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INÁCIO BÓ AND RUSTAMDJAN HAKIMOV

Abstract. We introduce a new family of mechanisms for one-sided matching markets,

denoted pick-an-object (PAO) mechanisms. When implementing an allocation rule via

PAO, agents are asked to pick an object from individualized menus. These choices

may be rejected later on, and these agents are presented with new menus. When the

procedure ends, agents are assigned the last object they picked. We characterize the

allocation rules that can be sequentialized by PAO mechanisms, as well as the ones

that can be implemented in a robust truthful equilibrium. We justify the use of PAO

as opposed to direct mechanisms by showing that its equilibrium behavior is closely

related to the one in obviously strategy-proof (OSP) mechanisms, but PAO-implements

commonly used rules, such as Gale-Shapley DA and top trading cycles, which are not

OSP-implementable. We run laboratory experiments comparing truthful behavior when

using PAO, OSP, and direct mechanisms to implement different rules. These indicate

that agents are more likely to behave in line with the theoretical prediction under PAO

and OSP implementations than their direct counterparts.

JEL classification: C78, C73, D78, D82.

Keywords : Market Design, Matching, Sequential Mechanisms, Experiments, obvious strategy-

proofness.

1. Introduction

The literature of market design, and its applications, has grown and evolved greatly

over recent years. Even if we restrict our attention to the design of centralized matching

markets, the instances in which theoretical and empirical contributions have influenced

the way resources are allocated seem to be continuously expanding. Examples include the

design of school choice procedures (Abdulkadiroğlu and Sönmez, 2003), centralized college

admissions (Balinski and Sönmez, 1999), matching of resident doctors to hospitals (Roth

and Peranson, 1999), organs to patients (Roth et al., 2004), refugees to localities (Jones

and Teytelboym, 2017), free appointments for services (Hakimov et al., 2021a), and more.

By carefully choosing how to determine these allocations as a function of information such

Date: August, 2021.
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as participants’ preferences, priority structures, and fairness concerns, these procedures

can lead to allocations that satisfy certain desirable properties.

One crucial challenge faced by the designer of these mechanisms is that information

needed to determine desired allocation is known by the participants but not by the de-

signer. These are, often, their preferences over outcomes, but may also include other

relevant information, such as their socioeconomic status.1 In real-life applications, this

issue is usually solved by the combination of two tools: dominant strategy implementa-

tion and the revelation principle. These tools guarantee that if the designer wants the

strategic simplicity provided by dominant strategy implementation, it suffices to consider

revelation mechanisms, in which participants are simply asked to report their private in-

formation, and they can safely be truthful when doing so. In fact, the vast majority of

the literature focuses solely on direct revelation, and often strategy-proof, mechanisms.

However, recent experimental and empirical evidence has raised concerns about the

ability of market participants to understand the incentive properties of these mechanisms.

Many participants use dominated strategies, thus distorting the market allocations. This

phenomenon was documented in many laboratory experiments2 and in empirical papers.3

These present a new challenge: is there an alternative to the implementation of allocation

rules via strategy-proof direct mechanisms that would result in behavior that is more

often in line with the theoretical predictions?

One recent and celebrated attempt to formalize an alternative to strategy-proofness

that accounts for the extent to which participants can easily understand the incentives

induced by mechanisms was the concept of obvious strategy-proofness (OSP). “A strategy

is obviously dominant if, for any deviation, at any information set where both strategies

first diverge, the best outcome under the deviation is no better than the worst outcome

under the dominant strategy, and a mechanism is obviously strategy-proof (OSP) if it

has an equilibrium in obviously dominant strategies” (Li, 2017). OSP is, therefore, a

refinement of the notion of strategy-proofness, in that obvious dominance implies weak

dominance. This concept could help explain why, for example, laboratory experiments

indicate that agents are more likely to bid truthfully under a clock auction than under a

sealed-bid second-price auction (Kagel et al., 1987). While both implement the same rule

in truthful dominant strategies, the former is also obviously dominant as opposed to the

latter.4

One important shortcoming of OSP, especially for practical purposes, is that it is a very

restrictive concept. Rules that are commonly considered for object allocation problems,

such as top trading cycles, and stable rules, cannot be implemented via OSP mechanisms

1See Aygün and Bó (2021).
2See Hakimov and Kübler (2021) for an extensive survey of the experimental matching literature.
3See our related literature section.
4The author also presents the results of laboratory experiments comparing behavior and outcomes under
strategy-proof and OSP implementations of the random serial dictatorship rule, obtaining similar results.
Note, however, that Breitmoser and Schweighofer-Kodritsch (2021) raise questions as to whether the
difference can be attributed to obvious strategy-proofness.
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(Li, 2017; Ashlagi and Gonczarowski, 2018). This, therefore, leaves a large set of problems

without this kind of behavioral guidance. Another concern is raised in a a recent paper

by Pycia and Troyan (2019), who characterize all OSP mechanisms in the domain of

object allocation and show that for some OSP strategies participants need to have perfect

foresight to correctly predict feasible actions and outcomes, which can be demanding. To

address this concern, the authors also define an even stronger concept, strong OSP, that

does not require foresight from participants but leaves the designer with an essentially

unique mechanism—sequential serial dictatorship (SD). In sequential SD, participants

face a menu of objects in order of priority and simply pick their allocation. The strategy

of choosing of the most-preferred object on the menu is strongly obviously dominant.

Recent laboratory experiments indicate that the dynamic implementation of the deferred-

acceptance rule (DA), in which the equilibrium behavior also consists of choosing the

most-preferred object from menus, leads to higher rates of truthful behavior than its

standard direct revelation counterpart (Bó and Hakimov, 2020; Klijn et al., 2019). The

results are especially surprising given that truthful behavior is an equilibrium involving

non-dominant strategies in dynamic DA, while direct DA is strategy-proof.

If one considers that the main driver behind the behavior more in line with the theory

in OSP mechanisms is the fact that strategies are obviously dominant, then the forces

behind the experimental results in Li (2017), Bó and Hakimov (2020), and Klijn et al.

(2019) would be unrelated, because in the latter the equilibrium strategy is not even

dominant. In this paper, we conjecture that the main driver behind the observed behavior

more in line with the theoretical predictions is the simple mechanics of the equilibrium

strategy, in which agents “pick” the object they would like to have from a menu, as

opposed to submitting a ranking of objects representing their preferences. This would

provide a unified and alternative explanation to these experimental results. Based on

this, we introduce a class of sequential revelation mechanisms that implement various

object allocation rules via an equilibrium behavior with closely related mechanics. We

denote them pick-an-object mechanisms (PAO).

In a PAO mechanism, agents are asked to pick an object from individualized menus.

These choices may be rejected later on, and agents are then presented with new menus

containing strict subsets of the previous menus from which the previous choices have been

redacted. When the procedure ends, agents are assigned the last object they picked, if any.

A PAO mechanism “sequentializes” an allocation rule if it always results in the unique

allocation consistent with preference profiles that could rationalize the choices made by

the agents. Therefore, if agents simply choose their most-preferred object when given a

menu, then the object they hold once the procedure ends is the one that the allocation

rule determines given their true preferences. Notice, therefore, that truthful equilibrium

behaviors in OSP and PAO mechanisms are closely related. While in the former, it can

be expressed as “Wait until you can pick your best feasible object;” in the latter, it is

“Pick your best feasible object and wait to see if you can keep it.”
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The simple mechanics involved in a PAO mechanism induces a trade-off: because infor-

mation about an agent’s preferences can only be obtained through choices from menus,

obtaining more information about her preferences requires ruling out her last choice. This,

in turn, restricts the set of allocation rules that can be “sequentialized” via PAO mech-

anisms.5 We characterize such rules (Theorem 1), via a new property that we denote

monotonic discoverability. Many familiar rules, such as the Gale-Shapley DA and top

trading cycles, satisfy it (Proposition 1). We characterize the rules that can be imple-

mented in truthful strategies via a robust equilibrium (robust ordinal perfect Bayesian

equilibrium) as being those that are strategy-proof and satisfy monotonic discoverability

(Theorem 2). Finally, we show that every non-bossy OSP-implementable rule is imple-

mentable in weakly dominant strategies via PAO mechanisms (Theorem 3).

Our justification for the use of PAO mechanisms is non-standard, in the sense that

the game-theoretical incentive properties of the PAO mechanisms are weaker than the

alternatives, that is, strategy-proof direct mechanisms and OSP mechanisms, but we test

our conjecture via laboratory experiments.

We test two allocation rules, the top trading cycles (TTC) and serial dictatorship (SD),

and we construct three treatments for each: direct revelation implementation, PAO im-

plementation, and OSP implementation. That is, for each one of these rules, we ran each

of the three different mechanisms for implementing them. We changed the mechanisms

implementing the rules between-subjects and the main goal of the experiment is to com-

pare performance of PAO mechanisms relative to the direct and OSP (when possible)

counterparts in various environments (in our case rules). We changed the allocation rules

within-subjects out of practical considerations and because we are interested in compar-

ative statics between the types of mechanisms, but not the rules. Because TTC is only

OSP-implementable for certain “acyclic” priority structures (Troyan, 2019), we split the

TTC environments into cyclic and acyclic priority structures, with the former having only

direct and PAO implementations.

We find that, in fact, OSP implementations lead to higher truth-telling rates across the

board. When the OSP implementation exists (i.e., except for TTC with cyclic priority

structures), OSP outperforms both PAO and direct implementations in terms of truth-

ful preference revelation. When comparing the direct implementation of TTC vs. the

PAO mechanism, the experiments show that the PAO implementation leads to a higher

proportion of subjects following truthful equilibrium strategies for the TTC rule and no

difference for the SD rule.6 As for efficiency, PAO mechanisms lead to significantly higher

efficiency than direct mechanisms for both TTC and SD. OSP mechanisms improve ef-

ficiency over the direct ones, but there is no significant difference to PAO mechanisms.

Thus, despite a higher proportion of truthful strategies, OSP mechanisms do not improve

5We provide a simple motivating example in section 2.1.
6The experiments reported in Bó and Hakimov (2020) complement these with a comparison between the
direct revelation Gale-Shapley DA with the iterative deferred acceptance mechanism, which is its PAO
implementation. The results are in line with the ones that we present here: the PAO implementation of
DA results in a higher proportion of truth-telling than its direct counterpart.
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efficiency relative to PAO ones. This is because the deviations from the truthful strategy

are more likely to be payoff irrelevant in OSP than in PAO mechanisms.

When we look more closely at the results for the OSP implementation of TTC, however,

we see a big difference in the rates of truthful behavior, depending on the nature of the

obviously dominant strategy for a subject. We employ the characterization of Pycia and

Troyan (2019), who show that every OSP-implementable mechanism is equivalent to a

“millipede game.” In millipede games, at every decision node each player has a choice

between leaving with an object among those in a given menu (“clinching action”), and at

most one “passing action.” Unlike the clinching actions—in which agents simply choose

their allocation—the passing actions require foresight to correctly predict feasible options,

which can be demanding. In our experiment, in the OSP implementation of the acyclic

TTC rule, when the obviously dominant strategy consists of simply picking the most-

preferred object—the “clinching action”—the rate of truthful behavior is 93%. But when

it requires some degree of “foresight,” in that it involves the “passing action,” the rate of

truthful behavior is only 56%. This result strongly supports the strong OSP concept of

Pycia and Troyan (2019), and its myopic “picking” equilibrium as being a better predictor

of behavior than OSP in general.

Thus far, we motivated the PAO mechanisms only by the attractiveness of straight-

forward strategies empirically, which was confirmed by our experiments. However, PAO

mechanisms have other attractive features, which, although not directly evaluated in this

paper, are important in practical applications. First, they improve the acquisition of

information about the options available during the execution of the procedure, by requir-

ing coarser information about preferences and limiting the number of options available

between steps (Grenet et al., 2019; Hakimov et al., 2021b). Second, by allowing the par-

ticipants to experience the steps involved in the production of the final allocation, they

can be perceived as more transparent (Hakimov and Raghavan, 2020a). Finally, they

can make the equilibrium strategy more feasible in markets with a very large number of

options, such as nationwide college admissions,7 when compared to direct mechanisms.

This is because in most practical cases, designers constrain the length of a rank-order list,

as ranking even 100 options seems to be a very hard task, while the number of choices

that students have to make in a PAO implementation of DA, for example, is typically

much smaller than the number of alternatives that should be ranked (Bó and Hakimov,

2016). This, of course, comes at the cost of a longer time for the mechanism to run, which

is an important practical consideration.8 Finally, the use of dynamic college admission

mechanisms seem to be trending in recent reforms of college admissions, like in France,

Inner-Mongolia, Germany, and Tunisia (Bó and Hakimov, 2016; Gong and Liang, 2016;

Luflade, 2018).

7During university admissions in China and Brazil, for example, students face thousands of programs and
universities (Gong and Liang, 2016; Bó and Hakimov, 2016).
8In college admissions in France, which runs a mechanism where students dynamically receive offers from
colleges, the deadline for decision ranges from 5 days at the start of the procedure to 1 day towards the
end. The system has been in place since 2018.
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To sum, we show that the PAO environment has significant benefits over its direct

counterpart in the general decision environment. However, when there is the option of

using OSP mechanism, our experiments suggest using them. Because many allocation

rules used in real-life allocation problems are not OSP-implementable, but are PAO-

implementable, we interpret our experimental results as support for the choice of PAO

mechanisms over their direct revelation counterparts in these cases.

