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Abstract

In this paper, we incorporate externalities into Shapley-Scarf housing markets. Agents’

preferences are defined over allocations rather than houses, and we focus on preferences

that are egocentric in the sense that agents primarily care about their own allotments.

When preferences are egocentric, we can apply the top trading cycles (TTC) algorithm

using the associated preferences over houses. We propose two solution concepts based

on the core. We establish the existence of a solution by showing that the allocation

generated by the TTC algorithm is a solution, and we present a further preference re-

striction under which a solution is unique. We also investigate the properties of the

TTC algorithm as a mechanism. Our results extend the existing results on the TTC al-

gorithm to the case of egocentric preferences, and they suggest that the TTC algorithm

is useful and has desirable properties even in the presence of externalities.

Keywords: Core, Externalities, Housing markets, Indivisibility, Stability, Top trading

cycles.

JEL Classification: C71, C78, D62, D71.

1 Introduction

In this paper, we study a market with indivisibilities and externalities. In their pioneering

work, Shapley and Scarf (1974) introduce an exchange economy with a finite number of

agents in which each agent owns an indivisible object (say, a house), has use for exactly one

object, and looks for trading with other agents. Such an economy is referred to as a housing

market in the literature. It is one of the simplest kinds of exchange economies one can

imagine, and together with a house allocation problem (Hylland and Zeckhauser, 1979) it
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has served as a basic model for indivisible goods allocation problems and one-sided matching

problems (see, for example, Moulin, 1995; Abdulkadiroğlu and Sönmez, 2013). Externalities

are abundant in the real world, and a market with indivisible goods is not an exception.

For example, in residential areas, a resident of a house cares about the demographics of

his neighbors, and in universities, a faculty member’s preferences regarding offices may

depend on his relationships with colleagues using nearby offices. Despite the ubiquity of

externalities, most existing works on housing markets have not taken externalities into

consideration, assuming that each agent cares only about his own allotment but not others’.

The aim of this paper is to provide an analysis of housing markets with externalities.

Shapley and Scarf (1974) show that the core (defined by strong domination) of a housing

market is nonempty. They also introduce an algorithm called the top trading cycles (TTC)

algorithm that produces an allocation in the core. Roth and Postlewaite (1977) complement

Shapley and Scarf’s (1974) results by proving that the core (defined by weak domination) of

a housing market is a singleton when agents have strict preferences over houses and that the

unique allocation in the core can be obtained by the TTC algorithm. Mumcu and Saglam

(2007) incorporate externalities into housing markets, having agents’ preferences defined

over allocations rather than houses. They show that the core may be empty or contain

more than one allocation when there are externalities. Given the nonexistence result of

Mumcu and Saglam (2007), it is natural to restrict the preference domain and search for a

core-like solution concept that yields an existence result. This is precisely the approach we

take in this paper.

We focus on a class of preferences where an agent is primarily interested in his own

allotment. That is, each agent has a strict preference order over houses, and whenever

any two allocations assign distinct houses to him, his ranking between the two allocations is

determined by that between the houses he receives at those allocations.1 An agent is subject

to externalities in the sense that he may have a strict ranking between two allocations that

assign the same house to him. We call this kind of preferences egocentric preferences.

Though restrictive, it is a reasonable class of preferences over allocations. It expresses the

idea that one’s own allotment is of higher significance than others’ allotments in one’s utility.

In other words, it reflects a situation in which the size of externalities is small relative to

that of utility from one’s own allotment.

An advantage of focusing on egocentric preferences is that we can still apply the TTC

algorithm because each agent has well-defined preferences over houses. In order to propose

1Dutta and Massó (1997) propose similar preference restrictions in two-sided many-to-one matching
markets. They consider “firm-lexicographic” (resp. “worker-lexicographic”) preferences where a worker’s
preferences over firms (resp. colleagues) dictate his overall preferences over firm-colleague pairs. In the
context of two-sided one-to-one matching markets with contracts, Li (1993) uses weak externalities to refer
to a situation where an agent cares about his own partner and contract prior to others’. Sasaki and Toda
(1996) call such preferences order preserving.
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solution concepts for housing markets with externalities, we investigate the properties of

allocations generated by the TTC algorithm. Our solution concepts are based on the core.

In the presence of externalities, it matters to a blocking coalition how the residual agents

react to its deviation. Following Hart and Kurz (1983), we consider two kinds of behavior

of the residual agents, leading to the two concepts of the core called the γ-core and the

δ-core. In the γ-model, when a coalition deviates, the remaining agents cannot make any

trading arrangement among themselves and end up with their own endowments (see Ehlers,

2014). In contrast, in the δ-model, the remaining agents keep trading their houses as before

whenever possible.2 In the case of the γ-model, a group of agents may form a blocking

coalition just to make the outside agents receive their endowments while the allotments of

the coalition members remain the same. Obviously, without externalities such an attempt

is never profitable for the coalition members, but with externalities it may make them

better off. However, if the outside agents prefer the original allocation, they can form

a subsequent coalition to return to it. Then the attempt to reset others’ allotments as

their endowments is ineffective. Thus, we require that, when a coalition attempts to reset

outsiders’ allotments as their endowments, the proposed allocation should not be reversed

to the original allocation by the outsiders. This leads to a weakening of the γ-core, which

we call the irreversible γ-core.

Suppose that agents agree on an allocation and execute trade to achieve the allocation.

Without externalities, no further improvement by a coalition is possible if the allocation is

in the core. However, with externalities, a group of agents may get better off by reallocating

their allotments among themselves even if the allocation is in the irreversible γ-core or in

the δ-core. This is because reallocation by a coalition can make an outside agent worse off

and thus the new allocation does not necessarily dominate the original allocation. We call

an allocation that is immune to further coalitional deviations a stable allocation, following

the terminology of Roth and Postlewaite (1977). We can expect that an allocation that

is not stable would not persist, and thus we focus on stable allocations. In sum, we take

stable allocations in the irreversible γ-core and those in the δ-core as our solution concepts.

