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Abstract

This paper extends the theory of general equilibrium with Knightian uncertainty
to economies with more than two dates. Agents have incomplete preferences with
multiple priors à la Bewley. These priors are updated in light of new informa-
tion. Contrary to the two-date model, the market outcome varies with choice of
updating rule. We document two phenomena: First, agents may find it optimal to
deviate from their initial trading plans. This dynamic inconsistency may result in
Pareto inefficiency, even if the market is dynamically complete. Second, ambiguous
probability mass may spread; new information may create new uncertainty. Ei-
ther phenomenon is avoided under certain updating rules: Full Bayesian updating
guarantees dynamic consistency and Pareto efficiency, while maximum-likelihood
updating prevents ambiguity spillovers. We ask whether it is possible to design
updating rules that combine both properties. The answer is negative: No such rule
exists.
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1 Introduction

Two of the central themes of economic theory are decisions and markets. Consider the
sequential decision problem of a market participant as information unfolds gradually over
time. There is little disagreement among economists that better information should reduce
uncertainty, but substantially more disagreement about the exact meaning of uncertainty.
In expected utility theory, uncertainty is represented by states of the world, and agents
assign probabilities – this is uncertainty in the traditional sense. By contrast, Knight
(1921) reserves the term uncertainty for circumstances that do not permit the assignment
of precise probabilities – uncertainty in the Knightian sense. Both types of uncertainty are
synthesized in the Knightian decision model of Bewley (1986, 2002), which is a multiple-
prior generalization of the subjective expected utility model of Savage (1954). Some events
have ambiguous probabilities, but the agent has no attitude toward ambiguity: Knightian
uncertainty results in incomplete preferences. The purpose of the present paper is to study
competitive equilibria when agents with Bewley-type preferences meet in a multi-period
financial market.

We build on the important contribution of Rigotti and Shannon (2005), who generalize
the model of Arrow and Debreu (1954) to a setting with multiple priors. Two of their
findings are particularly relevant in our context: First, Knightian uncertainty results in
indeterminacy in equilibrium prices and allocations. Second, all equilibria are Pareto
efficient. This welfare result is strong but limited to a very particular type of market:
The only traded assets are state-contingent claims, and trade takes place only once. After
the market has closed, the state of the world is revealed and all agents consume. We
call this the two-date model, but it may also accommodate contingent claims for multiple
future dates, as in Dana and Riedel (2013). The present paper considers a more general
financial market, in which there are long-lived assets with repeated dividend payments,
and these are traded at several consecutive dates. Thus, we generalize the two-date model
with Knightian uncertainty in the same way as Radner (1972) generalizes the traditional
Arrow-Debreu model.

The fundamental difference from the two-date model is that agents receive new infor-
mation on several consecutive dates. Their information processing is represented by an
updating rule that translates prior probabilities into posterior probabilities. In the tradi-
tional single-prior setting, Bayes’ law determines the unique updating rule. In a setting
with multiple priors, this is no longer true: A large set of updating rules is consistent with
Bayes’ law, and different agents may apply different rules. This matters in an equilibrium
of plans, prices, and price expectations: Even though all agents form common and consis-
tent price expectations and plan their trades and consumption in advance, some may find
it optimal to deviate from their plans once they receive better information. These agents
conclude that their plans were made under priors that are no longer consistent with the
observed data. This leads to dynamically inconsistent decisions. We characterize dynamic
consistency at the equilibrium level and find that dynamically inconsistent equilibria can
be pervasive:

1. There are economies in which all equilibria are dynamically consistent and economies
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in which all equilibria are dynamically inconsistent (Theorem 1 and Corollary 1).

As a consequence, dynamic consistency is not suited as a criterion of equilibrium
refinement because it may eliminate all equilibria, or none. This raises the following ques-
tion: Are dynamically inconsistent equilibria problematic from a normative viewpoint?
To address this question, we apply two normative criteria. The first is Pareto efficiency,
the most common criterion of social optimality. The second is that agents do not forget
previous knowledge, which is a fundamental criterion of individual rationality.

As regards social optimality, it must be noted that financial market equilibria are
typically not Pareto efficient when the financial market is incomplete. To eliminate con-
founding welfare effects of market imperfections, we study the special case of a dynamically
complete market. Classical results of Kreps (1982) and Magill and Shafer (1990) show
that the payoff space of a complete contingent claims market is spanned by a dynami-
cally complete financial market. Even in such a perfect market, dynamic inconsistency
may result in Pareto inefficient outcomes. We construct a tractable example in which
all financial market equilibria are Pareto inefficient, in spite of dynamic completeness.
Such undesirable market outcomes can be eliminated if the choice of updating rules is
restricted. Dynamic consistency and efficiency are restored if all agents apply the full
Bayesian rule:

2. Full Bayesian updating guarantees dynamic consistency and Pareto efficiency of
equilibria with a dynamically complete market (Corollary 2 and Corollary 3).

As regards individual rationality, we require that agents use information to reduce un-
certainty. Put differently, a release of new information must not create new uncertainty.
However, it is easy to construct examples where this criterion is violated: Under some
updating rules, ambiguous probability mass spreads to unambiguous events. Agents be-
come uncertain about probabilities they knew before. We define a condition of ambiguity
containment that prevents such ambiguity spillovers. This condition is met if all agents
apply the maximum-likelihood rule:1

3. Maximum-likelihood updating guarantees ambiguity containment (Proposition 1).

It should be noted that the maximum-likelihood rule creates a propensity to trade
after an information release. This stands in contrast to the phenomenon of market break-
downs documented in various multi-prior settings, first by Mukerji and Tallon (2001) in
a replication economy with ambiguity-averse traders. In an economy with preferences
of the Bewley type, this phenomenon takes the form of a no-trade result: Rigotti and
Shannon (2005) show that trade in the contingent claims market is no longer individually
rational when uncertainty grows large. For a financial market that opens sequentially,
we find the contrary: No-trade equilibria do not exist as long as some agents apply the
maximum-likelihood rule.

1For an analysis and comparison of the full Bayesian rule and the maximum-likelihood rule see Gilboa
and Schmeidler (1993).
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Since both of our normative criteria are standard in the single-prior setting, a natural
objective is to identify an updating rule that guarantees these jointly, even if agents have
multiple priors. However, this objective cannot be achieved:

4. There exists no updating rule that satisfies Bayes’ law and guarantees both dynamic
consistency and ambiguity containment (Corollary 5).

In light of this impossibility result, we ask whether there is a nontrivial subset of
economies in which this conflict between normative criteria disappears. This question
is answered in the affirmative: We characterize unproblematic economies, in which full
Bayesian updates and maximum-likelihood updates coincide. Our characterization is
based on a simple criterion for information partitions: If some observable event and some
unambiguous event are neither disjoint nor related by set inclusion, the two normative
criteria are at odds; otherwise, the conflict disappears. This criterion is strictly weaker
than the rectangularity condition of Epstein and Schneider (2003), which characterizes
dynamic consistency in the maxmin expected utility model of Gilboa and Schmeidler
(1989). The latter shares with the Knightian decision model of Bewley (1986, 2002)
its representation of multiple priors but employs a decision criterion that is based on
ambiguity aversion.2

Two relations between the Knightian decision model and maxmin expected utility are
highlighted by our results. First, while Hanany and Kilbanoff (2007) show that there
exists no updating rule that satisfies Bayes’ law and dynamic consistency under maxmin
expected utility, we prove that such a rule exists in our setting: It is the well-known
full Bayesian rule. Thus, dynamic consistency is a stronger requirement under maxmin
expected utility. Second, if one resorts to rectangularity to ensure dynamic consistency,
the conflict between normative objectives goes unnoticed. The rectangularity condition
is sufficiently strong that all equilibria are dynamically consistent and free of ambiguity
spillovers at the same time. This is true for both decision theoretic models, although the
quantification all equilibria is weaker under maxmin expected utility. For the latter, the
results of Rigotti and Shannon (2012) show that equilibria are generically determinate.
Interestingly, there are exceptions: Mandler (2013) points out that indeterminacy can be
robust if agents have access to a production technology.

The remainder of this paper is structured as follows. In Section 2, the model is intro-
duced. In Section 3, equilibria under different updating rules are studied in a tractable
example. In Section 4, all general results are derived and discussed. Section 5 concludes.

2 Model

Consider a stochastic finance economy with a finite state space Ω. The economy is
populated by a finite number I of agents, who plan their consumption at the present date
0 and over a finite number T of future dates.

2Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) construct a bridge between these two models.
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2.1 Uncertainty and Knowledge

At date 0, the state of the world is drawn from Ω but not revealed to the agents. Each
agent i assigns subjective probabilities πi(ω) to all states ω ∈ Ω. The agent may have
multiple priors, each represented by a different probability vector πi ∈ ∆|Ω|, which is the
unit simplex in R|Ω|. All these probability vectors are collected in a set Πi, which satisfies
the following assumption:

Assumption 1 (Subjective probabilities). For each agent i, Πi is closed and convex. For
each state ω ∈ Ω, there is some πi ∈ Πi such that πi(ω) > 0.

At each date t > 0, new information about the state of the world is released. This
gradual revelation is modeled as a sequence of information partitions I = {It}Tt=0. Each
event ξ ∈ It is an information set: It consists of all those states that cannot be distin-
guished on the basis of the information available at date t. The information structure
I represents uncertainty in the traditional sense. Initially, at date 0, none of the states
can be distinguished; that is, I0 = {Ω}. The information partitions become finer as time
progresses. Finally, at date T , the state of the world is known; that is, IT = {{ω}ω∈Ω}.
Thus, the information structure defines a tree of date-events (t, ξ).

Each agent i updates his subjective probabilities on observing an event ξ ∈ Ω. The
updating rule of agent i is a closed-convex-valued correspondence Πi : 2Ω ⇒ ∆|Ω| from
the observed event ξ to his set of posterior probabilities Πi(ξ). This rule must satisfy
Πi(Ω) = Πi, and since we follow the convention of dropping parentheses whenever Ω is
the argument, there is no notational ambiguity between the updating rule and the set of
prior probabilities. Bayesian updating is the natural rule in the single-prior case: The
unique posteriors are the conditional probabilities

πi(ω|ξ) =

{
πi(ω)
πi(ξ)

if ω ∈ ξ
0 otherwise

. (1)

By contrast, in the multi-prior case, the set of candidate updating rules is large, and
the literature has not yet reached a consensus. A minimal requirement is Bayes’ law:

Definition 1. An updating rule Πi satisfies Bayes’ law if for any ξ ⊆ Ω the following
condition is true:

πi ∈ Πi(ξ) =⇒ ∃π̂i ∈ Πi with πi( · ) = π̂i( · |ξ) .

