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Abstract

In this paper, we show that in pure exchange economies where the number of

goods equals or exceeds the number of agents, any Pareto-efficient and strategy-

proof allocation mechanism defined on any local preference domain always allocates

the total endowment to some single agent even if the receivers vary.

JEL classification: D71

Keywords: Social choice, Strategy-proofness, Pareto efficiency, Exchange econ-

omy

1 Introduction

Following the seminal work of Hurwicz (1972), the manipulability and efficiency of alloca-

tion mechanisms in pure exchange economies have been studied intensively. Zhou (1991)

established that any Pareto-efficient and strategy-proof allocation mechanism is dictatorial

in exchange economies with two agents having classical (i.e., continuous, strictly mono-

tonic, and strictly convex) preferences. The dictatorship result in two-agent economies

has been strengthened by being proven in the domain of restricted preferences.1

Compared with the result in two-agent economies, it has been an open question

whether Pareto-efficient and strategy-proof allocation mechanisms can be characterized

∗This work was supported by JSPS KAKENHI Grant Number JP26380250.
†Address: Department of Economics, Doshisha University, Kamigyo-ku, Kyoto 602-8580, Japan;

Phone: +81-75-251-3647; E-mail: tmomi@mail.doshisha.ac.jp
1See Schummer (1997), Ju (2003), Hashimoto (2008), and Momi (2013a). Nicolò (2004), however,

showed a Pareto-efficient, strategy-proof, and non-dictatorial mechanism in the domain of Leontief pref-

erences.
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in economies with many agents. In many-agent economies, there actually exist Pareto-

efficient, strategy-proof, and non-dictatorial allocation mechanisms as pointed out by

Satterthwaite and Sonnenschein (1981) and Kato and Ohseto (2002). A specific feature

shared by all known Pareto-efficient and strategy-proof allocation mechanisms is that

some single agent receives all goods even if the receivers vary. Such a mechanism is called

alternately dictatorial. The natural question to be asked is whether any Pareto-efficient

and strategy-proof allocation mechanism is alternately dictatorial.2

Recently, Momi (2013b) proved the alternate dictatorship result in three-agent economies.

Momi (2017) then proved the result in economies where the number of goods equals or

exceeds the number of agents. It is still an open question whether Pareto-efficient and

strategy-proof mechanisms can be characterized without such a condition on the numbers

of agents and goods. In this paper, we strengthen the alternate dictatorship result in the

economies where the number of goods equals or exceeds the number of agents by prov-

ing that the result holds even if the mechanism is defined locally in an arbitrarily small

neighborhood of a given preference profile.

The contribution of this paper is twofold. First, the characterization of locally defined

mechanisms is interesting in inself. It is a probable sitution for us to have some information

about the agents’ preferences, whcich allows us to narrow our focus to a local preference

set, rather than the whole preference set. As far as we are aware, quite a few studies have

considered such a situation. For example, the proofs of many of the studies mentioned

above, including studies of two-agent econoies, rely on the results obtained for a specific

preference profile where all agents have identical preferences, and therefore the proofs

cannot be applied to mechanisms that are only defined locally. Second, we believe the

results and techniques in this paper would be a first step toward solving the general

question without conditions on the numbers of goods and agents. The difficulty we face

in this paper is closely related to what we have to overcome to solve the general question.

In the rest of this section, we explain this point more in details.

In this paper, we deal with homothetic preferences. A key element of the proof by

Momi (2017) is the independence of preferences in the following sense. An efficient alloca-

tion given by a Pareto-efficient mechanism uniquely determines the supporting price, and

the supporting price vector uniquely determines the direction of possible consumption of

each agent with a homothetic preference, which we call the consumption-direction vector

of the agent. If these consumption-direction vectors are independent among agents, then

there is a unique way to scale these vectors so that they sum up to the total endow-

ment. That is, a supporting price induced by a Pareto-efficient mechanism determines

2Some studies have shown the incompatibility of Pareto efficiency and strategy-proofness with alloca-

tion restrictions such as individual rationality. See Serizawa (2002), Serizawa and Weymark (2003), and

Momi (2013b). Barberà and Jackson (1995) discarded Pareto efficiency and characterized strategy-proof

mechanisms satisfying the individual rationality restriction.
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the allocation itself when the consumption-direction vectors are independent.

If these consumption-direction vectors are not independent, then there are various

ways to scale the vectors to sum up to the total endowment, and hence the allocation is

indeterminate. This is the difficulty of the general question, where the number of agents

exceeds the number of goods, and hence the independence of the consumption-direction

vectors is never expected. Even if the number of goods equals or exceeds the number of

agents, whether the independence of the consumption-direction vectors holds for a given

preference profile is not obvious at all because the independence depends on not only

the preferences but also on the price vector determined by the mechanism. However, as

long as we consider the whole preference set, we can tactfully evade this difficulty. As

Momi (2017) showed, there exist desirable preferences of agents that ensure independence

for any price vectors. In a local preference set, we cannot expect the existence of such

desirable preferences. This is the difficulty we face in this paper, and it is similar to that

in the general question in the sense that we do not have preferences of agents that ensure

the independence of consumption-direction vectors.

The rest of the paper is organized as follows. Section 2 describes the model and results.

Section 3 reviews the approach by Momi (2017) and explains the difficulty we face when

a mechanism is defined only locally. Section 4 shows some technical results. Section 5

provides the proof of the main result. The Appendix contains proofs of all lemmas and

corollaries in Sections 4 and 5.

2 Model and results

We consider an economy with N agents, indexed by N = {1, . . . , N}, where N ≥ 2, and

L goods, indexed by L = {1, . . . , L}, where L ≥ 2. The consumption set for each agent

is RL
+. A consumption bundle for agent i ∈ N is a vector xi = (xi

1, . . . , x
i
L) ∈ RL

+. The

total endowment of goods for the economy is Ω = (Ω1, . . . ,ΩL) ∈ RL
++. An allocation is

a vector x = (x1, . . . , xN) ∈ RLN
+ . Thus, the set of feasible allocations for the economy

with N agents and L goods is

X =

{
x ∈ RLN

+ :
∑
i∈N

xi ≤ Ω

}
.

A preference R is a complete, reflexive, and transitive binary relation on RL
+. The

corresponding strict preference PR and indifference IR are defined in the usual way. For

any x and x′ in RL
+, xPRx

′ implies that xRx′ and not x′Rx, and xIRx
′ implies that xRx′

and x′Rx. Given a preference R and a consumption bundle x ∈ RL
+, the upper contour

set of R at x is UC(x;R) = {x′ ∈ RL
+ : x′Rx}, and the lower contour set of R at x is

LC(x;R) = {x′ ∈ RL
+ : xRx′}. We let I(x;R) = {x′ ∈ RL

+ : x′IRx} denote the indifference
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set of R at x, and P (x;R) = {x′ ∈ RL
+ : x′PRx} denotes the strictly preferred set of R at

x.

A preference R is continuous if UC(x;R) and LC(x;R) are both closed for any x ∈ RL
+.

A preference R is strictly convex on RL
++ if UC(x;R) is a strictly convex set in RL for

any x ∈ RL
++. A preference R is monotonic if, for any x and x′ in RL

+, x > x′ implies

that xRx′.3 A preference R is strictly monotonic on RL
++ if, for any x and x′ in RL

++,

x > x′ implies that xPRx
′.4 A preference R is homothetic if, for any x and x′ in RL

+ and

any t > 0, xRx′ implies that (tx)R(tx′). A preference R is smooth if for any x ∈ RL
++,

there exists a unique vector p ∈ SL−1
+ ≡ {x ∈ RL

+ :∥ x ∥= 1} such that p is the normal

of a supporting hyperplane to UC(x;R) at x. We call the vector p the gradient vector

of R at x, and write p = p(R, x). Note that if R is smooth, strictly convex on RL
++, and

strictly monotonic on RL
++, then the gradient vector is positive in the positive orthant:

p(R, x) ∈ SL−1
++ ≡ {x ∈ RL

++ :∥ x ∥= 1} for any x ∈ RL
++.

We let R denote the set of preferences that are continuous, strictly convex on RL
++,

strictly monotonic on RL
++, smooth, and homothetic. A preference profile is an N -tuple

R = (R1, . . . , RN) ∈ RN . We write the subprofile obtained by removing Ri from R as

R−i = (R1, . . . , Ri−1, Ri+1, . . . , RN) and write the profile (R1, . . . , Ri−1, R̄i, Ri+1, . . . , RN)

as (R̄i,R−i). We also write R−{i,j} to denote the subprofile obtained by removing Ri and

Rj from R.

A social choice function f : RN → X assigns a feasible allocation to each preference

profile in RN . For a preference profile R ∈ RN , the outcome chosen can be written as

f(R) = (f 1(R), . . . , fN(R)), where f i(R) is the consumption bundle allocated to agent

i by f . We let B ⊂ RN be a subset of RN . In this paper, we deal with a case where a

social choice function is defined on B, or it satisfies desirable properties only on B.

Definition 1. A social choice function f : RN → X is strategy-proof on B ⊂ RN if

f i(R)Rif i(R̄i,R−i) for any i ∈ N, any R ∈ B, and any R̄i ∈ R such that (R̄i,R−i) ∈ B.

A feasible allocation is Pareto efficient if there is no other feasible allocation that

would benefit someone without making anyone else worse off. That is, x ∈ X is Pareto

efficient for preference profile R if there exists no x̄ ∈ X such that x̄iRixi for any i ∈ N

and x̄jPRjxj for some j ∈ N. We say that a social choice function is Pareto efficient if it

always assigns a Pareto-efficient allocation.

Definition 2. A social choice function f : RN → X is Pareto efficient on B ⊂ RN if

f(R) is Pareto efficient for any R ∈ B.

3For vectors x and x′ in RL, x > x′ denote that xl ≥ x′
l for any l ∈ L and x ̸= x′.

4Therefore, if R is continuous, strictly convex on RL
++, and strictly monotonic on RL

++, then

UC(x;R) ⊂ RL
++ for any x ∈ RL

++ and the boundary ∂RL
+ is an indifference set.
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We say that a social choice function is dictatorial on B ⊂ RN if there exists an agent

who is always allocated the total endowment.

