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Abstract

This paper studies the reinforcement learning of Erev and Roth with foregone pay-
off information in normal form games: players observe not only the realised payoffs
but also foregone payoffs, the ones which they could have obtained if they had chosen
the other actions. We provide conditions under which the reinforcement learning pro-
cess almost surely converges to a mixed action profile at which each action is chosen
with a probability proportional to its expected payoff. In particular, in symmetric 2×2
partnership games without a Pareto-dominant Nash equilibrium and matching-pennies
games, the action profile corresponds to the mixed Nash equilibrium. However, in gen-
eral, the action profile does not correspond to a Nash equilibrium: it corresponds to a
Nash equilibrium if and only if for each player, all the actions are chosen with equal
probability at the equilibrium. Instead, we show that the action profile corresponds
to a perturbed equilibrium, regular quantal response equilibrium (Goeree et al., 2005),
when there is no distortion on the foregone payoffs. Therefore, for any normal form
games, if the conditions hold, the process almost surely converges to the equilibrium.

Keywords: Reinforcement learning; foregone payoff information; regular quantal re-
sponse equilibrium; normal form games; asynchronous stochastic approximation
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1 Introduction

In this paper, we investigate the long-run outcomes of the reinforcement learning of Roth
and Erev (1995) and Erev and Roth (1998) with foregone payoff information in normal
form games. That is, players observe payoffs from not only chosen actions but also uncho-
sen actions. This paper provides conditions under which the reinforcement learning process
converges to a mixed action profile at which each action is chosen with a probability pro-
portional to the expected payoff of the action. In particular, in symmetric 2×2 partnership
games without a Pareto-dominant Nash equilibrium and matching-pennies games, the ac-
tion profile corresponds to the mixed Nash equilibrium. However, the action profile does
not correspond to a Nash equilibrium unless for each player, all the actions are chosen
with equal probability at the equilibrium. Instead, we show that the mixed action profile
corresponds to a regular quantal response equilibrium (Goeree et al., 2005) when there is
no distortion on the foregone payoff information. Therefore, under these conditions, the
reinforcement learning process almost surely converges to the equilibrium in normal form
games.

We consider the following situation. In each period, players face a fixed normal form
game and choose actions based on their past experience. Specifically, each player assigns
some weights to his actions and chooses an action with a probability proportional to its
weight. After choosing an action, each player observes the realised payoff, which he/she
actually obtains from the play, and the foregone payoffs, which he/she could have obtained
if he/she had chosen the other actions. Using the payoff information, he/she updates the
weight of each action by adding the corresponding payoff to the weight. Therefore, the
weight of each action represents the accumulated payoff of the action, and the probability
of choosing the action is proportional to the accumulated payoff. We also consider the case
in which each player may not treat the foregone payoffs as the realised payoffs and may
distort the foregone payoff information.

By taking into account the foregone payoff information in the learning model of Erev and
Roth, we investigate the case in which players learn not only from their own experience but
also from others’ experience in a social setting. For instance, we can consider the situation
in which each player in a large group of players who are involved in a similar environment
makes a decision and observes what has happened to the other players:1 e.g. when having
a cup of coffee alone at a coffee shop in the morning, we may observe colleagues enjoying
a conversation at another coffee shop on the opposite side of the street and think we could
have enjoyed ourselves more if we had chosen the other coffee shop. Also, we can consider
the situation in which each player cannot directly observe others’ experience but can ask
about their experience to determine what could have happened if he/she had chosen the

1Rustichini (1999) calls the environment “full information”. In this interpretation of observing foregone
payoffs, it is not required for players to know the payoff structure. In another interpretation, players actually
know the payoff structure and “imagine” what they could have obtained if they had chosen the other actions
(e.g. Camerer and Ho, 1999).
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other actions: in the coordination problem of choosing a coffee shop in the morning, we
can ask our colleagues about their experience at the coffee shops which we have not chosen.

When obtaining the payoff information from others, players may not process the in-
formation in the same manner as the payoff information from their own experience. For
instance, when asking neighbours about what has happened to them, players may believe
that the neighbours exaggerate what they have experienced, and take the discounted payoff
information into account. Also, information gained from their own experience may have
a stronger impact on their behaviour than information gained from observing the others
(Simonsohn et al., 2008): this idea can be expressed by discounting the effect of foregone
payoffs.2 In this paper, we express the way each player distorts the foregone payoff infor-
mation by δi. In particular, we focus on the case in which for each player i, δi ∈ (0, 1] and
is stationary over periods. The assumptions mean that players (i) discount the effect of
foregone payoffs and (ii) never experience and learn what the other players have actually
experienced and do not change their behaviour toward the foregone payoff information over
periods.

In this paper, by utilising the asynchronous stochastic approximation method of Tsit-
siklis (1994), we show that the reinforcement learning process almost surely converges to
a mixed action profile when a function which maps from a mixed action profile of players
to a profile each of whose components is associated with some player’s action and consists
of the fraction of a distorted expected payoff of the action over the sum of the payoffs
of the player’s available actions is a contraction mapping. In particular, we show that in
several games, the function becomes a contraction mapping when δi is close to 1 for each
player. We also show that the action profile corresponds to the mixed Nash equilibrium
in symmetric 2 × 2 partnership games without a Pareto-dominant Nash equilibrium and
matching-pennies games. However, in general, it does not correspond to a Nash equilib-
rium: we show that the action profile corresponds to a Nash equilibrium if and only if for
each player, all the actions are chosen with equal probability at the equilibrium. Instead,
we can view the action profile as a perturbed equilibrium. We first introduce the concept
of regular quantal response equilibrium introduced by Goeree et al. (2005). Then we show
that the action profile corresponds to the equilibrium when there is no distortion on the
foregone payoffs. Therefore, under these conditions, the reinforcement learning process
of this paper almost surely converges to the equilibrium in normal form games. Lastly,
we show that given some payoff normalisation and δi = 1 for each player, the function
becomes a contraction mapping in any 2 × 2 game and thus the process converges to a
regular quantal response equilibrium in the game.