In our main result (Theorem 1), we show that the allocation generated by the TTC

algorithm is a stable allocation in the irreversible γ-core as well as in the δ-core. We further

show that, when there are aligned interests among externality creators, a stable allocation

in the irreversible γ-core and one in the δ-core are unique and coincide with the allocation

obtained by the TTC algorithm. So our proposed solutions are guaranteed to exist, are

unique under a further preference restriction, and can be obtained by applying the TTC

algorithm. Our result generalizes the existing result that an allocation in the core of a

2Existing studies on two-sided matching markets with externalities have made similar assumptions: when
some agents deviate, other unaffected agents keep their matches. See, for example, Mumcu and Saglam
(2010) for one-to-one matching and Bando (2012, 2014) for many-to-one matching.
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housing market without externalities is unique and can be obtained by the TTC algorithm.

There are other desirable properties of the TTC algorithm established in the existing lit-

erature. For example, Abdulkadiroğlu and Sönmez (1998) show that one can generate all

Pareto efficient allocations from the TTC algorithm by varying agents’ endowments, Roth

(1982) and Moulin (1995) prove that the TTC algorithm as a mechanism is (coalitionally)

strategy-proof, and Ma (1994) establishes that a mechanism is individually rational, Pareto

efficient, and strategy-proof if and only if it is the TTC mechanism. In Propositions 1–3,

we show that these existing results can be generalized to the case of egocentric preferences

when we replace Pareto efficiency with stability. This suggests that stability plays a more

important role than Pareto efficiency in the presence of externalities, while without exter-

nalities these two concepts coincide. Our results also indicate that it is desirable to select

the allocation generated by the TTC algorithm when there are multiple stable allocations

in the irreversible γ-core or in the δ-core. So our analysis implies that, when externalities

are not so large, the TTC algorithm continues to provide the best solution for housing

markets. In other words, the desirable properties of the TTC algorithm are robust to the

introduction of small externalities.3

There is a growing body of literature on matching markets with externalities, especially

in two-sided settings (see Bando et al., 2016, for a recent survey). Sasaki and Toda (1996)

provide an early analysis on two-sided one-to-one matching problems with externalities.

They consider a scenario where a deviating pair holds a pessimistic belief about the reac-

tion of non-deviating agents, and they show that a stable matching exists for all preference

profiles if and only if agents estimate that all possible matchings can arise after a devi-

ation. Mumcu and Saglam (2010) also consider two-sided one-to-one matching problems

with externalities but a different stability notion analogous to the δ-core, as explained in

footnote 2. They provide a sufficient condition on the preference profile for the existence

of stable matchings. Bando (2012, 2014) studies two-sided many-to-one matching problems

with externalities among firms, and he presents preference restrictions for the existence

of quasi-stable matchings as well as a modified deferred acceptance algorithm that gener-

ates the worker-optimal quasi-stable matching. Dutta and Massó (1997) analyze two-sided

many-to-one matching problems with preferences over colleagues. In this setting, external-

ities exist only among workers hired by the same firm, and thus, unlike in our model and

the aforementioned models, the core concept does not depend on the reaction of residual

agents. Dutta and Massó (1997) show among other results that, when preferences are firm-

lexicographic, a matching in the core exists and can be obtained by finding a stable matching

under the associated preference profile without externalities. Our work is closely related to

3In a similar vein, Fisher and Hafalir (2016) consider two-sided one-to-one matching markets with small
aggregate externalities and provide a sufficient condition for the existence of stable matchings.

4



theirs in that not only we adopt a similar preference restriction but also we establish the

existence of solutions by using the allocation in the core of the associated housing market

without externalities. There are not many studies on one-sided matching problems with

externalities. As already mentioned, Mumcu and Saglam (2007) study housing markets

with externalities and show that there can be no or more than one allocation in the core.

Baccara et al. (2012) examine the problem of assigning offices to faculty members, which

can be modeled as a house allocation problem, and quantify the effects of network exter-

nalities using field data. Sönmez (1999) and Ehlers (2014) consider a class of indivisible

goods allocation problems, which includes housing markets as a special case, while allowing

externalities. Their main results and comparison with ours are discussed in Section 4.

The rest of this paper is organized as follows. In Section 2, we introduce the model of

housing markets, preference restrictions, and our solution concepts. In Section 3, we describe

the TTC algorithm and study the properties of allocations it produces. In Section 4, we

examine the properties of the TTC algorithm as a mechanism. In Section 5, we conclude.

All the proofs are relegated to the Appendix.

2 The Model

2.1 Housing Markets

We consider an exchange economy with a finite number of agents in which each agent owns

a house initially, has use for one and only one house, and seeks to trade houses with other

agents. Let N and H be finite sets of agents and houses, respectively, with |N | = |H| ≥ 3.