Definition 3. A social choice function f : RN → X is dictatorial on B if there exists

i ∈ N such that f i(R) = Ω for any R ∈ B.

We say that a social choice function is alternately dictatorial if it always allocates the

total endowment to some single agent. Note that under an alternately dictatorial social

choice function, the identity of the receiver of the total endowment may vary depending

on preference profiles.

Definition 4. A social choice function f : RN → X is alternately dictatorial on B ⊂ RN

if, for any R ∈ B, there exists iR ∈ N such that f iR(R) = Ω.

As in previous studies including Serizawa (2002) and Momi (2013b), we introduce

the Kannai metric into R following Kannai (1970), to discuss the continuity in R. For

x ∈ RL
+ \ 0, we let [x] denote the ray starting from zero and passing through x: [x] =

{y ∈ RL
+ : y = tx, t ≥ 0}. We define 1 ≡ (1, . . . , 1) ∈ RL

+ so that [1] denotes the principal

diagonal of RL
+. Using these definitions,the Kannai metric d(R,R′) for continuous and

monotonic preferences R and R′ is defined as

d(R,R′) = max
x∈RL

+

∥ I(x;R)
∩
[1]− I(x;R′)

∩
[1] ∥

1+ ∥ x ∥2
,

where ∥ · ∥ denotes the Euclid norm in RL. With the Kannai metric, R is a metric space.

See Kannai (1970) for details.

In this paper, we write Bϵ(R̄) ⊂ R to denote the open ball set of preferences in R,

with center R̄ and radius ϵ > 0: Bϵ(R̄) = {R ∈ R : d(R, R̄) < ϵ}. For a preference profile

R = (R1, . . . , RN), we write Bϵ(R) to denote the product set of Bϵ(R
i), i = 1, . . . , N :

Bϵ(R) = ΠN
i=1Bϵ(R

i) = Bϵ(R
1)× · · · ×Bϵ(R

N).

We often write Bi ⊂ R to denote an open ball set of agent i’s preferences without a

specified center or radius and B = ΠN
i=1B

i to denote the product of such open ball sets

over agents.

It should not cause confusion that we define various open ball sets in a similar manner.

For example, we write Bε(p̄) ⊂ SL−1
++ to denote the open ball set of price vectors p:

Bε(p̄) = {p ∈ SL−1
++ :∥ p − p̄ ∥< ε}. We write Bδ(ȳ) ⊂ RL to denote the open ball set of

L-dimensional vector y: Bδ(ȳ) = {y ∈ RL :∥ y − ȳ ∥< δ}.
This paper’s main result is as follows.

Theorem. Assume that L ≥ N . If a social choice function f : RN → X is Pareto effi-

cient and strategy-proof on a product set of open balls B = ΠN
i=1B

i, then f is alternately

dictatorial on B.
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3 Preliminary results

Momi (2017) proved the alternate dictatorship result for a social choice function f defined

on the whole domain RN : When L > N , any Pareto-efficient and strategy-proof social

choice function f : RN → X is alternately dictatorial. In this section, referring to this

result, we explain the difficulties we face in the case of local preference domains.

We consider a social choice function f that is Pareto efficient and strategy-proof on a

product set of open balls B = ΠN
i=1B

i.

As in Momi (2017), we define the option set as follows. For agent i, when the other

agents’ preferences R̄−i ∈ B−i ≡ Πj ̸=iB
j are fixed, we define the option set, Gi(R̄−i) ⊂

RL
+, as the union of the agent’s consumption bundles given by f over his preferences in

Bi:

Gi(R̄−i) =
∪

Ri∈Bi

f i(Ri, R̄−i).

The key feature of the option set is that, because of the strategy-proofness on B,

f i(Ri, R̄−i) should be the most preferred consumption bundle in Gi(R̄−i) with respect to

Ri ∈ Bi.

If f is a Pareto-efficient social choice function and f(R) is a Pareto-efficient allocation,

then all agents share the same gradient vector at their consumption, as long as consump-

tion is positive and the gradient vector is well defined. We call this vector the price vector

at allocation f(R) and write p(R, f) ∈ SL−1
++ .

On the other hand, for a preference R ∈ R and a price vector p ∈ SL−1
++ , we define the

consumption-direction vector g(R, p) ∈ SL−1
++ as the normalized consumption vector where

the gradient vector of R is p. Therefore, g(Ri, p(R, f)) is agent i’s consumption-direction

vector at the preference profile R under f . We simply write gi(R, f) = g(Ri, p(R, f)).

Agent i’s consumption f i(R) assigned by f should be on the ray [gi(R, f)], and we can

write f i(R) =∥ f i(R) ∥ gi(R, f).

Momi (2017) focused on a preference profile R̄ ∈ B where the consumption-direction

vectors are independent. The role of this independence should be clear. As consumption

vectors f i(R̄), i = 1, . . . , N , are on the rays [gi(R, f)], i = 1, . . . , N , respectively, and they

sum to the total endowment Ω, the consumption vectors should be determined uniquely

if the consumption-direction vectors are independent. Momi (2017) showed that in a

neighborhood of f i(R̄), where the consumption-direction vectors are independent at R̄,

the option set Gi(R̄−i) is the L− 1-dimensional smooth surface of a strictly convex set as

drawn in Figure 1 (i).
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f i(R̄)

R̄i

Gi(R̄−i) Gi(R̄−i)

f i(R̄)

R̄i

0 0 x1x1

x2x2

Figure 1. The option set

(i) (ii)

The role of this strict convexity and smoothness is clear. If the option set satisfies such

properties, f i(Ri, R̄−i), which is the most preferred consumption bundle in the option set

with respect to Ri, is a continuous function of Ri. Based on these topological properties

of the option set, we can prove the following proposition. See Momi (2017, Proposition

6) for the proof.

Proposition 1. Suppose that f is a social choice function that is Pareto efficient and

strategy-proof on a product set of open balls B = ΠN
i=1B

i. If gi(R, f), i = 1, . . . , N , are

independent at a preference profile R̄ = (R̄1, . . . , R̄N) ∈ B, then f i(R̄) ∈ {0,Ω} for any

i ∈ N.

This proposition ensures the alternate dictatorship at a preference profile where the

consumption-direction vectors are independent. If the consumption-direction vectors are

independent at a preference profile, independence holds for a preference profile in a neigh-

borhood because of the continuity of f , and the alternate dictatorship also holds in the

neighborhood. However, it is generally difficult to know whether the independence of the

consumption-direction vectors holds for a given preference profile. It depends on not only

the preference profile R but also the price vector p(R, f) determined by the social choice

function f , whose behavior we do not know. Without the independence of the consump-

tion directions, the option set might be neither strictly convex nor smooth, hence f might

not even be a continuous function. Figure 1 (ii) depicts an example of such an option set.

A trick to overcome this difficulty is that there exists a preference profileR∗ ∈ RN that

7



ensures the independence of the consumption-direction for any price vector. Momi (2017)

constructed such a preference profile R∗ using Cobb–Douglas utility functions. Then,

through preference exchanges between two preference profiles, the alternate dictatorship

result at R∗ is extended to any preferecne profile.

However, in a small local domainB, we cannot expect the existence of such a preference

profile that ensures the independence of the consumption-direction vectors regardless of

the price vectors. This is the difficulty we face in this paper. In an arbitrarily given

domain B, we have to find a preference profile that satisfies the condition of Proposition

1.

4 Technical results

As mentioned in the previous section, we have to deal with the case where gi(R, f),

i = 1, . . . , N , are dependent. In the next section, starting from such a preference profile,

we construct a preference profile in any neighborhood, where the independence of the

consumption-direction vectors holds. In this section, we show some technical results we

use for the proof. Through this section, we assume that the social choice function f

is Pareto efficient and strategy-proof on a product set B and we deal with preference

profiles in B, although we do not mention them in the lemmas. Proofs of all lemmas and

corollaries are in Appendix

For a preference R ∈ R and a consumption bundle x ∈ RL
+, a preference R̄ is called a

Maskin monotonic transformation (MMT, hereafter) of R at x if x̄ ∈ UC(x; R̄) and x̄ ̸= x

implies that x̄PRx. It is well known that if an agent receives x at a preference profile R,

strategy-proofness implies that this agent receives the same consumption bundle x when

his preference is subject to an MMT at x. Note that R̄ and R share the same price vector

at x. As shown in Momi (2013b, Lemma 4), for a preference R ∈ R and a consumption

bundle x ∈ RL
++, there exists a preference that is an MMT of R at x in any neighborhood

of R.

As f i(Ri,R−i) is the most preferred consumption bundle in Gi(R−i) with respect

to Ri ∈ Bi, the upper contour set UC(f i(Ri,R−i);Ri) intersects with the option set

Gi(R−i) at f i(Ri,R−i). As mentioned in the previous section, this might not be a unique

intersection, and then f i(Ri,R−i) might not be a continuous function of Ri. We define

F (Ri;Gi(R−i)) as the intersection between the upper contour set of Ri at f i(Ri,R−i)

and the option set: F (Ri;Gi(R−i)) = UC(f i(Ri,R−i);Ri)
∩
Gi(R−i). It is clear from the

definition that f i(Ri,R−i) ∈ F (Ri;Gi(R−i)) and F (Ri;Gi(R̄−i)) ⊂ I(f i(Ri,R−i);Ri).

The next lemma insists that if Ri′ is close to Ri, then any element of F (Ri′;Gi(R−i))

is close to F (Ri;Gi(R−i)). For a set A ⊂ RL, we let Bδ(A) denote the union of open balls

with radius δ and center x ∈ A: Bδ(A) =
∪

x∈A Bδ(x).
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Lemma 1. For any δ > 0, there exists ϵ > 0 such that ifRi′ ∈ Bϵ(R
i), then F (Ri′;Gi(R−i)) ⊂

Bδ(F (Ri;Gi(R−i))).