Related Literature. In addition to the studies mentioned in the introduction, this paper

is mainly related to two literature strands: the design of sequential allocation mechanisms

and their theoretical properties and the behavioral and experimental aspects of market

design.

From the theoretical perspective, perhaps the closest paper to ours is Mackenzie and

Zhou (2020). They consider the family of menu mechanisms, which are also sequential

revelation mechanisms in which participants are asked to choose from menus of their pos-

sible assignments. As in the case of PAO mechanisms, they focus on those in which an

agent can never select an assignment twice. Unlike PAO mechanisms, however, the defi-

nition of menu mechanisms does not imply a restriction on the set of allocation rules that

can be sequentialized because an agent’s assignment does not have to be the last choice

of an agent and may, in fact, be an object that was not chosen at all. Despite considering

this more general setup, they show that strategy-proof rules can be implemented in a

truthful ex-post perfect equilibrium, a result similar to our Theorem 2.

Another closely related paper is Börgers and Li (2019). As in our case, they are con-

cerned about a notion of simplicity in mechanisms. They define the class of “strategically

simple” mechanisms, which are those in which an agent’s optimal strategy depends only on

first-order beliefs about preferences and rationality. Like the rules implemented in truth-

ful equilibria in PAO mechanisms, these include all dominant strategy mechanisms and

extend to others. It is worth noting, however, that PAO mechanisms are not necessarily

strategically simple.

Other papers have also considered sequential versions of allocation rules, such as multi-

unit auctions (Ausubel, 2004, 2006), stable matchings (Bó and Hakimov, 2016; Kawase

and Bando, 2021; Haeringer and Iehle, 2019) and more general allocations (Schummer and

Velez, 2021). Moreover, there is a growing literature evaluating sequential mechanisms

used in the field (Gong and Liang, 2016; Grenet et al., 2019; Veski et al., 2017; Dur

et al., 2018). Other recent papers, such as Akbarpour and Li (2020) and Hakimov and

Raghavan (2020b) show that the use of sequential mechanisms can also be explained by

their transparency and credibility characteristics: the experience that participants have

when interacting with these mechanisms can convey information that helps them to be

sure that the allocation is produced by following the rules.

We also provide contributions to the literature documenting dominated behavior in

matching mechanisms. Shorrer and Sóvágó (2018); Rees-Jones (2018); Hassidim et al.

(2016) and Artemov et al. (2017) document dominated strategies being played in real-life
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centralized allocation processes. These are in line with laboratory experiments that also

evaluate truthful behavior in strategy-proof mechanisms relative to dynamic mechanisms

(Echenique et al., 2016; Bó and Hakimov, 2020; Breitmoser and Schweighofer-Kodritsch,

2021; Klijn et al., 2019), and truthful behavior in TTC and SD (Chen and Sönmez, 2002,

2006; Pais and Pintér, 2008; Guillen and Hakimov, 2017, 2018; Hakimov and Kesten,

2018).

2. Model

Let A = {a1, a2, . . . , an} be a finite set of agents9 and O = {o1, o2, . . . , om} ∪ {∅} be a

set of object types, where ∅ is the null object. Each agent a has strict preferences Pa

over the set O. Given Pa we express the induced weak preference by Ra. That is, oRao
′ if

oPao
′ or o = o′. We abuse notation and Pa may represent its binary relation (ex: oPao

′)

or a tuple of elements of O, for example, Pa = (o, o′, ∅, o′′), which implies oPao
′Pa∅Pao′′.

We also often treat tuples of distinct elements of O as sets, if that does not create any

ambiguity. For example, we may say that γ = (o1, o2, o3) and {o2} ⊂ γ. Denote by P
the set of all strict preferences over O. An object o ∈ O is acceptable to agent a ∈ A if

oPa∅. A preference profile is a list P = (Pa1 , Pa2 , . . . , Pan). We denote by P−a the set

of all preferences in P except for Pa. A problem is a triple 〈A,P,O〉. Let P = Pn be

the set of all preference profiles. An allocation is a function µ : A → O.10 For a given

allocation µ, we say that agent a’s assignment under µ is µ(a). Let M be the set of

all allocations. A random allocation is a probability distribution over M. A rule is a

function ϕ : P →M. Denote by ϕa (P ) = ϕ (P ) (a). A rule ϕ is individually rational

if, for any P ∈ P and a ∈ A, ϕa (P )Ra∅.
A rule is strategy-proof if for every agent a ∈ A, P ∈ P , and P ′ ∈ P, ϕa (Pa, P

−a)Raϕa (P ′, P−a).

Define a choice history h as a sequence of tuples ((Ω1, ω1) , (Ω2, ω2) , . . .), where for

every i, Ωi ⊆ O and ωi ∈ Ωi. That is, a choice history is a sequence of sets of object types

and elements of those sets. For example:

(({o1, o2, o3, o4, o5} , o2) , ({o3, o4, o5} , o5))

Because this will be used often in what follows, we denote by
−→
h the last choice in

h. That is, if h = ((Ω1, ω1) , . . . , (Ωk, ωk)),
−→
h = ωk. We say that h is a continuation

history of h′ if all the tuples in h′ are also in h. We denote by H the set of all choice

histories, including the empty choice history, represented by h∅. We say that a preference

Pa is consistent with the choice history h if for every (Ωi, ωi) ∈ h and o ∈ Ωi, ωiRao.

We denote by P (h) the set of all preferences that are consistent with h. We can also say

that a choice history is consistent with a preference using inverse reasoning, and denote

by h (Pi) the set of all choice histories that are consistent with Pi.

9To simplify notation, an agent ai might sometimes be denoted by her index i.
10Notice that while this is a model of discrete object allocation, there is no explicit notion of feasibility
considering capacities. Feasibility is “encoded” in the allocation rules themselves: if an allocation is in
the image of the rule, then it is feasible.
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Denote by collective history hA a list of n choice histories: (h1, h2, . . . , hn). We denote

by HA the set of all collective histories, by hA−∅ the collective history consisting of n empty

choice histories, and by hAi the i-th element in hA. We also say that hA is a continuation

collective history of hA
′

if each choice history in hA is a continuation history of its

related history in hA
′
. A preference profile P = (Pa1 , Pa2 , . . . , Pan) is consistent with

the collective history hA if for every i, Pai is consistent with hAi .11 We denote by

P
(
hA
)

the set of preference profiles that are consistent with hA. We can also say that

a collective history is consistent with a preference profile using inverse reasoning, and

denote by hA (P ) the set of all collective histories that are consistent with the preference

profile P .

Next, we abuse notation and define ϕ
(
hA
)

to be the allocations that are consistent

with the application of the rule ϕ, given the information about the preference profile that

can be deduced from taking the revealed preference approach to the the collective history

hA:

ϕ
(
hA
)

=
⋃

P∈P (hA)

ϕ (P )

For a given collective history hA, therefore, ϕ
(
hA
)

is a (possibly empty) subset of M.

We also define the set of feasible assignments after hA for ai, or µϕi
(
hA
)

as:

µϕi
(
hA
)

=
⋃

µ∈ϕ(hA)

µ (ai)

Let Φ =
(
2O
)n

. That is, Φ is the set of n-tuples with subsets of O.

A menu function S : HA → Φ specifies, for each collective history, a list of menus to

be given to the agents.

• S
(
hA−∅

)
= (φ0

1, φ
0
2, . . . , φ

0
n), where for every i, φ0

i is a non-empty subset of O.

These are the initial menus.

• For any collective history hA, where hAi =
(
(Ωi

1, ω
i
1) , (Ωi

2, ω
i
2) , . . . ,

(
Ωi
ki
, ωiki

))
,12

S
(
hA
)

= (φ1, φ2, . . . , φn), where φi ⊆ Ωi
ki
\{ωiki}.

Denote by Si(·) the i-th element in S(·) (or, when convenient, Sa(·) to be the element in

S(·) associated with agent a). For a given menu function S, we define the pick-an-object

mechanism S as follows:

• Period t = 1: For every agent ai, ask her to choose one item in Si
(
hA−∅

)
. Let

agent ai’s choice be σti . Define hA−1 to be the collective history such that for every

agent ai, h
A−1
i = ((φ0

1, σ
1
i )).

• Period t > 1: Let (φt1, φ
t
2, . . . , φ

t
n) = S

(
hA−t

)
.

11Note that this implies that a preference profile is consistent with a collective history if all histories are
consistent with some preference. In other words, it is necessary that all histories are rationalizable.
12For each agent ai, ki represents the number of menus that she was given in hA.
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– If for all i, φti = ∅, then the procedure stops, and outputs the allocation µ,

where for each i, µ (ai) =
−−→
hA−ti .

– Otherwise, for every agent ai, ask her to choose one item in φti, if the menu is

non-empty.13 Let agent ai’s choice be σti . Define hA−(t+1) as the collective his-

tory such that for every agent ai who received a non-empty menu, h
A−(t+1)
i =

hA−ti ⊕ (φti, σ
t
i),

14 and for those with an empty menu, h
A−(t+1)
i = hA−ti .

Notice that because the menus given to each agent do not include her previous choices

and never include objects that were not present in previous menus, every collective history

that results from any number of periods of a PAO mechanism is consistent with a non-

empty set of preference profiles. Moreover, since the agents’ allocation must be their last

choice and menus are subsets of previous ones, every feasible allocation for an agent must

be in the first menu given at t = 1. When facing a PAO mechanism, one simple behavior

that an agent may follow is what we call a straightforward strategy, which we define

below.

Definition 1. An agent follows a straightforward strategy with respect to P if

whenever presented with a menu I ⊆ O, she chooses the most-preferred element of I

according to P .

Definition 2. A pick-an-object mechanism S sequentializes the rule ϕ if, for any prefer-

ence profile P , the pick-an-object mechanism S provides menus such that when each agent

ai follows the straightforward strategy with respect to Pai , the outcome ϕ (P ) is produced.

We say that there exists a pick-an-object mechanism that sequentializes some rule ϕ if

there exists a menu function S such that a pick-an-object mechanism S sequentializes ϕ.

2.1. Monotonic discoverability. At first glance, it might seem like every rule can be

sequentialized by some pick-an-object mechanism. After all, by asking agents to choose

from menus, one can always recover as much information about their preferences as nec-

essary to pinpoint an allocation for a given rule. The definition of PAO mechanisms,

however, imposes some restrictions on the menus that can be presented to an agent, and

how that relates to her assignment. In particular, objects previously chosen cannot be in

future menus, and the agent is assigned to the last object she chose. These conditions re-

sult in mechanisms that have a simple and intuitive operation, but also induce a trade-off

between obtaining more information about her preference and the assignment that the

rule determines for her.

To see this, consider a problem where O = {o1, o2, o3, ∅}, A = {a}, and the rule ϕ∗ as

follows:

13An agent receiving an empty menu represents a situation in which she is not called to make a choice.
One could alternatively interpret agents receiving empty menus as “inactive” agents in this period.
14We use “⊕” to denote concatenation. That is, for example, ((φ, σ) , (φ′, σ′)) ⊕ (φ′′, σ′′) =
((φ, σ) , (φ′, σ′) , (φ′′, σ′′)).
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o1Pao2Pao3 : µ(a) = o1

o1P
′
ao3P

′
ao2 : µ(a) = o3

Otherwise : µ(a) = ∅

Suppose that we are looking for a PAO mechanism that sequentializes ϕ∗, and consider

first which object types should be in menu given to the agent in period t = 1. Clearly,

object types o1 and o3, as well as the null object ∅ must be in the menu, since the agent’s

potential assignments must be in it. So there are two possibilities for the first menu:

φ = {o1, o2, o3, ∅} and φ′ = {o1, o3, ∅}.
What happens if the agent chooses o1 from the first menu? If the menu was φ, this

tells us that o1 is the most preferred object type. This, however, does not provide enough

information to narrow down to a single allocation, since this choice is consistent with the

preferences Pa and P ′a above, but also with, for example, o1P
′′
a o3P

′′
a ∅P ′′a o2. More informa-

tion about the agent’s preferences is necessary to know which allocation to produce.

More information about the agent’s preferences can only be obtained by observing her

choice from another menu. As per the definition of PAO mechanisms, that new menu

and all the following ones cannot have o1 as one of the options. We reach, therefore, an

informational gridlock: in order to know which assignment to produce, we need to

know, at the very least, whether o2 is preferred to o3 or not. Obtaining more information

“costs” eliminating o1 as a possible assignment for a. But if her preference is Pa, the rule

ϕ∗ indicates that that should be her assignment. The same problem is present if the first

menu was φ′: if she chooses o1 or o3, we reach the same gridlock.15

We conclude, therefore, that ϕ∗ cannot be sequentialized by a PAO mechanism. As we

will show next this is because ϕ∗ does not satisfy monotonic discoverability, a property

that we now define.

Let µ be an allocation. Let P = (Pa1 , Pa2 , . . . , Pan) be any element of P . We define the

function L (P, µ) = {P ′ ∈ P : ∀a ∈ A and o, o′ ∈ O : oPao
′Paµ (a) ⇐⇒ oP ′ao

′P ′aµ (a)}. That

is, L (P, µ) contains all preference profiles that, for each agent a, agree with Pa with re-

spect to µ(a) and all objects preferred by a to µ(a), but may differ with respect to objects

that µ(a) are preferred to, with respect to Pa. We will say that L (P, µ) is therefore the

lower contour set of P at µ. We will denote each element of L (P, µ) a continuation

profile of P at µ.