An allocation describes the house assigned to each agent and is represented by a one-to-one

function from N onto H. Let A be the set of all allocations. For any allocation a ∈ A, a(i)

denotes the house received by agent i, and we call it the allotment of agent i at allocation

a. A major departure from most previous work is that an agent cares not only about his

own allotment but also about others’. So each agent’s preferences are defined over the set

of allocations instead of houses. For each agent i ∈ N , Ri denotes his preference relation,

which is a complete and transitive binary relation on A. For any a, b ∈ A, aRib means

that agent i likes allocation a at least as much as allocation b. Given Ri, we denote its

asymmetric and symmetric parts by Pi and Ii, respectively. That is, for any a, b ∈ A, we

write aPib if aRib and not bRia, and we write aIib if aRib and bRia. A profile of agents’

preference relations is denoted by R = (Ri)i∈N . Agents’ ownership is described by an initial

endowment allocation e ∈ A so that e(i) is the house initially owned by agent i. A housing

market (with externalities) is a 4-tuple ⟨N,H,R, e⟩.
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2.2 Preference Restrictions

We introduce several restrictions on preferences that will be used in our analysis. We assume

that each agent is not indifferent between any two allocations where he receives different

houses. In other words, aIib implies a(i) = b(i). We also assume that each agent cares about

his own allotment prior to others’. More specifically, aPib and a(i) ̸= b(i) implies a′Pib
′ for

any a′ and b′ such that a′(i) = a(i) and b′(i) = b(i). We call a preference relation satisfying

these two assumptions egocentric. Note that, given an egocentric preference relation Ri, we

can derive a preference relation R̃i on H by defining hR̃ih
′ if (i) h = h′ or (ii) h ̸= h′ and

aPib for all a, b ∈ A such that a(i) = h and b(i) = h′. By our egocentricity assumption,

R̃i is a complete, transitive, and antisymmetric binary relation on H, expressing agent i’s

strict preference ranking of his own allotments at possible allocations. We refer to R̃i as

the preference relation over own-allotments associated with Ri. We write the asymmetric

and symmetric parts of R̃i as P̃i and Ĩi, respectively, which are defined analogously to Pi

and Ii.

Most previous studies on housing markets assume that there are no externalities. We

define an egoistic preference relation as an egocentric preference relation Ri that satisfies

aIib for any a and b such that a(i) = b(i). That is, an agent with egoistic preferences cares

only about his own allotment having strict preferences over houses. We can regard R̃i as a

binary relation on A rather than H, interpreting it as an egoistic preference relation. Then,

given a housing market ⟨N,H,R, e⟩ with externalities, we can consider a related housing

market ⟨N,H, R̃, e⟩ without externalities, where R̃ = (R̃i)i∈N .

We say that a preference profile R has aligned interests among externality creators if

the following condition is met: for any a, b ∈ A,

if there exists j ∈ N such that a(j) = b(j) and aPjb,

then either aPib for all i ∈ N with a(i) ̸= b(i) or bPia for all i ∈ N with a(i) ̸= b(i).

The condition says that, if there are agents who can create an externality to another agent

by reallocating their allotments, these agents should have common preferences regarding

whether to implement the reallocation or not. In other words, if some agents have conflicting

interests in reallocating their allotments, then every other agent who receives the same

allotment should be indifferent to such a reallocation (that is, no externalities are created

by the reallocation).

2.3 Properties of Allocations

We discuss several desirable properties that an allocation can possess. The core is a central

solution concept for cooperative games, providing a set of allocations that are immune to
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coalitional deviations. When there are externalities, the preferences of coalition members

depend on the allocation outside of the coalition. Hence, when a coalition plans a deviation,

it matters how the residual agents react to the deviation. In this paper, we consider two

kinds of behavior of the residual agents following the two models proposed by Hart and

Kurz (1983).4 In the γ-model, it is assumed that the outside agents stay put with their

endowments (see Ehlers, 2014), whereas in the δ-model, it is assumed that the outside

agents trade their endowments as before whenever possible. Below we formally describe

two notions of the core corresponding to these two models.

A nonempty subset of N is called a coalition, while N as a coalition is called the grand

coalition. For any a ∈ A and any S ⊆ N , let a(S) = {a(i) : i ∈ S}. For a given allocation

a, we say that a coalition S is a trading cycle in a if a(S) = e(S) and a(S′) ̸= e(S′) for

any nonempty S′ ⊆ S with S′ ̸= S. That is, a trading cycle in a is a minimal subset of

agents who trade houses among themselves to obtain their allotments at a. The elements

of a trading cycle in a can be indexed as {i1, . . . , im} such that a(il) = e(il+1) for all

l = 1, . . . ,m − 1 and a(im) = e(i1), and we sometimes represent the trading cycle by the

sequence (i1, . . . , im). An allocation a uniquely partitions the set of agents into trading

cycles in a, and we use Sa,e
i to denote the trading cycle in a to which agent i belongs given

the endowment e.

An allocation b ∈ A γ-dominates an allocation a ∈ A via coalition T (or, coalition T

γ-blocks a via b) in the market ⟨N,H,R, e⟩ if (i) b(T ) = e(T ), (ii) b(i) = e(i) for all i /∈ T ,

(iii) bRia for all i ∈ T , and (iv) bPia for some i ∈ T . The γ-core of the market ⟨N,H,R, e⟩
is the set of allocations that are not γ-dominated by any allocation in ⟨N,H,R, e⟩. An

allocation b ∈ A δ-dominates an allocation a ∈ A via coalition T (or, coalition T δ-blocks a

via b) in the market ⟨N,H,R, e⟩ if (i) b(T ) = e(T ), (ii) b(i) = e(i) for all i ∈ (∪j∈TS
a,e
j ) \T ,

(iii) b(i) = a(i) for all i /∈ ∪j∈TS
a,e
j , (iv) bRia for all i ∈ T , and (v) bPia for some i ∈ T .

The δ-core of the market ⟨N,H,R, e⟩ is the set of allocations that are not δ-dominated by

any allocation in ⟨N,H,R, e⟩. In the γ-model, when a coalition deviates from an allocation

a, the agreement to select a is nullified and the agents outside of the coalition consume

their own endowments. In the δ-model, on the contrary, when a coalition deviates from an

allocation a, the agreement to select a is still effective to the outside agents; a trading cycle

in a that does not overlap with the coalition executes trades according to a, while outside

agents who are in the same trading cycle in a as any agent in the coalition receive their own

endowments.

