)

Rt

π̄t+1

]
= 0(5),

where ct ≡ Ct/At. Alternatively,

Et


 1

Xt

− β 1

Xt+1 exp
(
∆at+1 − τt+1−τt

1+ϕ

) Rt

π̄t+1


 = 0(5),

After log-linearizing (5):

Et

[
1− xt −

(
1− xt+1 + R̂t − ˆ̄πt+1 −

[
∆at+1 −∆a−

τt+1 − τt
1 + ϕ

])]
= 0,

where the d′s are dropped from τt because it has the same steady state at each date. Then,

Et

[
xt −

(
xt+1 −

(
R̂t − ˆ̄πt+1

)
+

[
∆at+1 −∆a−

τt+1 − τt
1 + ϕ

])]
= 0. (147)

Now, we log-linearize the equation that defines R∗t :

R̂∗t = Et

[
∆at+1 −∆a−

τt+1 − τt
1 + ϕ

]

Substituting this into equation (147)

xt = Et

(
xt+1 −

(
R̂t − πt+1 − R̂∗t

))
. (148)

The Taylor rule is:
Rt

R
=
( π̄t
π̄

)φ
,

which, after log-linearization about nonstochastic steady state is:

R̂t = φπt. (149)

Equations (146), (148) and (149) represent the three equations of the standard simple NK model.
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E.5 Best Response Function of an Individual, Marginal Price Setter

We now discuss the decision of the ith individual marginal price setter. This price setter is one of

the measure, 1 − θ, of marginal price setters. Each marginal price setter makes its price decision,

P̃i,t, independently and without communicating with the others. Let zi,t denote P̃i,t/Pt−1. As in the

discussion in the paper, the ith firm forms a belief, zbi,t, about what the other marginal price setters

are doing (after scaling by Pt−1). Conditional on zbi,t and ht−1, the firm can compute an
(
ht−1, z

b
i,t

)

continuation equilibrium. The variables, Ki,t and Fi,t in that continuation equilibrium are required

for it to evaluate the terms on the right of its optimality condition, equation (138). Let π̄i,t denote the

value of Pt/Pt−1 in the
(
ht−1, z

b
i,t

)
continuation equilibrium. In this notation, the firm’s optimality

condition, equation (138), is:

zi,t =
Ki,t

Fi,t
π̄i,t.

Log-linearizing around steady state:

ẑi,t = K̂i,t − F̂i,t + πi,t.

Substituting the linearized expressions for K̂t and F̂t, equations (142) and (143), we obtain

ẑi,t = (1− βθ) ŝi,t + β
θ

1− θEtπt+1 + πi,t.

As before, the subscript, i, indicates the ith price setter’s
(
ht−1, z

b
i,t

)
continuation equilibrium. Note

that πt+1 does not have a subscript, i. This reflects that we only consider one-shot deviations and that

after log-linearizing around an undistorted steady state, our linearized model has no state variables.

As a result, xt+j and πt+j are not functions of j, j > 0. Also, we have

ŝi,t = (1 + ϕ)xi,t

xi,t = Et

(
xi,t+1 −

(
R̂i,t − πt+1 − R̂∗t

))
.

There is no i subscript on R̂∗t because that is common knowledge. It follows that

ẑi,t = πi,t + (1− βθ) (1 + ϕ)Et

(
xi,t+1 −

(
R̂i,t − πt+1 − R̂∗t

))
+ β

θ

1− θEtπt+1

= πi,t [1− (1− βθ) (1 + ϕ)φ] + (1− βθ) (1 + ϕ)Et

(
xt+1 + πt+1 + R̂∗t

)
+ β

θ

1− θEtπt+1

Inflation is related to what the other marginal price setters are doing based on the cross price

restriction:

π̄i,t =
(

(1− θ)
(
zbi,t
)1−ε

+ θ
) 1

1−ε
.
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Log-linearizing this expression around π̄i,t = zbi,t = 1, we obtain

πi,t = (1− θ) ẑbi,t.