Each agent may have his individual updating rule, as long as this rule is consistent
with Definition 1. As we shall see, two candidates for Πi are particularly relevant from a
normative viewpoint. The first is the so-called full Bayesian rule:

Πi
B(ξ) =

{
πi( · |ξ)

∣∣ πi ∈ Πi
}
. (2)

It applies Equation (1) prior by prior and is therefore the least selective updating rule
that satisfies Bayes’ law. By contrast, only those priors that assign the highest probability
to the observed event are considered under the maximum-likelihood rule:
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Πi
M(ξ) =

{
πi∗( · |ξ)

∣∣∣∣ πi∗ ∈ arg max
πi∈Πi

πi(ξ)

}
. (3)

In general, the updating rule determines how the set of subjective probabilities evolves
over time and is thus a complete description of Knightian uncertainty as faced by agent
i. If it assigns a unique probability to an event, this event is called unambiguous ; if it
assigns multiple probabilities, the event is called ambiguous. Since uncertainty depends
on information, the classification of unambiguous and ambiguous events may change over
time. This classification can be represented as a sequence of ambiguity partitions. Let
prζ denote the projection onto the subspace of those states contained in ζ.

Definition 2. The ambiguity partition Ai(ξ) of agent i, conditional on event ξ, is the
finest possible partition of Ω such that the set of posterior probabilities can be decomposed
as the Minkowski sum

Πi(ξ) =
∑

ζ∈Ai(ξ)

prζ(Π
i(ξ)) . (4)

In other words, after ξ is observed, Ai(ξ) is the finest partition that contains only un-
ambiguous events. There is no uncertainty about the probabilities of its cells: If ζ ∈ Ai(ξ),
then πi(ζ) = π̂i(ζ) for any πi, π̂i ∈ Πi(ξ). All events in Ai(Ω) = Ai are unconditionally
ambiguous.3

The knowledge of agent i at any date-event (t, ξ), with ξ ∈ It, is summarized by the
tuple (ξ,Πi(ξ)), which consists of his information set and his set of posterior probabilities.
The normative criterion that agents do not forget what they knew, requires that informa-
tion partitions and ambiguity partitions become progressively finer over time: If t > s,
then It is finer than Is; if ξ ⊆ ξ′, then Ai(ξ) is finer than Ai(ξ′). If one of these two
conditions is violated, new information creates new uncertainty, either in the traditional
or Knightian sense.

2.2 Preferences and Decisions

Let S denote the space of all real-valued stochastic processes that are measurable with re-
spect to the filtration generated by I, with the inner product x·y =

∑T
t=1

∑
ξ∈It xt(ξ)yt(ξ).

By contrast, x⊗ y denotes the componentwise product. The consumption set S+ = {x ∈
S |x ≥ 0} is defined as the cone of nonnegative processes. Note that x ≥ 0 means all
components are nonnegative, x > 0 means at least one component is not zero, and x� 0
means all components are greater than zero.

Each agent i has a preference relation x �i y over consumption plans x, y ∈ S+; that
is, agent i prefers x to y. Let Eπi [ · ] denote the expectation operator under πi. The
preferences of all consumers are assumed to be of the following form:

Assumption 2 (Preferences). For each agent i,

x �i y if and only if Eπi [ui(x)] > Eπi [ui(y)] ∀πi ∈ Πi ,

3Epstein (1999) calls the members of Ai and all their unions the collection of unambiguous events.
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in which ui : RT+1
+ → R is continuous, strictly increasing, strictly concave, and differen-

tiable in RT+1
++ .

Under Assumption 2, each �i is completely described by the pair (Πi, ui). If Πi is a
singleton, the agent is a traditional expected utility maximizer. However, if Πi is a larger
set, the agent’s preferences are transitive, monotone, and convex but incomplete. Some
plans are always comparable: If x � y, then the expected utility of x must exceed the
expected utility of y under any possible probability distribution.

While the above formulation makes expected utility theory appear to be a special
case of Knightian decision theory, it should be stressed that the decision criterion is fun-
damentally different: Expected utility maximizers base their decisions on a criterion of
optimality. A decision is optimal if it is preferred to all its alternatives. By contrast,
Knightian decision makers rely on a criterion of undominatedness. A decision is undomi-
nated if there is no preferred alternative.4 Since optimality implies undominatedness, the
latter is a weaker criterion. In fact, it is a criterion too weak to rule out erratic behavior
in the case of sequential decisions: Agents may switch back and forth between two un-
dominated plans for no reason. To avoid such intransitive choices, Bewley (1986, 2002)
introduces the behavioral assumption of inertia: An agent deviates from the status quo
only if the status quo is dominated by the new consumption plan.

The ranking of plans may change as new information becomes available. The condi-
tional preference relation of agent i on observing ξ is jointly determined by Assumption
2 and the update Πi(ξ):

x �iξ y if and only if Eπi [ui(x)] > Eπi [ui(y)] ∀πi ∈ Πi(ξ) .

We shall write x �it y whenever x �iξ y for all ξ ∈ It. Therefore, an agent’s ranking
of alternative consumption plans depends on his information, his updating rule, and his
utility function.

2.3 Financial Market Equilibrium

Each agent i has a stochastic endowment ei ∈ S+. Since the number of date-events
is finite, any process in S can be viewed as a vector whose components are indexed as
follows: eit(ω) represents the endowment at date t in state ω, and ei(ω) is the (T + 1)-
dimensional subvector that represents the endowment at all dates in state ω. If ξ ∈ It,
then eit(ξ) stands for the identical endowment in all states ω ∈ ξ. The superscript is
omitted whenever vectors are joined; that is, e = (e1, . . . , eI) ∈ SI+.

Assumption 3 (Endowments). For each agent i, the endowment satisfies ei � 0.

A stochastic economy is completely described by the information structure I, the
updating rules Π = Π1×· · ·×ΠI , and the utility functions and endowments of all agents.

4Two decisions can both be undominated for two reasons: Either they are not comparable or the agent
is indifferent. However, indifference can be a narrow concept in the Knightian decision model. Gerasimou
(2018) shows that indifference sets are singletons if Πi is full-dimensional.
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Definition 3. A stochastic economy is a tuple (I,Π, u, e) of information structure, up-
dating rules, utility functions, and endowments.

To enable transfers of income between different date-events, the economy is equipped
with a finite number J of long-lived assets. At each date t > 0, asset j pays a dividend
Ajt(ω) to its holder in state ω. After these dividend payments, the financial market opens
and assets can be traded. The asset structure is completely described by the dividend
process A ∈ SJ , which is required to have identical payments in states that cannot be
distinguished. In addition, a mild regularity assumption is made:

Assumption 4 (Asset structure). At each date t > 0, At ≥ 0 and initially A0 = 0.

Under Assumption 4, asset prices are never negative because dividends are never
negative. Moreover, no dividend payments occur before the market opens for the first
time. Therefore, it is safe to assume that all assets are in zero net supply and that no
agent is born with an asset portfolio. Agents face a sequence of decisions: At date 0,
each agent i makes a consumption plan Ci

0 ∈ S+ and a trading plan Ψi
0 ∈ SJ . Set

Ci
0 = (ci0, . . . , c

i
T ) and Ψi

0 = (ψi0, . . . , ψ
i
T ). By convention, time subscripts for capital

letters refer to the date when plans are made, while time subscripts for small letters refer
to the date when plans are executed. These plans involve consumption ci0 and portfolio
ψi0 purchased in the date 0 market and also state-contingent consumption and portfolios
cit(ω) and ψit(ω) at all future dates t > 0. Thus, agents plan all future actions in advance,
on the basis of the information available at date 0. However, at each consecutive date,
new information becomes available, and some agents may want to adjust their plans. At
any interim date s, that is, 0 < s ≤ T , agent i may switch to a conditionally preferred
consumption and trading plan for all future dates s ≤ t ≤ T . Past trades cannot be
undone.

This sequence of decisions results in a sequence of consumption plans Ci = (Ci
0, . . . , C

i
T ) ∈

ST+1
+ and a sequence of trading plans Ψi = (Ψi

0, . . . ,Ψ
i
T ) ∈ SJ(T+1); one for each date.

Note that capital letters are used to denote sequences of plans; in this case, subscripts
denote the date a plan was made. Decisions are called dynamically consistent if the agent
makes one consumption and trading plan at date 0 with no adjustments at later points
in time: Even in the light of new information, the agent finds it optimal to stick to his
original plans.

Definition 4. The plans (Ci,Ψi) of agent i are dynamically consistent if for each date
t > 0, Ci

t = Ci
t−1 and Ψi

t = Ψi
t−1.

The decisions of each agent are constrained by a sequence of budget sets, which depend
on asset prices. Let p ∈ SJ+ be the asset price process. Since no dividends are paid after
date T , it is clear that pT = 0, and there is no more trade at the terminal date. The
portfolio payoff at date t in state ω,

Xt(p, ψ
i;ω) = At(ω) · ψit(ω) + pt(ω) ·

(
ψit−1(ω)− ψit(ω)

)
,
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is the sum of dividend payments and the change in investment. It shall be understood
that X(p, ψi, ω) = (X0(p, ψi;ω), . . . , XT (p, ψi;ω))>, and ψi−1 = 0 by definition. If the
trading plan carried over from date t − 1, that is, component t − 1 of Ψi, is denoted by
ψ̂i = Ψi

t−1, the financial market budget set at date t is defined as:

Bi
t(p, ψ̂

i) =

{
(ci, ψi) ∈ S+ × SJ

∣∣∣∣ ci(ω)− ei(ω) = X(p, ψi;ω) ∀ω ∈ Ω

ψis = ψ̂is ∀s < t

}
.

The sequence of decisions leads to a sequence of first-order conditions: At any date-
event (s, ξ′), an interior plan is undominated if and only if for any consecutive date-event
(t, ξ) (i.e., s ≤ t and ξ ⊆ ξ′),

pt(ξ) = Eπi
[
∂cit+1

ui[ci]

∂citu
i[ci]

(At+1 + pt+1)

]
for some πi ∈ Πi(ξ′) . (5)

Note that in Equation (5), information enters the decision problem through the up-
dating rule Πi(ξ). At each date t, current asset prices pt are determined in the financial
market, and all agents act as price takers. By contrast, future asset prices are not yet
known, and agents need to base their decisions on price expectations. As in Radner
(1970, 1972) and Lucas and Prescott (1971), price expectations are part of the equilib-
rium concept. It is assumed that all agents have common expectations: On the basis of
the available information It, all agents form the same price expectations Pt ∈ SJ . Thus,
they associate the same prices with the same event, although they may disagree about its
probability. Moreover, these expectations are consistent with their plans: Given Pt, their
consumption and trading plans (Ct,Ψt) are such that supply equals demand in each of
the consecutive markets. The common and consistent expectations of future prices may
be revised at any date t as new information becomes available. Such revisions only take
place if necessary; that is, if the old price expectations are no longer consistent with the
plans of the agents.