When there are no externalities, agents in a coalition are indifferent to the outsiders’

allotments, and thus the two concepts of the γ-core and the δ-core coincide with the usual

4Hart and Kurz (1983) consider the case where a coalition breaks up as a result of some members
departing. In contrast, we focus on the case where the grand coalition breaks up.
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notion of the core (defined by weak domination). Furthermore, it is well-known that, with

egoistic preferences, the core is a singleton (Roth and Postlewaite, 1977). However, with

egocentric preferences, the γ-core may be empty, as illustrated by the following example.

Example 1. Consider a housing market with N = {i1, i2, i3, i4}, H = {h1, h2, h3, h4}, and
e = (h1, h2, h3, h4).

5 Suppose that the agents have egocentric preferences and that the most

preferred houses of agents i1, i2, i3, and i4 are h2, h1, h4, and h3, respectively, in their

associated preferences over own-allotments. Let a = (h2, h1, h4, h3) and b = (h2, h1, h3, h4).

Suppose that agents i1 and i2 (strictly) prefer b to a. Then they can form a coalition to

γ-block a via b. Hence, a does not belong to the γ-core. Note that b does not belong to

the γ-core either, as it can be γ-blocked by {i3, i4} via (h1, h2, h4, h3). Suppose that every

agent prefers a to any allocation other than a and b. Then any allocation other than a and

b is γ-dominated by a via the grand coalition. Thus, with egocentric preferences, the γ-core

may be empty. Note that {i1, i2} cannot δ-block a via b, because agents i3 and i4 will still

exchange their endowments. Note also that {i3, i4} δ-blocks b via a. Hence, a is the unique

allocation in the δ-core.

Example 1 suggests that we need to weaken the concept of the γ-core by restricting

blocking possibilities in order to guarantee nonemptiness. Consider the situation where

agents i1 and i2 γ-block a via b in Example 1. They receive the same allotments at the two

allocations a and b, but they form a coalition in order to “reset” the allotments of agents

i3 and i4 as these agents’ endowments. However, once b is implemented, agents i3 and i4

can benefit mutually by exchanging their allotments h3 and h4, which brings the allocation

back to a. Hence, we can regard the attempt of the coalition {i1, i2} to γ-block a via b as

ineffective in that the proposed allocation b will be reversed to a by the other agents.

An allocation b ∈ A irreversibly γ-dominates an allocation a ∈ A via coalition T (or,

coalition T irreversibly γ-blocks a via b) in the market ⟨N,H,R, e⟩ if (i) b γ-dominates a via

T in ⟨N,H,R, e⟩ and (ii) if b(i) = a(i) for all i ∈ T , b is not γ-dominated by a via any S ⊆ T c

in ⟨N,H,R, b⟩. The irreversible γ-core of the market ⟨N,H,R, e⟩ is the set of allocations

that are not irreversibly γ-dominated by any allocation in ⟨N,H,R, e⟩. The additional

requirement (ii) for blocking says that, when a coalition T proposes b in opposition to

a, b should not be reversed to a by any coalition consisting of agents outside of T . It

limits blocking possibilities when a coalition attempts to reset the outsiders’ allotments

as their endowments, thereby expanding the γ-core. In Example 1, T = {i1, i2} does not

irreversibly γ-block a via b because b(i) = a(i) for all i ∈ T while S = {i3, i4} γ-blocks b via

a in ⟨N,H,R, b⟩. Thus, a belongs to the irreversible γ-core of ⟨N,H,R, e⟩.
5When agents are indexed as i1, i2, and so on, we often describe an allocation as a list of houses where

the first element in the list is assigned to i1, the second to i2, and so on.
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A house allocation problem is a triple ⟨N,H,R⟩, which is the same as a housing market

except that agents own houses collectively rather than individually. An allocation a ∈ A
is stable in the problem ⟨N,H,R⟩ if a belongs to the γ-core of the market ⟨N,H,R, a⟩
(Roth and Postlewaite, 1977). That is, no coalition can block a stable allocation once it is

implemented. Suppose that a is not stable. Then there exists an allocation b and a coalition

T such that b γ-dominates a via T in ⟨N,H,R, a⟩. If b(i) = a(i) for all i ∈ T , then b = a,

a contradiction. Thus, there exists i ∈ T such that b(i) ̸= a(i).6 Let T ′ = {i ∈ N : b(i) ̸=
a(i)}. Then T ′ ⊆ T , and thus bRia for all i ∈ T ′. With egocentric preferences, we have

bPia for all i ∈ T ′. Note that T ′ is the union of all non-singleton trading cycles in b with

endowment a. Hence, the concept of stability can be equivalently defined as follows: An

allocation a is stable if there exists no allocation b such that b ̸= a and b(i)P̃ia(i) for all

i ∈ N with b(i) ̸= a(i). Thus, stability is a concept that can be checked with preferences

over own-allotments.

Remark 1. Our notion of stability is slightly different from that of Roth and Postlewaite

(1977) in that we use a core concept defined by weak domination while Roth and Postlewaite

(1977) adopt strong domination in which every coalition member gains strictly.7 Kawasaki

(2015) shows that the set of stable allocations in the sense of Roth and Postlewaite (1977)

is the unique von Neumann–Morgenstern (vNM) stable set with respect to some domina-

tion relation. Although we use weak domination to define the γ-core, our assumption of

egocentric preferences allows us to use strong domination for agents whose allotments differ

at the two compared allocations in the alternative definition of stability, and we can obtain

a similar result to that of Kawasaki (2015). For any a, b ∈ A, let us define b◃a if b ̸= a and

b(i)P̃ia(i) for all i ∈ N with b(i) ̸= a(i). Then the set of stable allocations is the unique

vNM stable set with respect to the domination relation ◃.8

An allocation a ∈ A is Pareto efficient in the problem ⟨N,H,R⟩ if there exists no

allocation b ∈ A such that bRia for all i ∈ N and bPia for some i ∈ N . Note that, unlike

stable allocations, we need preferences over allocations in order to find Pareto efficient

allocations and those in the irreversible γ-core and in the δ-core, as there can be an agent

who receives the same allotment in the two compared allocations. Stable allocations as well

as those in the irreversible γ-core and in the δ-core are Pareto efficient because the grand

6This explains that the concept of stable allocations is the same regardless of whether we use the γ-core
or the irreversible γ-core in the definition. Note also that using the δ-core instead does not change the
concept either because the endowment coincides with the allocation that a coalition attempts to block.