The original reinforcement learning model which this paper is based on is introduced
by Roth and Erev (1995) and Erev and Roth (1998) and theoretically investigated by
Beggs (2005), Hopkins and Posch (2005), Ianni (2014) and Laslier et al. (2001). How-

2Camerer and Ho (1999) also mention this idea in the context of learning by imitation: the actions that
the other players have chosen are also reinforced, so that the probability of imitating them increases, but
are not as fully reinforced as the actions which have actually been chosen.
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ever, the original model does not take into account the payoff information from unchosen
actions. By taking into account this aspect, Rustichini (1999) extends the model to single-
person decision problems. Camerer and Ho (1999) also consider this aspect and introduce
the experience-weighted attraction learning model, which nests the reinforcement learning
models of Erev and Roth and this paper and the stochastic fictitious play learning model
of Fudenberg and Kreps (1993). Using some experimental data, they estimate the pa-
rameters of their model and show that in constant-sum games, median-action games and
beauty contests, foregone payoffs are discounted. In particular, in constant-sum games and
median-action games, they show that their model corresponds to the reinforcement learn-
ing model with foregone payoff information. However, they investigate empirically and
do not provide any theoretical investigation.3 In this paper, we complement the analysis
of Rustichini (1999) and Camerer and Ho (1999) with the theoretical investigation of the
model with foregone payoff information in normal form games.

In particular, we extend the result of Rustichini (1999) to normal form games. He
shows that in a stationary single-person decision problem, the probability of choosing
each action converges to the fraction of the expected payoff of the action over the sum of
the expected payoffs of the available actions.4 We show that a similar result is obtained
even when players face a non-stationary decision problem: we investigate the situation in
which reinforcement learners interact with each other and play a fixed normal form game
repeatedly.

It is worth noting that, under reinforcement learning without foregone payoff informa-
tion, Hopkins and Posch (2005) show that the reinforcement learning process converges
to a pure Nash equilibrium with probability one in partnership games. This paper shows
a different result: there exists a range of the distortion on the foregone payoffs such that
the reinforcement learning process with foregone payoff information converges to the mixed
Nash equilibrium in partnership games without a Pareto-dominant Nash equilibrium almost
surely. Therefore, the observation of foregone payoff information affects their behaviour in
the long run, shifting from the pure Nash equilibrium to the mixed one.

The result of convergence to the mixed Nash equilibrium with each action being chosen
equally also coincides with that of Freedman (1965): he shows that in the Pólya urn model,
which is often used to describe and analyse the original reinforcement learning model, with
some modification in that not only balls of the same colour as the drawn ball but also
balls of the opposite colour are added to the urn, the fraction of each ball being chosen
converges to 1

2 . Beggs (2005) also mentions the result in a single-person decision problem
context and provides conjectures such that when unchosen actions are also reinforced, (i)

3Experience-weighted attraction learning, mainly the belief-based model, is also theoretically investi-
gated by Funai (2018).

4Rustichini (1999) also considers the case in which the choice probability of each player is expressed as
the logit choice function and obtains different results in single-person decision problems. The convergence
analysis of the process when players follow the choice rule and face a normal form game is left for future
research.

4



the reinforcement learning process in 2 × 2 games does not converge to a mixed Nash
equilibrium unless the probability of one action chosen is 1

2 at the equilibrium, and (ii) the
process may rather converge to some approximate equilibrium close by. In this paper, we
verify his conjectures by considering a more general case, in that there exist more than two
players with more than two actions available, and specifying the concept of the equilibrium
that the reinforcement learning process converges.

Lastly, even though Beggs (2005), as well as Erev and Roth (1998) and Hopkins (2002),
considers the case in which unchosen actions are also reinforced, the reinforcement on each
of the unchosen actions does not depend on the corresponding foregone payoff: in their
models, even though one unchosen action could provide a much better payoff than another
unchosen action, those two actions are equally reinforced. This is due to the fact that
they investigate the way in which experimentation or exploration on unchosen actions
affects the learning process; in this paper, we investigate the way in which extra payoff
information about unchosen actions affects the learning process. Hopkins (2002) shows that
the reinforcement learning process with experimentation globally converges to a perturbed
equilibrium in 2 × 2 games with a unique mixed Nash equilibrium, and the perturbed
equilibrium corresponds to the mixed Nash equilibrium only when each action is chosen
with probability 1

2 at the equilibrium. Even though we obtain a similar result, the difference
between the models also brings about differences in the convergence results. For instance,
for partnership games without a Pareto-dominant Nash equilibrium, the reinforcement
learning process of this paper converges uniquely to the mixed Nash equilibrium, while
their reinforcement learning processes may not. Note also that Hopkins (2002) provides
mostly local convergence results, while in this paper, we focus on global convergence results.