If the consumption f i(Ri,R−i) is the unique intersection between the upper contour

set and the option set, that is, if f i(Ri,R−i) = F (Ri;Gi(R−i)), then as Ri′ converges to

Ri, F i(Ri′;Gi(R−i)) converges to f i(Ri,R−i) as in Lemma 1, and then the consumption

f i(Ri′,R−i), which is in F i(Ri′;Gi(R−i)), also converges to f i(Ri,R−i), and hence the

social choice function f i(·,R−i) is continuous at Ri.

We write p(Ri;Gi(R−i)) to denote the set of gradient vectors at consumption bundles

in F (Ri;Gi(R−i)): p(Ri;Gi(R−i)) = {p(Ri, x) ∈ SL−1
++ : x ∈ F (Ri;Gi(R−i))}. It is clear

from the definition that p((Ri,R−i), f) = p(Ri, f i(Ri,R−i)) ∈ p(Ri;Gi(R−i)).

When R̂i is an MMT of Ri at f i(Ri,R−i), we have f i(Ri,R−i) = f i(R̂i,R−i) =

F (Ri, Gi(R−i)). Therefore, F (Ri′;Gi(R−i)) is in a neighborhood of f i(Ri,R−i) and

p(Ri′;Gi(R−i)) is in a neighborhood of p((Ri,R−i), f) when Ri′ is close to R̂i. The next

lemma considers the case where the other agents’ preferences change.

Lemma 2. Suppose that R̂i is an MMT of Ri at x̄i and the gradient vector at x̄i is p̄. For

any ε′ > 0, there exists ϕ′ > 0 such that if f i(Ri,R−i) ̸= 0 and p((Ri,R−i), f) ∈ Bϕ′(p̄),

then p(R̂i;Gi(R−i)) ⊂ Bε′(p̄).

Lemma 2 insists that if R̂i is an MMT ofRi at x̄i with price vector p̄, and p((Ri,R−i), f)

is sufficiently close to p̄, then p(R̂i;Gi(R−i)) is close to p̄, and hence p((R̂i,R−i), f) is also

close to p̄ . In other words, it insists that if f i(Ri,R−i) is sufficiently close to the ray [x̄i],

then F (R̂i;Gi(R−i)), the intersection beteen the upper contour set of R̂i and the option

set, is close to [x̄i], and hence f i(R̂i,R−i) is also close to [x̄i].

The next lemma insists that if the consumption-direction vectors are independent

among some agents, then the independence holds after slight changes of their preferences

and the price vector. Furthermore, if they share the total endowments among them, then

the positive consumption receivers are still such receivers after the changes.

Lemma 3 Suppose that gi(R̄, f), i = 1, . . . , K, where K < N , are independent at

R̄ = (R̄1, . . . , R̄N). There exist scalars ϵ̄ > 0 and ε̄ > 0 satisfying the following properties.

(1) gi(Ri, p), i = 1, . . . , K, are independent for any Ri ∈ Bϵ̄(R̄
i) and p ∈ Bε̄(p(R̄, f)).

(2) Let R = (R1, . . . , RN) be another preference profile. If f j(R̄) = f j(R) = 0 for

j ≥ K +1, p(R, f) ∈ Bε̄(p(R̄, f)), and Ri ∈ Bϵ̄(R̄
i), i = 1, . . . , K, then f i(R̄) > 0 implies

f i(R) > 0, for any i = 1, . . . , K.

In the proof of the theorem, we change the agents’ preferences slightly and increase the

number of agents whose consumption-direction vectors are independent. In the process,

we change the preferences of an agent who receives positive consumption. When agent

i’s consumption is positive, we exchange the agent’s preference Ri with a preference in a
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neighborhood of an MMT of Ri at the consumption. Then, the price changes only slightly

as shown in Lemma 1. However, if we change the preferences of an agent who receives

zero consumption, any allocation is possible without violating the strategy-proofness.

The next lemma shows that if the consumption-direction vectors are independent

among some agents who are assigned positive consumption, then we can change their

preferences slightly such that another agent receives positive consumption and the price

vector is sufficiently close to the original price vector.

Lemma 4. Suppose that gi(R̄, f), i = 1, . . . , K, where K < N , are independent and

f i(R̄) ̸= 0 for any i = 1, . . . , K, at R̄ = (R̄1, . . . , R̄N). For any ϵ > and ε > 0, there exist

(R̃1, . . . , R̃K) ∈ Bϵ(R̄
1)×· · ·×Bϵ(R̄

K) and j ≥ K+1 such that p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈
Bε(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈ {0,Ω}.

The next corollary is an immediate consequence of Lemma 4.

Corollary 1. Suppose that gi(R̄, f), i = 1, . . . , K, where K < N , are independent

and f i(R̄) ̸= 0 for any i = 1, . . . , K at R̄ = (R̄1, . . . , R̄N). There exists j ≥ K + 1

such that for any ϵ > and ε > 0, some (R̃1, . . . , R̃K) ∈ Bϵ(R̄
1) × · · · × Bϵ(R̄

K) satis-

fies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bε(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈
{0,Ω}.

The next lemma relaxes the condition of Lemma 4. If the consumption-direction

vectors are independent among some agents and one of them is assigned positive con-

sumption, then we can find a slight change in their preferences such that another agent

receives positive consumption and the price vector is sufficiently close to the original price

vector.

Lemma 5. Suppose that gi(R̄, f), i = 1, . . . , K, where K < N , are independent and

f i(R̄) ̸= 0 for some i ≤ K, at R̄ = (R̄1, . . . , R̄N). For any ϵ > and ε > 0, there exists

(R̃1, . . . , R̃K) ∈ Bϵ(R̄
1)×· · ·×Bϵ(R̄

K) and j ≥ K+1 such that p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈
Bε(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈ {0,Ω}.

Finally, the next corollary is to Lemma 5 as Corollary 1 is to Lemma 4.

Corollary 2. Suppose that gi(R̄, f), i = 1, . . . , K, where K < N , are independent

and f i(R̄) ̸= 0 for some i ≤ K at R̄ = (R̄1, . . . , R̄N). There exists j ≥ K + 1

such that for any ϵ > and ε > 0, some (R̃1, . . . , R̃K) ∈ Bϵ(R̄
1) × · · · × Bϵ(R̄

K) satis-

fies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bε(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈
{0,Ω}.
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5 Proof of the theorem

We first explain how we use CES utility functions to achieve the independence of the

consumption-direction vectors and then prove the theorem. All proofs of the lemmas are

in Apendix.

Assume that a preference profile (R̄1, . . . , R̄N) and a price vector p̄ are given. We

write ḡi = g(R̄i, p̄) to denote agent i’s consumption-direction vector for the price p̄ and

the preference R̄i.

With parameters ρ < 1 and α = (α1, . . . , αL) ∈ SL
++, we let Uα,ρ : R

L
+ → R denote the

CES utility function defined as

Uα,ρ(x1, . . . , xL) = (α1(x1)
ρ + · · ·+ αL(xL)

ρ)1/ρ (1)

It is straightforward to obtain

∂Uα,ρ

∂x
(x) ∥

(
α1(x1)

ρ−1, . . . , αL(xL)
ρ−1

)
where y ∥ z denote that vector y ∈ RL is parallel to vector z ∈ RL. We set αi as the

parameter such that the gradient vector of Uαi,ρ at ḡi is parallel to p̄.5

∂Uαi,ρ

∂x
(ḡi) ∥ p̄, (2)

that is, αi is parallel to ( p̄1
(ḡi1)

ρ−1 , . . . ,
p̄L

(ḡiL)
ρ−1 ). Abusing a notation, we let Uαi,ρ denote not

only the CES utility function but also the preference represented by the utility function.

Because of (2), both the preferences Uαi,ρ and R̄i have the same gradient vector p̄ at ḡi.

It is well known that the CES function defined by (1) converges to a Leontief utility

function as ρ → −∞. Therefore, Uαi,ρ is an MMT of R̄i at ḡi when ρ is sufficiently small.

We fix ρ such that Uαi,ρ is an MMT of R̄i at ḡi for any i = 1, . . . , N . We simply write Uαi

with the fixed subscript ρ omitted.

For a given price vector p = (p1, . . . , pL), the consumption-direction vector of Uαi ,

g(Uαi , p) is determined by

g(Uαi , p) ∥ ((p1/α
i
1)

1/(ρ−1), . . . , (pL/α
i
L)

1/(ρ−1)) (3)

by solving
∂Uαi

∂x
(x) ∥ p with respect to x.

With a parameter δi ≥ 0 and a vector zi ∈ RL, we define

βi(δi, zi) = ((1/αi
1)

1/(ρ−1), . . . , (1/αi
L)

1/(ρ−1)) + δizi,

5The gradient vector of the utility function Uαi,ρ should not be confused with the gradient vector of

a preference R we defined in Section 2. If R is the preference represented by the utility function Uαi,ρ,

then the normalization of
∂Uα,ρ

∂x (x) is the gradient vector of R at x.

11



for each i = 1, . . . , N . The next lemma shows that even if the vectors ((1/αi
1)

1/(ρ−1), . . . , (1/αi
L)

1/(ρ−1)),

i = 1, . . . , N , are dependent, we can find the direction vectors z̄i, i = 1, . . . , N , with slight

changes δi ≤ δ̄ in which directions the vectors βi(δi, zi), i = 1, . . . , N , are independent.

Lemma 6. There exist δ̄ > 0 and z̄i ∈ RL, i = 1, . . . , N , such that βi(δi, z̄i), i =

1, . . . , N , are positive vectors and independent with any 0 < δi ≤ δ̄, i = 1, . . . , N .

We fix z̄i, i = 1, . . . , N , that satisfies Lemma 6. For each 0 ≤ δi ≤ δ̄, we obtain

α̂i
δi = (α̂i

δi1, . . . , α̂
i
δiL) by solving

((1/α̂i
δi1)

1/(ρ−1), . . . , (1/α̂i
δiL)

1/(ρ−1)) = βi(δi, z̄i) (4)

and define αi
δi = (αi

δi1, . . . , α
i
δiL) as the normalization of α̂i

δi : α
i
δi = α̂i

δi/ ∥ α̂i
δi ∥.