7Another difference is that we use the γ-core while Roth and Postlewaite (1977) use the core to define
stable allocations.

8The set of stable allocations satisfies internal stability by definition. We can check that the relation ◃
is transitive. Hence, if an allocation a is not stable, we can eventually obtain a stable allocation b such that
b◃ a, which proves external stability. Furthermore, we can show that there is no other vNM stable set than
the set of stable allocations, following the argument in the proof of Theorem 1 of Kawasaki (2015).
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coalition cannot block these allocations. When there are no externalities, a Pareto efficient

allocation is stable,9 and thus the concepts of stability and Pareto efficiency coincide. In

contrast, stability is stronger than Pareto efficiency when there are externalities, as shown

in the following example.

Example 2. Consider a housing market with N = {i1, i2, i3}, H = {h1, h2, h3}, and e =

(h1, h2, h3). Suppose that the agents have egocentric preferences, that their associated

preferences over own-allotments are given by P̃i1 : h2, h3, h1, P̃i2 : h3, h1, h2, P̃i3 : h1, h3, h2,

and that agent i1’s preferences satisfy (h2, h1, h3)Pi1(h2, h3, h1). Let b = (h2, h1, h3). Since

any reallocation of b makes agent i1 worse off, b is Pareto efficient. However, b is not stable

because agents i2 and i3 can get better off by exchanging their allotments from b.

Example 2 suggests that there can be too many Pareto efficient allocations when there

are externalities: if an agent has a unique most preferred allocation, it is Pareto efficient

even when some other agents can become better off by reallocating their allotments from

the allocation. Our analysis in the next two sections shows that stability plays a more

important role than Pareto efficiency in the presence of externalities.

3 Top Trading Cycles in a Housing Market with Externalities

3.1 Top Trading Cycles Algorithm

Without externalities, the unique allocation in the core can be obtained by the top trading

cycles (TTC) algorithm developed by David Gale and introduced in Shapley and Scarf

(1974). Given a housing market ⟨N,H,R, e⟩ with egocentric preferences, we can apply the

TTC algorithm to the related market ⟨N,H, R̃, e⟩ with egoistic preferences. With egoistic

preferences, the TTC algorithm proceeds as follows (see, for example, Roth, 1982 and

Abdulkadiroğlu and Sönmez, 1998).

• Step 1. Each agent points to the owner of the house he prefers most. Since there

is a finite number of agents, there exists at least one cycle of agents pointing to one

another. Each agent in a cycle is assigned the endowment of the agent he points to

and removed from the market. If there is at least one remaining agent, proceed to the

next step. Otherwise, stop.

In general, at:

• Step k. Each remaining agent points to the owner of the house he prefers most among

the remaining houses. Each agent in a cycle is assigned the endowment of the agent

9As noted, if a is not stable, there exists another allocation b such that bPia for all i ∈ N with b(i) ̸= a(i).
Without externalities, bIia for all i ∈ N with b(i) = a(i). Thus, a is not Pareto efficient.
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he points to and removed from the market. If there is at least one remaining agent,

proceed to the next step. Otherwise, stop.

Since there is a finite number of agents, the algorithm terminates within a finite number

of steps. With strict preferences over houses, each agent at any step has a unique most

preferred house. It is possible that multiple cycles form at a step, and in this case agents

in all the cycles are removed simultaneously. Let K be the total number of steps in the

algorithm, and let Sk be the set of agents removed at step k, for k = 1, . . . ,K. The algorithm

proceeds in a unique way, producing an allocation as well as a partition {S1, . . . , SK} of N .

We call the allocation obtained by the TTC algorithm the TTC allocation of the market

⟨N,H,R, e⟩. Note that any cycle formed at any step in the TTC algorithm is a trading

cycle in the TTC allocation, and thus we call it a top trading cycle. We can regard Sk as

the union of top trading cycles formed at step k.10

3.2 Properties of TTC Allocations

As already mentioned, when there are no externalities, the TTC allocation is the unique

allocation in the core (which is also the unique competitive allocation). Our main result

below presents the properties that the TTC allocation possesses when there are externalities.

Theorem 1. Consider a housing market ⟨N,H,R, e⟩ with egocentric preferences. The

TTC allocation of ⟨N,H,R, e⟩ is stable in ⟨N,H,R⟩ and is in the irreversible γ-core of

⟨N,H,R, e⟩. If R has aligned interests among externality creators, then the TTC allocation

of ⟨N,H,R, e⟩ is the unique allocation that is stable in ⟨N,H,R⟩ and is in the irreversible

γ-core of ⟨N,H,R, e⟩. The same statements hold when the irreversible γ-core is replaced

with the δ-core.

Theorem 1 shows that the TTC allocation is stable and is in the irreversible γ-core

as well as in the δ-core, and that under a further preference restriction, it is the unique

stable allocation in either of the two cores. This generalizes the existing result with egoistic

preferences that the TTC allocation is the unique allocation in the core. With egoistic

preferences, the aligned interests condition is satisfied trivially, the irreversible γ-core and

the δ-core coincide with the core, and any allocation in the core is stable.