2 Model

In each period, n ∈ N∪{0}, players play a fixed normal form game (N , S, π) which consists
of (i) the set of players N := {1, ..., N}; (ii) the finite set of actions S := ×i∈NSi, where
Si denotes the set of player i’s actions and s = (s1, ..., sN ) denotes an element of S; and
(iii) the payoff function π : S → RN , where πi : S → R denotes the i-th component and
corresponds to player i’s payoff function: for any s, π(s) = (π1(s), ..., πN (s)). We assume
that the payoffs are strictly positive: for any i and s, πi(s) > 0.

We extend the payoff function to the set of mixed actions. Let ∆i := {xi = (xi,si)si∈Si ∈
[0, 1]|Si| :

∑
si∈Si xi,si = 1} be the set of player i’s mixed actions and ∆ := ×i∈N∆i be the set

of mixed action profiles. Then for each i and x ∈ ∆, the payoff of player i given mixed action
profile x is expressed as πi(x) =

∑
s∈S πi(s)

∏
j∈N xj,sj . Also, we express the payoff of player

i when choosing si with probability one as πi(si, x−i) =
∑

s−i∈S−i πi(si, s−i)
∏
j 6=i xj,sj ,

where −i := (1, ..., i − 1, i + 1, ..., N) denotes all players except i, S−i := ×j 6=iSj denotes
the set of those players’ actions, s−i := (s1, ..., si−1, si+1, ..., sN ) denotes an element of S−i,
∆−i := ×j 6=i∆j denotes the set of mixed actions of all players except i and x−i denotes an
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element of ∆−i.
Next, we describe the behaviour rule of the players. In each period, the choice behaviour

of each player is associated with some weights on his actions. For each n, i and si, let wn,i,si
denote the weight of action si ∈ Si in period n. Then each player chooses an action with a
probability proportional to the weight of the action. In detail, for each n, i and si, player
i chooses si in period n with probability pn,i,si , which is defined as follows:

pn,i,si =
wn,i,si∑
ti
wn,i,ti

.

Here, we call the sequence {pn = (pn,i,si)i,si : n ∈ N∪{0}} a reinforcement learning process.
We assume that the initial weight of each action is positive: w0,i,si > 0 for each i and si.
Also, we assume that, given their weights, players choose their actions independently.

After choosing actions, players obtain payoff information and revise their choice be-
haviour by updating their weights. In particular, the weight of each action is updated as
follows: for each n, i and si,

wn+1,i,si = wn,i,si + πn,i,si

where πn,i,si describes the payoff that player i observes for action si and is added to the
weight in the next period. In this paper, we consider the situation in which each player
also observes the foregone payoff information, and thus πn,i,si is defined in the following
manner: if s−i is chosen in period n,

πn,i,si =

{
πi(si, s−i) if si is chosen in period n,

δiπi(si, s−i) otherwise

where δi ∈ (0, 1] describes player i’s distortion factor on the foregone payoffs. Therefore,
players update their weights of not only chosen actions but also unchosen actions, whose
payoff information is subject to some distortion. We assume that the way of distorting the
foregone payoff information is consistent over periods. Note that πn,i,si can be expressed
as follows:

πn,i,si =
∑

s−i∈S−i

(1n,si + δi(1− 1n,si))πi(si, s−i)1n,s−i

where 1n,si and 1n,s−i represent the indicator functions for the events that si and s−i,
respectively, are chosen in period n.

For the purpose of formal analysis, we introduce the following notation. Let (Ω,F ,P)
denote the probability space on which all the random variables that appear in this paper
are defined. Let {Fn} be a sequence of increasing σ-fields which are subsets of F such that
for each n, Fn is generated by {(1m,si)i,si : 0 ≤ m ≤ n − 1} and (w0,i,si)i,si . Here, Fn is
considered to be the information about players’ choices up to period n but not including
their choices in that period. Note that for each i and si, wn,i,si and pn,i,si are Fn-measurable
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and 1n,si and πn,i,si are Fn+1-measurable. Then we express the choice behaviour of players
as follows: for each i and si,

P(si is chosen in period n | Fn) = pn,i,si

and
P(s = (si)i is chosen in period n | Fn) =

∏
i

pn,i,si .

Therefore, given a choice history of players in period n, the players’ decisions are charac-
terised by pn and are conditionally independent. Lastly, let πn,i,si denote the conditional
expected payoff of action si in period n:

πn,i,si :=E[πn,i,si | Fn]

=
∑

s−i∈S−i

(pn,i,si + δi(1− pn,i,si))πi(si, s−i)
∏
j 6=i

pn,j,sj

=(pn,i,si + δi(1− pn,i,si))πi(si, pn,−i).

3 Convergence Results

3.1 Main results

In this section, we provide conditions under which we obtain the convergence of the rein-
forcement learning process. To state the main result, we introduce the following functions.
Let F = (Fi,si)i,si : ∆→ R|S| be such that for any x ∈ ∆,

Fi,si(x) =
∑

s−i∈S−i

(xi,si + δi(1− xi,si))πi(si, s−i)
∏
j 6=i

xj,sj

=(xi,si + δi(1− xi,si))πi(si, x−i)

for each i and si, and let G = (Gi,si)i,si : ∆→ ∆ be such that

Gi,si(x) =
Fi,si(x)∑
ti∈Si Fi,ti(x)

for each i and si.

Theorem 1. If there exists p∗ = (p∗i,si)i,si ∈ ∆ and β ∈ [0, 1) such that

||G(p)− p∗||∞ ≤ β||p− p∗||∞ (1)

for any p ∈ ∆, then pn → p∗ almost surely, where || · ||∞ denotes the maximum norm.