This leads to a sequence of price expectations P = (P0, . . . , PT ) ∈ SJ(T+1), in which
PT is the process of realized prices. If these prices are correctly anticipated at date 0
and P0 = · · · = PT , we speak of correct expectations. The concept of correct expecta-
tions is widespread under a variety of synonyms that include rational expectations and
self-fulfilling expectations. It is closely related to dynamic consistency: When all agents
make dynamically consistent decisions, their plans are never adjusted to new information,
and the original price expectations are indeed self-fulfilling. Consistent expectations are
a posteriori correct, and the system is closed. This automatism is embedded in Radner’s
definition of an equilibrium of plans, prices, and price expectations, which reduces the
entire sequence (P,C,Ψ) to a single tuple (p, c, ψ). We adopt Radner’s concept of equilib-
rium, albeit without the preconceptions of dynamic consistency and correct expectations.

Definition 5. A financial market equilibrium for the stochastic economy (I,Π, u, e) with
asset structure A is a tuple (P,C,Ψ) of price expectations, consumption plans, and trading
plans that satisfies at each date t,
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1. undominated choice: for each agent i,

@(ĉi, ψ̂i) ∈ Bi
t(Pt,Ψ

i
t−1) such that ĉi �it Ci

t

2. inertia: for each agent i,

(Ci
t ,Ψ

i
t) 6= (Ci

t−1,Ψ
i
t−1) only if Ci

t �it Ci
t−1

3. market clearing,
I∑
i=1

Ψi
t = 0 .

If all agents make dynamically consistent plans in a financial market equilibrium,
we speak of a dynamically consistent equilibrium; otherwise, the equilibrium is called
dynamically inconsistent. The behavioral assumption of inertia ensures that agents do
not change their plans without good reason: If plans from the previous date t − 1 also
satisfy the first-order conditions at date t, agents stick to these plans.5 These conditions
are easier to verify when written in state price form. Recall that each asset price process
p induces a set of state price processes

Q[p] =
{
q ∈ S | q ·X(p,SJ) = 0

}
,

which are orthogonal to the marketed subspace. Equation (5) relates this set to the
marginal rates cone of consumer i, defined as

∇U i[ci](ξ) =
{
α
(
πi ⊗Dui[ci]

) ∣∣ πi ∈ Πi(ξ), α ∈ R+

}
, (6)

which is the closed, convex cone that contains the marginal rates of substitution vectors
under all posterior probabilities. Dui[ci] is the gradient of ui at ci. Only if Πi(ξ) is a
singleton is this cone a ray; in all other cases, the marginal rates cone has a nonempty
relative interior. The first-order condition (5) at date 0 implies that6

Q[p] ∩∇U i[ci] 6= ∅. (7)

At any date t > 0, this intersection becomes conditional on the observed information
set ξ. Using the conditional state price set Q[p](ξ) = prξ(Q[p]), the first-order condition
is written as

Q[p](ξ) ∩∇U i[ci](ξ) 6= ∅. (8)

5Rigotti and Shannon (2005) and Dana and Riedel (2013) use inertia with respect to agent endowments
as a refinement that eliminates equilibria with individually irrational decisions. This refinement can be
integrated into Definition 5 by setting (Ci

−1,Ψ
i
−1) = (ei, 0).

6The arguments that lead from (5) to (7) are standard and can be found, for example, in Magill and
Quinzii (1996), Chapter 21.
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Note that Q[p] is a subspace of S, whose dimension depends on how incomplete the
financial market is. The market is called dynamically complete if at each date-event (t, ξ),
all direct successors in the date-event tree are be spanned by feasible portfolio payoffs.
In this case, independent transfers of consumption to each successor are feasible. Stated
rigorously:

Definition 6. The financial market is dynamically complete at (P,C,Ψ) if

dim(Xt+1(Pt,SJ ; ξ)) = |{ξ′ ∈ It+1 | ξ′ ⊆ ξ}| ∀ξ ∈ It ∀t < T .

Dynamic completeness must be defined relative to a given financial market equilibrium:
Since all assets are long-lived, portfolio payoffs Xt+1(Pt, ψ

i; ξ) depend on asset prices at
date t + 1. If the financial market is dynamically complete and p = P0 = · · · = PT ,
then Q[P0] is one-dimensional and the first-order conditions (7) and (8) become simple
set inclusions.7

It should be noted that financial market equilibria are at best determinate if Πi is a
singleton for every agent i. In the case of multiple priors, there is a continuum of equi-
libria. This continuum may involve exotic constellations such as equilibria with different
allocations but the same prices, as well as equilibria with different prices but the same
allocations.8

2.4 Contingent Market Equilibrium

In our welfare analysis, we make use of the results of Rigotti and Shannon (2005), who
characterize Pareto efficiency under Knightian uncertainty and introduce a concept of
contingent market equilibrium. Recall that an allocation c ≥ 0 is feasible if

∑I
i=1(ci−ei) =

0. A feasible allocation c is Pareto efficient if there is no other feasible allocation ĉ such
that ĉi �i ci for each agent i. Pareto efficiency of an interior allocation is characterized
by a nonempty intersection of marginal rates cones:9

I⋂
i=1

∇U i[ci] 6= ∅ (9)

Suppose the sequence of financial markets is replaced with a complete market of con-
tingent claims: There is one contingent claim for each date-event (t, ξ), which delivers one
unit of consumption if the event ξ occurs at date t and nothing in all other date-events.
The market price of this claim is the state price qt(ξ). All affordable consumption plans
are collected in the contingent market budget set

Bi(q) =
{
ci ∈ S+ | q · (ci − ei) = 0

}
.

7A proof can be found in the appendix, Lemma 3.
8In a two-date economy with nominal assets, Ma (2018) quantifies the dimension of this continuum.
9A proof can be found in Rigotti and Shannon (2005), Theorem 3.
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Since the market opens only at date 0, all prices are determined simultaneously, price
expectations are not necessary, and there can be no dynamic inconsistency. At a contin-
gent market equilibrium, all agents take the state price process q ∈ S as given, choose
undominated allocations, and the market clears.

Definition 7. A contingent market equilibrium for the stochastic economy (I,Π, u, e) is
a tuple (q, c) of state prices and consumption that satisfies

1. for each agent i, @ĉi ∈ Bi(q) such that ĉi �i ci

2. market clearing
∑I

i=1 c
i − ei = 0 .

At an interior contingent market equilibrium, the first-order condition

q ∈ ∇U i[ci] (10)

is satisfied for each agent i. As this implies (9), every contingent market equilibrium is
Pareto efficient.10 Further, the contingent market budget set Bi spans the same consump-
tion allocations as the sequence of financial market budget sets (Bi

0, . . . , B
i
T ) whenever

the market is dynamically complete and agents have correct expectations.11 Recall that
Q[p] is a ray in this case. Therefore, the first-order conditions (7) of the financial market
at date 0 and (10) of the contingent market agree. As a consequence, every financial
market equilibrium has an equivalent contingent market equilibrium, provided that all
agents make dynamically consistent decisions.12 However, a simple example in Section 3
reveals that dynamic consistency is a rather fragile property.

3 Example

Two variations of a particular financial market equilibrium are studied: first, under the
maximum-likelihood rule (3), and then, under the full Bayesian rule (2). To isolate the
welfare effects of Knightian uncertainty from potential inefficiencies of market incomplete-
ness, the financial market in the example is always dynamically complete. This enables
a simple test for Pareto efficiency: Under Assumption 2, preferences are monotone and
convex, and in the example, all agents have quasilinear utility functions. Therefore, the
second welfare theorem holds in a strong form: Every Pareto efficient allocation is at-
tained by a contingent market equilibrium and some redistribution of present consumption.
Since the distribution of present consumption does not affect prices, a financial market
equilibrium is Pareto efficient if and only if one of its induced state price vectors agrees
with the price vector at a contingent market equilibrium.

10For a general statement that covers boundary equilibria see Rigotti and Shannon (2005), Theorem 1.
11A proof can be found in Kreps (1982), Proposition 2.
12In a setting with time-inconsistent preferences, this result is proven in Herings and Rohde (2008).
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Figure 1: The date-event tree. Numbers above nodes represent the endowment of Agent
1 (black), numbers below the endowment of Agent 2 (gray). All edges are labeled with
the unconditional probability of passing.

3.1 An Example with Well-behaved Equilibria

Consider an economy with three dates and four states of the world Ω = {ω1, ω2, ω3, ω4}.
Information unfolds in a binomial tree: The sequence of information partitions is I0 =
{Ω}, I1 = {{ω1, ω2}, {ω3, ω4}}, and I2 = {{ω1}, {ω2}, {ω3}, {ω4}}. This tree is depicted
in Figure 1. At date 1, the event ξ1 = {ω1, ω2} corresponds to the upper branch, and the
event ξ2 = {ω3, ω4} corresponds to the lower branch.

There are I = 2 agents with identical utility functions

ui(ci) = ci0 + ln(ci1) + ln(ci2) ∀i

and identical sets of subjective probabilities

Πi =

{
πi ∈ R|Ω|+

∣∣∣∣ πi =

(
ηi

2
,
ηi

2
,
1− ηi

2
,
1− ηi

2

)
, ηi ∈ [0, 1]

}
.

Market outcomes will be studied both in the case of maximum-likelihood updating
and in the case of full Bayesian updating. In either case, there is a reason for trade,
because the two agents have different endowments:

ei0(Ω) ei1(ξ1) ei1(ξ2) ei2(ω1) ei2(ω2) ei2(ω3) ei2(ω4)

e1 =
(

2 10/3 2/3 1/3 2/3 1/3 2/3
)

e2 =
(

2 2/3 10/3 2/3 1/3 2/3 1/3
)

The financial market consists of J = 2 long-lived assets with dividend payments
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A0(Ω) A1(ξ1) A1(ξ2) A2(ω1) A2(ω2) A2(ω3) A2(ω4)(
A1

A2

)
=

(
0 1 0 1 0 1 0

)
0 0 1 0 1 0 1

That is, A1 pays 1 in every upper branch and 0 otherwise, while A2 pays 1 in every
lower branch and 0 otherwise. The easiest way to compute financial market equilibria is to
conjecture dynamic completeness and translate contingent market equilibria. The decision
criterion of undominatedness is fulfilled by a plan if it maximizes utility under some choice
of ηi ∈ [0, 1]. There is one contingent market equilibrium for each combination of η1 and
η2 given an arbitrary normalization of prices. If consumption at date 0 is used as the
numéraire, the combination η1 = η2 = 1/2 results in the state price process

q1(ξ1) q1(ξ2) q2(ω1) q2(ω2) q2(ω3) q2(ω4)

q =
(

1/4 1/4 1/2 1/2 1/2 1/2
)

and in consumption plans

ci0(Ω) ci1(ξ1) ci1(ξ2) ci2(ω1) ci2(ω2) ci2(ω3) ci2(ω4)

C1
0 =

(
2 2 2 1/2 1/2 1/2 1/2

)
C2

0 =
(

2 2 2 1/2 1/2 1/2 1/2
)
,

which are taken as the initial consumption plans at the financial market equilibrium. To
translate state prices into asset prices, consider the system of pricing equations

p0(Ω) = q · A

p1(ξ1) =
q2(ω1)

q1(ξ1)
A2(ω1) +

q2(ω2)

q1(ξ1)
A2(ω2) (11)

p1(ξ2) =
q2(ω3)

q1(ξ2)
A2(ω3) +

q2(ω4)

q1(ξ2)
A2(ω4).