Definition 3. A rule ϕ satisfies monotonic discoverability if, for any allocation µ

and preference profile P , either ϕ (P ) = µ or there is an agent a∗ ∈ A such that P ′ ∈
L (P, µ) =⇒ µ (a∗) 6= ϕa∗ (P ′).

15Note that this observation does not rely on the fact that the definition of PAO mechanisms imply that
the first menu must contain all the agent’s feasible assignments. The type of “informational gridlock” is
obtained if we simply require the agent to be assigned her last choice and menus to be such that choices
are always rationalizable.
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Step 1

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 2

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 3

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 4

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Figure 1. Monotonic discoverability and sequentialization

To understand the critical role that monotonic discoverability has when sequentializing

rules, consider Figure 1. Suppose that we have a rule ϕ that satisfies monotonic discover-

ability, and start with the allocation µ0 that matches each agent with her most-preferred

object type, highlighted in blue in Figure 1, step 1. We can consider two cases. In the

first, ϕ is such that for every preference profile in which agent ai’s top option is as in P ,

these agents are matched to their top choices. In that case, knowing those top choices

already gives us enough information to determine this to be the outcome that ϕ maps for

any continuation profile.16 The second case is when this is not true. That is, there are

continuation profiles of P at µ0 for which ϕ does not map those profiles to µ0. Let P 0 be

one such profile. By monotonic discoverability, there is at least one agent who, for every

continuation profile of P 0 at µ0 (and therefore also of P at µ0) will not be matched to

her match at µ0. Without loss of generality, let a2 be such an agent.

Consider next the allocation µ1, which is the same as µ0 except that the object mapped

to a2 is the second one in her preference. That is shown in Figure 1, step 2. Here, once

again, we have two cases. In the first, ϕ is such that for every continuation preference

profile of P at µ1,all agents are matched to their outcomes under µ1. The second case

is where there is at least one, but potentially many, such profiles in which the outcomes

are different than µ1. There is one thing we can say, however. Because the continuation

profiles of P at µ1 are also continuation profiles of P at µ0, for none of these cases is agent

a2 matched to o3. Suppose here, without loss of generality, that the second case is true,

agents a1 and a4 are not matched to their outcomes under µ1 for any continuation profile

of P at µ1. Steps 3 and 4 represent a continuation of this argument, until at step 4, the

allocation µ4 being evaluated is in fact the one that the rule ϕ maps to all continuation

16One simple example of this situation is when ϕ is a simple serial dictatorship, and no two agents have
the same object as their most-preferred one, as in P .
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profiles of P at µ4. Notice that this process always converges to the allocation mapped by

ϕ to the profile P , because we only move down the preference ordering of an agent when

we have enough information to determine that ϕ rules out previously considered matches

to her.

Following this process shows us two consequences of a rule satisfying monotonic discov-

erability. The first is that while following this monotonic process of evaluating allocations

that are at each step weakly worse (from the perspective of the underlying preference

profile), we end up at the allocation that ϕ maps to P . This fact is fundamental for a

PAO mechanism to be able to match agents to their last choices without repetition.

The second is that monotonic discoverability solves the informational gridlock that

is induced by a PAO mechanism; that is,we must permanently reject the last choice

agent made to obtain more information about her preferences. Monotonic discoverability

guarantees that, as long as we follow the monotonic process over allocations that we just

described, whenever we do not have enough information to single out an allocation (that

is, there are still continuation profiles for which ϕ produces different allocations), there

is at least one agent whose last choice can be rejected and then presented with a new

menu, allowing us to obtain more information about preferences, narrowing down the

set of preference profiles consistent with these choices. In fact, this relationship between

monotonic discoverability and PAO mechanisms is as strong as possible, as shown in

Theorem 1 below.

Theorem 1. There exists a pick-an-object mechanism that sequentializes an individu-

ally rational rule ϕ if and only if ϕ satisfies monotonic discoverability.

Theorem 1 implies, therefore, that the structure of PAO mechanisms limits the rules

that can be sequentialized using them. If we instead decide to obtain information about

preferences via choices from menus, we would have no such restriction: one could, for

example, make each agent choose one object at a time starting from the entire set O. This

elicits the entire preference profile, which could then be used to determine the allocation.

The participant’s experience in this type of mechanism would be fundamentally different,

though: the connection between their choices and assignments would be unclear, in that

they might end up matched to an object chosen early in the process, before many other

choices. In PAO mechanisms, there is a much more explicit connection between choices

and assignments: an agent can pick what she wants and will be able to keep it unless the

information provided by the other participants, through their choices, determines that

she cannot keep it, in which case she is offered the chance of choosing again from a new

menu with feasible options.17

2.2. Generalized Deferred Acceptance Procedures. Many mechanisms used in match-

ing are defined by algorithms that produce outcomes, as opposed to axioms or objective

17The specific implementation of the PAO mechanism could even allow for the market designer to credibly
and truthfully explain the reason why the agent cannot keep the object, using the information that she
obtained that resulted in that rejection.
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functions. Two classic examples are the Gale-Shapley deferred acceptance mechanism

(DA) (Gale and Shapley, 1962) and Gale’s top trading cycles (TTC) (Shapley and Scarf,

1974). Their definitions describe step-by-step procedures that use agents’ preference rank-

ings (and often other information, such as priority orderings) and result in an allocation.

Generalized DA procedures is a general description of those which produce tentative

allocations at each step, following the agent’s preferences, until no agent has her choice

rejected. They generalize DA in the sense that they determine whether the tentative

allocation of an agent to an object type becomes a rejection based on the entire tentative

allocation and set of proposals, as opposed to the tentative allocation and proposals to

the object type in question. If we use the college admissions analogy, in a generalized

DA procedure, whether a student’s proposal is accepted or not may depend not only on

the college she applied to (and its tentatively matched students) but also on the entire

tentative assignments of students to colleges, and contemporaneous applications.

A generalized DA procedure is, therefore, defined by an update function Ψ : M ×
M →M. In it, Ψ (µ, µ′) informs, for a “tentative” assignment µ, what will be the new

tentative assignment when the new proposals are the ones represented by the assignment

µ′. This has the restriction that, if Ψ (µ, µ′) = µ′′, for every a ∈ A it must be that

µ′′(a) ∈ {∅, µ(a), µ′(a)}. That is, the new tentative allocation must be one that for each

agent, either leaves him with the same tentative allocation, unmatched, or tentatively

assigned to the object type she has just proposed. Given an update function Ψ, the

procedure can be described by the following algorithm:

• Step 1: Let µ0 be an assignment in which, for all a ∈ A, µ0(a) = ∅, and µ∗

be an assignment consisting of all agents matched to their top choice in P . Let,

moreover, µ1 = Ψ (µ0, µ∗). We say that every agent a ∈ A for which µ∗(a) 6= ∅
and µ1(a) = ∅ was rejected by µ∗(a).

• Step t > 1: Construct the assignment µ∗, in which every agent a who was rejected

at step t − 1 is matched to her most-preferred object, with respect to Pa, from

which she was not previously rejected. Moreover, let all other agents be matched

to ∅ in µ∗. Let, moreover, µt = Ψ (µt−1, µ∗). If for every a ∈ A it is the case that

µt(a) ∈ {µt−1(a), µ∗(a)}, stop the procedure and determine the assignment to be

µt. Otherwise, go to step t+ 1.

Rules that are described by generalized DA procedures satisfy monotonic discoverabil-

ity, as shown below.

Proposition 1. If ϕ is described by a generalized DA procedure, then ϕ satisfies mono-

tonic discoverability.

Proposition 1 implies that many mechanisms that are commonly used and referenced

in the matching literature satisfy monotonic discoverability and can therefore be sequen-

tialized by a PAO mechanism. One can easily see that these include, for example, DA

itself, TTC, and the Boston mechanism.



PICK-AN-OBJECT MECHANISMS 14

2.3. A canonical Pick-an-object mechanism. Up to this point, we described how

PAO mechanisms operate, and which rules can be sequentialized with PAO mechanisms.

The next natural question is: given some rule ϕ that satisfies monotonic discoverability,

how can we design the contents of the menus given to the agents in each step, in a way

that sequentializes ϕ?

In principle, there might be multiple PAO mechanisms that sequentialize a given rule,

with variations over which agents are asked to choose from menus and the contents of

those menus. We can, however, construct a canonical PAO mechanism for that rule.

Let ϕ be a rule that satisfies monotonic discoverability, and define the PAO function S,

such that for every i and hA ∈ HA:

Si
(
hA
)

=

∅ if
∣∣ϕ (hA)∣∣ = 1 or

−→
hAi ∈ µ

ϕ
i

(
hA
)

µϕi
(
hA
)

otherwise

The proof of Theorem 1 involves showing that the PAO mechanism S above sequential-

izes the rule ϕ. The resulting PAO mechanism can also be easily explained:

• Step 1: Every agent i is given a menu containing µϕi
(
h∅
)
, that is, all the object

types that are allotted to i in some allocation produced by the rule ϕ.18

• Step t > 1: Let hA be the collective history representing the menus and choices

made by the agents up to period t. There are two cases.

–
∣∣ϕ (hA)∣∣ = 1, that is, every preference profile consistent with the collective

history up to step t is mapped to the same assignment by ϕ. In that case,

by monotonic discoverability, the last object chosen by the agents is exactly

that assignment, and therefore the procedure ends and agents leave with the

last object they picked.

– Otherwise, monotonic discoverability implies that the setA∗ ≡
{
i ∈ A :

−→
hAi 6∈ µ

ϕ
i

(
hA
)}

is non-empty. This set contains each agent for which, for any preference pro-

file consistent with the collective history hA, the assignment given by ϕ is

different from her last chosen object type. Each one of these agents in A∗ are

given a menu containing the set of object types that are still feasible for them,

under ϕ, for the preference profiles consistent with the collective history hA.

The canonical PAO mechanism gives, therefore, for a given rule ϕ a simple recipe for

how the menus should be constructed. For some rules the resulting mechanism is very

intuitive.19 For some other, such as the simple serial dictatorship (SD), it might be less

so, and alternatively formulated PAO implementations are “simpler” to understand (see

section 4).

Another fact worth noting is that when a rule is individually rational, every menu given

by the canonical PAO mechanism contains the element ∅, and whenever an agent chooses

18In other words, the set of feasible assignments for i under ϕ. In a college admissions environment, for
example, that would be every college that deems i acceptable.
19The Iterative Deferred Acceptance Mechanism (Bó and Hakimov, 2016), for example, is the canonical
PAO mechanism for the DA rule.
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it, her assignment is determined to be the null object—that is, she is left without any

object.

Monotonic discoverability therefore gives a full characterization of the rules for which it

is possible to use a PAO mechanism to “sequentialize” the process of obtaining information

about the participants’ preferences, and Proposition 1 gives us a family of mechanisms

that satisfy that condition. This does not, however, guarantee that it will be in the

participants’ own interest to truthfully reveal their preferences. When that is not the

case, then the outcomes produced by these PAO mechanisms may differ substantially,

with respect to the agents’ true preferences, with that determined by the rule being used.

In other words, we also need to consider the implementation problem when using PAO

mechanisms.

3. Implementation in Pick-an-Object Mechanisms

In this section we will consider the extensive-form game that is induced by PAO mech-

anisms, and conditions on the rules that guarantee that it is in the participants’ own

interest to reveal their true preferences using straightforward strategies. The equilibrium

concept that we will use is that of ordinal perfect Bayesian equilibrium (OPBE), intro-

duced in Bó and Hakimov (2016). Loosely speaking, a strategy profile is an OPBE if at

every information set, following the equilibrium strategy first-order stochastically dom-

inates any deviating strategy. It is, therefore, an ordinal version of a perfect Bayesian

Nash equilibrium that will be formalized later in this section.

Straightforward strategies being an OPBE implies that choosing from menus according

to the agent’s true preferences first-order stochastically dominates any other strategy

regardless of past actions by the player being considered. That is, it implies that providing

truthful information (in the form of choices based on true preferences) is the best thing

to do even when the information that was provided earlier was not truthful.20

Next, we formalize the game description, the participants’ information and beliefs. To

do that, we will expand the definition of a PAO mechanism to also include the information

that it provides to the participants. We do this by defining, for a given mechanism, the

information structure that is associated with it.

Let S be a menu function. We denote by HA
S the set of all collective histories that

can result from the PAO mechanism S. That is, HA
S contains each collective history that

would result from each possible combinations of choices from all agents from the menus

that are offered when using the PAO mechanism S. Next, for each agent a ∈ A, let Ia be

agent a’s information structure. Ia = {Ia1 , Ia2 , . . .} is a partition of the set HA
S , such

that for every pair of collective histories hA, hA
′ ∈ HA

S :

(1) If hA =
(
hAa1 , . . . , h

A
a , . . . , h

A
an

)
and hA

′
=
(
hAa1
′
, . . . , hAa

′
, . . . , hAan

′
)

and hAa 6= hAa
′
,

then hA and hA
′

must be in different elements of Ia.
20This seems, at first sight, stronger than strategy-proofness, in which all that is required is that reporting
the true type, and just that, is always a best-response. As shown in Haeringer and Ha laburda (2016),
however, strategy-proofness itself is equivalent to this seemingly stronger requirement.
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(2) If Sa
(
hA
)
6= Sa

(
hA
′
)

, then hA and hA
′

must be in different elements of Ia.