When there are no externalities and agents may be indifferent between distinct houses,

the core defined by strong domination is nonempty and may contain unstable allocations,

but it contains at least one stable allocation, which can be obtained by the TTC algorithm

10More precisely, a top trading cycle for a housing market can be defined as a trading cycle in which each
agent obtains his favorite house. Then Sk is the union of top trading cycles for the housing market with the
remaining agents at step k.
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(see Shapley and Scarf, 1974; Roth and Postlewaite, 1977). When externalities are intro-

duced, we obtain similar results even with strict preferences over own-allotments and a core

notion defined by weak domination.

We illustrate the result of Theorem 1 with the two previous examples. First, consider

Example 1. The TTC allocation is a = (h2, h1, h4, h3). We have already seen that a is in the

irreversible γ-core as well as in the δ-core. Since it is not in the γ-core, we cannot strengthen

Theorem 1 by replacing the irreversible γ-core with the γ-core. We can also check that a

is stable because any agent receiving an allotment different from that at a gets worse off.

Next, consider Example 2. The TTC allocation is a = (h2, h3, h1). It can be checked that

both a and b = (h2, h1, h3) are in the irreversible γ-core11 as well as in the δ-core. Also, a is

stable while b is not. So we can interpret that the TTC algorithm selects a stable allocation

among allocations in the irreversible γ-core or in the δ-core. However, there does not need

to be a unique stable allocation in the irreversible γ-core or in the δ-core, as shown by the

following example.

Example 3. Consider a housing market with N = {i1, i2, i3}, H = {h1, h2, h3}, and e =

(h1, h2, h3). Suppose that the agents have egocentric preferences, that their associated

preferences over own-allotments are given by P̃i1 : h2, h3, h1, P̃i2 : h1, h3, h2, P̃i3 : h2, h1, h3

and that agent i2’s preferences satisfy (h3, h1, h2)Pi2(h2, h1, h3). The TTC allocation is

a = (h2, h1, h3), and thus a is stable in ⟨N,H,R⟩ and is in the irreversible γ-core as well as

in the δ-core of ⟨N,H,R, e⟩ by Theorem 1. Let b = (h3, h1, h2). It can be checked that b

is also stable and is in the irreversible γ-core as well as in the δ-core. Hence, there can be

multiple stable allocations that are in the irreversible γ-core and in the δ-core.

In all the three examples so far, a problem arises when there is an agent who benefits

from others’ reallocating their allotments while maintaining his allotment. In the first two

examples, the other agents do not gain by reallocating their allotments, and we can preclude

such a reallocation by imposing irreversibility or stability requirements. In Example 3,

however, there are conflicting interests among the other agents; agent i3 benefits from

moving from a to b while agent i1 loses. In this situation, we cannot preclude one or the

other of a and b because there will be at least one agent who objects to a change, and it

creates the possibility of multiple stable allocations in the irreversible γ-core and in the

δ-core.

In Theorem 1, in order to obtain a uniqueness result, we impose a further restriction

that the preference profile has aligned interests among externality creators. To get a sense of

the restriction, consider the preference relations over own-allotments in Example 2. Agents

i1 and i2 have common interests in reallocating h2 and h3 between themselves: both prefer

11The allocation a is also in the γ-core, while b is in the γ-core if (h2, h1, h3)Ri3(h1, h2, h3).
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(a(i1), a(i2)) = (h2, h3) to (h3, h2). In this case, agent i3 can have a strict preference

between (h2, h3, h1) and (h3, h2, h1). In contrast, agents i1 and i2 have conflicting interests

in reallocating h1 and h3 because both prefer h3 to h1. Then agent i3 should be indifferent

between (h1, h3, h2) and (h3, h1, h2). In this way, we can test whether a given preference

profile has aligned interests among externality creators. The aligned interests condition

limits the extent to which a group of agents exerts externalities to the other agents.12 For

instance, it precludes the preference profile in Example 3: by reallocating their allotments

from a = (h2, h1, h3), agents i1 and i3 can make agent i2 better off, but they have conflicting

interests regarding the change.

The role of the aligned interests condition in obtaining the uniqueness result can be

interpreted as follows. Note that TTC allocations and stable allocations depend only on

preferences R̃ over own-allotments while the irreversible γ-core and the δ-core use prefer-

ences R over allocations. So in general, the equivalence between the TTC allocation and

a stable allocation in the irreversible γ-core (and in the δ-core) cannot be expected. But

under the aligned interests condition, it suffices to know R̃ to determine whether a sta-

ble allocation is in the irreversible γ-core or not. Suppose that an allocation a is stable in

⟨N,H,R⟩ and that an allocation b irreversibly γ-dominates a via coalition T in ⟨N,H,R, e⟩.
Let S = {i ∈ N : b(i) ̸= a(i)}. First, consider the case where bPia for some i ∈ S and aPib

for some i ∈ S. Then by the aligned interests condition, bIia for all i /∈ S, and thus in this

case, only the preference profile R̃ over own-allotments plays a role. Next, consider the case

where bPia for all i ∈ S or aPib for all i ∈ S. Since a is stable, the possibility that bPia for

all i ∈ S is excluded. Then the blocking coalition T does not overlap with S, and having

aPib for all i ∈ S violates the irreversibility requirement. Hence, the second case cannot

arise. If a coalition T δ-blocks a via b, then T must contain an agent i such that b(i) ̸= a(i).

Thus, we can use a similar argument to show that, under the aligned interests condition, it

suffices to know R̃ to determine whether a stable allocation is in the δ-core or not.

The aligned interests condition does not imply that the irreversible γ-core and the δ-core

are singletons. In Example 2, a preference profile over allocations can be constructed to

satisfy the aligned interests condition, but the two allocations a and b are in the irreversible

γ-core and in the δ-core. So we need to impose stability in order to obtain the uniqueness

result.