Observe that for the preferences Uαi
δi
, i = 1, . . . , N , the consumption-direction vec-

tors g(Uαi
δi
, p), i = 1, . . . , N , are independent with any p as long as 0 < δi ≤ δ̄. The

consumption-direction vector g(Uαi
δi
, p) is parallel to ((p1/α

i
δi1)

1/(ρ−1), . . . , (pL/α
i
δiL)

1/(ρ−1))

as in (3), and hence, parallel to ((p1/α̂
i
δi1)

1/(ρ−1), . . . , (pL/α̂
i
δiL)

1/(ρ−1)). Therefore, the in-

dependence of these vectors among agents is equivalent to the full column rankness of the

L×N matrix(p1/α̂
1
δ11)

1/(ρ−1) , . . . , (p1/α̂
N
δNL)

1/(ρ−1))
...,

...

(pL/α̂
1
δiL)

1/(ρ−1) , . . . , (pL/α̂
N
δNL)

1/(ρ−1)

 ,

and hence, equivalent to the full column rankness of the matrix(1/α̂
1
δ11)

1/(ρ−1) , . . . , (1/α̂N
δNL)

1/(ρ−1))
...,

...

(1/α̂1
δiL)

1/(ρ−1) , . . . , (1/α̂N
δNL)

1/(ρ−1)

 , (5)

which is satisfied because α̂i
δi is set by (4) and βi(δi, z̄i), i = 1, . . . , N , are independent

for any 0 < δi ≤ δ̄, i = 1, . . . , N , as in Lemma 6.

From the construction of Uαi
δi
, i = 1, . . . , N , the independence of the consumption-

direction vectors holds for preference profiles in a neighborhood of (Uα1
δ1
, . . . , UαN

δN
). For-

mally, this is stated in the next lemma.

Lemma 7. Let P ⊂ SL
++ be a compact price set. There exist functions ϵi : (0, δ̄] → R++,

i = 1, . . . , N , such that g(Ri, p), i = 1, . . . , N , are independent for any p ∈ P and any

Ri ∈ Bϵi(δi)(Uαi
δi
) with any 0 < δi ≤ δ̄.

We construct a preference that is close to R̄i and is represented by Uαi
δi
in a neighbor-

hood of ḡi as follows. See Momi (2017) for more details of the preference construction.
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Figure 2 depicts the preferences R̄i and Uαi
δi
. We let t > 0 be a sufficiently small

parameter and define

Ai
αi
δi
(t) = co

(
UC(ḡi;Uαi

δi
)
∪

UC(ḡi + tp̄; R̄i)
)

where co(Y ) denotes the convex hull of a subset Y ⊂ RL.

p̄⊥

x

L(x)

ḡi ḡi + tp̄

p̄

Uαi
δi

R̄i

Figure 2. The prefrence construction

0 x1

x2

As the convex set Ai
αi
δi
(t) is not strictly convex, it cannot be an upper contour set of

a preference in R. We let s > 0 be a sufficiently small parameter and define

Bi
αi
δi
(t, s) =

∪
x∈p̄⊥

{
(1− s)(∂Ai

αi
δi
(t)

∩
L(x)) + s(I(ḡi;Uαi

δi
)
∩

L(x))
}
,

where L(x) is the half line starting from x and extending in the direction of the vector p̄:

L(x) = {y ∈ RL|y = x + tp̄, t ≥ 0}. Note that for s > 0, Bi
αi
δi
(t, s) is the boundary of a

strictly convex set. We let Ri
αi
δi
,t,s

∈ R denote the preference which has Bi
αi
δi
(t, s) as its

indifference set.

Note that, as long as t > 0, the boundary of Ai
αi
δi
(t) coincides with Bi

αi
δi
(t, s) in a

neighborhood of ḡi, and it is defined by the indifference set of the CES function. That is,

the indifference set of Ri
αi
δi
,t,s

is equal to that of Uαi
δi
in a neighborhood of ḡi. Hence, Ri

αi
δi
,t,s

inherits the properties of Uαi
δi
. In particular, independence of the consumption-direction

vectors holds for prices in a neighborhood of p̄.

Lemma 8. For any ϵ > 0, there exist s > 0, t > 0, δ̄i > 0, i = 1, . . . , N , and ε > 0

satisfying the following properties.

(1) Ri
αi
δi
,t,s

∈ Bϵ(R̄
i), i = 1, . . . , N , for any 0 ≤ δi ≤ δ̄i.

13



(2)g(Ri
αi
δi
,t,s

, p), i = 1, . . . , N , are independent for any 0 < δi ≤ δ̄i and any p ∈ Bε(p̄).

The independence of the consumption-direction vectors holds for preferences in neigh-

borhoods of Ri
αi
δi
,t,s

, i = 1, . . . , N .

Lemma 9. Fix s > 0 and t > 0. There exist ε̄ > 0 and functions ϵi : (0, δ̄] → R++,

i = 1, . . . , N , such that g(Ri, p), i = 1, . . . , N , are independent for any p ∈ Bε̄(p̄) and any

Ri ∈ Bϵi(δi)(R
i
αi
δi
,t,s

), i = 1, . . . , N .

Combining this preference construction with the results in the previous section, we

prove the theorem. The proof proceeds as follows. Suppose that R̄ is given, where

the consumption-direction vectors are dependent and the allocation is not dictatorial.

Starting from a group of agents whose consumption-direction vectors are independent, we

change their preferences slightly so that another agent is assigned positive consumption

as in Corollary 2. Then, we change this agent’s preference according to the preference

construction explained above so that the consumption-direction vectors among the group

of agents including this agent are independent. Repeating this step, we finally have all

agents’ consumption-direction vectors being independent, which contradicts Proposition

1.

Proof of the theorem We let L ≥ N and the social choice function f be Pareto efficient

and strategy-proof on B = ΠN
i=1Bi. We suppose that some j satisfies f j(R̄) /∈ {0,Ω} at

some preference profile R̄ = (R̄1, . . . , R̄N) ∈ B and show a contradiction. If gi(R̄, f),

i = 1, . . . , N , are independent, this immediately contradicts Proposition 1. We consider

the case where these consumption-direction vectors are dependent.

We write p̄ and ḡi to denote the price vector and agent i’s consumption-direction

vector at R̄, respectively: p̄ = p(R̄, f) and ḡi = gi(R̄, f) = g(R̄i, p(R̄, f)).

We fix a scalar ϵ̄ > 0 such that Bϵ̄(R̄
i) ⊂ Bi, for any i = 1, . . . , N . For R̄i, ḡi,

i = 1, . . . , N , and p̄, we consider the preferences Ri
αi
δi
,t,s

, i = 1, . . . , N , explained above.

Applying Lemma 8 to these preferences with scalar ϵ̄, we have s, t, δ̄i, i = 1, . . . , N , and

ε such that

Ri
αi
δi
,t,s

∈ Bϵ̄(R̄
i), i = 1, . . . , N , for any 0 ≤ δi ≤ δ̄i (6)

and

gi(Ri
αi
δi
,t,s

, p), i = 1, . . . , N , are independent for any 0 < δi ≤ δ̄i (7)

and any p ∈ Bε(p̄).

Furthermore applying Lemma 9, we have ε̄ and ϵi : (0, δ̄] → R++, i = 1, . . . , N , such

that

g(Ri, p), i = 1, . . . , N , are independent for any Ri ∈ Bϵi(δi)(R
i
αi
δi
,t,s

) (8)

and p ∈ Bε̄(p).
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We set ε̄ to be less than ε: ε̄ < ε.

For simplicity of notation, we write Ri
δi = Ri

αi
δi
,t,s

because the parameters other than

δi are fixed from now on.

For each i = 1, . . . , N , Ri
0, that is R

i
δi where δi = 0, is an MMT of R̄i at ḡi. Applying

Lemma 2 to these preferences, we have a positive function ϕ̄i : ε′ 7→ ϕ̄(ε′) for each

i = 1, . . . , N , which maps ε′ to ϕ′ in Lemma 2:

If f i(R̄i,R−i) ̸= 0 and p((R̄i,R−i), f) ∈ Bϕ̄i(ε′)(p̄), then p(Ri
0;G

i(R−i)) ⊂ Bε′(p̄)

for any R−i and ε′ > 0. (9)

We select a positive function ϕ such that ϕ(ε′) < min{ϕ̄1(ε′), . . . , ϕ̄N(ε′), ε′} for any ε′.

We write ϕ(k) = ϕ ◦ · · · ◦ ϕ to denote the k-times operation of ϕ.

Without loss of generality, we assume that f 1(R̄) /∈ {0,Ω}. Replacing R̄1 with R1
δ1 of

any parameter 0 < δ1 < δ̄1, we have f 1(R1
δ1 , R̄

−i) /∈ {0,Ω}, and there exists another agent

receiving positive consumption. As δ1 changes, the type of agent who receives positive

consumption might vary. However, there should exist an agent j ≥ 2 such that for any

δ1, there exists δ1′ < δ1 satisfying f j(R1
δ1′ , R̄

−i) /∈ {0,Ω}.
If there exists no such agent, then for each j ≥ 2 there exists δ1j such that for any δ1 <

δ1j , f
j(R1

δ1 , R̄
−i) ∈ {0,Ω}. Then, for δ1 < min{δ12, . . . , δ1N}, we have f j(R1

δ1 , R̄
−i) ∈ {0,Ω}

for any j ≥ 2. This contradicts that f 1(R1
δ1 , R̄

−i) /∈ {0,Ω} for any parameter δ1.

Without loss of generality, we assume that agent 2 is such an agent. We let ∆1 =

{δ1|f 2(R1
δ1 , R̄

−i) /∈ {0,Ω}} denote the set of δ1 such that agent 2’s consumption is not

zero at (R1
δ1 , R̄

−i). We consider δ1 in ∆1.

If δ1 in ∆1 is sufficiently small, then p(R1
δ1 ;G

1(R̄−i)) can be arbitrarily close to p̄

because f 1(R̄) = f 1(R1
0, R̄

−i) is the unique intersection between UC(f 1(R̄);R1
0) and

G1(R̄−i), and hence, F (R1
δ1 ;G

1(R−1)) converges to f 1(R1
0, R̄

−i) as δ1 → 0 and R1
δ1 → R1

0

as shown in Lemma 1. We take δ1 so that p(R1
δ1 ;G

1(R̄−i)) ⊂ Bϕ(N−1)(ε̄)(p̄).