In other words, if two collective histories are such that the agent a’s choice histories are

different, or if they result in different menus to be given to a afterwards, these must be in

different elements of the partition Ia. The partition Ia represents agent a’s information

sets, and reflects the collective histories that an agent can differentiate based on what

she can observe and by the information that is provided by the specific implementation of

the PAO mechanism. Collective histories in the same element of the partition cannot be

differentiated explicitly based on the information that the agent is given. The restriction

that we defined above is the minimal information that we assume the agents must have:

they know the menus that were offered to them and the choices they made. Our results

will be robust to finer partitions, including that of perfect information, in which each

partition element contains only one collective history. We denote by I = (Ia1 , . . . , Ian) the

information structure of the game being considered. Given an information structure

I, a belief system θ is a collection of probability measures, one for each element of

the partition in the information structures in I. We denote by θa
(
hA
)

the probability

associated with collective history hA in Ia.
Next, we define an agent a’s strategy to be a function σa : Ia → O, where for every

Iai ∈ Ia, and hA ∈ Iai , σa
(
hA
)
∈ Sa

(
hA
)
. That is, strategies map from information sets

to objects in the menu offered to the agent.21 A collection with one strategy per agent is

a strategy profile σ = (σa1 , . . . , σan).

Fix a belief system θ, and let a ∈ A be an agent and hA be a collective history in

HA
S . Let Iai be the set in agent a’s information structure such that hA ∈ Iai . We define

the outcome belief for a under θ, Oθa
(
hA, σ

)
, as the distribution over assignments

that result from following the PAO mechanism S, starting from the collective history hA,

in which agents follow the strategies in σ, given the distribution that θ puts over the

elements of the set Iai .

Let A and B be two random assignments. We denote by ma the first-order stochastic

dominance relation under Pa. That is, A ma B if for all o ∈ O, Pr {A (a) = o′|o′Rao} ≥
Pr {B (a) = o′|o′Rao}. We can now define an ordinal perfect Bayesian equilibrium (OPBE).

Definition 4. A strategy profile σ together with a belief system θ is an ordinal perfect

Bayesian equilibrium (OPBE) if for every a ∈ A, every hA ∈ HA
S , and every strategy

σa
′ for agent a:

Oθa
(
hA, (σa, σ−a)

)
ma Oθa

(
hA, (σa

′, σ−a)
)

Even though an OPBE is a refinement of the concept of a perfect Bayesian equilibrium,22

it may still suffer from the fact that an equilibrium may be supported by artificially

21For simplicity, and without any consequence, we allow for the definition of strategies to make “choices”
in collective histories in which an agent is not given a menu.
22If a strategy profile σ together with a belief system θ is an OPBE, then σ together with θ is a perfect
Bayesian equilibrium for any utility functions profile that represents the ordinal preferences in P .
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constructed belief systems. The following alternative equilibrium notion improves upon

that.

Definition 5. A strategy profile σ is a robust ordinal perfect Bayesian equilibrium

if for every belief system θ, σ is an OPBE.

We say that an allocation rule ϕ is pick-an-object implementable in some equilib-

rium notion if there exists a PAO mechanism S that sequentializes ϕ, in which straight-

forward strategies constitute an equilibrium in that notion.

Theorem 2. A rule is pick-an-object implementable in robust ordinal perfect Bayesian

equilibrium if and only if it is strategy-proof and satisfies monotonic discoverability.

3.1. Relation with Obviously Strategy-proof Mechanisms. When introducing the

concept of obvious strategy-proofness (OSP), Li (2017) defined an OSP mechanism as one

that has an equilibrium in obviously dominant strategies. A rule ϕ is OSP-implementable

if there is a game and an obviously dominant strategy for each type of player in that game,

such that the outcome produced by this strategy for each type profile is what is determined

by ϕ. Pycia and Troyan (2019) showed that, in an object allocation environment such as

the one that we use, every OSP-implementable rule could be implemented via a millipede

game with a greedy strategy. Millipede games are sequential games where, in each period

some agent can either “pass” or “clinch” one of potentially multiple options in a menu,

which corresponds to private allocations that they can guarantee (in our setup, therefore,

that agent can clinch an object and leave with it). A greedy strategy consists of an agent

choosing to “pass” as long as her most-preferred object can still be clinched from a menu

in some continuation history, and clinching it whenever it is in a given menu.23

The first thing to note is that there is a direct relation between a greedy strategy in

a millipede game and a straightforward strategy in a PAO mechanism. In a millipede

game, every time an agent interacts with the mechanism she is given a menu of objects

that she can pick and keep for good and, potentially, also one option to “pass.” That is,

as in PAO mechanisms, in millipede games an agent is always matched to the last object

that she chose. However, in a millipede game, an agent can only choose an object once,

and it remains her final allocation. In contrast, in a PAO mechanism, a chosen object can

be interpreted as her “tentative allocation,” and thus she can potentially choose multiple

times. The authors show that the greedy strategy is obviously dominant in that game.

23While each option in a menu given to a player in a millipede game corresponds to a private allocation
for that player, there might be multiple options in that menu associated with the same allocation. While
every option associated with an allocation results in the same outcome for the player making that choice,
different choices among these might result in different outcomes for other players. Our results will consider
only situations in which that is not the case: different items in a menu correspond to different private
allocations for the agent making the choice. Therefore, we will ignore the possibility that they do not.
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As long as an agent can infer the set of clinchable objects in continuation histories,

following the greedy strategy is very simple: the only object she chooses from a menu is

her most preferred in the set of feasible objects. Otherwise, she simply passes.24

In a canonical PAO mechanism, on the other hand, menus always contain the entire set

of feasible objects. Therefore, an agent following a straightforward strategy chooses the

most-preferred object among those that are feasible, and will only have to make another

choice once, and then only if that object is no longer feasible. Notice that, as opposed to

millipede games, in these PAO mechanisms agents do not have to infer the set of feasible

objects: all feasible objects are offered in the menus. Our next result relies on the common

property of non-bossiness, defined below.

Definition 6. A rule ϕ is non-bossy if, for every a ∈ A, if ϕa (Pa, P
−a) = ϕa (P ′a, P

−a),

then ϕ (Pa, P
−a) = ϕ (P ′a, P

−a).

If a rule is non-bossy and OSP implementable, we obtain the following relation with

PAO mechanisms:

Theorem 3. Every non-bossy OSP implementable rule is PAO implementable in weakly

dominant strategies.

Given the simplicity of these strategies, a question one may have is whether what drives

a high proportion of behavior in line with an obviously dominant strategy is, in fact, the

simplicity of the strategy itself, as opposed to more sophisticated arguments in terms of

the kind of counterfactual reasoning that is eliminated in an OSP mechanism. If that

is the case, a PAO mechanism could also lead agents to behave more in line with its

theoretical prediction.

4. Experiments

In this section, we present a series of experiments designed to test the performance

of PAO mechanisms for implementing different allocation rules, when compared to the

traditional direct revelation mechanisms and OSP mechanisms, when possible. We chose

two rules: top trading cycles (TTC) and serial dictatorship (SD). Ideally, we would have

liked to compare implementing multiple allocation rules via PAO versus multiple alterna-

tive mechanisms. Our choice of using SD and TTC is driven mainly by the importance of

both rules for practical applications. Another contender could be DA, but the comparison

of the PAO implementation of DA versus its direct counterpart was made in two recent

papers Bó and Hakimov (2020) and Klijn et al. (2019). Both led to a similar conclusion,

reporting the better performance of the PAO mechanism, with respect to the truth-telling

24Pycia and Troyan (2019) question, however, the simplicity of inferring the set of clinchable objects in
continuation histories, as it requires foresight from agents. They then introduce the concept of strong
obvious strategy-proofness. In a strong OSP mechanism, the agents face a menu to choose from only once,
and there is no passing option. The obviously dominant strategy in these games thus simply requires
choosing the best object from the single menu that is offered.
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rates and stability of the allocations, when compared to the direct DA mechanism. Addi-

tionally, our choice of allocation rules was driven by the possibility of OSP implementation

of both rules (in the case of acyclic priorities for TTC). This allows us to compare PAO

versus OSP implementations in a restricted setup.

4.1. Mechanisms. In this subsection, we describe the six mechanisms used in the experi-

ments. For each allocation rule, namely TTC and SD, we use three different mechanisms:

Direct25, PAO, and OSP. For the PAO mechanisms, we used the canonical mechanism

induced by these rules (see section 2.3). The mechanisms correspond to treatments in the

experiments. Note that we describe the mechanisms in the same way they were described

to the participants. We omit the description of actions when some or all objects are not

acceptable for simplicity and to prevent confusion by the subjects. The reason is that

all objects lead to a positive payoff for the subjects in the experiments. Moreover, in

the experiments, subjects had to choose at least one object in all sequential mechanisms

and list all objects in the rank-order lists in the direct mechanisms. Details about the

information given to the participants in the experiment are detailed in section 4.2.

Direct TTC

Every participant submits her rank-order list of objects to a central authority. The

following steps are executed by the central authority, without any further participation

from the subjects.

• Step 1.1 All participants point to the object at the top of their submitted rank-

ordered lists. Each object points to the participant with the highest priority at

that object.

– The mechanism looks for cycles. There is at least one cycle. All participants

in the cycle are assigned the object they pointed to.

• Step 1.2 The priorities of the objects are updated to account for assigned partici-

pants. Submitted rank-ordered lists are updated to account for assigned objects.

Steps 1–1.2 are repeated until all objects are assigned.

Direct TTC is strategy-proof, and Pareto efficient (Abdulkadiroğlu and Sönmez, 2003).

PAO TTC

All participants are asked to pick one object from a menu with all objects.

• Step 1.1. All participants point to the object they picked. All objects point to the

participant with the highest priority at that object.

– The mechanism looks for cycles. There is at least one cycle. All participants

in the cycle receive the object they pointed to.

• Step 1.2 For the remaining participants, if their last picked object was already

assigned, the participant is asked to choose a new object from a menu of remaining

objects. Steps 1–1.2 are repeated until all the objects are assigned.

25We capitalize ”Direct” when referring to the treatment name.
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In PAO-TTC, every participant following the straightforward strategy is a robust OPBE

(see Theorem 2). If all participants follow straightforward strategies, the allocation is

Pareto efficient.

OSP TTC

Note that OSP TTC is only defined when the priorities of the objects are acyclic. We

use the mechanism described in Troyan (2019).

• Step 1.0. The mechanism first tentatively assigns each object to the participant

with the highest priority at that object (i.e., the participant tentatively owns the

object).

• Step 1.1. One by one each participant who tentatively owns an object is asked

whether one of the objects that she owns is her favorite object. There are two

possible answers for each participant and object :

– If ”Yes,” the corresponding participant receives the object. Go to Step 1.2.

– If ”No,” she is asked about the next object among the ones she tentatively

owns. If the participant answers “No” to all tentatively owned objects, the

algorithm moves to the next participant who owns at least one object. If all

participants who tentatively own at least one object say ”No” to all owned

objects, then each participant who tentatively owns at least one object is

asked to pick one object among the objects she does not own.

∗ All participants point to the object they picked. Each object points to

its owner. The mechanism looks for cycles. There is at least one cycle.

All participants in the cycle receive the object they picked.

• Step 1.2 The priorities of the objects are updated to account for the participants

who left. Steps 1.1–1.2 are repeated until all objects are assigned.

In OSP TTC, the truthful strategy26 is obviously dominant, leading to a Pareto efficient

allocation.

Note that in mechanisms implementing the SD allocation rule, we use priority scores

instead of using ordinal tables priorities. In the experiments, each subject knew her score,

and knew that the higher the score, the higher her priority. Details are explained in the

experimental design section.

Direct SD

Every participant submits her rank-order list of objects to a central authority. The

following steps are executed by the central authority, without any further input from the

subjects.

26More specifically, the truthful strategy consists of only saying ”Yes” when the object is the most-
preferred among the objects that are still available, and picking the most preferred object when asked to
pick from objects that she does not own.
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• Step 1. The participant with the highest priority score is assigned the top-ranked

object on her list.

• Step 2. The participant with the second-highest priority score is assigned the top

object on her list, among the remaining objects. ....

• Step N. The participant with the Nth-highest priority score is assigned whatever

object remains.

Direct SD is Pareto efficient and strategy-proof.

PAO SD

• Step 1. All participants are asked to pick one object from a menu with all objects.

• Step 2. The participant with the highest priority score is assigned the object she

picked. All other participants who chose this object are asked to pick a new object

from a menu containing the remaining objects.

• Step 3. The participant with the second-highest priority score is assigned the last

object she picked. All other participants with lower priority who chose this object

are asked to pick a new object from the menu containing the remaining objects.

....

• Step N+1. The participant with the lowest priority score is assigned the last object

she picked.

In PAO-SD, every player using the straightforward strategy is a robust OPBE (see

Theorem 2). If all participants follow straightforward strategies, the allocation is Pareto

efficient.

OSP SD

• Step 1. The participant with the highest priority is asked to pick an object and

she is assigned the object she picked.

• Step 2. The participant with the second-highest priority is asked to pick an object

among the remaining ones, and she is assigned the object she picked. ....

• Step N. The participant with the lowest priority is assigned to the last object that

remains.

In OSP SD, straightforward strategies are strongly obviously dominant, leading to a

Pareto efficient allocation (Pycia and Troyan, 2019).