In our next result, we characterize the set of TTC allocations obtained by varying the

endowment allocation e for a given house allocation problem ⟨N,H,R⟩. It is known that,

with egoistic preferences, the set of TTC allocations is equal to the set of Pareto efficient

12Roughly speaking, under the aligned interests condition, it is easier to have externalities when agents
have diverse preferences over own-allotments. In the extreme case where every agent has identical preferences
over own-allotments, the aligned interests condition permits no externalities. It can also be shown that the
condition precludes the case where every agent has strict preferences over allocations.
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allocations (see Lemma 1 of Abdulkadiroğlu and Sönmez, 1998). However, we can expect

that this result does not generalize to the case of egocentric preferences for the following

two reasons. First, TTC allocations depend only on preferences R̃ over own-allotments,

whereas Pareto efficiency requires the knowledge of preferences R over allocations. Second,

any TTC allocation is stable as shown in Theorem 1, while the set of stable allocations can

be strictly smaller than that of Pareto efficient allocations as shown in Example 2. The

following result shows that we can generate any stable allocation as a TTC allocation for

some endowment allocation.

Proposition 1. Consider a house allocation problem ⟨N,H,R⟩ with egocentric preferences.

An allocation a ∈ A is stable in ⟨N,H,R⟩ if and only if it is the TTC allocation of

⟨N,H,R, e⟩ for some endowment allocation e ∈ A.

From Proposition 1, we can see that TTC allocations are more closely related to sta-

ble allocations than to Pareto efficient allocations. As mentioned following Example 2,

the concept of Pareto efficiency is too weak when there are externalities. In the proof of

Proposition 1, in order to show that any stable allocation a is a TTC allocation for some

endowment allocation, we set the endowment allocation as a itself. Abdulkadiroğlu and

Sönmez (1998) take exactly the same approach to prove that any Pareto efficient allocation

is in the core for some endowment allocation when there are no externalities.

4 TTC Mechanism and Strategy-Proofness

In this section, we fix N , H, and e, and consider a scenario where each agent i reports his

preferences Ri and an allocation is chosen based on agents’ reports. Let R and R̃ be the set

of all egocentric and egoistic preference relations, respectively, on A. A mechanism is a rule

that selects an allocation for each egocentric preference profile. That is, a mechanism can

be represented by a mapping φ : RN → A. We can consider a mechanism that selects the

TTC allocation for each preference profile. We call it the TTC mechanism and denote it by

φT . Note that the TTC mechanism utilizes only preferences over own-allotments, and so we

can think of R̃N instead of RN as the domain of φT .13 We can also consider a mechanism

that selects an allocation in the core (resp. the irreversible γ-core and the δ-core) for each

preference profile and call it a core mechanism (resp. an irreversible γ-core mechanism and

a δ-core mechanism). With egoistic preferences, a core mechanism is unique, coinciding

with the TTC mechanism. However, with egocentric preferences, there can be multiple

allocations in the irreversible γ-core and in the δ-core, and thus there can be an irreversible

γ-core mechanism and a δ-core mechanism different from the TTC mechanism.

13This feature can be regarded as an informational advantage of the TTC mechanism, as it suffices for
agents to report their preferences over own-allotments rather than those over allocations.

14



For any coalition T ⊆ N , let RT = (Ri)i∈T ∈ RT and R−T = (Ri)i/∈T ∈ RN\T denote

the preference profiles of agents in T and those not in T , respectively. When T consists of

a single agent i, we write R−i instead of R−{i}. A mechanism φ is strategy-proof if for any

R ∈ RN , for any i ∈ N , and for any R′
i ∈ R, φ(R)Riφ(R

′
i, R−i). That is, when a mechanism

is strategy-proof, no agent can gain by misreporting his preferences. A mechanism φ is

coalitionally strategy-proof if for any R ∈ RN and for any nonempty T ⊆ N , there exists

no R′
T ∈ RT such that φ(R′

T , R−T )Riφ(R) for all i ∈ T and φ(R′
T , R−T )Piφ(R) for some

i ∈ T . In other words, when a mechanism is coalitionally strategy-proof, no coalition of

agents can make at least one member better off and none worse off by jointly misreporting

their preferences. Obviously, if a mechanism is coalitionally strategy-proof, it is strategy-

proof.

When the domain of preferences consists of egoistic preferences, it has been shown that

the TTC mechanism is strategy-proof (Roth, 1982) and coalitionally strategy-proof (Moulin,

1995, Lemma 3.3).14 In the following proposition, we extend these existing results to the

case where the domain of preferences consists of egocentric preferences.

Proposition 2. The TTC mechanism φT is coalitionally strategy-proof.

Roth (1982) proves that no agent can obtain a more preferred house by misreporting

his preferences in the TTC mechanism. Similarly, Moulin (1995, Lemma 3.3) shows that,

when a group of agents misreports their preferences in the TTC mechanism, no member

can obtain a more preferred house without making another member receive a less preferred

house. Thus, there is no profitable manipulation by an individual agent or a group of agents

in which a misreporting agent receives a better house. Without externalities, this is sufficient

for (coalitional) strategy-proofness. However, when there are externalities, there is another

kind of potentially profitable manipulation in which misreports by an agent or a group of

agents influence others’ allotments while misreporting agents receive the same allotments.

In the proof of Proposition 2, we show that this second kind of manipulation cannot be

profitable. When a group of agents misreports their preferences in the TTC mechanism in

a way that they maintain the same allotments, the allotments of the remaining agents are

not affected either.15

We say that an allocation a ∈ A is individually rational in the housing market ⟨N,H,R, e⟩
if a(i)R̃ie(i) for all i ∈ N .16 Note that individual rationality can be checked only with pref-

14Bird (1984) proves that the TTC mechanism is coalitionally strategy-proof in a weaker sense that there
is no joint misreport that makes every member better off, but in a more general setting where indifferences
between distinct houses are allowed. Roth (1982) also considers a setting that allows indifferences.