Proof. See Appendix A.
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Figure 1: 2× 2 game
s2 t2

s1 a111, a
2
11 a112, a

2
21

t1 a121, a
2
12 a122, a

2
22

To understand condition (1), it is worth noting that the condition holds when G is a
contraction mapping with the unique fixed point p∗ = G(p∗). In this case, the reinforcement
learning process converges to the mixed action profile in which each action is chosen with
a probability proportional to its expected payoff.

Corollary 1. If G is a contraction mapping, then pn converges to the fixed point p∗ almost
surely, where

p∗i,si =
π∗i,si∑
ti
π∗i,ti

(2)

and

π∗i,si :=
∑
s−i

(p∗i,si + δi(1− p∗i,si))πi(si, s−i)
∏
j 6=i

p∗j,sj

=(p∗i,si + δi(1− p∗i,si))πi(si, p
∗
−i)

for each i and si.

Proof. Note that if G is a contraction mapping, there exists β ∈ [0, 1) such that for any
p, p′,

||G(p)−G(p′)||∞ ≤ β||p− p′||∞
with the unique fixed point p∗ = G(p∗). Then condition (1) is satisfied and thus pn
converges to the fixed point p∗, which is characterised by condition (2).

In the following argument, we first focus on 2 × 2 games to investigate the condition
under which G becomes a contraction mapping. In particular, we show that when each
player’s distortion factor on the foregone payoff information is close to one, G becomes a
contraction mapping for partnership games without a Pareto-dominant Nash equilibrium
and matching-pennies games. Moreover, under this condition, we show that the reinforce-
ment leaning process converges to a Nash equilibrium in the games. However, in general,
the fixed point of G does not correspond to a Nash equilibrium, which we further investi-
gate by focusing on some specific games: partnership games with a Pareto-dominant Nash
equilibrium and games with a dominant strategy.
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Figure 2: 2× 2 partnership game without a Pareto-dominant equilibrium
s2 t2

s1 a, a b, b

t1 b, b a, a

Figure 3: matching-pennies game
s2 t2

s1 a, b b, a

t1 b, a a, b

3.2 Contraction mapping in 2× 2 games

In this section, we focus on 2×2 games, which are expressed by the payoff matrix in Figure
1, and investigate the condition under which G is a contraction mapping. Let

β := max
i∈{1,2}

|ai11ai22 − ai12ai21|+ (1− δ2i ) maxj,k∈{1,2} a
i
1ja

i
2k(

mink∈{1,2},x∈{0,1−δi}
(
(δi + x)ai1k + (1− x)ai2k)

)2 .
Proposition 1. If β < 1, then G is a contraction mapping and thus pn converges to the
fixed point of G almost surely.

Proof. See Appendix C.

To enhance our understanding, it is helpful to focus on some specific examples. First,
we consider the partnership game of Figure 2 and the matching-pennies game of Figure 3
with a > b. Let δ := mini δi, which denotes the minimum discount factor.

Corollary 2. In the partnership game of Figure 2 and the matching-pennies game of Figure

3, if (a2−b2)+(1−δ2)a2
(aδ+b)2

< 1, then pn converges to the mixed Nash equilibrium almost surely.

Proof. Note that in both games,

β =
(a2 − b2) + (1− δ2)a2

(aδ + b)2
.

Therefore, if (a2−b2)+(1−δ2)a2
(aδ+b)2

< 1, then G is a contraction mapping. Also, notice that

condition (2) holds at p∗ such that p∗i,si = 1
2 for each i and si, which corresponds to

the mixed Nash equilibrium of the games. Since the fixed point is unique when G is a
contraction mapping, the learning process converges to the mixed Nash equilibrium almost
surely.

Remark. If a = 2 and b = 1, the condition of Corollary 2 holds when δ >
√
13−1
4 ≈ 0.65.
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Figure 4: partnership game with a Pareto-dominant equilibrium
s2 t2

s1 a+ k, a+ k b, b

t1 b, b a, a

Figure 5: dominant strategy game (k > 1)
s2 t2

s1 a, a b, ka

t1 ka, b kb, kb

In general, for any a, b > 0, the condition holds if δ is close to one, in that the reinforce-
ment learning process converges to the mixed Nash equilibrium almost surely in partnership
games without a Pareto-dominant Nash equilibrium and matching-pennies games.5

It is worth noting that in general, the learning process does not converge to a Nash
equilibrium. To investigate the convergence properties further, we first focus on partner-
ship games with a Pareto-dominant Nash equilibrium and then focus on games with a
dominant strategy. In the following argument, let σ∗ = (σ∗i,si)i,si ∈ ∆ denote a mixed Nash
equilibrium.

First, consider the partnership game of Figure 4 with k > 0 and a > b. In the game,

β =
(2− δ2)(a+ k)a− b2

(aδ + b)2
.

Therefore, for small enough k, if δ is close to 1, we have β < 1 and thus G becomes a
contraction mapping and the learning process converges to the fixed point.6 If we assume
that δ = 1, then at the fixed point, we have

p∗i,si =
k − 2b+

√
4b2 + k2

2k
.

In addition, when a = 2, b = 1 and k = 1,

p∗i,si =
−1 +

√
5

2
≈ 0.62.

Note that at the mixed Nash equilibrium, σ∗i,si = 1
3 .