We replace R̄2 with R2
0. Note that p(R1

δ1 ;G
1(R̄−1)) ∈ Bϕ(N−1)(ε̄)(p̄) implies that

p((R1
δ1 , R̄

2, R̄−{1,2}), f) ∈ Bϕ(N−1)(ε̄)(p̄) ⊂ Bϕ2(ϕ(N−2)(ε̄))(p̄) by the definition of ϕ and ϕ2.

Then, by (9), we have p(R2
0;G

2(R1
δ1 , R̄

−{1,2})) ⊂ Bϕ(N−2)(ε̄)(p̄).

We then replaceR2
0 withR2

δ2 . As δ
2 → 0 andR2

δ2 → R2
0, any element in F (R2

δ2 ;G
2(R1

δ1 , R̄
−{1,2}))

converges to a consumption bundle in F (R2
0;G

2(R1
δ1 , R̄

−{1,2})) as shown in Lemma 1.

Then, any price vector in p(R2
δ2 ;G

2(R1
δ1 , R̄

−{1,2})) converges to a price vector in p(R2
0;G

2(R1
δ1 , R̄

−{1,2})).

Therefore, we take a value of δ2 sufficiently small such that p(R2
δ2 ;G

2(R1
δ1 , R̄

−{1,2})) ⊂
Bϕ(N−2)(ε̄)(p̄). This, of course, means that p((R1

δ1 , R
2
δ2 , R̄

−{1,2}), f) ∈ Bϕ(N−2)(ε̄)(p̄).

We apply Corollary 2 to agents 1 and 2. Note that, as shown in (7), the consumption-

direction vectors of R1
δ1 and R2

δ2 are independent at (R
1
δ1 , R

2
δ2 , R̄

−{1,2}) because p((R1
δ1 , R

2
δ2 ,

R̄−{1,2}), f) ∈ Bϕ(N−2)(ε̄)(p̄) ⊂ Bε̄(p̄). We have an agent j ≥ 3 such that for any ϵ > 0

and ε > 0, some (R1
(1), R

2
(1)) ∈ Bϵ(R

1
δ1) × Bϵ(R

2
δ2) satisfies p((R1

(1), R
2
(1), R̄

−{1,2}), f) ∈
Bε(p(R

1
δ1 , R

2
δ2 , R̄

−{1,2})) and f j(R1
(1), R

2
(1), R̄

−{1,2}) /∈ {0,Ω}.

15



Without loss of generality, we assume that agent 3 is such an agent. We set ϵ̄i, i = 1, 2,

such that ϵ̄i < ϵi(δi) andBϵ̄i(R
i
δi) ⊂ Bϵ̄(R̄

i). We select ε such thatBε(p((R
1
δ1 , R

2
δ2 , R̄

−{1,2}), f)) ⊂
Bϕ(N−2)(ε̄)(p̄), select ϵ such that Bϵ(R

1
δ1)×Bϵ(R

2
δ2) ⊂ Bϵ̄1(R

1
δ1)×Bϵ̄2(R

2
δ2), and apply Corol-

lary 2. As a result, we have (R1
(1), R

2
(1)) ∈ Bϵ̄1(R

1
δ1)×Bϵ̄2(R

2
δ2) such that p((R1

(1), R
2
(1), R̄

−{1,2}), f) ∈
Bϕ(N−2)(ε̄)(p̄) and f 3(R1

(1), R
2
(1), R̄

−{1,2}) /∈ {0,Ω}.
We replace R̄3 with R3

0. By (9), we have p(R3
0;G

3(R1
(1), R

2
(1), R̄

−{1,2,3})) ∈ Bϕ(N−3)(ε̄)(p̄)

as we observed for agent 2.

We replaceR3
0 withR3

δ3 , where δ
3 is sufficiently small, such that p(R3

δ3 ;G
3(R1

(1), R
2
(1), R̄

−{1,2,3})) ∈
Bϕ(N−3)(ε̄)(p̄) as we observed for agent 2.

We apply Corollary 2 to agents 1,2, and 3. Note that, as shown in (8), the consumption-

direction vectors of R1
(1), R

2
(1), and R3

δ3 are independent at (R1
(1), R

2
(1), R

3
δ3 , R̄

−{1,2,3}) be-

causeR1
(1) ∈ Bϵ̄1(R

1
δ1) ⊂ Bϵ1(δ1)(R

1
δ1), R

2
(1) ∈ Bϵ̄2(R

2
δ2) ⊂ Bϵ2(δ2)(R

2
δ2), and p((R1

(1), R
2
(1), R

3
δ3 ,

R̄−{1,2,3}), f) ∈ Bϕ(N−3)(ε̄)(p̄) ⊂ Bε̄(p̄). We have an agent j ≥ 4 such that for any ϵ and ε,

some (R1
(2), R

2
(2), R

3
(2)) ∈ Bϵ(R

1
(1))×Bϵ(R

2
(1))×Bϵ(R

3
δ3) satisfies p((R

1
(2), R

2
(2), R

3
(2), R̄

−{1,2,3}), f) ∈
Bε(p((R

1
(1), R

2
(1), R

3
δ3 , R̄

−{1,2,3}), f)) and f j(R1
(2), R

2
(2), R

3
(2), R̄

−{1,2,3}) /∈ {0,Ω}.
Without loss of generality, we assume that agent 4 is such an agent. We set ϵ̄3 such that

ϵ̄3 < ϵ3(δ3) andBϵ̄3(R
3
δ3) ⊂ Bϵ̄(R̄

3). We select ε such thatBε(p((R
1
(1), R

2
(1), R

3
δ3 , R̄

−{1,2,3}), f)) ⊂
Bϕ(N−3)(ε̄)(p̄), select ϵ such that Bϵ(R

1
(1)) × Bϵ(R

2
(1)) × Bϵ(R

3
δ3) ⊂ Bϵ̄1(R

1
δ1) × Bϵ̄2(R

2
δ2) ×

Bϵ̄3(R
3
δ3), and apply Corollary 2. As a result, we have (R1

(2), R
2
(2), R

2
(2)) ∈ Bϵ̄1(R

1
δ1) ×

Bϵ̄2(R
2
δ2)×Bϵ̄3(R

3
δ3) such that p((R1

(2), R
2
(2), R

2
(2), R̄

−{1,2,3}), f) ∈ Bϕ(N−3)(ε̄)(p̄) and f 4(R1
(2), R

2
(2),

R3
(2), R̄

−{1,2,3}) /∈ {0,Ω}.
We replace R̄4 with R4

0, and replace R4
0 with R4

δ4 , where δ4 is sufficiently small, in a

similar way. Applying Corollary 2 to agents 1, . . . , 4, we obtain a preference subprofile

(R1
(3), . . . , R

4
(3)) ∈ Bϵ̄1(R

1
δ1)× · · · × Bϵ̄4(R

4
δ4) where ϵ̄4 satisfies ϵ̄4 < ϵ4(δ4) and Bϵ̄4(R

4
δ4) ⊂

Bϵ̄(R̄
4) such that the price vector at (R1

(3), . . . , R
4
(3), R̄

−{1,...,4}) is in Bϕ(N−4)(ε̄)(p̄) and an

agent j ≥ 5 receives positive consumption at (R1
(3), . . . , R

4
(3), R̄

−{1,...,4}).

We repeat this process. Finally, we have (R1
(N−2), . . . , R

N−1
(N−2)) in Bϵ̄1(R

1
δ1) × · · · ×

Bϵ̄N−1(RN−1
δN−1), where ϵ̄

i, i = 1, . . . , N − 1, satisfies ϵ̄i < ϵi(δi) and Bϵ̄i(R
i
δi) ⊂ Bϵ̄(R̄

i), such

that p((R1
(N−2), . . . , R

N−1
(N−2), R̄

N), f) ∈ Bϕ(ε̄)(p̄) and fN(R1
(N−2), . . . , R

N−1
(N−2), R̄

N) /∈ {0,Ω}.
Replacing R̄N with RN

0 , we have p(R1
(N−2), . . . , R

N−1
(N−2), R

N
0 ) ∈ Bε̄(p̄) because of (9) and

fN(R1
(N−2), . . . , R

N−1
(N−2), R

N
0 ) /∈ {0,Ω}. Replacing RN

0 with RN
δN where δN is sufficiently

small, we still have p((R1
(N−2), . . . , R

N−1
(N−2), R

N
δN ), f) ∈ Bε̄(p̄) and fN(R1

(N−2), . . . , R
N−1
(N−2), R

N
δN ) /∈

{0,Ω}.
However, the consumption-direction vectors gi(Ri

(N−2), p), i = 1, . . . , N − 1, and

g(RN
δN , p) are independent at p = p(R1

(N−2), . . . , R
N−1
(N−2), R

N
δN ) because Ri

(N−2) ∈ Bϵ̄i(R
i
δi),

i = 1, . . . , N − 1, and p ∈ Bε̄(p̄). This contradicts Proposition 1.
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A Appendix

Proof of Lemma 1. We fix δ arbitrarily. We let {ϵn}∞n=0 be a decresing sequence

of scalars converging to 0: ϵn < ϵn′ for n > n′ and ϵn → 0 as n → ∞. We assume

that for any n, there exist some Ri
(n) ∈ Bϵn(R

i) and x(n) ∈ F (Ri
(n);G

i(R−i)) satisfying

x(n) /∈ Bδ(F (Ri;Gi(R−i)), and we show a contradiction.

Since x(n)IRi
(n)
f i(Ri

(n),R
−i)Ri

(n)f
i(Ri,R−i), we have x(n) ∈ UC(f i(Ri,R−i);Ri

(n)). Since

x(n) ∈ Gi(R−i), it should not be preferred over f i(Ri,R−i) with respect to Ri, that is,

x(n) ∈ LC(f i(Ri,R−i);Ri). Therefore, xi
(n) is in the intersection UC(f i(Ri,R−i);Ri

(n))
∩

LC(f i(Ri,R−i);Ri). As n → ∞, we have Ri
(n) → Ri, and hence this intersection con-

verges to some set in the indifference set I(f i(Ri,R−i);Ri).