Let the price expectations P0 of both agents agree with the solution p to the equation
system (11); that is

p0(Ω) p1(ξ1) p1(ξ2)

P0 =
(

5/4 5/4 2 2 2 2
)
.

Since asset prices are linearly dependent at each date while dividend payments are
linearly independent, the conjecture of dynamic completeness is verified. The consumption
plans C0 are attained by symmetric trading plans

ψi0(Ω) ψi1(ξ1) ψi1(ξ2)

Ψ1
0 =

(
−4/3 4/3 1/6 −1/6 1/6 −1/6

)
Ψ2

0 =
(

4/3 −4/3 −1/6 1/6 −1/6 1/6
)
,
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Figure 2: From left to right: Ambiguity partition (solid) before and after observing the
event ξ1 in the original example.

and all markets clear. It is easy to see that C0 is Pareto efficient: Both agents have iden-
tical preferences, and each consumes one-half of the aggregate wealth at each date-event.
Will the agents deviate from these plans at date 1? Two cases are considered.

Case 1. Maximum-likelihood updating : Suppose both agents apply the maximum-likelihood
rule to update their subjective probabilities. At date 0, there is a maximum of ambiguity
about the probabilities of the two events ξ1 and ξ2. However, all this ambiguity vanishes
at date 1, once the event is observed. Updating results in a unique probability vector
Πi

M(ξ1) = {(1/2, 1/2, 0, 0)} or Πi
M(ξ2) = {(0, 0, 1/2, 1/2)}, respectively. For the event ξ1, the

induced ambiguity partitions are illustrated in Figure 2. The conditional partition Ai(ξ1)
is finer than the unconditional partition Ai – new information reduces uncertainty.

∇U1q

0.5 1.0 1.5
ω1

0.5

1.0

1.5

ω2

∇U1(ξ1)q

0.5 1.0 1.5
ω1

0.5

1.0

1.5

ω2

Figure 3: Section of the budget set before and after the release of information. The
marginal rates cone shrinks in a dimension irrelevant for the decision problem. The
portfolio decision is thus dynamically consistent.

The consequences of this information release for the decision problem of Agent 1 are
illustrated in Figure 3. The left panel displays a section through the initial first-order
condition (7) along the c1

2(ω1)–c1
2(ω2) plane. One property should be emphasized: Even

15



though the marginal rates cone ∇U1[C1
0 ] is two-dimensional, its section is simply a ray,

and it contains the state price vector (q2(ω1), q2(ω2)). Although there is Knightian un-
certainty at date 0, this plays no role in consumption preferences between state ω1 and
ω2. The right panel displays the same section after the information release. There is no
change. In fact, the first-order condition (7) at date 0 implies the first-order condition
(8) at date 1 because the prior probabilities π1(ω1) = 1/4 and π1(ω2) = 1/4 are propor-
tional to the posterior probabilities π1(ω1|ξ1) = 1/2 and π1(ω2|ξ1) = 1/2. By symmetry of
the example, this is true for both agents and both events. Therefore, the original plans
(Ci

0,Ψ
i
0) remain optimal. As a consequence, the agents have no reason to revise their

price expectations and the realized prices are P1 = P0, just as expected. The final plans
are C1 = C0 and Ψ1 = Ψ0, and the tuple (P,C,Ψ) is a financial market equilibrium. All
plans are dynamically consistent and the equilibrium is Pareto efficient.

Case 2. Full Bayesian updating : Nothing changes if one or both of the agents apply the
full Bayesian rule. The resulting posterior probabilities are again Πi

B(ξ1) = {(1/2, 1/2, 0, 0)}
and Πi

B(ξ2) = {(0, 0, 1/2, 1/2)}. Therefore, full Bayesian updating and maximum-likelihood
updating reduce uncertainty in the same way, and in either case, the resulting equilibrium
is dynamically consistent and Pareto efficient.

3.2 A Critical Modification of the Example

Consider the following variation of the example. The original set of subjective probabilities
is replaced with the following one, which is again shared by both agents:

Πi =

{
πi ∈ R|Ω|+

∣∣∣∣ πi =

(
ηi

2
,
1

4
,
1

4
,
1− ηi

2

)
, ηi ∈ [0, 1]

}
.

Now, Knightian uncertainty does influence consumption preferences between states ω1

and ω2 (resp. ω3 and ω4). The natural starting point is again the set of contingent market
equilibria. It is parametrized by η1 and η2 in the following form:

q1(ξ1) q1(ξ2) q2(ω1) q2(ω2) q2(ω3) q2(ω4)

q =
(

1+η1+η2

8
3−η1−η2

8
η1+η2

4
1
2

1
2

2−η1−η2
4

) (12)

Consider again the combination η1 = η2 = 1/2, which leads to the same contingent
market equilibrium as before. The induced price expectations P0 and plans (C0,Ψ0) are
the same as in the original example. The difference manifests only at date 1, when the
subjective probabilities are updated.

Case 1. Maximum-likelihood updating : Suppose both agents apply the maximum-likelihood
rule; then, updating results in a unique probability vector Πi

M(ξ1) = {(2/3, 1/3, 0, 0)} or
Πi

M(ξ2) = {(0, 0, 1/3, 2/3)}, respectively. For the event ξ1, the induced ambiguity partitions
are illustrated in Figure 4. As in the original example, the conditional partition Ai(ξ1) is
finer than the unconditional partition Ai, and the information release reduces uncertainty.
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Figure 4: From left to right: Ambiguity partition (solid) before and after observing the
event ξ1 in the modified example with maximum-likelihood updating.
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Figure 5: Section of the budget set before and after the release of information. The state
price vector (q2(ω1), q2(ω2)) drops out of the marginal rates cone. The portfolio decision
is thus dynamically inconsistent.

However, contrary to the original example, this reduction in uncertainty has an effect,
as illustrated in Figure 5 for Agent 1. The left panel shows the first-order condition
(7) before the information release: Knightian uncertainty matters and the section of
the marginal rates cone ∇U1[C1

0 ] is two-dimensional. After the information release, the
marginal rates cone collapses to a ray, just as in the original example, but now the state
price vector is no longer contained. The consequences for the plans of the agent are easily
seen: Since there is no uncertainty remaining, the conditional preferences are complete
and have an expected utility representation with well-defined indifference surfaces. The
indifference surface through the original consumption plan C1

0 (more precisely, its section
on the c1

2(ω1)–c1
2(ω2) plane) is illustrated as the solid curve in the right panel. There is no

point of tangency between the curve and the budget set. The optimal allocation involves
more consumption in state ω1 and less consumption in state ω2 than in the original plan
C1

0 . If both agents adjust their demand, the market cannot clear under the original price
expectations P0 from Section 3.1. Instead, market clearing results in different asset prices
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in the date 1 markets:

p0(Ω) p1(ξ1) p1(ξ2)

P1 =
(

5/4 5/4 8/3 4/3 4/3 8/3
)
.

Both agents react with a new trading plan

ψi0(Ω) ψi1(ξ1) ψi1(ξ2)

Ψ1
1 =

(
−4/3 4/3 −1/12 −5/12 5/12 1/12

)
Ψ2

1 =
(

4/3 −4/3 −1/12 5/12 −5/12 −1/12
)

and a new consumption plan

ci0(Ω) ci1(ξ1) ci1(ξ2) ci2(ω1) ci2(ω2) ci2(ω3) ci2(ω4)

C1
1 =

(
2 1 3 1/4 1/4 3/4 3/4

)
C2

1 =
(

2 3 1 3/4 3/4 1/4 1/4
)
.

These plans are budget-feasible and clear the market under the revised prices P1. As
a consequence, the tuple (P,C,Ψ) is a financial market equilibrium. At this equilibrium,
both agents make dynamically inconsistent decisions. Even though plans, prices, and price
expectations are determined at date 0, both agents find it optimal to deviate from their
own plans once they reach date 1. Moreover, the equilibrium is qualitatively different:
As a result of their original trades at date 0, Agent 1 is wealthier in event ξ2 while Agent
2 is wealthier in event ξ1. To analyze whether this asymmetric distribution of wealth is
Pareto efficient, the induced state price process at the equilibrium is computed. This is
easily done by solving the equation system (11) for q. Due to dynamic completeness of
the financial market, there is a unique solution

q1(ξ1) q1(ξ2) q2(ω1) q2(ω2) q2(ω3) q2(ω4)

q =
(

1/4 1/4 2/3 1/3 1/3 2/3
)
.

This solution is clearly inconsistent with Equation (12): All contingent market equi-
libria involve a state price of 1/2 in states ω2 and ω3. Since there is no equivalent contin-
gent market equilibrium, the dynamically inconsistent financial market equilibrium is not
Pareto efficient. The source of this inefficiency lies not in market imperfections – these
have been ruled out by construction – but in the uncertainty of both agents. At date 0,
they are able to choose efficient plans, and they do so. These plans are undominated from
the viewpoint of a social planner who aims at efficient risk sharing. However, owing to a
lack of dynamic consistency, both agents are tempted to make new plans at date 1. These
plans are made under superior information, which eliminates uncertainty and erodes the
incentive for risk sharing. From the perspective of the social planner, the resulting new
plans are dominated by the original plans. If the agents had adhered to their original
plans, no such inefficiency would have occurred.
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Figure 6: From left to right: Ambiguity partition (solid) before and after observing the
event ξ1 in the modified example with full Bayesian updating.

Case 2. Full Bayesian updating : It should be noted that information is processed differ-
ently under the full Bayesian rule. Contrary to maximum-likelihood updating, the set of
posterior probabilities does not become a singleton, but the larger set

Πi
B(ξ1) =

{
πi ∈ R|Ω|+

∣∣∣∣ πi =

(
2ηi

3
,
3− 2ηi

3
, 0, 0

)
, ηi ∈ [0, 1]

}
,

or its symmetric counterpart if ξ2 is observed. As a consequence, the dynamic incon-
sistency illustrated in Figure 5 cannot occur: The state prices (q2(ω1), q2(ω2)) coincide
with the marginal rates of substitution under the prior probabilities π1(ω1) = 1/4 and
π1(ω2) = 1/4. While the unique posteriors in Π1

M(ξ1) are not proportional to these priors,
there exists a proportional probability vector in Π1

B(ξ1). Therefore, the state price vector
does not drop out of the marginal rates cone. If both agents apply full Bayesian updating,
the resulting financial market equilibrium is dynamically consistent and Pareto efficient.