5Note that β < 1 when δ = 1. In addition, since β > 1 at δ = 0 and ∂β
∂δ

< 0, there exists δ ∈ (0, 1) such

that β < 1 for δ ∈ (δ, 1].
6β = a(a+k)−b2

(a+b)2
when δ = 1 and becomes less than 1 if k < 2b+ 2 b

2

a
. Since β > 1 at δ = 0 and ∂β

∂δ
< 0,

for small enough k, β < 1 if δ is close to 1. When a = 2, b = 1 and k = 1, β < 1 if δ > −1+
√
26

5
≈ 0.82.
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Next, consider the game of Figure 5 with k > 1 and a > b. If a > kb, then the game
corresponds to the prisoner’s dilemma game. Note that

β =
(1− δ2)ka2

(1 + kδ)2b2
.

Therefore, if δ is close to 1, β < 1 and thus the learning process converges to the fixed
point.7 If we assume that δ = 1, then at the fixed point, we have

p∗i,si =
1

1 + k
.

In addition, if k = 2, p∗i,si = 1
3 . Note that at the Nash equilibrium, σ∗i,si = 0.

3.3 Convergence to a Nash equilibrium

In the previous section, we show that in several 2 × 2 games, the learning process con-
verges when δ is close to one, that is, when each player does not distort the foregone
payoff information so much. In addition, we show that the process converges to the mixed
Nash equilibrium in partnership games without a Pareto-dominant Nash equilibrium and
matching-pennies games. However, we also show that the process does not converge to a
Nash equilibrium in partnership games with a Pareto-dominant Nash equilibrium or games
with a dominant action. In this section, we provide conditions under which the process
converges to a Nash equilibrium. In particular, we show that the fixed point of G, which
is the convergence target, corresponds to a Nash equilibrium if and only if for each player,
all the actions are chosen with equal probability at the equilibrium.

Proposition 2. When G is a contraction mapping, the fixed point corresponds to a Nash
equilibrium if and only if for each player, all the actions are chosen with equal probability
at the equilibrium.

Proof. We first assume that the fixed point corresponds to a Nash equilibrium. Since we
assume that payoffs are positive, for any i, si and x, (xi,si + δi(1 − xi,si))πi(si, x−i) > 0.
Then, from condition (2), we have p∗i,si > 0 for each i and si. As the expected payoffs of
the actions which are chosen with positive probability at a mixed Nash equilibrium are
equivalent, πi(si, p

∗
−i) = πi(ti, p

∗
−i) for any si and ti such that p∗i,si > 0 and p∗i,ti > 0, and

condition (2) is expressed as follows: for each i and si,

p∗i,si =
(p∗i,si + δi(1− p∗i,si))∑
ti

(p∗i,ti + δi(1− p∗i,ti))
=
p∗i,si + δi(1− p∗i,si)

1 + δi|Si| − δi
.

7Since β < 1 if δ = 1, β > 1 at δ = 0 and ∂β
∂δ

< 0, there exists δ such that β < 1 if δ ∈ (δ, 1]. When

a = 3, b = 1 and k = 2, β < 1 if δ > −2+3
√
42

22
≈ 0.79.
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By solving the equation, we have p∗i,si = 1
|Si| for each i and si. Conversely, we assume that

for each player, all the actions are chosen with equal probability at a Nash equilibrium:
σ∗i,si = 1

|Si| for any i and si ∈ Si. Since at any mixed Nash equilibrium, the expected payoffs
of the actions which are chosen with positive probability are equivalent, we have

(σ∗i,si + δi(1− σ∗i,si))πi(si, σ
∗
−i)∑

ti
(σ∗i,ti + δi(1− σ∗i,ti))πi(ti, σ

∗
−i)

=
1

|Si|
= σ∗i,si

for any i and si, which shows that the mixed Nash equilibrium is a fixed point of G.
Since G is a contraction mapping, the fixed point uniquely exists and thus the fixed point
corresponds to the mixed Nash equilibrium.

3.4 Convergence to a regular quantal response equilibrium

In section 3.2, in partnership games without a Pareto-dominant Nash equilibrium and
matching-pennies games, we show that the reinforcement learning process converges to a
Nash equilibrium when each player does not distort the foregone payoff information so
much. However, in the previous section, we show that the process does not converge
to a Nash equilibrium in general. Instead, in this section, we introduce an alternative
equilibrium concept, regular quantal response equilibrium, to which the learning process
converges. First, we provide the definition of the equilibrium according to Goeree et al.
(2005).

Definition 1. A regular quantal response equilibrium of the normal form game (N , S, π)
is a mixed action profile x∗ = (x∗i,si)i,si such that for each i and si,

x∗i,si = fi,si((πi(ti, x
∗
−i))ti∈Si),

where for each i, fi : R|Si| → ∆i with fi,si being the si-th component is a regular response
function satisfying the following four conditions.

1. Interiority: fi,si(yi) > 0 for any si and yi.

2. Continuity: fi,si is continuous and differentiable.

3. Responsiveness:
∂fi,si (yi)

∂yi,si
> 0 for any si and yi.

4. Monotonicity: fi,si(yi) > fi,ti(yi) if yi,si > yi,ti for any si and ti.

In the following argument, we show that the fixed point of G corresponds to a regular
quantal response equilibrium when δ = 1. Therefore, in any normal form game, if G is a
contraction mapping and there is no distortion on the foregone payoffs, the reinforcement
learning process converges to the equilibrium almost surely.