4.2. Experimental design. In the experiment, there were eight objects and eight par-

ticipants. In all treatments, participants received 22 euros if they were matched to their

most-preferred object, 19 euros to their second most-preferred object, 16 euros to their

third most-preferred object, and so on. Participants received 1 euro if they were matched

to their least-preferred object.

Each session lasted for 21 rounds. At the end of the experiment, one round was ran-

domly drawn to determine the participants’ payoffs.
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Each round represented a new market. The preferences used in each market were gen-

erated following the designed market idea of Chen and Sönmez (2006). For each market,

agents’ ordinal preferences were generated from cardinal utilities by adding, for each ob-

ject, a common and an idiosyncratic value. The common values for each object were

drawn from the uniform distribution with the range [0, 40]. The idiosyncratic values were

drawn, for each object and each agent, from the uniform distribution with the range [0, 20].

The agent’s utility from being matched to the object was the sum of both components.

The resulting utilities were transformed into ordinal preferences. The procedure above

ensures some correlation between participants’ preferences. All objects had priorities over

participants. The priorities were independently drawn from uniform distributions, in each

round.27

We ran three treatments between-subjects: Direct, PAO, and OSP. Comparing Direct

and PAO is our main focus. We additionally ran OSP, which is only available in SD

and for a restricted set of environments in TTC – namely those with acyclic priorities

– to disentangle the effect of the sequential pick-an-object setup from the effect of the

simpler strategic setup of OSP mechanisms. To have a comparison of the treatments under

a variety of parameters, including different allocation rules, we ran three environments

within-subjects: TTC with cyclic priorities, TTC with acyclic priorities, and SD.

Note that, with respect to the TTC rule, acyclic priorities is the most applicable en-

vironment, and therefore the main focus of our analysis for that rule. TTC with acyclic

priorities is a simpler decision environment as the acyclic priorities make sure that, at

any time of the mechanism, only two participants could be at the top of the priorities of

all objects.28 TTC with acyclic priorities is implementable through an OSP mechanism,

thus allowing us to compare it to a PAO implementation of that rule. SD is arguably

the simplest allocation rule and also allows implementation through the OSP mechanism,

which also coincides with the setup of sequentially making choices from a menu. Unlike

the general PAO mechanism, it does not require the simultaneous play of participants at

the first step.

For the first 14 rounds of the experiment, participants were matched using the TTC

rule. During the first seven of these rounds, they faced markets with cyclic priorities

in the Direct and PAO treatments. Given the importance of this comparison, and to

prevent learning effects from other environments implemented within-subjects, we always

run cyclic TTC in the first seven rounds. The same markets were used for Direct and

PAO treatments. Because there is no OSP mechanism for TTC with cyclic priorities,

we also generated acyclic priorities for the first seven rounds of the OSP treatment. For

rounds eight to 14, TTC with acyclic priorities was used to match participants to objects.

The same markets were used in all three between-subjects treatments.

27For rounds with acyclic priorities, priorities were drawn from the set of acyclic priorities. A new draw
of acyclic priorities was generated for each round.
28TTC cycles, therefore, could involve only one or two agents.



PICK-AN-OBJECT MECHANISMS 23

Rounds Direct PAO OSP
1-7 TTC cyc TTC cyc TTC acyc
8-14 TTC acyc TTC acyc TTC acyc
15-21 SD SD SD

Table 1. Summary of treatments

In the first 14 rounds, participants observed the full priority tables of all objects. The

provision of priority tables is necessary, as it allows participants to see when they are

acyclic in the OSP TTC. Participants knew only their own preferences, however, and

not the preferences of other participants. They knew that other participants might have

the same or different preferences. We chose this informational environment to simplify

the processing of market information, as providing complete information would lead to a

longer decision time every round.

Finally, the SD allocation rule was used for the last seven rounds (rounds 15 to 21).

Before round 15, subjects were informed about the switch of the mechanism. In the last

seven rounds, the participants were assigned a priority score instead of observing the

priority table of objects. They knew that the higher the score, the higher the priority.

Participants were also informed that the priority scores would be drawn for each subject

and each round independently from a uniform distribution with the range [1, 100] and

each participant was informed of their own draw. This choice was made to ensure that

even the participants with the lowest score have incentives to play a meaningful strategy.

Otherwise, they would know that their choices were irrelevant for the allocation. As for

preferences, just like in the first 14 rounds, participants only knew their own preferences

and were informed that other participants might have different preferences.

Table 1 presents the summary of the experimental design. Each cell of the table rep-

resents the mechanism used. Note that we explained to each subject two mechanisms

to compare treatments under more than one allocation rule. It was feasible, as all SD

mechanisms are quite simple and straightforward to explain; thus we decided to run it

within-subjects together with the TTC mechanisms. After each round, the participants

learned the object they were matched to, but not the matches of the other participants.

The within-subject design is driven by practical considerations and the goal of com-

paring treatments under various environments. We did not randomize the order of en-

vironments intentionally because we aimed at having high statistical power for the main

comparison of the paper—PAO versus Direct under general priorities of TTC, given the

number of participants. This environment was always run first and thus represents a

clean comparison. The comparison between treatments under other environments might

be affected by subjects’ experience in the previous rounds. If subjects are more likely to

play truthfully in the next round, given the truthful play in the previous round using the

same kind of mechanism, it is possible that the design biases the results “against” the

PAO treatment and “in favor” of the OSP treatment, since players in the OSP treatment
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play OSP TTC (with acyclic priorities) for 14 rounds, while in the PAO treatment, there

were 7 rounds with acyclic priorities, followed by 7 rounds with cyclic priorities.

The experiment was run at the experimental economics lab at the Technical Univer-

sity of Berlin, from March to May 2019. We recruited student subjects from our pool

with the help of ORSEE (Greiner, 2015). The experiments were programmed in z-Tree

(Fischbacher, 2007). Independent sessions were carried out for each of the three between-

subjects treatments. Each session consisted of either 16 or 24 participants that were split

into two or three groups of eight for the entire session. We use fixed groups in order to

increase the number of independent observations and allow for maximum learning. As

every round represents a new market and subjects play under incomplete information

about the preferences of the other participants, subjects cannot identify the strategies or

identities of the players from previous rounds. Thus, we are not concerned about repeated

games caveats.

In total, 15 sessions with 296 subjects were conducted. Thus, we have 96 subjects

and 12 independent observations in Direct and PAO treatments, and 104 subjects and 13

independent observations for the OSP treatment. On average, the experiment lasted 110

minutes, and the average earnings per subject were 27 euros, including a show-up fee of

nine euros.

At the beginning of the experiment, printed instructions were given to the participants

(see Appendix B). Participants were informed that the experiment was about the study

of decision-making. The instructions were identical for all participants of each treatment,

explaining the experimental setting in detail. First, the mechanism implementing the TTC

rule was explained, with an example. The participants were told that this mechanism

would be used to match them to objects for the first 14 rounds. Then, the mechanism

implementing the SD rule was explained, also with an example, and participants were

told that this mechanism would be used to match them to objects in the last seven

rounds. After round 14, participants were reminded of the switch of the mechanism.

They were invited to re-read instructions for the second mechanism. Clarifying questions

were answered in private. Note that the switch between cyclic and acyclic priorities does

not switch the mechanism, and this change was not emphasized to subjects. They could,

however, infer the difference from the priority tables.

4.3. Experimental Results. The significance level of all our results is 5%, unless other-

wise stated. For all tests, we use the p-values of the coefficient of the treatment dummy in

regressions on the variable of interest. Standard errors are clustered at the level of match-

ing groups, and the sample is restricted to the treatments that are of interest for the test.

We use the > sign in the results between treatments to communicate significantly higher,

and the = sign to communicate the absence of statistically significant difference between

treatments.

4.3.1. Truthful reporting. The focus of the paper is the comparison of the different propor-

tions of equilibrium behavior induced by different mechanisms for the same environment.
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We consider the proportions of subjects following a dominant strategy of truthful report-

ing in the direct mechanisms, a straightforward strategy that constitutes a robust OPBE

in the PAO mechanisms, and the obviously dominant strategy in the OSP mechanisms.

To simplify the language of distinguishing between these strategies, we use the concept of

truthful strategy. A participant follows a truthful strategy under a direct mechanism when

she submits the truthful list of all eight objects.29 In PAO mechanisms and OSP-SD, a

participant following the truthful strategy is equivalent to her following the straightfor-

ward strategy. In OSP-TTC, participants following the truthful strategy must truthfully

answer the “yes-no” questions about the most-preferred object among the ones for which

the participant has the highest priority, and in case of all “no” answers, the participant

must make a truthful choice of the favourite object among the other objects.

Result 1 (Behavior in line with the truthful strategy):

(1) Under the TTC rule with cyclic priorities, the comparison of average proportions

of subjects behaving in line with the truthful strategy leads to the following results:

PAO>Direct.30

(2) Under the TTC rule with acyclic priorities, the comparison of average proportions

of subjects behaving in line with the truthful strategy leads to the following results:

OSP>PAO>Direct.31

(3) Under the SD rule, the comparison of average proportions of subjects behaving in

line with the truthful strategy leads to the following results: OSP>PAO=Direct.32

Support:

Figure 2 presents the proportions of truthful strategies played by participants by treat-

ments and rounds.

First, under the TTC rule with cyclic priorities, the average proportion of truthful

strategies under direct TTC is 20 percentage points lower than under PAO TTC. The

difference is significant. The significance of the difference is robust to modifications of

the definition of truthful strategy in the direct TTC. Note that, in the setup of cyclic

priorities, no mechanism that implements the TTC rule is OSP (Li, 2017). We observe

29Note that there are typically multiple undominated strategies, given the information available to the
subjects taking part in the experiments. We argue that the submission of the full truthful list (truncations
are not allowed by design), however, is the simplest strategy among the undominated. Nevertheless, as
a robustness check we consider alternative definitions of truthful strategies throughout the section.
30The result is robust to two changes of the definition of truthful strategy in the direct TTC. First, if
instead of requiring the full truthful list we count as truthful all truthful submissions until the guaranteed
object, the result remains the same. Second, if instead of requiring the full truthful list in the direct TTC
we count as truthful all submissions with the truthful ranking of objects until the assigned object, the
result also remains the same.
31If instead of requiring the full truthful list in the direct TTC we count as truthful all truthful submissions
until the guaranteed object, the result remains. If instead of requiring the full truthful list in the direct
TTC we count as truthful all submissions with the truthful ranking of objects until the assigned object,
the difference between Direct and PAO becomes not significant.
32If instead of requiring the full truthful list in the direct SD we count as truthful all truthful submissions
until the assigned object, the result remains. Note that under the informational conditions of the last
seven rounds, there is no such thing as “guaranteed objects.”
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Figure 2. Truthful strategies by treatments and rounds

Direct PAO OSP Direct=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 35% 55% n/a 0.00 n/a n/a
TTC acyclic 56% 67% 77% 0.00 0.00 0.00

SD 72% 75% 98% 0.47 0.00 0.00

Notes: All the p-values are for the coefficient of the dummy for the corresponding treatment in the
probit regression of the dummy for the truthful strategy on the treatment dummy, with the sample
restricted to the treatments involved in the test. The standard errors of all regressions are clustered
at the level of the matching groups. Thus, we have 24 clusters in regressions comparing Direct and
PAO treatments, and 25 clusters in regressions that involve a comparison of OSP treatment.

Table 2. Proportions of truthful strategies

that despite the strategy-proofness of direct TTC, the proportion of truthful strategies is

only 35%, which is rather low. However, this rate is comparable to some other studies in

the literature, that found similar rates of truthful reporting in TTC (for instance, 46%

in Chen and Sönmez (2006) and 41% in Hakimov and Kesten (2018).)33 Sequentializa-

tion of the mechanism through PAO leads to a significant increase in the proportion of

truthful strategies. This finding is similar to the finding of Klijn et al. (2019) and Bó and

Hakimov (2020), who show that the PAO implementation of the DA rule outperforms

the direct mechanism. This is the main comparison of the experiment—in the absence of

33Two notable exceptions are Calsamiglia et al. (2010) and Pais and Pintér (2008), who documented
higher rates of truth-telling under TTC (62% and 85%, respectively). The high rate in Pais and Pintér
(2008) is likely driven by the fact that the rank-order list contained only three schools. Note, that in
Hakimov and Kesten (2018) in an environment with five schools, the rate is just 30%.
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OSP alternatives, the PAO implementation can improve the proportions of equilibrium

behavior relative to the implementation through the direct mechanism.

Second, in the case of TTC with acyclic priorities, the OSP TTC outperforms both

PAO and Direct mechanisms. The difference is significant for both the test considering

only rounds 8 to 14, and the test considering rounds 1 to 14 in OSP TTC versus rounds 8

to 14 in Direct and PAO TTC.34 As for the difference between Direct and PAO TTC, the

proportion of truthful strategies is nine percentage points higher under PAO TTC, and

the difference is significant.35 The difference between Direct and PAO becomes smaller

in TTC with acyclic priorities than in TTC with cyclic priorities. One can argue that

learning is steeper under direct TTC. While this argument is hard to reject formally,

suggestive evidence goes against this argument. More specifically, the coefficient for the

variable “round” in the probit regression of the dummy for the truthful strategy is not

significant in either Direct or PAO TTC. Also, there is a jump in the proportion of truthful

strategies between rounds 7 and 8 under both treatments, suggesting that participants

reacted to the switch of priorities from cyclic to acyclic.