Note that {x(n)}∞n=0 has an convergent subsequence {x(nk)}∞k=0 where nk < nk′ for

k > k′ because the set of feasible allocations is compact. We let x̂ = limk→∞ x(nk) denote

the limit. Thus, we have x̂ ∈ I(f i(Ri,R−i);Ri).

Observe that x̂ ∈ Gi(R−i). Since x(nk) ∈ Gi(R−i), we have x̂ ∈ Gi(R−i), where

Gi(R−i) is the closure of Gi(R−i). This implies x̂ ∈ Gi(R−i), as proved by Momi (2017,

Lemma 3).

Thus we have x̂ ∈ F (Ri;Gi(R−i)) and this contradits that x(nk) /∈ Bδ(F (Ri;Gi(R−i))).

Proof of Lemma 2. We fix ε′ arbitarily. We suppose that for any ϕ′, there exists R−i

such that f i(Ri,R−i) ̸= 0, p((Ri,R−i), f) ∈ Bϕ′(p̄), and p(R̂i;Gi(R−i)) /∈ Bε′(p̄), and we

show a contradiction.

Since p(R̂i;Gi(R−i)) is not included in Bε′(p̄), there exists x̂i ∈ F (R̂i;Gi(R−i)) such

that p(R̂i; x̂i) /∈ Bε′(p̄). Since p(R̂i; x̄i) = p̄, p(R̂i; x̂i) /∈ Bε′(p̄) implies that the ray [x̂i] is

away from the ray [x̄i]. Formally, we measure the distance between rays by the distance

between their intersections with SL
++, that is, we define the distance between two rays [y]

and [z], where y, z ∈ RL
++, by the distance between y/ ∥ y ∥ and z/ ∥ z ∥.

Note that, even if x̂i is different from f i(R̂i,R−i), they are indifferent with respect to

R̂i. Therefore, we have x̂iR̂if i(Ri,R−i) because of strategy-proofness. On the other hand,

since x̂i ∈ Gi(R−i), we have f i(Ri,R−i)Rix̂i. Thus, we have x̂i ∈ LC(f i(Ri,R−i);Ri)
∩

UC(f i(Ri,R−i); R̂i).

By taking a sufficiently small value of ϕ′, we have p((Ri,R−i), f) arbitrarily close to p̄.

Then, the ray [f i(Ri,R−i)] is arbitrarily close to [x̄i]. Then, for any x ∈ LC(f i(Ri,R−i);Ri)
∩

UC(f i(Ri,R−i); R̂i), the ray [x] is arbitrarily close to the ray [x̄i], and hence the ray [x̂i]

should be arbitrarily close to [x̄i]. This is a contradiction.

Proof of Lemma 3. Note that gi(R̄, f) = g(Ri, p(R̄, f)), i = 1, . . . , K, and they are

independent. As p → p(R̄, f), we have g(R̄i, p) → g(R̄i, p(R̄, f)). Therefore, there exists
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ε′ such that g(R̄i, p), i = 1, . . . , K, are independent for any p ∈ Bε′(p(R̄, f)), where

Bε′(p(R̄, f)) denotes the closure of Bε′(p(R̄, f)).

For each p ∈ Bε′(p(R̄, f)), g(Ri, p) → g(R̄i, p) as Ri → R̄i. Therefore, there exists ϵp

such that g(Ri, p), i = 1, . . . , K, are independent for any Ri ∈ Bϵp(R̄
i), i = 1, . . . , K. We

define ϵ′ as the minimum of ϵp as p moves over Bϵ̄(p(R̄, f)): ϵ′ = min
p∈Bϵ̄(p(R̄,f))

ϵp. It is

clear that these ϵ′ and ε′ satisfies Lemma 3 (1).

We consider Ri ∈ Bϵ′(R̄
i), i = 1, . . . , K, and p(R, f) ∈ Bε′(p(R̄, f)). Then, gi(R, f),

i = 1, . . . , K, are independent.

Note that f j(R) = f j(R̄) = 0 for j ≥ K + 1, means that
∑K

i=1 f
i(R) = Ω and∑K

i=1 f
i(R̄) = Ω.

We define ᾱi, i = 1, . . . , K, as f i(R) = ᾱigi(R, f). Since f i(R̄) ∈ [gi(R̄, f)], i =

1, . . . , K, and gi(R̄, f), i = 1, . . . , K, are independent, these ᾱi’s are a unique solution of∑K
i=1 α

igi(R̄, f) = Ω.

Since gi(R̄, f) = g(R̄i, p(R, f)) and gi(R, f) = g(Ri, p(R, f)), gi(R, f) converges to

gi(R̄, f) as Ri and p(R, f) converge to R̄i and p(R̄, f), respectively. Therefore the scalars

αi(R, f), i = 1, . . . , K satisfying
∑K

i=1 α
i(R, f)gi(R, f) = Ω, are determined uniquely

and αi(R, f) converges to ᾱi, for any i = 1, . . . , K, as gi(R, f) converges to gi(R̄, f),

i = 1, . . . , K. Then, f i(R) = αi(R, f)gi(R, f) converges to f i(R̄), i = 1, . . . , K. Thus

f i(R̄) > 0 implies f i(R) > 0

Proof of Lemma 4. We select ϵ and ε arbitrarily. If f j(R̄) ̸= 0 for some j ≥ K + 1,

the lemma holds. We suppose that f j(R̄) = 0 for any j ≥ K + 1. We let ϵ̄ > 0 and

ε̄ > 0 be scalars that support Lemma 3 with respect to R̄. We define ϵ̃ = min{ϵ, ϵ̄} and

ε̃ = {ε, ε̄}. Note that, because of Lemma 3, at any R such that Ri ∈ Bϵ̃(R̄
i), i = 1, . . . , K,

and p(R, f) ∈ Bε̃(p(R̄, f)), if f j(R) = 0 for j ≥ K + 1, then f i(R), i = 1, . . . , K, are all

positive and independent.

We let R̂i ∈ Bϵ̃(R̄
i) be an MMT of R̄i at f i(R̄) for each i = 1, . . . , K.

First, we observe that the lemma holds if f j(R1, . . . , RK , R̄K+1, . . . , R̄N) ̸= 0 for some

j ≥ K + 1 and Ri ∈ {R̄i, R̂i}, i = 1, . . . , K.

For any Ri ∈ {R̄i, R̂i}, i = 1, . . . , K, we let S(R1, . . . , RK) = ♯{i ∈ {1, . . . , K} :

Ri = R̂i} denote the number of agents whose preference is R̂i, and let S̄ denote the min-

imum of S(R1, . . . , RK) such that some consumer j ≥ K + 1 has positive consumption

with the preference profile: S̄ = min{S(R1, . . . , RK) : f j(R1, . . . , RK , R̄K+1, . . . , R̄N) ̸=
0 for some j ≥ K+1 and Ri ∈ {R̄i, R̂i}, i = 1, . . . , K}. Without loss of generality, by rela-

beling the consumer indexes if necessary, we assume that f j(R̂1, . . . , R̂S̄, R̄S̄+1, . . . , R̄N) ̸=
0 for some j ≥ K + 1. We observe that the lemma holds at (R̂1, . . . , R̂S̄, R̄S̄+1, . . . , R̄N).

It is clear that the preference subprofile (R̂1, . . . , R̂S̄, R̄S̄+1, . . . , R̄K) is in Bϵ(R̄
1)× · · · ×

Bϵ(R̄
K). We observe that the price vector at the preference profile is in Bε(p(R̄, f)).

From the definition of S̄, we have f j(R1, . . . , RS̄−1, R̄S̄, . . . , R̄N) = 0 for any j ≥ K+1
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and any Ri ∈ {R̄i, R̂i}, i = 1, . . . , S̄ − 1. Since f i(R̄), i = 1, . . . , K, are all positive and

independent and R̂i is a MMT of R̄i at f i(R̄), we have p((R1, . . . , RS̄−1, R̄S̄, . . . , R̄N), f) =

p(R̄, f) and f i(R1, . . . , RS̄−1, R̄S̄, . . . , R̄N) = f i(R̄) for any i = 1, . . . , K, and any Ri ∈
{R̄i, R̂i}, i = 1, . . . , S̄ − 1. In particular, we have f S̄(R̂1, . . . , R̂S̄−1, R̄S̄, . . . , R̄N) = f S̄(R̄)

and p((R̂1, . . . , R̂S̄−1, R̄S̄, . . . , R̄N), f) = p(R̄, f). Since R̂S̄ is an MMT of R̄S̄ at f S̄(R̄),

we have p((R̂1, . . . , R̂S̄, R̄S̄+1, . . . , R̄N), f) = p(R̄, f) as desired.

Next, we consider the case where f j(R1, . . . , RK , R̄K+1, . . . , R̄N) = 0 for any j ≥ K+1

and any Ri ∈ {R̄i, R̂i}, i = 1, . . . , K. Note that f i(R1, . . . , RK , R̄K+1, . . . , R̄N) = f i(R̄)

for i = 1, . . . , K, and p((R1, . . . , RK , R̄K+1, . . . , R̄N), f) = p(R̄, f) for any Ri ∈ {R̄i, R̂i},
i = 1, . . . , K, because f i(R̄), i = 1, . . . , K, are all positive and independent and R̂i is an

MMT of R̄i at f i(R̄), i = 1, . . . , K.

For each i = 1, . . . , K, we consider a function ϕ̄i : ε′ 7→ ϕ̄i(ε′) that maps ε′ to ϕ′ in

Lemma 2 with respect to R̄i and R̂i. Furthermore we define a function ϕi : ε′ → ϕ(ε′) as

ϕi(ε′) = min{ϕ̄i(ε′), ε′}. Then, of course, for any ε and any R−i, if f i(R̄i,R−i) ̸= 0 and

p((R̄i,R−i), f) ∈ Bϕi(ε)(p(R, f)), then p(R̂i;Gi(R−i)) ∈ Bε(p(R, f)) because of Lemma

2.

Starting from the preference profile R̄, we replace R̄i with preferences in a neighbor-

hood of R̂i for i = 1, . . . , K, as follows.