12



Figure 6: Normalised 2× 2 game
s2 t2

s1
a111

a111+a
1
21
,

a211
a211+a

2
21

a112
a112+a

1
22
,

a221
a211+a

2
21

t1
a121

a111+a
1
21
,

a212
a212+a

2
22

a122
a112+a

1
22
,

a222
a212+a

2
22

Proposition 3. For any normal form game, if δ = 1, the fixed point of G, p∗, corresponds
to a regular quantal response equilibrium.

Proof. For each i, let fi : R|Si| → ∆i be a mapping such that for each si and yi ∈ R|Si|,

fi,si(yi) =
g(yi,si)∑
ti
g(yi,ti)

where letting πmax := maxi,s πi(s) and πmin := mini,s πi(s), g : R→ R is defined such that

g(x) =


x if πmin ≤ x ≤ πmax,

πmaxe
x−πmax
πmax if x > πmax,

πmine
x−πmin
πmin if x < πmin.

Note that for any i, si and p ∈ ∆, πi(si, p−i) ∈ [πmin, πmax], g(πi(si, p−i)) = πi(si, p−i)

and fi,si((πi(ti, p−i))ti∈Si) = πi(si,p−i)∑
ti
πi(ti,p−i)

. Therefore, condition (2) can be expressed as

p∗i,si = fi,si((πi(ti, p
∗
−i))ti∈Si). To show that p∗ is a regular quantal response equilibrium, we

have to show that fi is a regular quantal response function for each i. First, since g(x) > 0
for any x, the interiority condition holds. Second, since g is continuously differentiable

and
∂fi,si
∂yi,ti

is continuous for each ti ∈ Si, the continuity condition holds.8 Third, since

∂fi,si (yi)

∂yi,si
> 0 for any si and yi, the responsiveness condition holds. Lastly, note that if

yi,si > yi,ti , then we have g(yi,si) > g(yi,ti), and thus fi,si(yi) > fi,ti(yi). Therefore, the
monotonicity condition holds.

Remark. In section 3.2, we have shown the fixed points of several 2× 2 games when δ = 1.
From the proposition above, we now know that the fixed points correspond to regular
quantal response equilibria of the games.

8Note that for each yi,

∂fi,si(yi)

∂yi,ti
=


g′(yi,si )(

∑
ui 6=si

g(yi,ui
))

(
∑

ui
g(yi,ui

))2
if ti = si,

−g(yi,si )g
′(yi,ti )

(
∑

ui
g(yi,ui

))2
otherwise.
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Lastly, we focus on the 2 × 2 game of Figure 6, which is obtained from the game of
Figure 1 after some payoff normalisation. In detail, the payoffs are normalised so that
given the opponent player’s action, the sum of each player’s payoffs becomes 1. Note that
the number of Nash equilibria and the dominance relation among actions are equivalent
between the original and normalised games. We then show that given the normalisation
and δ = 1, the reinforcement learning process almost surely converges to a regular quantal
response equilibrium in the game.

Corollary 3. In the 2 × 2 game of Figure 6, if δ = 1, the reinforcement learning process
pn almost surely converges to a regular quantal equilibrium of the game.

Proof. Note that when δ = 1, we have

β = max
i∈{1,2}

| ai11
ai11 + ai21

ai22
ai21 + ai22

− ai12
ai12 + ai22

ai21
ai11 + ai21

| < 1.

Therefore, from the results above, the reinforcement learning process converges to a regular
quantal response equilibrium almost surely.

4 Conclusion

In this paper, we consider the reinforcement learning model of Erev and Roth with fore-
gone payoff information. Players observe not only the payoffs from chosen actions but
also foregone payoffs, the ones from unchosen actions. They may not treat the payoff
information from unchosen actions the same as information from chosen actions. We pro-
vide conditions under which the process converges to a mixed action profile at which each
action is chosen with a probability proportional to its expected payoff. In particular,
in symmetric 2 × 2 partnership games without a Pareto-dominant Nash equilibrium and
matching-pennies games, when each player’s discount factor on the foregone payoffs is close
to one, the reinforcement learning process converges to the mixed Nash equilibrium almost
surely. However, in general, the mixed action profile to which the process converges does
not correspond to a Nash equilibrium: it corresponds to a Nash equilibrium if and only if
for each player, all the actions are played with equal probability at the equilibrium. In-
stead, we show that the action profile corresponds to a perturbed equilibrium, the regular
quantal response equilibrium of Goeree et al. (2005), when each player does not distort the
foregone payoff at all. Therefore, if the conditions are satisfied, the reinforcement learning
process almost surely converges to a regular quantal response equilibrium in normal form
games. In particular, given some payoff normalisation and the fact that each player does
not distort the foregone payoff information, we obtain the convergence in any 2× 2 game.
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Appendix A The proof of Theorem 1.

We can rewrite the updating rule of the choice probability as follows:

pn+1,i,si =
wn+1,i,si∑
ti
wn+1,i,ti

=
wn,i,si + πn,i,si∑

ti
wn,i,i +

∑
ti
πn,i,ti

= pn,i,si +
1∑

ti
wn+1,i,ti

(
πn,i,si − pn,i,si

∑
ti

πn,i,ti
)

= pn,i,si +
1∑

ti
wn+1,i,ti

(
πn,i,si − pn,i,si

∑
ti

πn,i,ti + dn,i,si
)

= pn,i,si +

∑
ti
πn,i,ti∑

ti
wn+1,i,ti

( πn,i,si∑
ti
πn,i,ti

− pn,i,si +Dn,i,si

)
= pn,i,si +

∑
ti
πn,i,ti∑

ti
wn,i,ti

( πn,i,si∑
ti
πn,i,ti

− pn,i,si +Dn,i,si + ηn,i,si
)

where for each n, i and si,

dn,i,si :=
(
πn,i,si − pn,i,si

∑
ti

πn,i,ti
)
−
(
πn,i,si − pn,i,si

∑
ti

πn,i,ti
)

Dn,i,si :=
dn,i,si∑
ti
πn,i,ti

ηn,i,si := −
∑

ti
πn,i,ti∑

ti
wn,i,ti +

∑
ti
πn,i,ti

( πn,i,si∑
ti
πn,i,ti

− pn,i,si +
dn,i,si∑
ti
πn,i,ti

)
.