Third, for the SD rule, the use of the OSP mechanism results in almost universal (98%)

truthful behavior, as evident from Table 2. The rate of truthful strategies in OSP SD

is significantly higher than in the Direct and PAO treatments. One can argue that the

high rate of OSP is driven by the experience of subjects under OSP TTC, where the

rate of truthful strategies was already higher. Again, the within-subjects feature of the

design does not allow us rejecting this argument formally. However, note that the decision

environment under SD was quite different due to the different informational environment,

and we also notified subjects about the switch of the mechanism before round 15. Also,

the rate of truthful reporting under OSP SD is quite similar to Hakimov et al. (2021b) who

run OSP SD between-subjects. There is no significant difference between Direct and PAO.

SD is a simple allocation rule, and thus the rates of manipulations are already relatively

low under the Direct mechanism. Note that under PAO SD, participants might engage in

multiple decisions, especially when they have a low priority: every time the chosen object

is taken by someone with a higher priority, the agent is asked to pick another one.

Next, we take a closer look at the determinants of higher truthful rates under OSP.

Result 2 (The truthful strategy in OSP): In OSP TTC, the rate of truthful behavior

in the passing actions is much lower than in the clinching actions, and the difference is

significant.36

34One can argue that the difference is driven by learning, as subjects in the OSP treatment had already
played the OSP mechanism in the first eight rounds. We acknowledge the bias of our design in favor of
OSP treatment. Note, however, that the rate of truthful strategies in OSP treatment in the first seven
rounds is higher than the rate of truthful strategies under Direct and PAO in rounds 14-20, suggesting
that the difference is unlikely to be explained entirely by learning.
35Note, however, that the significance of the difference is not robust to redefining truthful strategies in
direct TTC as the truthful ranking of objects in the rank-order lists until the assigned object. In this
case, the difference between Direct and PAO becomes not significant.
36We follow the insights from Pycia and Troyan (2019) and define “passing actions” as OSP strategies,
which involve saying “no” to all objects which the agent tentatively owns under OSP TTC. Thus, the
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Support:

In line with the theory, obvious strategy-proofness leads to a higher rate of truthful

strategies both under TTC and SD. Note that, in general, OSP-TTC is not strongly

obviously strategy-proof, and the obviously dominant strategy might contain so-called

“passing” actions that require forward-looking from participants. In line with the def-

inition of Pycia and Troyan (2019), we can categorize possible paths of the obviously

dominant strategies of the participants into two groups:

(1) Clinching actions—paths of the obviously dominant strategy that contain only

clinching actions. If a participants was at the top of the priority of her favorite

remaining object by the time the OSP TTC mechanism interviewed her (thus, she

was at the top of the priority of at least one object). This strategy is strongly

obviously strategy-proof, as it does not require passing to the other player, and

thus does not require foresight from the participant.

(2) Passing actions—paths of the obviously dominant strategy that contain at least

one passing action. If a participant was not at the top of the priority of her favorite

remaining object by the time the OSP TTC mechanism interviewed her (thus, she

was at the top of the priority of at least one object). OSP requires to “pass” the

turn of the interview to another participant. This path of the obviously dominant

strategy does require foresight from the participant. In the context of OSP TTC,

these strategies require saying “no” to all objects and then picking the favorite

object among those for which the participant does not have the top priority.

Table 3 presents the proportion of truthful strategies in OSP TTC, depending on the

path of the OSP strategy. The rate of truthfulness in the passing actions is much lower

than in the clinching actions. In fact, the rate of truthfulness in passing actions is not

significantly different from truthful rates under direct TTC (p=0.94), and is significantly

lower than under PAO (p < 0.01), which are not obviously strategy-proof. In contrast,

once the path of OSP contains only clinching actions like in strongly obviously strategy-

proof strategies, the truthful rate is much higher than in other treatments and reaches

93%.

OSP TTC acyclic
N % of truthful

Clinching actions 836 93%
Passing actions 620 56%

Table 3. Truthful strategies by clinching and passing in OSP TTC

This result supports the concept of strong obvious strategy-proofness by Pycia and

Troyan (2019). Indeed, when the market is such that the preferences and priorities of the

object are strongly negatively correlated (the agents prefer objects that rank them the

agent has to pass the decision to the next agent, hoping that a better object will appear in his choice
set. “Clinching actions” are OSP strategies that require only saying “yes” to the most-preferred object
in OSP TTC. Thus, whenever an agent is asked to act, she tentatively owns the most-preferred object.
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lowest), the obvious strategy-proofness of OSP TTC might not result in the high rates of

optimal behavior, as most paths of the OSP strategy will contain passing actions.

Summing up the subsection on individual strategies, experimental results support using

the PAO mechanisms in the complex environment, where an OSP mechanism is not

available. Once the environment is simple enough to allow for the presence of the OSP

mechanisms, they should be used. The benefit of the OSP mechanisms comes mostly

through the presence of the paths in OSP that contain only clinching actions.

4.3.2. Efficiency. While our experiment focuses on the subjects’ individual behavior, we

look at the efficiency of the reached allocations in this subsection. On one side, the match-

ing game is often a zero-sum game, and a difference in efficiency is unlikely to appear.37

Thus, as in many previous experiments, we do not expect to find large differences in effi-

ciency between treatments. The differences might appear only due to Pareto-dominated

allocations.

Result 3 (Efficiency):

(1) Under the TTC rule with cyclic priorities: Direct>PAO.

(2) Under the TTC rule with acyclic priorities: Direct>PAO, OSP = PAO (round

8-14), OSP = Direct (round 8-14).

(3) Under the SD rule : Direct>OSP=PAO.

Support:

Figure 3 shows the average rank of the assigned objects under the true preferences

of participants by rounds. Thus, the higher the rank, the worse the assignment for

participants. Table 4 shows the average ranks of assigned objects by treatments. Under

TTC with cyclic priorities (first seven rounds), the average rank of the assigned objects

is significantly higher under Direct than under PAO. The difference is, on average, 0.29

of a rank. This is a large difference for matching markets experiments, as often a worse

assignment of one participant leads to a better assignment of the other. Note that we

do not present the results for the OSP treatment for the first seven rounds. Because the

comparison would not be meaningful, as the participants played under different priorities,

and thus the equilibrium allocations are different.

Under TTC with acyclic priorities, there is a small but statistically significant differ-

ence between PAO and Direct. Again, the average assignment is significantly better for

participants under the PAO treatment. There is no significant difference between OSP

and other treatments. Thus, a higher rate of truthful strategies in OSP does not result

in better average allocation of objects.

Finally, under the SD rule, the average rank in the Direct mechanism is significantly

higher than under OSP and PAO. Despite a similar rate of truthful strategies, the con-

sequence of the deviations from truthful strategies is different between Direct and PAO

37Consider the theoretical argument of (Liu and Pycia, 2016) for further details of this discussion.
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Figure 3. Average rank of assigned objects by treatments

Direct PAO OSP Direct=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 2.87 2.58 n/a 0.00 n/a n/a
TTC acyclic 2.43 2.19 2.34 0.00 0.33 0.08

SD 2.49 2.35 2.37 0.02 0.02 0.66

Notes: All the p-values are p-values for the coefficient of the dummy for the corresponding treatment
in the OLS regression of the rank of the assigned object in the true preferences of participants on the
treatment dummy, with the sample restricted to the treatments involved in the test. The standard
errors of all regressions are clustered at the level of the matching groups. Thus, we have 24 clusters
in regression comparing Direct and PAO treatments, and 25 clusters in regressions that involve
comparison of OSP treatment.

Table 4. Average rank of assigned objects in the true preferences of the
participants

treatments. At the same time, despite the large difference in truthful rates between PAO

and OSP, the average rank of assigned objects does not differ significantly.38

Summing up the subsection on efficiency, PAO outperforms Direct in all environments.

interestingly, PAO does not perform worse than OSP in both acyclyc TTC and SD, despite

lower rate of truthful strategies. This is because in PAO some deviations from truthful

strategies are payoff-irrelevant, while under OSP they are more likely to be payoff relevant

under acyclyc TTC and are always payoff-relevant under SD.

38For alternative definitions of efficiency and estimation of the costs of deviation from truthful strategies
in each treatment see Appendix B.0.1
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5. Conclusion

Recent empirical evidence raises concerns about the practical success of strategy-proof

matching mechanisms inducing truthful reporting of preferences in practical applications.

Recent work by Li (2017) shed a new light on the design of market mechanisms, emphasiz-

ing the importance of simpler and thus potentially more successful solutions for practice.

However, the hope was not long-lasting, as many desirable allocation rules cannot be

implemented via obvious strategy-proof mechanisms.

Our paper takes a different stand on potential solutions to the perceived complexity

of direct mechanisms. We suggest using PAO mechanisms when a rule cannot be imple-

mented via OSP mechanisms but belongs to an extensive family of rules, which include

many commonly considered in practice and the literature. Similarly to OSP mechanisms,

PAO mechanisms can also implement those rules with an attractive and simple equilib-

rium strategy.

Our experimental evidence, together with recent evidence by Bó and Hakimov (2020)

and Klijn et al. (2019), show that improvement over direct mechanisms in allocations

and the percentage of people following an equilibrium is possible for allocation rules for

which OSP implementation is not available. These results might appear puzzling, and

may invite further research on understanding the relative strength of different equilibrium

concepts in predicting behavior, especially of inexperienced participants.
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Appendix A. Proofs

Theorem 1. There exists a pick-an-object mechanism that sequentializes an individu-

ally rational rule ϕ if and only if ϕ satisfies monotonic discoverability.

Proof. First we assume that ϕ satisfies monotonic discoverability and show that the canon-

ical pick-an-object function S is such that its mechanism sequentializes ϕ.

Define a pick-an-object function S such that for every i and hA ∈ HA:

Si
(
hA
)

=

∅ if
∣∣ϕ (hA)∣∣ = 1 or

−→
hAi ∈ µ

ϕ
i

(
hA
)

µϕi
(
hA
)

otherwise

To show that S sequentializes ϕ, we will show that: (i) if the collective history hA is

such that
∣∣ϕ (hA)∣∣ > 1, at least one agent must be given a non-empty menu, that is, there

must be at least one i such that Si
(
hA
)
6= ∅; (ii) When an empty menu is returned for

all agents, their last choices must be the allocation that ϕ determines what should be

produced by any preference profile consistent with the collective history.

First, (i). Suppose not. Then
∣∣ϕ (hA)∣∣ > 1 and for all i, Si

(
hA
)

= ∅. By the definition

of S, this implies that for all i,
−→
hAi ∈ µ

ϕ
i

(
hA
)
. That is, the last choice of each agent is a

feasible assignment after hA.

Let −→µ be the allocation that matches each agent with her last choice in hA, that is,

for every i, −→µ (ai) =
−→
hAi , and PA be any preference profile consistent with hA. Mono-

tonic discoverability implies that either (a) for every preference profile P ′ consistent with

continuations of hA, ϕ (P ′) = −→µ , which is a contradiction with
∣∣ϕ (hA)∣∣ > 1, or (b) that

there is at least one agent ai∗ such that for all P ∈ L
(
PA,−→µ

)
,
−→
hAi∗ 6= µi∗ (P ), which is

again a contradiction with
−→
hAi∗ ∈ µ

ϕ
i∗
(
hA
)
.

Now, to (ii). Since an empty menu is given to all agents, then by the definition of S,

either (a)
∣∣ϕ (hA)∣∣ = 1 or (b) for every i,

−→
hAi ∈ µ

ϕ
i

(
hA
)
. Consider first (a). By definition

of the notation,
∣∣ϕ (hA)∣∣ = 1 implies that for all preference profiles consistent with hA,

the rule ϕ determines the same allocation. Suppose, however, that ϕ
(
hA
)
6= −→µ , and let

ai be an agent for whom ϕi
(
hA
)
6= −→µ (ai). Clearly, ϕi

(
hA
)

cannot be any choice made

before −→µ (ai) in hA, since by design of the pick-an-object mechanism it is only rejected if

it is not a feasible assignment anymore. So it can either be an object which was present in

a menu previous to the one where
−→
hAi was chosen but not in some future menu, or in the

menu given when
−→
hAi was chosen. The first option contradicts the way in which menus are

constructed: menus contain all feasible assignments conditional on the collective history.

So if at some point the object type was not feasible anymore, it cannot be that agent’s

assignment under ϕ. For the second, this implies that the allocation was determined by ϕ

to match agent ai to some object type o∗ that was not chosen. Notice, however, that since

ϕ is individually rational, a collective history cannot point to a single allocation unless

the agents’ preferences consider these objects acceptable. That is, the collective history

must include agents choosing, at some point, these objects from a menu that includes the
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option “∅”. Therefore, it cannot be the case that ϕ is individually rational,
∣∣ϕ (hA)∣∣ = 1,

and an ϕ
(
hA
)

matches some agent to an object that she did not choose from a menu.

Now, case (b). Here, all the last choices of all agents are feasible in ϕ
(
hA
)
. That is,

there is no agent who will not be matched to their last choice for a preference profile that

is consistent with ϕ
(
hA
)
. But then monotonic discoverability implies that ϕ

(
hA
)

= −→µ ,

which is what we wanted to show.