We first replace R̄1 with R̂1. This replacement does not change the price vector. We

let ϵ1 be a sufficiently small scalar such that Bϵ1(R̂
1) ⊂ Bϵ̃(R̄

1) and

p(R1′;G1(R̄−1)) ⊂ Bϕ2◦···◦ϕK(ε̃)(p(R̄, f)) (10)

for any R1′ ∈ Bϵ1(R̂
1). Note that f 1(R̄) is the unique intersection of UC(f 1(R̄); R̂1) and

G1(R−1). Therefore, if R1′ is sufficiently close to R̂1, then f(R1′, R̄−1) and p(R1′;G1(R̄−1))

are sufficiently close to f 1(R̄) and p(R̄, f), respectively, as discussed after Lemma 1. Thus,

a value of ϵ1 satisfying the desired properties exists.

The lemma holds if f j(R1′, R̄−1) ̸= 0 for some j ≥ K + 1 with some R1′ ∈ Bϵ1(R̂
1).

We suppose that f j(R1′, R̄−1) = 0 for any j ≥ K + 1 and any R1′ ∈ Bϵ1(R̂
1). Then,

f i(R1′, R̄−1), i = 1, . . . , K, are all positive and independent because R1′ ∈ Bϵ1(R̂
1) ⊂

Bϵ̃(R̄
1) and p((R1′, R̄−1), f) ∈ Bϕ2◦···◦ϕK(ε̃)(p(R̄, f))) ⊂ Bε̃(p(R̄, f)).

Then, we replace R2 with R̂2. By (10) and Lemma 2, we have

p(R̂2;G2(R1′, R̄−{1,2})) ⊂ Bϕ3◦···◦ϕK(ε̃)(p(R̄, f)) (11)

for any R1′ ∈ Bϵ1(R̂
1). We let ϵ2 be sufficiently small such that Bϵ2(R̂

2) ⊂ Bϵ̃(R̄
2) and

p(R2′;G2(R1′, R̄−{1,2}), f) ⊂ Bϕ3◦···◦ϕK(ε̃)(p(R̄, f)) (12)

for any R2′ ∈ Bϵ2(R̂
2) and any R1′ ∈ Bϵ1(R̂

1). Note that a sufficiently small value of ϵ2

ensures (12) because of (11).
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The lemma holds if f j(R1′, R2′, R̄−{1,2}) ̸= 0 for some j ≥ K+1 and some (R1′, R2′) ∈
Bϵ1(R̂

1) × Bϵ2(R̂
2). We suppose that f j(R1′, R2′, R̄−{1,2}) = 0 for any j ≥ K + 1 and

any (R1′, R2′) ∈ Bϵ1(R̂
1) × Bϵ2(R̂

2). Then f i(R1′, R2′, R̄−{1,2}), i = 1, . . . , K, are all

positive and independent because (R1′, R2′) ∈ Bϵ1(R̂
1)×Bϵ2(R̂

2) ⊂ Bϵ̃(R̄
1)×Bϵ̃(R̄

2) and

p((R1′, R2′, R̄−{1,2}), f) ∈ Bϕ3◦···◦ϕK(ε̃)(p(R̄, f)) ⊂ Bε̃(p(R̄, f)).

Then, we replace R̄3 with R̂3. By (12) and Lemma 2, we have

p(R̂3;G3(R1′, R2′, R̄−{1,2,3})) ⊂ Bϕ4◦···◦ϕK(ε̃)(p(R̄, f))

for any (R1′, R2′) ∈ Bϵ1(R̂
1)× Bϵ2(R̂

2). We let ϵ3 be a sufficiently small scalar such that

Bϵ3(R̂
3) ⊂ Bϵ̃(R̄

3) and

p(R3′;G3(R1′, R2′, R̄−{1,2,3})) ⊂ Bϕ4◦···◦ϕK(ε̃)(p(R̄, f))

for any R3′ ∈ Bϵ3(R̂
3) and any (R1′, R2′) ∈ Bϵ1(R̂

1)×Bϵ2(R̂
2).

The lemma holds if f j(R1′, . . . , R3′, R̄−{1,2,3}) ̸= 0 for some j ≥ K + 1 and some

(R1′, . . . , R3′) ∈ Bϵ1(R̂
1)×· · ·×Bϵ3(R̂

3). We suppose that f j(R1′, . . . , R3′, R̄−{1,2,3}) = 0 for

any j ≥ K+1 and any (R1′, . . . , R3′) ∈ Bϵ1(R̂
1)×· · ·×Bϵ3(R̂

3). Then, f i(R1′, . . . , R3′, R̄−{1,2,3}),

i = 1, . . . , K, are still all positive and independent because (R1′, . . . , R3′) ∈ Bϵ̃(R̂
1)×· · ·×

Bϵ̃(R̂
3) and p((R1′, . . . , R3′, R̄−{1,2,3}), f) ∈ Bε̃(p(R̄, f)).

We repeat this process. Finally, we replace R̄K with R̂K and have

p(R̂K ;GK(R1′, . . . , RK−1′, R̄K+1, . . . , R̄N)) ⊂ Bε̃(p(R̄, f))

for any (R1′, . . . , RK−1′) ∈ Bϵ1(R̂
1)× · · ·×BϵK−1(R̂K−1). We let ϵK be a sufficiently small

scalar such that BϵK (R̂
K) ⊂ Bϵ̃(R̄

K) and

p(RK′;GK(R1′, . . . , RK−1′, R̄K+1, . . . , R̄N)) ⊂ Bε̃(p(R̄, f))

for any RK′ ∈ BϵK (R̂
K) and any (R1′, . . . , RK−1′) ∈ Bϵ1(R̂

1)× · · · × BϵK−1(R̂K−1). There

should exist some preference profile (R1′, . . . , RK′) ∈ Bϵ1(R̂
1)×· · ·×BϵK (R̂

K) ⊂ Bϵ(R̄
1)×

· · ·×Bϵ(R̄
K) such that f j(R1′, . . . , RK′, R̄K+1, . . . , R̄N) ̸= 0 for some j ≥ K+1. Otherwise,

f(·, . . . , ·, R̄K+1, . . . , R̄N) becomes a social choice function in the economy with agents

i = 1, . . . , K, that is Pareto efficient, strategy-proof, and non-alternately dictatorial on

Bϵ1(R̂
1)× · · · ×BϵK (R̂

K). This contradicts Proposition 1. This ends the proof of Lemma

4.

Proof of Corollary 1. Contrary to the statement of the corollary, we suppose that for

each j ≥ K+1 there exist ϵj and εj such that no (R̃1, . . . , R̃K) ∈ Bϵj(R̄
1)×· · ·×Bϵj(R̄

K)

satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bεj(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈
{0,Ω}. We let ϵ̄ = min{ϵK+1, . . . , ϵN} and ε̄ = min{εK+1, . . . , εN}. Then, there is

(R̃1, . . . , R̃K) ∈ Bϵ̄(R̄
1)×· · ·×Bϵ̄(R̄

K) satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bε̄(p(R̄, f))
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and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈ {0,Ω} for any j ≥ K + 1. This contradicts Lemma

4.

Proof of Lemma 5. We select ϵ and ε arbitrarily. If f j(R̄) ̸= 0 for some j ≥ K + 1,

the lemma holds. We suppose that f j(R̄) = 0 for any j ≥ K + 1. We let ϵ̄ > 0 and

ε̄ > 0 be scalars that support Lemma 3 with respsect to R̄. We define ϵ̃ = min{ϵ, ϵ̄} and

ε̃ = {ε, ε̄}.
Without loss of generality, we assume that f 1(R̄) /∈ {0,Ω}. Then, there exists some

2 ≤ i ≤ K who is assigned positive consumption at R̄. Without loss of generality ,

we assume that f i(R̄) ̸= 0 for i = 2, . . . ,M1, where 2 ≤ M1 ≤ K. When we apply

Lemma 4 to agents i = 1, . . . ,M1, there exist (R̃1, . . . , R̃M1) ∈ Bϵ̃(R̄
1) × · · · × Bϵ̃(R̄

M1)

and j ≥ M1 + 1 such that

p((R̃1, . . . , R̃M1 , R̄M1+1, . . . , R̄N), f) ∈ Bε̃(p(R̄, f)) (13)

and

f j(R̃1, . . . , R̃M1 , R̄M1+1, . . . , R̄N) /∈ {0,Ω}. (14)

If (14) holds with some agent j ≥ K + 1, then the lemma holds. We assume that

f j(R̃1, . . . , R̃M1 , R̄M1+1, . . . , R̄N) = 0

for any j ≥ K + 1 and any (R̃1, . . . , R̃M1) ∈ Bϵ̃(R̄
1)× · · · ×Bϵ̃(R̄

M1) satisfying (13).

We apply Corollary 1 to agents i = 1, . . . ,M1. There exists j ≥ M1 + 1 such that for

any ϵ1 and ε1, some (R1
(1), . . . , R

M1

(1) ) ∈ Bϵ1(R̄
1)× · · · ×Bϵ1(R̄

M1) satisfies

p((R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N), f) ∈ Bε1(p(R̄, f)) (15)

and

f j(R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N) /∈ {0,Ω}. (16)

Without loss of generality, we assume that agents j = M1 + 1, . . . ,M2, where M1 + 1 ≤
M2 ≤ K, are such agents, and set a sufficiently small ϵ1 < ϵ̃ and ε1 < ε̃, and we fix

(R1
(1), . . . , R

M1

(1) ) ∈ Bϵ1(R̄
1)× · · · ×Bϵ1(R̄

M1) satisfying (15) and (16).

Remember Lemma 4 and our choice of the scalars ϵ1 and ε1. First, g
i((R1

(1), . . . , R
M1

(1) ,

R̄M1+1, . . . , R̄N), f), i = 1, . . . , K, are independent because gi(R̄, f), i = 1, . . . , K, are in-

dependent, Ri
(1) ∈ Bϵ1(R̄

i) ⊂ Bϵ̃(R̄
i), i = 1, . . . ,M1, and p((R1

(1), . . . , R
M1

(1) , R̄
M1+1, . . . , R̄N), f) ∈

Bε1(p(R̄, f)) ⊂ Bε̃(p(R̄, f)). Furthermore f i(R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N) ̸= 0 for any

i = 1, . . . ,M1, because f
i(R̄) ̸= 0 for i = 1, . . . ,M1. As a result, f

i(R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N),

i = 1, . . . ,M2, are all positive and independent.