Lemma 1. For each i and si:

(i) {(Dn,i,si)} is a martingale difference sequence and there exists K such that

E[(Dn,i,si)
2 | Fn] < K (3)

for each n;

(ii) ηn,i,si converges to zero almost surely;

(iii) {λn,i,si}, where λn,i,si :=

∑
ti
πn,i,ti∑

ti
wn,i,ti

for each n, satisfies the following conditions:

(a) λn,i,si is Fn-measurable for each n;

(b)
∑

n λn,i,si =∞ and
∑

n(λn,i,si)
2 <∞ almost surely.
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Proof. (i) It is easy to check that for each n, i and si, dn,i,si is Fn+1-measurable, E[dn,i,si |
Fn] = 0 and there exists C such that E[(dn,i,si)

2 | Fn] < C, as the set of actions is finite.
Therefore, {Dn,i,si} is a martingale difference sequence and satisfies condition (3). (ii)
For each n, i, si, since the payoffs, martingale difference sequence and choice probabilities
are bounded and the sum of the weights (

∑
ti
wn,i,ti) goes to infinity as n grows, ηn,i,si

converges to zero almost surely.
(iii) For each n, i and si, since πn,i,si and wn,i,si are Fn-measurable, λn,i,si is also Fn-
measurable. Also, note that for each n, i and si,

mini δi
∑

ti
mins−i πi(ti, s−i)

n
∑

ti
maxs−i πi(ti, s−i)

≤
∑

ti
πn,i,ti∑

ti
wn,i,ti

≤
∑

ti
maxs−i πi(ti, s−i)

nmini δi
∑

ti
mins−i πi(ti, s−i)

almost surely and thus condition (b) holds.

Therefore, by utilising the asynchronous stochastic approximation method of Tsitsiklis
(1994), we can show that pn converges to p∗ if condition (1) holds. Note that comparing
with the asynchronous stochastic process of Tsitsiklis (1994), we have an extra term ηn =
(ηn,i,si)i,si which converges to zero almost surely. It is easy to show that the result still holds
with the noise. In the following section, we briefly introduce the asynchronous stochastic
approximation method with the modification.

Appendix B The asynchronous stochastic approximation method
of Tsitsiklis (1994)

In this section, we introduce a modified result of Tsitsiklis [16]: with an additional noise
term, which disappears with probability one, we provide conditions under which the asyn-
chronous stochastic approximation process converges uniquely with probability one. To
introduce the method, we follow the argument of Tsitsiklis (1994).

Consider the updating rule of a vector Q ∈ RM which consists of M components:
Q = (Q1, ..., QM ). Let F : RM → RM be a mapping with M components: F = (F1, ..., FM )
where Fm : RM → R is the m-th component of F . Let Qn,m be the m-th component of
Qn, which is the value of Q in period n. Then the updating rule of the value is defined as
follows:

Qn+1,m = Qn,m + αn,m

(
Fm(Qn,m)−Qn,m + ηn,m + ωn,m

)
,

where (i) αn,m ∈ [0, 1] is a weighting parameter of the m-th component in period n; and (ii)
ηn,m and ωn,m are noise terms. Now we provide additional assumptions for the convergence
result:

(a) Q0 is F0-measurable;
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(b) there exists some D0 such that ‖Qn‖∞ ≤ D0 for all n;

(c) limn→∞ ηn,m = 0 with probability one for all m;

(d) ωn,m is Fn+1-measurable for all n and m;

(e) E[ωn,m | Fn] = 0 for all m;

(f) there exist constants A and B such that

E[ω2
n,m | Fn] ≤ A+Bmax

l≤n
||Ql||2∞ ∀n,m;

(g) αn,m is Fn-measurable for all m;

(h) for all m,
∞∑
n=0

αn,m =∞ w.p.1;

(i) there exists some constant C such that for all m,

∞∑
n=0

α2
n,m ≤ C w.p.1;

(j) there exists a scalar β ∈ [0, 1) and a vector Q∗ ∈ R∗ such that

‖F (Q)−Q∗‖∞ ≤ β‖Q−Q∗‖∞, ∀Q ∈ RM .

Then we have the following result.

Proposition 4. If assumptions (a) to (j) hold, then Qn → Q∗ a.s..

Proof. In the following argument, we extend the argument in Section 6 of Tsitsiklis (1994)
with additional noise term ηn.

To prove the claim, we first introduce Lemma 1 of Tsitsiklis (1994):

Lemma (Lemma 1, Tsitsiklis, 1994). Let {Fn} be an increasing sequence of σ-fields. For
each n, let αn, ωn−1 and Bn be Fn-measurable scalar random variables. Let C be a
deterministic constant. Suppose that the following hold with probability 1:

1. E[ωn | Fn] = 0;

2. E[ω2
n | Fn] ≤ Bn;

3. αn ∈ [0, 1];
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4.
∑∞

n=0 αn =∞;

5.
∑∞

n=0 α
2
n ≤ C.