Unfortunately, the full Bayesian rule leads to a different problem, which is illustrated
in Figure 6. The initial ambiguity partition Ai visualizes the Knightian uncertainty be-
tween states ω1 and ω4. There is no such ambiguity regarding the other states: Both
agents are able to assign unique probabilities to ω2 and ω3. However, this knowledge
is lost once the event ξ1 is observed. The conditional ambiguity partition Ai(ξ1) is not
finer than Ai; instead, ambiguity has spilled over to the unambiguous event {ω2}. This is
inconsistent with the principle that new information should not create new uncertainty –
the agents forget what they knew before.

To conclude, both updating rules have side effects. Full Bayesian updating may lead
to ambiguity spillovers, and agents may fail to recall some of their previous knowl-
edge. Maximum-likelihood updating may lead to dynamic inconsistencies, and agents
may abandon Pareto efficient plans. Further, these side effects may occur simultane-
ously: If one agent in the example applies full Bayesian updating while the other agent
applies maximum-likelihood updating, the resulting equilibrium exhibits both ambiguity
spillovers and dynamic inconsistencies.

It should be emphasized that these observations are not driven by the selection of a
pathological equilibrium. The example is constructed in such a way that full Bayesian
updating always results in ambiguity spillovers. This does not depend on a particular
equilibrium. The same is true, and this is verified by our general results in Section 4, for
maximum-likelihood updating and dynamic inconsistency. Do these updating rules have
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desirable properties beside their side effects? And is it possible to design a well-behaved
rule that does not come with side effects at all? These questions are addressed in the
following section.

4 Results

In a setting with multiple priors, updating is only trivial if there are two dates and all
uncertainty is resolved at once. If there are more than two dates, the choice of updating
rules has equilibrium effects. This is where decision theory and general equilibrium theory
meet: On the one hand, the updating rule of an agent determines his own decisions. On
the other hand, it influences the decisions of everyone else in the economy because the
choice sets of all agents are connected through the price mechanism. The example from
Section 3 gives a hint at this interrelation: Once a single agents changes his plans, other
agents respond with a change in their own plans. Thus, dynamically inconsistent behavior
spreads through the price mechanism and cannot be predicted by the characteristics of
a single agent. Therefore, a characterization of dynamically consistent equilibria cannot
be independent of prices. We shall present such a characterization as our first result. For
this purpose, we introduce the supporting probabilities of a state price process q at the
allocation ci:

π̄i[q, ci] =
{
πi ∈ Πi

∣∣ q = α(πi ⊗Dui[ci]) for some α > 0
}

(13)

Note the following properties: Since Πi ⊆ ∆|Ω|, the set π̄i[q, ci] is either a singleton or
empty. It is nonempty for some q ∈ Q[p] if the first-order condition (7) is satisfied. It is
always empty if the condition is not satisfied. If there is no Knightian uncertainty or if the
financial market is dynamically complete, each agent has a unique supporting probability
vector at any equilibrium. If Knightian uncertainty meets market incompleteness, an
equilibrium can be supported by multiple subjective probability vectors. The following
theorem presents a necessary and sufficient condition for dynamically consistent equilibria:
One supporting probability vector must be contained in the convex hull of all updates,
date by date.

Theorem 1. Let (I,Π, u, e) be a stochastic economy with asset structure A. An interior
financial market equilibrium (P,C,Ψ) is dynamically consistent if and only if there is
some q ∈ Q[P0] such that for each agent i,

π̄i[q, Ci
0] ∈ conv

((
Πi(ξ)

)
ξ∈It

)
∀t ≥ 0 .

Theorem 1 is a particularly strong result if the financial market is dynamically com-
plete. In this case, Q[P0] is a singleton and the test for dynamic consistency boils down
to checking the unique supporting probability vector. In addition, the theorem offers
insights on the interplay of market incompleteness and dynamic consistency well beyond
the dynamically complete case. If the market becomes more and more incomplete, fewer
and fewer economies permit dynamically inconsistent decisions. The reason is that the
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dimension of Q[P0] grows with the degree of market incompleteness. In the extreme case
of an asset structure without assets, dim(Q[P0]) = |Ω| and the theorem implies that all
equilibria are dynamically consistent – if no trade is the only available trading plan, no
agent can ever switch to a different plan.

The implications of the theorem are more interesting if the asset structure is not
degenerate: Even in this general case, there exists a nontrivial subset of economies in
which all equilibria are dynamically consistent; for instance, the economy from the original
example in Section 3. It is irrelevant whether agents apply maximum-likelihood updating,
full Bayesian updating, or some other updating rule – any rule Πi consistent with Bayes’
law satisfies ηiΠi(ξ1) + (1 − ηi)Πi(ξ2) = ηi (1/2, 1/2, 0, 0) + (1 − ηi) (0, 0, 1/2, 1/2) = Πi. A
simple application of Theorem 1 shows that all equilibria are dynamically consistent.

In the modified version of the example, some equilibria are dynamically inconsistent if
at least one agent applies the maximum-likelihood rule. This observation can be explained
by means of the following corollary; in fact, the corollary strengthens the finding from the
example.

Corollary 1. Let (I,Π, u, e) be a stochastic economy with asset structure A. All interior
financial market equilibria are dynamically inconsistent if for some agent i and date t > 0

Πi ∩ conv
((

Πi(ξ)
)
ξ∈It

)
= ∅ .

Proof. By construction π̄i[q, Ci
0] ∈ Πi. If Πi does not intersect the convex hull, the

condition from Theorem 1 is violated.

Since the convex hull ηiΠi
M(ξ1) + (1−ηi)Πi

M(ξ2) = ηi (2/3, 1/3, 0, 0) + (1−ηi) (0, 0, 1/3, 2/3)
does not intersect the set of prior probabilities Πi, it follows from Corollary 1 that all
equilibria are dynamically inconsistent.

As far as positive theory is concerned, these findings can be summarized as follows:
Depending on the updating rule, dynamic consistency is prevalent in some economies while
dynamic inconsistency is prevalent in others. As regards normative theory, it is not clear
per se whether dynamically inconsistent decisions should be viewed as undesirable. After
all, agents are simply reacting to new information. To make a normative judgment, one
must define criteria of social optimality and individual rationality, and check whether
these are fulfilled, possibly under a suitable restriction of updating rules.

4.1 Full Bayesian Updating

The most common criterion of social optimality is Pareto efficiency. In a dynamically com-
plete market this criterion is attainable because arbitrary transfers of future consumption
are feasible. In the example from Section 3, Pareto efficient transfers occur in equilibrium
if all agents apply the full Bayesian rule (2): Initially, all agents make Pareto efficient
plans, just as in the contingent market equilibrium of Rigotti and Shannon (2005). Later,
and this is where the updating rule matters, no adjustments are made and the plans are
dynamically consistent. The first step toward Pareto efficiency is therefore to establish
dynamic consistency as a general property:
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Corollary 2. Let (I,Π, u, e) be a stochastic economy with asset structure A. All inte-
rior financial market equilibria are dynamically consistent if each agent i applies the full
Bayesian rule:

Πi(ξ) = Πi
B(ξ) ∀ξ ∈ It, t > 0 .

Proof. By Equation (2),

πi ∈ Πi =⇒
prξ(π

i)

πi(ξ)
∈ Πi

B(ξ) ∀ξ ∈ It, t ≥ 0. (14)

Define a vector of weights α ∈ ∆
|It|
+ componentwise as αξ = 1/πi(ξ). By construction

of the projection prξ, the prior probability vector is πi =
∑

ξ∈It prξ(π
i). It follows from

(14) that

πi ∈ Πi =⇒ πi ∈
∑
ξ∈It

αξΠ
i
B(ξ) ∀t ≥ 0,

and thus
Πi ⊆ conv

((
Πi

B(ξ)
)
ξ∈It

)
∀t ≥ 0.

Dynamic consistency follows from Theorem 1 because π̄i[q, Ci
0] ∈ Πi.

Corollary 2 reveals a remarkable difference between the Knightian decision model
and maxmin expected utility when it comes to sequential decision making: It is well-
known that full Bayesian updating is not sufficient for dynamic consistency under maxmin
expected utility. The only exceptions are decision problems that satisfy the rectangularity
condition of Epstein and Schneider (2003). In all other cases, dynamic consistency is an
unrealistic requirement, and not simply a deficiency of full Bayesian updating: As Hanany
and Kilbanoff (2007) show, there exists no updating rule consistent with Definition 1 that
guarantees dynamically consistent decisions in the maxmin expected utility setting. By
contrast, in the present setting such an updating rule exists, and it is identified in the
corollary. Further restrictions, such as rectangularity, are not necessary.

Since all agents in the economy are required to apply the full Bayesian rule, Corollary 2
is a rather demanding statement. However, the corollary cannot be reduced to a statement
of individual behavior. An agent who applies the full Bayesian rule would not react to
new information with a change of plans ceteris paribus. However, if prices and price
expectations adjust to a change in demand of agents with other updating rules, even the
full Bayesian updater will make dynamically inconsistent decisions. If this is ruled out,
Pareto efficiency follows in a second step:

Corollary 3. Let (I,Π, u, e) be a stochastic economy with asset structure A. All interior
financial market equilibria with a dynamically complete market are Pareto efficient if each
agent i applies the full Bayesian rule:

Πi(ξ) = Πi
B(ξ) ∀ξ ∈ It, t > 0 .
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Proof. At any equilibrium, the date 0 first-order condition (7) is fulfilled for each consumer
i. By Corollary 2, full Bayesian updating implies dynamic consistency, and by Lemma
3, Q[P0] is one-dimensional. As a consequence, (7) implies the efficiency condition (9).
Thus, C0 = · · · = CT is a Pareto efficient allocation.

Corollary 3 shows that dynamic consistency is a sufficient condition for Pareto effi-
ciency, provided the market is not too incomplete. In the example from Section 3, it
seems as if this condition was also necessary. Can the corollary be strengthened into a
characterization? The answer is in the negative, because preferences are incomplete. It is
true that dynamic inconsistency implies that agents move away from an efficient alloca-
tion. However, the Pareto frontier is a large set. It may well be that the new allocation
is still contained in the Pareto frontier, simply because old and new consumption plans
are not comparable for some agents.

Even though Corollary 3 may appear restrictive as it only holds for dynamically com-
plete financial markets, it is the most general welfare result one can hope to obtain.
Without dynamic completeness, Pareto efficiency is out of reach because the necessary
transfers are typically not feasible in the financial market. As Ma (2015) shows, the
weaker standard of constrained efficiency is still attainable if the financial market opens
only once. However, if the market opens sequentially, like in the present model, results of
Geanakoplos and Polemarchakis (1986) and Citanna, Kajii, and Villanacci (1998) indicate
that not even constrained efficiency can be expected. In the single-prior case, constrained
inefficiency is a generic phenomenon, and it remains robust when agents have multiple
priors. Therefore, the corollary cannot be extended outside the setting with dynamically
complete markets. Within this setting, however, it offers a strong justification for full
Bayesian updating. The rule leads to a Pareto efficient market outcome and thus fulfills
a normative criterion of social optimality.