Next, we will show that if a rule ϕ does not satisfy monotonic discoverability, then it

cannot be sequentialized by some pick-an-object function S. Suppose not. Then there is

a rule ϕ∗ that does not satisfy monotonic discoverability and a pick-an-object mechanism

S that sequentializes it. Since ϕ∗ does not satisfy monotonic discoverability, there exists

a preference profile P ∗ and an allocation µ∗ such that (i*) ϕ∗ (P ∗) 6= µ∗ and (ii*) for each

agent a ∈ A, there is at least one preference profile P ∗,a ∈ L (P ∗, µ∗) where ϕ∗a (P ∗,a) =

µ∗ (a). If there is more than one such allocation µ∗ for that given P ∗, let µ∗ be such

that for every µ′ 6= µ∗ satisfying (i*) and (ii*), there is at least one a ∈ A such that

µ∗(a)P ∗aµ
′(a).

The first thing to note next is that (ii*) implies that when all agents follow straight-

forward strategies with respect to P ∗, there must be for each agent a a period in which

she chooses µ∗(a), and that this must happen before she chooses other objects that she

is matched to by ϕ∗ for any profile in L (P ∗, µ∗). That is, since when following P ∗ “up to

µ∗” there is some continuation in which a is matched to µ∗(a), then a must first choose

that object from a given menu.

The next observation is that, after the period in which a chooses µ∗(a), the determi-

nation of whether an agent a will be matched to µ∗(a) or some other object below µ∗(a)

in her preference cannot depend on that agent’s preferences among objects below µ∗(a)

in her preference, since in order to obtain information about that part of agent a’s pref-

erences requires rejecting µ∗(a) as a potential allocation for a. This implies that whether

a will be matched to µ∗(a) or not depends on information about the other agents ’ pref-

erences. More than that, (ii*) specifically implies that the conclusion that a will not be

matched to µ∗(a) cannot be reached before some other agent b makes choices after having

her choice of µ∗(b) rejected. This, therefore, has the following implications:

• Every agent a∗ following the straightforward strategy with respect to P ∗ will, in

some period, choose her allocation under µ∗,

• In any periods that follow, in which the other agents did not yet choose their

allocation under µ∗, agent a∗’s allocation may or not be determined to be µ∗ (a∗),

but will not have her choice rejected, since there is still some continuation in which

µ∗ (a∗) will be her allocation, and rejections are final.

The two implications above result in the following dynamic when agents follow straight-

forward strategies with respect to P ∗: agents make choices over menus until, at some point,

they choose their allocation under µ∗. After a certain number of periods, therefore, we

reach a point in which all agents’ last choices are their allocations in µ∗. By (i*), µ∗
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should not be the allocation, but by (ii*), for each agent, more information about the

preference profile is necessary to point out the correct allocation to be produced. This

requires rejecting at least one of the agents’ choices, but by (ii) for every agent there is a

continuation in which she is matched to her assignment under µ∗. So no more information

can be obtained when using any pick-an-object function, leading to a contradiction.

�

Proposition 1. If ϕ is described by a generalized DA procedure, then ϕ satisfies mono-

tonic discoverability.

Proof. In light of Theorem 1, it suffices to show that there is a pick-an-object mechanism

that sequentializes the rule that is specified by the generalized DA procedure. Let Ψ∗ be

the update function used to describe the rule ϕ. We construct the menu function S∗ as

follows:

S∗
(
hA−∅

)
= (O,O,O, . . .)

The value of S∗ for other collective histories are determined, recursively, as follows. Let

hA be a collective history for which the value of S∗
(
hA
)

has already been determined as

S∗
(
hA
)

= (φ1, φ2, . . . , φn).

For each choice profile (o1, o2, . . . , on), where for each i ∈ A, oi ∈ φi if φi 6= ∅ and oi = ♦
otherwise,39 perform the following:

(1) Construct the assignments µ1 and µ2 as follows:

• For every ai ∈ A:

– If oi = ♦ and hA 6= hA−∅, let µ1(ai) =
−→
hAi .

– Otherwise, let µ1(ai) = ∅.
• For every ai ∈ A, let µ2(ai) = ∅ if oi = ♦, and µ2(ai) = oi otherwise.

(2) For every ai ∈ A, define the choice history hi to be:

• hi = hAi ⊕ (φi, o
i) if oi 6= ♦,

• hi = hAi otherwise.

(3) Let µ3 = Ψ∗ (µ1, µ2).

• If for every a ∈ A it is the case that µt(3) ∈ {µ1(a), µ2(a)}, then S∗ (h1, h2, . . . , hn) =

(∅, ∅, . . . , ∅).
• Otherwise, S∗ (h1, h2, . . . , hn) = (φ′1, φ

′
2, . . . , φ

′
n), where for each ai ∈ A:

– φ′i = ∅ if µ3(ai) ∈ {µ1(ai), µ
2(ai)},

– φ′i = O\
⋃

(Ω,ω)∈hAi
ω otherwise.

Notice first that S∗ is a menu function: initial menus are the entire set O, and for every

collective history the menus given are precisely the last menu an agent was given with her

last choice removed. Since S∗ is defined recursively for each collective history that can

be generated by choices from the menus that can be offered, every possible path of the

39Here the symbol ♦ is used as a placeholder for the agents who are not presented with a menu to choose
from.
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pick-an-object mechanism is well defined. Consider now the pick-an-object mechanism S∗

and the agents in A following straightforward strategies with respect to P .

What follows is an exact reproduction of the steps of the generalized DA procedure

under the preference profile P . Since the menus always include all elements of O minus the

agents’ past choices, agents will make choices from the top until their last choice following

their preference, as in the generalized DA. Agents who have their last choices rejected and

are given new menus, for any collective history, are determined by the function Ψ∗, so

that the way in which the sequences of choices from menus determine whether an agent

is tentatively matched or not is given by that function. And finally, whenever the last

choice of agents should be determined as the outcome, S∗ returns a list of empty menus.

We can conclude, therefore, that the pick-an-object mechanism S∗ sequentializes the

rule ϕ. �

Theorem 2. A rule is pick-an-object implementable in a robust ordinal perfect Bayesian

equilibrium if and only if it is strategy-proof and satisfies monotonic discoverability.

Proof. Let ϕ be a rule that is strategy-proof and satisfies monotonic discoverability. By

Theorem 1, the mechanism Sϕ, described in the proof of that theorem, sequentializes ϕ.

That is, given some preference profile P , if every agent follows the straightforward

strategy, the pick-an-object mechanism Sϕ produces the outcome ϕ(P ).

For any set I ⊆ O, let I! denote the set of all permutations of the elements of I. For

any tuple γ of distinct elements of O, let:

P|γ ≡
⋃

λ∈(O\γ)!

γ ⊕ λ

That is, P|γ is the set of all preferences in which γ are the most-preferred object types,

ordered as in the tuple γ itself. Let also P |I , where I ⊆ O, be the preference P restricted

to I.

We will use the following claim:

Claim. Let Sϕ be a pick-an-object mechanism, and hA be any collective history in HA
Sϕ.

Then, there is a list of tuples (γ1, γ2, . . . , γn), each with distinct elements of O, such that

the set of outcomes produced by Sϕ in any continuation history of hA is given by:

⋃
P∈P|γ1×···×P|γn

ϕ (P )

Proof. Given the definition of Sϕ, agents’ choices are used as revealed preference, and the

allocation that is produced is one that ϕ indicates being the unique allocation for the

preference profiles consistent with these choices. By assumption, all agents followed some

arbitrary strategy up to the collective history hA.

When considering any agent a ∈ A, after the menus that were given to her and her

choices, present in collective history hA, there are potentially multiple preferences over
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the objects in O\µϕa
(
hA
)

that are consistent with the choices made by a. One thing we

can say, however, is that none of the objects in µϕa
(
hA
)

were chosen, since all of them

may still become an outcome for a in a continuation collective history, by the definition

of µϕa itself. We can partition O into three sets Oa
1 , O

a
2 , O

a
3 : Oa

1 being the set of objects

that a chose from a menu in some period in hA, Oa
2 = µϕa

(
hA
)
, and Oa

3 having all the

other objects.

Clearly, any preference Pa in which:

• (i) o ∈ Oa
1 and o′ ∈ Oa

2 implies oPao
′ and

• (ii) o ∈ Oa
1 , o′ ∈ Oa

1 , and o was chosen by a in hA before o′ implies oPao
′

is consistent with the collective history hA. Moreover, any continuation history of hA

is consistent with preferences with the following structure:

oa1,1 Pa o
a
1,2 Pa · · ·Pa oa1,k Pa {Oa

3} Pa {Oa
2}

where
(
oa1,1, o

a
1,2, . . . o

a
1,k

)
is the set Oa

1 ordered by the period in which the object was

chosen by a from a menu in , and {Oa
3} and {Oa

2} represent any permutation of the

elements in these sets.40 Since, for each agent a, all menus and choices that will take place

in any continuation collective history involve only objects in Oa
2 , continuation histories

will be consistent with any particular ordering of the objects in Oa
3 .

For every a and Oa
3 defined above, let oa3,1, o

a
3,2, . . . , o

a
3,` be a permutation of the elements

of Oa
3 . The reasoning above allows us to conclude, therefore, that conditional on hA, the

outcome that will be produced by the pick-an-object mechanisms in question is ϕ (P ∗),

where for each agent a ∈ A its preference in the profile P ∗ is the following:

P ∗a = γa ⊕ λa
where:

γa =
(
oa1,1, o

a
1,2, . . . , o

a
1,k, o

a
3,1, o

a
3,2, . . . , o

a
3,`

)
and λa is a permutation of the elements of Oa

2 consistent with the choices made by

a, after the collective history hA, over subsets of Oa
2 . Since Sϕ sequentializes ϕ, any

combination of values of (λa)a∈A above which lead to different outcomes under ϕ are

continuation collective histories of hA in HA
Sϕ . Therefore, for every P ∈ P|γ1 × · · · × P|γn

and µ = ϕ(P ), there is a collection of tuples (λa)a∈A such that the preference profile P ∗

constructed above is such that µ = ϕ(P ) = ϕ (P ∗), finishing the proof. �

We will also use the following result, which is a corollary from Theorem 1 in Haeringer

and Ha laburda (2016):

40Note that preferences in which the objects in Oa
3 are intertwined between the objects in Oa

1 and Oa
2

are also consistent with hA. But since the pick-an-object mechanism being considered produces an
outcome without eliciting more information, we can safely conclude that the allocation rule yields the
same allocation for any preference consistent with those choices, in particular those preferences in which
all objects in Oa

1 are preferred to all objects in Oa
3 , which in turn are all preferred to the objects in Oa

2 .
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Corollary 1. [Haeringer and Ha laburda (2016)] For every agent a, preference Pa, pref-

erences of other agents P−a, set I ⊆ O, permutation γ of I and P ∗ ∈ P|γ:

ϕa

(
γ ⊕ P |O\I , P

−a
)
Raϕa

(
P ∗, P−a

)
Suppose now, for contradiction, that ϕ is not implementable in robust OPBE. Then,

there is a belief system θ for which a strategy profile in which all agents follow straight-

forward strategies is not an OPBE. That is, there is an agent a and a strategy σ′a, which

is not straightforward after hA, for which Oθa
(
hA, (σa, σ−a)

)
does not first-order stochas-

tically dominate Oθa
(
hA, (σ′a, σ−a)

)
, where (σa, σ−a) is the strategy profile in which all

agents follow strategies that are straightforward in any continuation of hA. That is, if

A = Oθa
(
hA, (σa, σ−a)

)
and A′ = Oθa

(
hA, (σ′a, σ−a)

)
, there is an object o ∈ O for which:

Pr {A = o′|o′Rao} < Pr {A′ = o′|o′Rao}

That is, the probability of obtaining an object at least as good as o is strictly higher

under A′ than under A. Since these random outcomes are produced by a distribution

over deterministic outcomes, this in turn implies that there is at least one collective

history hA∗ ∈ Iai , where hA ∈ Iai 41 and θa
(
hA∗
)
> 0, in which the deterministic outcome

of following the strategy profile (σ′a, σ−a) after hA∗ is strictly preferred by a over the

deterministic outcome that a obtains under the profile (σa, σ−a) after hA∗. Let θ∗ be a

belief system in which θa
(
hA∗
)

= 1, o = Oθ∗a
(
hA∗, (σa, σ−a)

)
and o′ = Oθ∗a

(
hA∗, (σ′a, σ−a)

)
(notice that since θ∗ is degenerate at the information set Iai , outcomes are deterministic

for any given strategy profile). Since o′Pao, the outcome of following the strategy profile

(σ′a, σ−a) is different from following (σa, σ−a), implying that under the first profile, agent

a makes at least one choice from a menu that is not straightforward. That is, agent a

chose a less preferred object with respect to Pa than another that was in the menu.

As by the claim above, the outcome of following the profile (σa, σ−a) after hA∗ is

ϕ
(
P ∗a , P

∗
−a
)
, whereas following the profile (σ′a, σ−a) after hA∗ yields ϕ

(
P ∗∗a , P

∗
−a
)
, where

P ∗a and P ∗∗a differ only in how they rank the objects in O\γa, all of them being at the tail

of a preference ranking that is the same for all the remaining objects. Since P ∗a ranks the

objects in O\γa with respect to Pa and P ∗∗a does not, agent a obtaining a more preferred

object under ϕ
(
P ∗∗a , P

∗
−a
)

contradicts the recursive dominance of ϕ.