Suppose that the sequence {Bn} is bounded with probability 1. LetWn satisfy the recursion

Wn+1 = (1− αn)Wn + αnωn.

Then limn→∞Wn = 0 with probability 1.

Without loss of generality, we assume that Q∗ = 0. Fix some ε > 0 and η > 0 such
that β(1 + 2ε+ 2η) < 1. We now define

Dk+1 = β(1 + 2ε+ 2η)Dk, k ≥ 0.

It is obvious that Dk converges to zero.
Suppose that there exists some period nk such that ‖Qn‖∞ ≤ Dk for all n ≥ nk. We

will show that this implies that there exists some period nk+1 such that ‖Qn‖∞ ≤ Dk+1

for all n ≥ nk+1. This will complete the proof of convergence of Qn to zero.
Let Wm(0) = 0 and

Wm(n+ 1) = (1− αn,m)Wm(n) + αn,mωn,m.

By Lemma 1 of Tsitsiklis (1994), we have that limn→∞Wm(n) = 0. For any period n0, we
also define Wm(n0;n0) = 0 and

Wm(n+ 1;n0) = (1− αn,m)Wm(n;n0) + αn,mωn,m, n ≥ n0.

Following the same argument as in the proof of Lemma 2 of Tsitsiklis (1994), we have that
for any δ > 0, there exists some N such that |Wm(n;n0)| < δ for all n0 ≥ N and n ≥ n0.9

Let νk ≥ nk be such that |Wm(n; νk)| ≤ βεDk and ‖Qn,m‖∞ ≤ Dk for all n ≥ νk and all
m. Since limn→∞ ηn,m = 0 for all m ∈ {1, ...,M}, we can find ν ′k such that |ηn,m| ≤ βηDk

for all n ≥ ν ′k and m. Let µk = max{νk, ν ′k}.
We now define Ym(µk) = Dk and

Ym(n+ 1) = (1− αn,m)Ym(n) + αn,mβ(1 + η)Dk, n ≥ µk.

Lemma 2.

−Ym(n) +Wm(n;µk) ≤ Qn,m ≤ Ym(n) +Wm(n;µk) ∀n ≥ µk.
9Since Wm(n; 0) =

∏n−1
τ=n0

(1 − ατ,m)Wm(n0, 0) + Wm(n;n0), we have |Wm(n;n0)| ≤ |Wm(n; 0)| +
|Wm(n0; 0)|. Therefore, we can pick N large such that |Wm(n, n0)| < δ for all n0. Also, see Lemma 2
of Tsitsiklis (1994).
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Proof: We use induction on n. Since Ym(µk) = Dk and Wm(µk;µk) = 0, the result is
true for n = µk. Suppose that the equation holds for some n ≥ µk. We then have

Qn+1,m ≤ (1− αn,m)(Ym(n) +Wm(n;µk)) + αn,mβDk + αn,mωn,m + αn,mβηDk

= Ym(n+ 1) +Wm(n+ 1;µk).

A symmetric argument yields Qn+1,m ≥ −Ym(n + 1) + Wm(n + 1;µk) and the inductive
proof is complete.

It is obvious from the recursive definition of Ym(n) and assumptions that Ym(n) con-
verges to β(1 + η)Dk as n→∞. Therefore, from this and the result of Lemma 2, we have
that

lim sup
n→∞

|Qn,m| ≤ β(1 + ε+ η)Dk < Dk+1.

Appendix C The proof of Proposition 1.

Since there exist only two actions available for both players, we make the notation simpler
by letting pi := pi,si and p−i := p−i,s−i . First, G is expressed as follows: for i ∈ {1, 2} and
si ∈ Si,

Gi,si(p) =
δsi,pXp

δsipXp + δtipYp

where:

• δsi,p := pi + δi(1− pi), δti,p := (1− pi) + δipi,

• Xp := (ai11p−i + ai12(1− p−i)),

• Yp := (ai21p−i + ai22(1− p−i)).

Next, we consider the absolute difference of Gi,si for p and p′. Then

|Gi,si(p)−Gi,si(p′)| ≤
|(δsi,pδti,p′ − δsi,p′δti,p)XpYp′ |+ |δsi,p′δti,p(XpYp′ −Xp′Yp)|

Ksi,pKsi,p′

where Ksi,p := δsi,pXp + δti,pYp. Note that

|(δsi,pδti,p′ − δsi,p′δti,p)XpYp′ | ≤(1− δ2i )( max
j,k∈{1,2}

ai1ja
i
2k)|pi − p′i|,

|XpYp′ −Xp′Yp| =|ai11ai22 − ai12ai21||p−i − p′−i|
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and

Ksi,pKsi,p′ ≥
(

min
k∈{1,2},x∈{0,1−δi}

(
(δi + x)ai1k + (1− x)ai2k)

)2
.

Therefore, letting

β := max
i∈{1,2}

|ai11ai22 − ai12ai21|+ (1− δ2i ) maxj,k∈{1,2} a
i
1ja

i
2k(

mink∈{1,2},x∈{0,1−δi}
(
(δi + x)ai1k + (1− x)ai2k)

)2
we have

|Gi,si(p)−Gi,si(p′)| ≤ β||p− p′||∞.

Since Gi,ti(p) = (1−Gi,si(p)), G is a contraction mapping if β < 1.
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