4.2 Maximum-likelihood Updating

The criterion of individual rationality we are most concerned with is that agents do
not forget what they knew. In the single-prior setting, this simply means once the agent
assigns a probability of zero to an event, this probability can never again become positive.
This condition is fulfilled as long as the information partitions become progressively finer
and the updates satisfy Bayes’ law. In the multi-prior setting, a stronger condition is
necessary. A minimal requirement is that once the agent assigns a unique probability
to an event, this probability can never again become ambiguous. This is ensured if the
ambiguity partitions become progressively finer. However, this condition is not yet strong
enough to guarantee that updates are consistent with the agent’s previous knowledge.

The issue shall be illustrated in a small example. The focus of the example is on the
decision problem of a single agent. There is Knightian uncertainty, but this uncertainty
is not payoff-relevant. There is an information release, but this information release is also
not payoff-relevant. Nevertheless, the following phenomenon occurs under some updating
rules: Initially, the agent assigns unique probabilities to all payoff-relevant events. How-
ever, just as in the example from Section 3, new information causes ambiguity spillovers,
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Figure 7: Problematic full Bayesian updating: The marginal distribution of the events
(ζ1, ζ2, ζ3) changes in spite of no news about their probabilities.

and the agent becomes uncertain about the probabilities he knew before. If we set un-
ambiguous probabilities equal to objective probabilities, as in Bewley (1986, 2002), this
means that the agent starts with a correct model of the world, but discards this model
after receiving irrelevant information.

Example. Consider a state space with six states of the world, Ω = {ω1, ω2, ω3, ω4, ω5, ω6},
which occur with equal probabilities of 1/6. The agent has incomplete knowledge of these
objective probabilities and perceives Knightian uncertainty: He can identify three unam-
biguous events,

ζ1 = {ω1, ω2}, ζ2 = {ω3, ω4}, and ζ3 = {ω5, ω6}.

Each of these occurs with a known probability of πi(ζ1) = πi(ζ2) = πi(ζ3) = 1/3.
However, there is complete ambiguity about the probabilities of the two states within
each of the three events. This ambiguity partition is illustrated in the left panel of Figure
7. The agent has to choose between a risk-free asset A1 = ~1, whose payoffs are 1 in each
state, and a risky asset A2 = (1/2, 1/2, 1, 1, 2, 2). Note that only the marginal distribution
of (ζ1, ζ2, ζ3) matters. Since the agent knows this marginal distribution, ambiguity plays
no role in the decision problem and, as long as preferences satisfy Assumption 2, there is
only one undominated choice. However, suppose the agent receives the information that
the true state of the world is contained in ξ = {ω2, ω4, ω6} before he makes his decision.
As a consequence of this release, all odd states can be ruled out. This release is irrelevant
since it contains no news about the marginal distribution. The only consistent one is still:

πi(ζ1|ξ) = πi(ζ2|ξ) = πi(ζ3|ξ) = 1/3.

However, if the agent applies the full Bayesian rule, he does not reach this conclusion.
Updating Πi prior by prior results in

Πi
B(ξ) =

{
πi ∈ R|Ω|+

∣∣ πi(ω2) + πi(ω4) + πi(ω6) = 1
}
,

and all of a sudden all choices are undominated. The ambiguity spillover is illustrated in
the right panel of Figure 7. This spillover may lead to completely different decisions even
though the observed information is not payoff-relevant.

Such updating is problematic since it adds something arbitrary to the set of posteriors.
Consider, for example, the probability vector πi = (1, 0, 0, 0, 0, 0), which puts all the mass
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on state ω1. This vector is a valid posterior under full Bayesian updating, but the marginal
distribution has changed completely. Even though the information set ξ does not rule out
the events ζ2 and ζ3, the agent finds it possible that both occur with a probability of
zero. This is inconsistent with his priors, which assign an unambiguous probability of
1/3 to both events. The issue with the updating rule in the example can be described as
follows. Full Bayesian updating allows ambiguous probability mass to flow from one event
to another. Although the new information resolves all uncertainty, the probability mass
is no longer distributed in equal proportions over the three events.

How do we avoid this kind of behavior? It is not sufficient to impose a restriction
on the progressive fineness of ambiguity partitions. Consider, for example, an updating
rule that results in Πi(ξ) = {(1, 0, 0, 0, 0, 0)}. Such an update is consistent with Bayes’
law and leads to a finer ambiguity partition. Nevertheless, it is at odds with the previous
knowledge of the agent – he forgets the objective probabilities of the payoff-relevant events.
To prevent such misguided information processing, the updating rule must preserve the
marginal distribution of all events that are still considered possible after an information
release. In other words, their likelihood ratios must not change between priors π̃i and
posteriors πi:

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=
π̃i(ζ)

π̃i(ζ ′)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ 6= ∅, ξ ∩ ζ ′ 6= ∅

This condition is the necessary refinement of full Bayesian updating that eliminates
the undesirable behavior in the above example. It forces ambiguous probability mass
to stay within a cell of Ai as long as some states are still considered possible. In the
above example, this refinement works well because only ambiguous probability mass has
to be redistributed. However, if there is unambiguous probability mass on some states
in a cell of Ai, this mass cannot remain within the cell when those states are discarded;
otherwise, Bayes’ law would be violated. For any event ξ, the unambiguous probability
mass is minπ̂i∈Πi π̂

i(ξ), the least probability that all priors assign. To maintain Bayes’
law, unambiguous mass on discarded states has to be subtracted when calculating the
likelihood ratios:

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

π̃i(ζ)−minπ̂i∈Πi π̂
i(ζ\ξ)

π̃i(ζ ′)−minπ̂i∈Πi π̂i(ζ ′\ξ)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ 6= ∅, ξ ∩ ζ ′ 6= ∅ .

This is the general condition we impose to ensure that agents do not lose their previous
knowledge. Since π̃i(ζ) = minπ̂i∈Πi π̂

i(ζ\ξ) + maxπ̂i∈Πi π̂
i(ξ ∩ ζ) for any ζ ∈ Ai, it can be

stated more concisely in the form of the following definition.

Definition 8. An updating rule satisfies ambiguity containment if for any ξ ⊆ Ω the
following condition is true:

πi ∈ Πi(ξ) =⇒ πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

maxπ̂i∈Πi π̂
i(ξ ∩ ζ)

maxπ̂i∈Πi π̂i(ξ ∩ ζ ′)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ ′ 6= ∅ .
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Even though the space of potential updating rules is very large, it turns out that the
conditions from Definitions 1 and 8 restrict this space to one single point. Bayes’ law and
ambiguity containment are jointly satisfied if and only if the maximum-likelihood rule (3)
is used:

Proposition 1. The unique updating rule that satisfies Bayes’ law and ambiguity con-
tainment is the maximum-likelihood rule:

Πi(ξ) = Πi
M(ξ) ∀ξ ⊆ Ω .

Proposition 1, whose proof is presented in the appendix, offers a strong justification
for maximum-likelihood updating. It shows that under any other rule, agents may lose
confidence in their own model of the world on receiving irrelevant information. The
maximum-likelihood rule ensures that new information does not create new uncertainty
and thus fulfills a normative criterion of individual rationality.

Contrary to full Bayesian updaters, agents who apply the maximum-likelihood rule
may revise their original plans. It is worth noting that this creates a propensity to trade
when the financial market reopens, even under a high degree of uncertainty. This stands
in contrast to the two-date model of Rigotti and Shannon (2005), in which trade breaks
down if uncertainty grows large. In extreme cases with prevalent uncertainty, no trade may
be the only individually rational contingent market equilibrium. However, in a financial
market that opens sequentially, the presence of a single maximum-likelihood updater may
be enough to eliminate no-trade equilibria. Under a weak condition on his subjective
probabilities, there are always economies in which all equilibria involve trade, no matter
what the characteristics of the other agents are.

Corollary 4. Let |Ω| ≥ 4, J ≥ 1. If some agent i applies the maximum-likelihood rule,

Πi(ξ) = Πi
M(ξ) ∀ξ ⊆ Ω ,

and if at least two states are unambiguous while others are ambiguous, then there exists
an information structure I such that any stochastic economy (I,Π, u, e) has the following
property: All financial market equilibria involve trade.

Proof. Without loss of generality, let ω1 and ω2 be the unambiguous states. Then there
exists an information partition I1 = {ξ1, ξ2} with {ω1} ⊂ ξ1 and {ω2} ⊂ ξ2. Under
Assumption 1, πi(ξ1) > 0 and πi(ξ2) > 0 for any πi ∈ Πi. The presence of ambiguity in
Πi implies that

πi(ξ1) + π̂i(ξ2) 6= 1 ∀πi, π̂i ∈ Πi, πi 6= π̂i. (15)

The corollary can now be proven by contradiction: Let πi( . |ξ1) ∈ Πi
M(ξ1) and π̂i( . |ξ2) ∈

Πi
M(ξ2); then, πi 6= π̂i by definition of the rule (3). Suppose that some convex combination

satisfies απi( . |ξ1) + (1− α)π̂i( . |ξ2) ∈ Πi. Since ω1 and ω2 are unambiguous, this implies
απi(ω1|ξ1) = πi(ω1) and (1 − α)π̂i(ω2|ξ2) = π̂i(ω2). Applying (1) to these two identities
results in α = πi(ξ1) and 1−α = π̂i(ξ2), but this violates (15) and is therefore impossible.
Thus, the maximum-likelihood rule implies Πi∩conv(Πi

M(ξ1),Πi
M(ξ2)) = ∅ and Corollary 1
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can be invoked: Even if the initial plan involves no trade, dynamic inconsistency implies
that agents start trading at date 1. Since Assumption 3 rules out endowments at the
boundary, no trade implies interiority and boundary equilibria need not be considered.
Only if J = 0 do budget sets contain no interior points, but this case is excluded.

Corollary 4 is empirically well-founded. It holds as long as some agents use maximum-
likelihood updating, and this is supported by experimental results. In a dynamic version of
the Ellsberg urn experiment, Cohen, Gilboa, Jaffray, and Schmeidler (2000) classify about
29% of subjects as maximum-likelihood updaters. In a simulated asset market experi-
ment with an information structure identical to the one from the example in Section 3.2,
Ngangoué (2018) identifies the behavior of 22% of subjects as consistent with maximum-
likelihood updating, and these subjects always trade. The results become stronger if one
tests directly for dynamic consistency: Again in a dynamic Ellsberg urn experiment, Do-
miniak, Duersch, and Lefort (2012) find that about 68% of subjects make dynamically
inconsistent decisions.