Here, we let ϵ̄1 and ε̄1 be scalars such that they support Lemma 4 with respect

to (R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N) and satisfy Bϵ̄1(R

i
(1)) ⊂ Bϵ(R̄

i) for i = 1, . . . ,M1,
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Bϵ̄1(R̄
i) ⊂ Bϵ(R̄

i) for i = M1 + 1, . . . , K, and Bε̄1(p(R
1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N), f) ⊂

Bϵ(p(R̄, f)).

We apply Lemma 4 to agents i = 1, . . . ,M2. There exist (R̃1, . . . , R̃M2) ∈ Bϵ̄1(R
1
(1))×

· · · ×Bϵ̄1(R
M1

(1) )×Bϵ̄1(R̄
M1+1)× · · · ×Bϵ̄1(R̄

M2) and j ≥ M2 + 1 such that

p((R̃1, . . . , R̃M2 , R̄M2+1, . . . , R̄N), f) ∈ Bε̄1(p((R
1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N), f))(17)

and

f j(R̃1, . . . , R̃M2 , R̄M2+1, . . . , R̄N) /∈ {0,Ω}. (18)

If (18) holds with some j ≥ K + 1, the lemma holds. We assume that

f j(R̃1, . . . , R̃M2 , R̄M2+1, . . . , R̄N) = 0.

for any j ≥ K + 1 and any (R̃1, . . . , R̃M2) ∈ Bϵ̄1(R
1
(1)) × · · · × Bϵ̄1(R

M1

(1) ) × Bϵ̄1(R̄
M1+1) ×

· · · ×Bϵ̄1(R̄
M2) satisfying (17).

We apply Corollary 1 to agents i = 1, . . . ,M2. There exists j ≥ M2+1 such that for any

ϵ2 and ε2, some (R1
(2), . . . , R

M2

(2) ) ∈ Bϵ2(R
1
(1))×· · ·×Bϵ2(R

M1

(1) )×Bϵ2(R̄
M1+1)×· · ·×Bϵ2(R̄

M2)

satisfies

p((R1
(2), . . . , R̃

M2

(2) , R̄
M2+1, . . . , R̄N), f) ∈ Bε2(p((R

1
(1), . . . , R̃

M1

(1) , R̄
M1+1, . . . , R̄N), f))(19)

and

f j(R1
(2), . . . , R̃

M2

(2) , R̄
M2+1, . . . , R̄N) /∈ {0,Ω}. (20)

Without loss of generality, we assume that agents j = M2 + 1, . . . ,M3, where M2 + 1 ≤
M3 ≤ K, are such agents. We set ϵ2 < ϵ̄1 and ε2 < ε̄1 , and we fix (R1

(2), . . . , R̃
M2

(2) ) ∈
Bϵ2(R

1
(1))× · · · ×Bϵ2(R

M1

(1) )×Bϵ2(R̄
M1+1)× · · · ×Bϵ2(R̄

M2) satisfying (19) and (20).

Remember Lemma 4 and our choice of the scalars ϵ2 and ε2. First, g
i((R1

(2), . . . , R̃
M2

(2) ,

R̄M2+1, . . . , R̄N), f), i = 1, . . . , K, are independent because gi(R1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N),

i = 1, . . . , K, are independent, Ri
(2) ∈ Bϵ2(R

i
(1)) ⊂ Bϵ̄1(R̄

i), i = 1, . . . ,M1, Ri
(2) ∈

Bϵ2(R̄
i) ⊂ Bϵ̄1(R̄

i), i = M1+1, . . . ,M2, and p(R1
(2), . . . , R̃

M2

(2) , R̄
M2+1, . . . , R̄N) ∈ Bε2(p((R

1
(1), . . . , R

M1

(1) ,

R̄M1+1, . . . , R̄N), f)) ⊂ Bε̄1(p((R
1
(1), . . . , R

M1

(1) , R̄
M1+1, . . . , R̄N), f)). Furthermore, f i(R1

(2), . . . , R̃
M2

(2) ,

R̄M2+1, . . . , R̄N) ̸= 0 for any i = 1, . . . ,M2, because f
i(R1

(1), . . . , R
M1

(1) , R̄
M1+1, . . . , R̄N) ̸= 0

for i = 1, . . . ,M2. As a result, f i(R1
(2), . . . , R̃

M2

(2) , R̄
M2+1, . . . , R̄N), i = 1, . . . ,M3, are all

positive and independent.

We repeat this process. In each step, we have at least one additional agent who receives

positive consumption at the preference profile in the ϵ-neighborhood of R̄, where the price

vector is in the ε-neighborhood of p(R̄). Finally, some agent j ≥ K + 1 should receive

positive consumption. This ends the proof of Lemma 5.

Proof of Corollary 2. Contrary to the statement of the corollary, we suppose that for

each j ≥ K+1 there exist ϵj and εj such that no (R̃1, . . . , R̃K) ∈ Bϵj(R̄
1)×· · ·×Bϵj(R̄

K)
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satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bεj(p(R̄, f)) and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈
{0,Ω}. We let ϵ̄ = min{ϵK+1, . . . , ϵN} and ε̄ = min{εK+1, . . . , εN}. Then, there is

(R̃1, . . . , R̃K) ∈ Bϵ̄(R̄
1)×· · ·×Bϵ̄(R̄

K) satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N), f) ∈ Bε̄(p(R̄, f))

and f j(R̃1, . . . , R̃K , R̄K+1, . . . , R̄N) /∈ {0,Ω} for any j ≥ K + 1. This contradicts Lemma

5.

Proof of Lemma 6. We write ai = ((1/αi
1)

1/(ρ−1), . . . , (1/αi
L)

1/(ρ−1)). First of all, it is

clear that the lemma holds when ai, i = 1, . . . , N , are independent. If ai, i = 1, . . . , N ,

are independent, βi(δ, zi), i = 1, . . . , N , are positive and independent with any vectors z̄i,

i = 1, . . . , N , when δi, i = 1, . . . , N , are sufficiently small.

When they are dependent, z̄i, i = 1, . . . , N , can be obtained as follows, for example.

Without loss of generality we assume that the vectors a1, . . . , aN span S-dimensional

space, where S < N and a1, . . . , aS are independent. We set z̄i = ai for i = 1, . . . , S.

We let ⟨a1, . . . , aS⟩ denote the S-dimensinal vector space spanned by a1, . . . , aS and let

⟨a1, . . . , aS⟩⊥ denote the orthogonal complement space of (L − S)-dimensions, We select

z̄i, i = S + 1, . . . , N , so that they are independent vectors in ⟨a1, . . . , aS⟩⊥. When δi is

sufficiently small ai + δiz̄i is positive for any i = 1, . . . , N . Their independence is clear

from the construction.

Proof of Lemma 7. In the proof of Lemma 6, we set z̄i so that ai+δiz̄i, i = 1, . . . N , are

independent. It is clear that any vector zi sufficiently close to z̄i sustains the independence,

and Lemma 6 holds with zi instead of z̄i. That is, there exists t̄ such that βi(δi, zi),

i = 1, . . . , N are independent for any 0 < δi ≤ δ̄ and any zi ∈ Bt̄(z̄
i), i = 1, . . . , N .

For each δi and zi ∈ Bt(z̄
i), we obtain αi

δizi = (αi
δizi1, . . . , α

i
δiziL) by solving

((1/α̂i
δizi1)

1/(ρ−1), . . . , (1/α̂i
δiziL)

1/(ρ−1)) = βi(δi, zi) (21)

and define αi
δizi = (αi

δizi1, . . . , α
i
δiziL) as the normalization of α̂i

δizi : α
i
δizi = α̂i

δizi/ ∥ α̂i
δizi ∥.

Then, as in the case of Uαi
δi
, with any price p, the consumption-direction vectors of Uαi

δizi
,

i = 1, . . . , N , are independent for any 0 < δi < δ̄ and any zi ∈ Bt̄(z̄
i) because of the

independence of β(δi, zi), i = 1, . . . , N .

We define Gi(δi, t̄, p) =
∪

zi∈Bt̄(z̄
i) g

i(Uαi
δizi

, p) as the set of the consumption-direction

vectors of Uαi
δizi

at p while zi moves over Bt̄(z̄
i).

As Ri → Uαi
δi
, we have g(Ri, p) → gi(Uαi

δi
, p). Therefore, for each p and 0 < δi ≤ δ̄,

there exists ϵi(p, δi) such that if Ri ∈ Bϵi(p,δi)(Uαi
δi,ρ

), then gi(Ri, p) ∈ Gi(δi, t̄, p). Finally,

we define ϵi(δi) = minp∈P ϵ(p, δi).

Proof of Lemma 8. When δi = 0, Ri
αi
0,t,s

is an MMT of R̄i at ḡi and Ri
αi
0,t,s

→ R̄i as

t → 0 and s → 0. We fix s and t such that Ri
αi
0,t,s

∈ Bϵ(R̄
i) for any i = 1, . . . , N .

Since Ri
αi
δi
,t,s

→ Ri
αi
0,t,s

as δi → 0, we select δ̄i such that Ri
αi
δ̄i
,t,s

∈ Bϵ(R̄
i). Then we

have Ri
αi
δi
,t,s

∈ Bε(R̄
i) for any 0 ≤ δi ≤ δ̄i.
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For any 0 < δi ≤ δ̄i,the consumption-direction vectors of Ri
αi
δi
,t,s

, i = 1, . . . , N , are

independent for prices in a neighborhood of p̄. That is there exists ε such that g(Ri
αi
δi
,t,s

, p),

i = 1, . . . , N , are independent for p ∈ Bε(p̄).

Proof of lemma 9. Let ϵi be the same as in Lemma 7 and set ε̄ such that g(Ri
αi
δi
,t,s

, p) =

g(Uαi
δi
, p), i = 1, . . . , N , for p ∈ Bε̄(p̄). Then, Lemma 9 follows Lemma 7.
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