So, we conclude that the best response function denoted by f, has the following form:

ẑi,t = [1− (1− βθ) (1 + ϕ)φ] (1− θ) ẑbi,t+(1− βθ) (1 + ϕ)Et

(
xt+1 + πt+1 + R̂∗t

)
+ β

θ

1− θEtπt+1

︸ ︷︷ ︸
=ξt

= f
(
ẑbi,t, ξt

)
.

(150)

Let πt denote the Nash equilibrium of the best response function, equation (150). It is a general result

that the competitive equilibrium coincides with the Nash equilibrium when the economy is represented

as a game. So, we can verify our calculations by solving equation (150) for ẑi,t = ẑbi,t = πNasht and

verifying that πNasht = πt, where πt satisfies the Phillips curve, equation (146). A simple chain-of-

justification argument verifies the standard result that the Nash equilibrium (e.g., the competitive

equilibrium) is rationalizable. We now inquire whether there exists another rationalizable equilibrium

in an arbitrarily small neighborhood, D (πt; ε) , of πt, where D (πt; ε) = {x : |πt − x| < ε} and ε > 0

but sufficiently small. We say that the equilibrium satisfies locally unique rationalizability if the

set, Π∗ (D (πt; ε) ; f) , is a singleton, πt, for all competitive equilibrium values of πt and all t, for

ε sufficiently small.108 The correspondence, Π∗, is defined in equation (59). In the present case

locally unique rationalizability coincides with the requirement that the slope of the best response

function, f, in terms of ẑbi,t is less than unity, in absolute value. From equation (150), that coefficient

is [1− (1− βθ) (1 + ϕ)φ] (1− θ). Trivially, this coefficient is less than unity. So locally unique

rationalizability obtains if and only if

[1− (1− βθ) (1 + ϕ)φ] (1− θ) > −1,

which is equivalent to:
1

(1− θβ) (1 + ϕ)

(
1 +

1

1− θ

)
> φ. (151)

A qualitative feature of this expression is interesting from the perspective of our ‘leaning against the

wind, but not too aggressively’, principle. In particular, the upper bound on φ is less restrictive, the

bigger is θ. When the individual marginal price setter considers what other do, what matters is their

impact on the aggregate price index, which is small when their number is small. This is captured by

the expression, (1− θ) , in front of the inequality in equation (151).

E.6 The Taylor Rule Works Well in Normal Times

Here, we substantiate the claim made in Footnote (??) and repeated in Section 7, that the Taylor rule

has good operating characteristics (‘works well’) in a neighborhood of the unique equilibrium local

108We do not include ξt in the definition because the Phillips makes ξt a simple function of πt.
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to the interior steady state. After log-linearization, the equilibrium conditions reduce to three: the

IS curve, equation (148); the monetary policy rule, equation (149); and the Phillips curve, equation

(146). For simplicity, we display these equations here. The IS curve is:

xt = Etxt+1 − [rt − Etπt+1 − r∗t ] ,

where xt denotes the log-difference between equilibrium and output and output at its first-best level.

Also, r∗t corresponds to R̂∗t above and

r∗t = Etat+1 − at,

where at is an exogenous shock with the following law of motion:

∆at = ρ∆at−1 + εt, ∆at = at − at−1, ρ ∈ [0, 1)

The Phillips curve is:

πt = βEtπt+1 + κxt, β ∈ (0, 1) ,

where κ > 0. Finally, the Taylor rule is:

rt = φπt,

where φ > 1 and rt corresponds to R̂t above.

It is easy to verify that the locally unique equilibrium has the form:

rt − Etπt+1 = ψ∆at,

xt = ψ (1− βρ) / [κ (φ− ρ)] ∆at,

πt = [ψ/ (φ− ρ)] ∆at

where

ψ ≡ ρ [(1− βρ) (1− ρ) / (κ (φ− ρ)) + 1]−1 .

Evidently, for φ sufficiently large, ψ is close to ρ and rt−Etπt+1 ' r∗t , πt ' 0 and xt ' 0. We conclude

that based on the analysis of equilibrium alone, a big value of φ works well in the sense that the

policy stabilizes the equilibrium around first best. It is easy to verify that this stabilization result

also holds when the technology process is replaced by at = ρat−1 + εt or when the shock is instead a

stationary disturbance to labor supply.
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