4.3 A Difficulty in the Design of Updating Rules

Now that normative criteria of social optimality and individual rationality are formulated,
it remains to be analyzed when and whether these criteria are fulfilled in equilibrium.
Taken separately, neither of the two criteria is too demanding. There are choices of
updating rules that ensure either: Full Bayesian updating guarantees dynamic consistency,
which translates into Pareto efficiency in dynamically complete markets (Corollary 3).
Maximum-likelihood updating guarantees ambiguity containment, and that agents do
not forget (Proposition 1). In light of these findings, a natural desideratum of normative
theory is to design an updating rule that combines both criteria. Unfortunately, this is
impossible:

Corollary 5. There exists no updating rule that satisfies Bayes’ law and guarantees both
dynamically consistent plans and ambiguity containment.

Proof. By Proposition 3, the only rule that jointly satisfies Bayes’ law and ambiguity
containment is the maximum-likelihood rule. However, in Section 3, it is demonstrated
that this rule may lead to dynamically inconsistent plans.

Corollary 5 highlights a conflict between normative criteria under Knightian uncer-
tainty. In simple two-date models, this conflict does not surface because all uncertainty
is eliminated at once. In this case, all updating rules agree and assign a probability of
one to the realized state. For the same reason, conflicts of this kind do not occur under
subjective expected utility: If there is a single prior, all updating rules agree and result
in simple Bayesian updating. In this case, plans are always dynamically consistent and
new information always reduces uncertainty. Difficulties only appear when the updating
rules are in discord.

Even though these difficulties cannot be resolved in general, the insights from Sec-
tion 3 suggest that some economies are unproblematic in that no conflict between the
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two normative criteria occurs. This is the case whenever the full Bayesian rule and
the maximum-likelihood rule lead to equivalent updates. Our next result is a simple
characterization of unproblematic economies. It depends only on the relative fineness of
information partitions and ambiguity partitions. If an observed event ξ shares states with
a cell ζ of the ambiguity partition, the rules agree if ξ ⊆ ζ; that is, if the event is fully
contained in a cell of the ambiguity partition. The same holds true if ζ ⊆ ξ. The following
theorem shows that these easy-to-verify criteria characterize economies in which dynamic
consistency and ambiguity containment are compatible.

Proposition 2. The following statements are equivalent:

(i) For each t > 0,
ξ ∩ ζ ∈ {ξ, ζ,∅} ∀(ξ, ζ) ∈ It ×Ai .

(ii) For each t > 0,
Πi

B(ξ) = Πi
M(ξ) ∀ξ ∈ It .

The aesthetics of Proposition 2 is in its generality. It is based on a criterion for
economies and therefore independent of equilibrium variables. If the criterion is satisfied,
then all equilibria are dynamically consistent and no ambiguity spillovers occur, regardless
of how incomplete the asset structure A is and regardless of which updating rules the agents
apply.

Finally, we relate our criterion to the rectangularity condition of Epstein and Schneider
(2003), which characterizes dynamically consistent decisions under full Bayesian updating
in the related setting of maxmin expected utility. In the notation of the present paper,
the condition can be stated as follows. Summations are understood as Minkowski sums.

Definition 9. A tuple (I,Πi) of information structure and subjective probabilities satis-
fies rectangularity if for each t > 0 and each ξ ∈ It−1,

Πi
B(ξ) =

⋃
πi∈Πi

∑
ξ′∈It

πi(ξ′|ξ) Πi
B(ξ
′) .

Since Definition 9 is based on the full Bayesian rule, Πi
B, it may create the impression

that full Bayesian updating and rectangularity are intrinsically related. However, the
condition is in fact so strong that differences between updating rules disappear.

Proposition 3. If (I,Πi) satisfies rectangularity, then for each t > 0,

Πi
B(ξ) = Πi

M(ξ) ∀ξ ∈ It .
Proposition 3 shows that rectangularity is at least as strong as the criterion from

Proposition 2. Since this criterion is less obscure, there is no value added in adopting the
rectangularity condition within the framework of Knightian decision theory. In fact, our
criterion is strictly weaker than rectangularity, which is easily seen in the final example.

Example. Let Ω = {ω1, ω2, ω3} be the state space and let I1 = {{ω1, ω2}, {ω3}} be the
date 1 information partition. Consider an agent with subjective probabilities Πi = {πi ∈
∆3 |πi(ω1) ≤ 1/2}. As the induced ambiguity partition is Ai = {Ω}, the condition from
Proposition 2 is satisfied whereas rectangularity is violated.
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5 Conclusion

In the traditional theory of general equilibrium, financial market models have two impor-
tant properties: First, all consumption and trading plans are dynamically consistent, and
second, better information reduces uncertainty. If Knightian uncertainty is added to the
model, these two properties are at odds. The reason is that both properties depend on the
updating rule for subjective probabilities. Even though we have identified rules that guar-
antee either property, there exists no rule that guarantees both. This impossibility result
poses a challenge for a general theory of dynamic markets under Knightian uncertainty.
One of the two properties must be given up, but neither is a natural candidate.

Allowing uncertainty to spread is not only at odds with traditional theory but incom-
patible with the ideas of Knight (1921). Even though he employs his own concept of
uncertainty, he conforms with the traditional view that uncertainty stems from imperfect
knowledge. In line with this view, he recognizes that uncertainty is reduced through new
information. This is expressed most concisely in his discussion of social aspects of uncer-
tainty: “The amount of uncertainty may, however, be reduced in several ways, as we have
seen. In the first place, we can increase our knowledge of the future through scientific
research and the accumulation and study of the necessary data” (p. 347). The argument
is normative in nature: Agents should use information to improve their knowledge, and
should not forget knowledge previously held.

Dynamic consistency, on the other hand, has its own normative implication: It guar-
antees a Pareto efficient market outcome, provided the market is dynamically complete.
If dynamic consistency is given up, Pareto efficiency is lost in some economies. It must be
noted, though, that there is a set of economies in which both properties are compatible
because different updating rules lead to identical updates. Our characterization shows
that this set is sizable. In particular, it contains the well-known special cases of two-date
economies and single-prior economies. Outside this set, however, different updating rules
have different implications. In this case, the theory’s predictions depend on how agents
update subjective probabilities, which is ultimately an empirical question.

Appendix

The appendix contains the proofs of Theorem 1 and all propositions. These proofs make
use of the following two lemmata:

Lemma 1. Let Πi : 2Ω ⇒ ∆|Ω| be an updating rule that satisfies Bayes’ law. Then, for
any partition It of Ω,

prξ(q) ∈ cone(Πi(ξ)) ∀ξ ∈ It ⇐⇒ q ∈ cone
((

Πi(ξ)
)
ξ∈It

)
.

Proof. Necessity: If q belongs to the conical hull, there is some vector of weights α ∈ R|It|+

such that q ∈
∑

ξ∈It αξΠ
i(ξ). For any ξ ∈ It, the projection prξ can be applied to both

sides, which yields
prξ(q) ∈ αξprξ(Π

i(ξ)) ∀ξ ∈ It ,
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and since prξ(Π
i(ξ)) = Πi(ξ) by Bayes’ law, this implies the left-hand side of the equiva-

lence.
Sufficiency: By construction of the projection prξ, any vector q that satisfies the left-

hand side of the equivalence can be recovered as q =
∑

ξ∈It prξ(q). Therefore, it satisfies

q ∈
∑
ξ∈It

αξcone(Πi(ξ))

with α = ~1. This means that q belongs to the conical hull.

Lemma 2. For any event ξ ⊆ Ω, there exists a probability vector πi∗ ∈ Πi that satisfies

πi∗ ∈ arg max
πi∈Πi

πi(ξ ∩ ζ) ∀ζ ∈ Ai with ξ ∩ ζ nonempty,

and this condition is equivalent to

πi∗ ∈ arg max
πi∈Πi

πi(ξ) .

Proof. As regard existence, note that Πi is compact under Assumption 1 as a closed subset
of the unit simplex. Thus, the final problem maxπi∈Πi π

i(ξ) has a solution. As regards
equivalence, the implication from the first condition to the second is trivial. The reverse
implication can be proven by contradiction: Any maximizer πi∗ from the second condition
also solves the maximization problems in the first condition. Suppose not; then, there
would be some ζ ∈ Ai and some πi ∈ Πi such that πi∗(ξ∩ζ) < πi(ξ∩ζ). By construction of
Ai, πi can be chosen to satisfy πi(ζ ′) = πi∗(ζ ′) for all ζ ′ 6= ζ because Πi =

∑
ζ∈Ai prζ(Π

i).

Summing over all ζ ′ ∈ Ai with ξ ∩ ζ ′ nonempty leads to

πi∗(ξ) =
∑
ζ′

πi∗(ξ ∩ ζ ′) <
∑
ζ′ 6=ζ

πi∗(ξ ∩ ζ ′) + πi(ξ ∩ ζ) = πi(ξ) ,

but if πi∗(ξ) < πi(ξ), then πi∗ could not have been a maximizer in the first place.

Let the operator � denote the inverse of the componentwise product ⊗, the compo-
nentwise division: (Y ⊗ x) � x = Y . It satisfies prξ(y) � x = prξ(y � x). The compo-
nentwise product on S can also be defined between a set Y ⊆ S and a vector x ∈ S as
Y ⊗ x = {z ∈ S | z = x⊗ y for some y ∈ Y }.

Proof of Theorem 1. Dynamic consistency means that for each agent i, the original con-
sumption plan satisfies all first-order conditions; i.e.,

Q[P0](ξ) ∩∇U i[Ci
0](ξ) 6= ∅ ∀ξ ∈ It, t ≥ 0. (16)

By definition, Q[P0](ξ) = prξ(Q[P0]), and by Equation (6),∇U i[Ci
0](ξ) = cone(Πi(ξ))⊗

Dui[Ci
0]. Using these facts, (16) is equivalently expressed as

∃q ∈ Q[P0] such that prξ(q) ∈ cone(Πi(ξ))⊗Dui[Ci
0] ∀ξ ∈ It, t ≥ 0. (17)

30



Applying � to both sides of (17) yields the equivalent expression

∃q ∈ Q[P0] such that prξ(q �Dui[Ci
0]) ∈ cone(Πi(ξ)) ∀ξ ∈ It, t ≥ 0. (18)

Moreover, if � is applied to Equation (13), it becomes clear that q � Dui[Ci
0] =

απ̄i[q, Ci
0] for some α > 0. Combining this with (18) results in the equivalent expression

∃q ∈ Q[P0] such that prξ(π̄
i[q, Ci

0]) ∈ cone(Πi(ξ)) ∀ξ ∈ It, t ≥ 0, (19)

and by Lemma 1, (19) is equivalent to

∃q ∈ Q[P0] such that π̄i[q, Ci
0] ∈ cone

((
Πi(ξ)

)
ξ∈It

)
∀t ≥ 0. (20)

Finally, note that π̄i[q, Ci
0] ∈ ∆|Ω| and Πi(ξ) ⊆ ∆|Ω|. Therefore, attention can be

restricted to the unit simplex and the conical hull in (20) can be replaced with the convex
hull, which results in the condition of the theorem.