Finally, suppose that there is a rule ϕ∗ which is not strategy-proof but is pick-an-object

implementable in a robust OPBE. Let the pick-an-object mechanism Sϕ∗ implement ϕ∗

in a robust OPBE. By theorem 1, ϕ∗ satisfies monotonic discoverability. Since ϕ∗ is not

strategy-proof, then there is a preference profile P , an agent a ∈ A and a preference

P ′a 6= Pa for which:

ϕa (P ′a, P−a) Pa ϕa (Pa, P−a)

41That is, hA∗ and hA are in the same information set.
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For any agent a, let σa denote the straightforward strategy with respect to Pa, and

σ the corresponding strategy profile. Since Sϕ∗ sequentializes ϕ∗, when all agents follow

σ, the outcome produced by Sϕ∗ is ϕa (Pa, P−a). Moreover, the outcome ϕa (P ′a, P−a)

is produced when all agents but a follow straightforward strategies, and a follows the

deviation strategy σ′a, “straightforward as if her preference was P ′a”. Clearly, since the

outcome is different, when following the deviation strategy σ′a, agent a makes at least

one choice that is not straightforward. Consider next the earliest collective history hA

in which the choices under the profiles σ and (σ′a, σ−a) differ, and a belief system θ for

which θa
(
hA
)

= 1. By assumption, by following σ′a instead of σa after hA, agent a is

strictly better off. Which is a contradiction with σa first-order stochastically dominating

any other strategy, including σ′a.
42 �

Theorem 3. Every non-bossy OSP implementable rule is pick-an-object implementable

in weakly dominant strategies.

Proof. We prove the result by constructing a pick-an-object mechanism which serves as an

interface between the agents and the millipede game of the OSP mechanism. Let ϕOSP be

an OSP-implementable rule. Then, by Pycia and Troyan (2019), there is a millipede game

Γ where, for every preference profile P , each agent following a greedy strategy with respect

to their preference, results in the allocation ϕOSP (P ). In the game Γ, Nature moves once,

at history h∅43, and all players have perfect information. For every non-terminal history

h (except for the one in which Nature moves,) there is an associated player P (h) ∈ A and

a menu φ(h).

By the definition of the millipede game in Pycia and Troyan (2019), the menu φ(h)

might contain multiple items, each of them associated with an element of O, and at most

one pass option. In principle, there might be multiple items associates with the same

o ∈ O, and the choice among these options be consequential to the final allocation for

other players. The characterization of OSP mechanisms as milipede games associated

with a greedy strategy allows for that selection to depend on the preferences of the player

making that choice. For example, you could have an agent a who receives a menu φ(h)

containing, among other options, items ω and ω′. Choosing either will result in a being

assigned object o, but the greedy strategy associated with this millipede game indicates

that the agent chooses ω if her preference is oPao
′Pao

′′, but ω′ if her preference is oPao
′′Pao

′.

Non-bossiness, however, implies that even if Γ contains multiple items for the same

private allocation that are chosen, under the greedy strategy, when the agent has differ-

ent preferences, these must result in the same allocation, fixed the other agents’ greedy

strategies. Therefore, every item associated with a private allocation is equivalent to

42Notice that since outcomes are deterministic, first-order stochastic domination here translates into no
deviation leading to better outcomes than σa/
43If Nature does not move, then we can simply consider that Nature chooses a constant action at h∅.
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each other. This allows us to assume, instead that items in the menu given to the play-

ers in a millipede game consist are all objects, with at most one pass option. That is,

φ(h) ⊆ O ∪ {pass}.
With that, we can define the set of clinchable objects for agent a at continuations of h

as follows:

Ca(h) =
⋃

h′∈P−1(a):h⊆h′
φ(h′)\{pass}

That is, Ca(h) is the set of objects that are given in a menu to player a at some

continuation history from h. The menu function S for the pick-an-object mechanism that

we are constructing is such that S
(
hA−∅

)
=
(
Ca1

(
h∅
)
, Ca2

(
h∅
)
, . . . , Can

(
h∅
))

. The value

of S
(
hA
)

for any collective history hA = (h1, h2, . . . , hn) is defined as follows:

• Let hji be the jth item in hi, and hji =
(
Ωi
j, ω

i
j

)
. That is, Ωi

j is the jth menu faced

by agent ai, in which she chose the item ωij ∈ Ωi
j.

• Let h = h∅ and for all i = 1, . . . , n, let ηi = 1. Follow the game tree in Γ by

making the agents play as follows:

– Step 0: If h is a terminal node of Γ, then we can determine the value of

S
(
hA
)

to be (∅, ∅, . . . , ∅).
– Step 1: Let ai = P (h). That is, ai is the active player at history h. If ωiηi 6∈
Cai(h) and ηi < |hi|, increase the value of ηi by 1. Otherwise, if ωiηi 6∈ Cai(h)

and ηi = |hi| we can determine the value of S
(
hA
)

to be (φ1, φ2, . . . , φn),

where φj = ∅ if ωjηj ∈ Caj(h), and φj = Caj(h) otherwise.

– Step 2: If ωiηi ∈ φ(h), follow the node that represents choosing ωiηi , and let

h be the history that follows that choice. Otherwise, choose the node Pass,

and let h be the history that follows that choice. In either case, go back to

step 0.

Notice that the procedure above will produce a list of menus for any collective history,

even those which could never take place under a pick-an-object mechanism. To get our

result, however, it suffices for us to show that collective histories that are generated

by agents following straightforward strategies while interacting with the pick-an-object

mechanism S described above are translated to greedy strategies from these same agents

playing the game Γ.

Suppose then, for contradiction, that agents follow straightforward strategies while

interacting with the pick-an-object mechanism S but that is not translated, in the de-

scription above, into these agents following greedy strategies. That must imply, therefore,

that there is an agent a∗ ∈ A who in the procedure described above either (i) chooses

Pass at some history h∗, and the most-preferred element in Ca∗ (h∗) with respect to Pa∗

is in φ (h∗), or (ii) chooses an object o ∈ φ (h∗) while there is another object o′ ∈ Ca∗ (h∗)

for which o′Pa∗o.
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Fist, consider case (i). Notice that, by the definition of the value of S
(
hA
)

and by the

description of Step 1, every time an agent receives a menu of objects, that menu contains

all objects in the continuation outcomes of the history that is reached by following the

collective history that precedes the offering of that menu. Moreover, Step 1 also implies

that whenever a history h in which the last choice made by a∗ from a menu is not in

Ca∗ (h), the procedure does not follow the game Γ after h. Therefore, at every history

h, the last choice made by a∗ in her choice history is her most-preferred object in Ca∗(h)

with respect to Pa∗ . Step 2 requires that Pass would only be chosen if that last choice

was not in φ (h∗), a contradiction.

Next, case (ii). In the previous paragraph we established that every time an agent

receives a menu of objects, it contains all objects in the continuation outcomes. Since the

agent chooses o in the game Γ, Step 2 and the way in which the pick-an-object mechanism

works requires that o must have been the last choice made by a∗. Since both o and o′

are in Ca∗ (h∗), they both must be in the menu from which a∗ chose o. But that means

that o′Pa∗o and a∗ chose o from a menu containing o′, which is a contradiction with a∗

following the straightforward strategy.

Finally, note that any deviation from straightforward strategies in the pick-an-object

mechanism S either leads to the same paths through Γ as the greedy strategy or to different

ones. Since the greedy strategy is obviously dominant in Γ, then it weakly dominates

any other strategy, including any deviation induced by deviations from straightforward

strategies in S. Therefore, straightforward strategies are weakly dominant in the pick-an-

object mechanism S.44 �

Appendix B. Additional experimental results

B.0.1. Alternative efficiency definitions. Given the fact that it might be the case that the

equilibrium allocation has a lower sum of ranks than the allocation when a participant

deviates from the truthful strategy, it is essential to look at different criteria. One measure

of the success of the mechanism is whether the desired allocation is reached. This approach

is used in Li (2017) to estimate the performance of direct versus OSP SD. We adopt this

approach for all treatments. Note, however, that in Li (2017), the market consists of four

participants, while in our case, it consists of eight participants. In the larger market, we

can expect a lower rate of the equilibrium allocations reached, as it is enough for one

participant in the group to deviate from truthful strategy in the consequential way to

distort the whole allocation.

44Notice, however, that straightforward strategies may not be obviously dominant in the game induced
by the pick-an-object mechanism S. One can easily see, for example, that in the pick-an-object imple-
mentation of serial dictatorship used in our experimental section, the worst outcome that could come
from following a straightforward strategy is typically worse than the best outcome that can come from a
deviation from it in the first step of the mechanism.
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Direct PAO OSP Direc=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 5.9% 5.9% n/a 1.00 n/a n/a
TTC acyclic 22.6% 26.2% 12.6% 0.72 0.05 0.01

SD 38.1% 50% 83.% 0.16 0.00 0.00

Notes: All the p-values are for the two-sided Fisher exact test for equality of proportions of the
equilibrium strategy allocations by treatments. test is performed on the allocation-level data

Table 5. Proportions of equilibrium allocations reached.

Table 5 presents the proportion of equilibrium allocations by treatments. Under TTC

with cyclic priorities, only 5.9% of allocations in Direct and PAO were equilibrium allo-

cations. This low rate is not surprising, given the rate of the truthful strategies manip-

ulations, and the fact that even one consequential manipulation distorts the allocations.

Under TTC with acyclic priorities, we observe that the OSP treatment has the lowest

rate of equilibrium allocations. Despite the higher rate of truthful strategies, as every

deviation from the truthful strategy more likely to be consequential for the allocation,

it leads to only 12.6% of equilibrium allocations on average, which is significantly lower

than in Direct and PAO treatments. Finally, under SD, OSP outperforms Direct and

PAO mechanisms. Thus, we replicate the finding by Li (2017).

While the comparison of the rate of equilibrium allocations is useful for a smaller

market, or under very low deviations from truthful strategies, we think the criterion is

not very informative about the consequences of deviations in the case of a high rate of

deviations from truthful strategies. Another approach would be to analyze the difference

in the consequence of deviation from truthful strategies from an individual perspective

by treatments. We define cost of deviation as the average difference between the payoffs

of those who played truthfully and those who deviated from truthfulness, controlling for

the role in the market.

Result 4 (Cost of deviation from truthful strategy):

(1) Under the TTC rule with cyclic priorities the average cost of deviation from the

truthful strategy under Direct is 3.97 euros, under PAO 3.61 euros, with no sig-

nificant difference between treatments.

(2) Under the TTC rule with acyclic priorities the average cost of deviation from the

truthful strategy in Direct is 2.43 euros, in PAO 1.98 euros, and in OSP 3.36 euros

with no significant difference between treatments.

(3) Under the SD rule the average cost of deviation from the truthful strategy in

Direct is 2.53 euros, in PAO 1.55 euros, and in OSP 6.01 euros with all differences

between treatments being statistically significant.

Support:

Table 6 presents the results of the OLS estimation of the effect of misreporting on the

payoff of the subjects.
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(1) (2) (3)
Payoff Payoff Payoff

TTC cyclic TTC acyclic SD
Non-truthful strategy -3.97*** -2.43*** -2.53***

(.29) (.29) (.24)
Non-truthful in PAO .38 .45 .98**

(.39) (.38) (.36)
Non-truthful in OSP -.93 -3.48***

(.60) (.76)
Dummies for each participant ID in each round yes yes yes
Observations 1344 2800 2072
No. of clusters 24 37 37
R2 .287 .370 .759
log(likelihood) -4063.06 -7796.13 -5136.51

Notes: OLS regression. * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at
the level of matching groups and are presented in parentheses. Non-truthful is a dummy for
not playing the truthful strategy. Non-truthful in PAO is the interaction of the Non-truthful
dummy and the dummy for PAO treatment. Non-truthful in OSP is the interaction of the
Non-truthful dummy and the dummy for OSP treatment.

Table 6. OLS regression of payoff on the dummy for non-truthful strategy

Each regression includes 56 dummies for each combination of ID and round, to account

for the “role-specific” fixed effects, as the roles (a combination of preferences and pri-

orities/scores) vary the prospects of earning high payoffs. Thus, the coefficient for the

non-truthful dummy presents the average differences between subjects who play truth-

fully relative to subjects who play non-truthfully in the Direct mechanism, controlling for

the role of the subjects. Under TTC with cyclic priorities (Model (1) of Table 6), the

deviation from the truthful strategy, on average, leads to a loss of 3.97 euros in Direct

(note that the maximum payoff for the allocation is 22 euros), while the deviations are 38

cents less costly in PAO, though the difference is not significant. Under TTC with acyclic

priorities (Model (2) of Table 6), the deviation from the truthful strategy, on average,

leads to a loss of 2.43 euros in Direct, while the deviations are 45 cents less costly in PAO,

and 93 cents more costly in OSP, though the differences are not significant. Finally, under

SD, (Model (3) of Table 6), the deviation from the truthful strategy, on average, leads to

a loss of 2.53 euros in Direct, while the deviations are 98 cents less costly in PAO, and

3.48 euros more costly in OSP, with all differences being significant. The difference can

be explained by the fact that skipping in PAO is less consequential, due to intermediate

updates on which objects are left for allocation, which is not the case in Direct. The

highest cost of deviations in OSP can be explained by the fact that all deviations from

the truthful strategy are payoff-relevant in SD, as it is a unique equilibrium strategy in

OSP, unlike in the other treatments.
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