Proof of Proposition 1. Necessity of Πi
M: By Lemma 2, the condition of ambiguity con-

tainment can be written as

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=
πi∗(ξ ∩ ζ)

πi∗(ξ ∩ ζ ′)
∀ζ, ζ ′ ∈ Ai with ξ ∩ ζ ′ 6= ∅

which defines a system of equations. Although the system is overdetermined, there exists
some scalar µ 6= 0 such that

πi(ξ ∩ ζ) = µπi∗(ξ ∩ ζ) ∀ζ ∈ Ai

constitutes a solution. By definition, πi(ξ) = 1 is satisfied for πi ∈ Πi(ξ) under any
updating rule Πi(ξ). Therefore,

1 = πi(ξ) =
∑
ζ∈Ai

πi(ξ ∩ ζ)

= µ
∑
ζ∈Ai

πi∗(ξ ∩ ζ) = µπi∗(ξ) ,

and we have µ = 1/πi∗(ξ). As a consequence, all conditional probabilities of events ξ ∩ ζ
are defined as the unique Bayesian updates

πi(ξ ∩ ζ) =
πi∗(ξ ∩ ζ)

πi∗(ξ)
= πi∗(ζ|ξ) .

Combining this restriction with Bayes’ law leads to the implication

πi ∈ Πi(ξ) =⇒ ∃πi∗ ∈ arg max
π̂∈Πi

π̂(ξ) with πi( · ) = πi∗( · |ξ) ,
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and the maximum-likelihood rule (3) follows.

Sufficiency of Πi
M: It is obvious that Bayes’ law is implied; thus, it remains to be shown

that the rule satisfies ambiguity containment. Under the rule, πi ∈ Πi(ξ) implies

πi(ξ ∩ ζ) = πi∗(ζ|ξ) =
πi∗(ξ ∩ ζ)

πi∗(ξ)
∀ζ ∈ Ai,

and thus it holds for the likelihood ratio of any two events ζ, ζ ′ ∈ Ai that

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

πi∗(ξ ∩ ζ)

πi∗(ξ ∩ ζ ′)
=

maxπ̂∈Πi π̂(ξ ∩ ζ)

maxπ̂∈Πi π̂(ξ ∩ ζ ′)
.

The second equality follows from Lemma 2 and establishes ambiguity containment.

Proof of Proposition 2. The equivalence is proven by establishing two separate implica-
tions.

(i) implies (ii): Let (ξ, ζ) ∈ It × Ai for some t > 0. As in Equation (3), let πi∗ ∈
arg maxπi∈Πi π

i(ξ). First, it shall be shown that

ξ ∩ ζ = ξ =⇒ πi(ξ ∩ ζ|ξ) = πi∗(ξ ∩ ζ|ξ) ∀πi ∈ Πi . (21)

Since ξ ∩ ζ = ξ means ξ ⊆ ζ, it follows that πi(ξ ∩ ζ|ξ) = πi(ξ|ξ) = 1 ∀πi ∈ Πi and
(21) is trivially true. Second, it shall be shown that

ξ ∩ ζ = ζ =⇒ πi(ξ ∩ ζ|ξ) = πi∗(ξ ∩ ζ|ξ) ∀πi ∈ Πi . (22)

Since ξ ∩ ζ = ζ means that ξ ∩ ζ ∈ Ai, there is no ambiguity about its probability,
i.e., πi(ξ ∩ ζ) = πi∗(ξ ∩ ζ) ∀πi ∈ Πi. As all unconditional probabilities agree, so must the
conditional. Third, note that

ξ ∩ ζ = ∅ =⇒ πi(ξ ∩ ζ|ξ) = 0 ∀πi ∈ Πi . (23)

Finally, since (21), (22), and (23) hold for any ξ ∈ It, t > 0, there can be no πi ∈ Πi
B(ξ)

such that πi /∈ Πi
M(ξ). As Πi

M(ξ) ⊆ Πi
B(ξ) by definition, the implication is proven.

¬(i) implies ¬(ii): It shall be shown that for any (ξ, ζ) ∈ It ×Ai, t > 0,

ξ ∩ ζ /∈ {ξ, ζ,∅} =⇒ ∃πi ∈ Πi such that πi(ξ) 6= πi∗(ξ) . (24)

Since ξ ∩ ζ 6= ζ and ξ ∩ ζ 6= ∅ jointly imply that ξ ∩ ζ /∈ Ai, there exists some πi ∈ Πi

such that πi(ξ ∩ ζ) 6= πi∗(ξ ∩ ζ); otherwise, Ai would not be the finest partition satisfying
(4). By Lemma 2,

πi∗(ξ ∩ ζ ′) = max
π̂i∈Πi

π̂i(ξ ∩ ζ ′)
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for any ζ ′ ∈ Ai. Therefore, for at least one cell ζ ∈ Ai, πi(ξ ∩ ζ) < πi∗(ξ ∩ ζ) and for all
other cells ζ ′ 6= ζ, πi(ξ ∩ ζ ′) ≤ πi∗(ξ ∩ ζ ′). Summing over all cells of Ai leads to∑

ζ′∈Ai
πi(ξ ∩ ζ ′) = πi(ξ) < πi∗(ξ) ,

and thus (24) holds true. This proves the implication and thus the proposition.

Proof of Proposition 3. For any set S ⊂ R|Ω|, define the rescale operationR(S) =
{

x
x·~1

∣∣∣ x ∈ S}
and the maximizer Mξ(S) = arg maxx∈S x·~1. Then, full Bayesian updating and maximum-
likelihood updating can be written as

Πi
B(ξ) = R(prξ(Π

i)) (25)

Πi
M(ξ) = R(prξ(Mξ(Π

i))) . (26)

We show that for any t > 0, a recursive application of the rectangularity condition
(Definition 9) from date 0 through date t − 1 implies that the two updating rules agree
on all date t events: At date 0, ξ0 = Ω for all ξ0 ∈ I0, and thus Πi

B(ξ0) = Πi. Using
rectangularity recursively leads to

Πi =
⋃
πi1∈Πi

∑
ξ1∈I1

πi1(ξ1)
⋃
πi2∈Πi

∑
ξ2∈I2

πi2(ξ2|ξ1) · · ·
⋃
πit∈Πi

∑
ξt∈It

πit(ξt|ξt−1)Πi
B(ξt) . (27)

For any ξ ∈ It, the maximum operation Mξ can be applied to both sides of (27). Let

ξ̂0, ξ̂1, . . . , ξ̂t be the sequence of events ξ̂s ∈ Is that satisfies ξ̂t = ξ and ξ̂s ⊆ ξ̂s−1 for all
1 ≤ s ≤ t. Note that Mξ applied to the right-hand side of (27) maximizes the product

πi1(ξ̂1)πi2(ξ̂2|ξ̂1) · · · πit(ξ̂t|ξ̂t−1). Since the constraint set (Πi)t =
�t

s=1 Πi has a product
structure,

max
(πi1,...,π

i
t)∈(Πi)t

t∏
s=1

πis(ξ̂s|ξ̂s−1) =
t∏

s=1

max
πis∈Πi

πis(ξ̂s|ξ̂s−1) = λ∗ ,

in which λ∗ is a strictly positive scalar because each maximum must be greater than zero
under Assumption 1. Using Mξ on both sides of (27) thus leads to

Mξ(Π
i) =

⋃
πi1∈Mξ̂1

(Πi)

∑
ξ1∈I1

πi1(ξ1) · · ·
⋃

πit∈Mξ̂t
(Πi)

∑
ξt∈It

πit(ξt|ξt−1)Πi
B(ξt) . (28)

Note that prξ(Π
i
B(ξt)) = {0} for all ξt ∈ It\{ξ}. Therefore, prξ applied to both sides

of (28) results in

prξ(Mξ(Π
i)) =

⋃
πi1∈Mξ̂1

(Πi)

· · ·
⋃

πit∈Mξ̂t
(Πi)

prξ

(
πi1(ξ̂1)πi2(ξ̂2|ξ̂1) · · · πit(ξ̂t|ξ̂t−1) Πi

B(ξ)
)
, (29)

and the rescale operation R applied to both sides of (29) in

R(prξ(Mξ(Π
i))) = R(λ∗prξ(Π

i
B(ξ))) . (30)
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By construction, R(λS) = R(S) for any scalar λ 6= 0 and set S. Therefore, by means
of (25) and (26), Equation (30) can be rewritten as

Πi
M(ξ) = Πi

B(ξ) . (31)

Since this is true for any t > 0 and any choice of ξ ∈ It, the proposition is proven.

The proof of Corollary 3 employed the following Lemma.

Lemma 3. If the financial market is dynamically complete at a dynamically consistent
equilibrium (P,C,Ψ), then Q[P0] is a one-dimensional subspace.

Proof. Since Q[P0] is the orthogonal complement Q[P0] = X(P0,SJ ; Ω)⊥ of a linear sub-
space, it is a subspace itself and satisfies

dim(Q[P0]) + dim(X(P0,SJ ; Ω)) = dim(S) =
T∑
t=0

|It| . (32)

Suppose dim(Q[P0]) = 0; then, X(P0,SJ ; Ω) = S and the budget set Bi
0(P0, 0) is not

compact. In this case, no undominated plan and thus no equilibrium exists. Therefore,
at any equilibrium

dim(Q[P0]) ≥ 1 . (33)

Note that Xt+1(P0,SJ ; ξ) is a subspace of X(P0,SJ ; Ω) for any ξ ∈ It and t ∈
{0, . . . , T − 1}. Since It is a partition, Xt+1(P0,SJ ; ξ) and Xt+1(P0,SJ ; ξ′) are trans-
verse for any ξ, ξ′ ∈ It such that ξ 6= ξ′. Moreover, Xs(P0,SJ ; . ) and Xt(P0,SJ ; . ) are
transverse for any s 6= t. This leads to

dim

(
T−1∑
t=0

∑
ξ∈It

Xt+1(P0,SJ ; ξ)

)
=

T−1∑
t=0

∑
ξ∈It

dim(Xt+1(P0,SJ ; ξ))

≤ dim(X(P0,SJ ; Ω)) , (34)

in which the equality follows from transversality while the inequality follows from the fact
that any sum of subspaces is contained in the whole space. Dynamic consistency implies
that P0 = · · · = PT , and thus Definition 6 implies that for each t ≥ 0,∑

ξ∈It

dim(Xt+1(P0,SJ ; ξ)) = |It+1|

because It is a partition. Inserting this result into (34) leads to

T∑
t=1

|It| ≤ dim(X(P0,SJ ; Ω)) ,

and, in combination with (32), this results in

dim(Q[P0]) ≤ |I0| = 1 . (35)

Jointly, (33) and (35) imply that dim(Q[P0]) = 1, which concludes the proof of the
lemma.
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