15A mechanism is called nonbossy if no agent can influence others’ allotments without changing his own
allotment (Satterthwaite and Sonnenschein, 1981). Miyagawa (2002) argues that the TTC mechanism is
nonbossy. It is easy to see that, if a mechanism is nonbossy, no group of agents can influence the outsiders’
allotments without changing the members’ allotments.

16Note that this is weaker than the condition that aRie for all i ∈ N . Any allocation a in the γ-core
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erences over own-allotments. A mechanism φ is individually rational if the allocation φ(R)

is individually rational for every R ∈ RN . A mechanism φ is stable if the allocation φ(R)

is stable for every R ∈ RN .

Ma (1994) shows that, when the preference domain is egoistic, a mechanism φ is indi-

vidually rational, Pareto efficient, and strategy-proof if and only if φ = φT . As we have

observed in Proposition 1, stability is a more relevant concept than Pareto efficiency for

TTC allocations under egocentric preferences. The next proposition shows that the same

result extends to the egocentric preference domain when we replace Pareto efficiency with

stability.

Proposition 3. A mechanism φ is individually rational, stable, and strategy-proof if and

only if it is the TTC mechanism φT .

The key idea in proving Proposition 3 is as follows. Suppose that an individually rational

and stable mechanism selects an allocation b different from the TTC allocation a for some

preference profile. Then there must be some agent i who ranks b(i) between a(i) and e(i).

Such an agent can obtain a(i) by reporting that he ranks e(i) immediately after a(i), which

makes the mechanism selecting b not strategy-proof. Hence, in order for a mechanism to

satisfy all the three properties, it must be the TTC mechanism. In particular, any stable

and irreversible γ-core (or δ-core) mechanism different from the TTC mechanism is not

strategy-proof. Thus, selecting TTC allocations is appealing from an incentive point of

view in the presence of externalities where there can be multiple stable allocations in the

irreversible γ-core and in the δ-core.

Sönmez (1999) considers a class of indivisible goods allocation problems, including hous-

ing markets, where agents have preferences over allocations. He shows that, if there exists

a mechanism that is individually rational, Pareto efficient, and strategy-proof, then every

agent is indifferent between any two allocations in the core and the mechanism selects an

allocation in the core whenever the core is nonempty. Ehlers (2014) strengthens Sönmez’s

(1999) result by showing that the same result holds with the γ-core and that the γ-core is

the largest core concept for such a result to hold. In our setting, there exists a mechanism

that is individually rational, stable (thus Pareto efficient), and strategy-proof, as shown in

Proposition 3, while there can be multiple allocations in the γ-core between which some

agent is not indifferent, as can be seen in Example 3.17 The results of Sönmez (1999) and

satisfies the latter condition, but there can be some allocation a in the irreversible γ-core or in the δ-core
that violates the condition. For example, suppose that agents i1, i2, and i3 own houses h1, h2, and h3,
respectively, and that their most preferred houses are h2, h1, and h3, respectively. Then the TTC allocation
is a = (h2, h1, h3), but it is possible that agent i3 prefers e = (h1, h2, h3) to a. If we impose Assumption A
of Sönmez (1999) (i.e., aIie if and only if a(i) = e(i)) in our model, then the two conditions are equivalent.

17In Example 3, the allocation b = (h3, h1, h2) is in the γ-core, while the TTC allocation a = (h2, h1, h3)
is in the γ-core if agent i3 weakly prefers a to e = (h1, h2, h3).
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Ehlers (2014) do not apply to our model because the domain of egocentric preferences does

not satisfy the conditions in their models (called Assumptions A and B). Thus, we provide

an alternative model where it is possible to obtain an individually rational, Pareto efficient,

and strategy-proof mechanism.

Remark 2. A widely studied class of mechanisms for house allocation problems is the

class of simple serial dictatorships (Abdulkadiroğlu and Sönmez, 1998). We can apply a

simple serial dictatorship to a house allocation problem with egocentric preferences using

the associated preferences over own-allotments. Since the set of allocations obtained from

simple serial dictatorships is equal to that of TTC allocations (Lemma 1 of Abdulkadiroğlu

and Sönmez, 1998), any allocation obtained from a simple serial dictatorship is stable. It

is easy to see that any simple serial dictatorship, as a mechanism, is strategy-proof. Also,

when a group of agents misreports their preferences, no member can obtain a more preferred

house without having another member receive a less preferred house. This together with

nonbossiness proves that the serially dictatorial mechanism is coalitionally strategy-proof

as well.

5 Conclusion

In this paper, we have studied housing markets with externalities. We have restricted pref-

erences to egocentric preferences and proposed two solution concepts of stable allocations

in the irreversible γ-core and those in the δ-core. Using the TTC algorithm, we have shown

that a solution always exists and that it is unique under a further preference restriction. We

have also established that we can generate any stable allocation as the TTC allocation for

some endowment allocation, that the TTC mechanism is coalitionally strategy-proof, and

that a mechanism is individually rational, stable, and strategy-proof if and only if it is the

TTC mechanism. Our results provide desirable properties of the TTC algorithm, extending

the existing results to the case of egocentric preferences. Although our analysis represents a

significant step toward understanding housing markets with externalities, further studies on

this topic are needed for a more comprehensive understanding. We mention two directions

for future research. First, we can relax the restriction of egocentric preferences so that we

can cover situations where the size of externalities is large. Second, instead of assuming

that the residual agents react passively when a coalition deviates, we can model that they

also behave rationally and strategically (for example, as in the recursive core proposed by

Kóczy, 2007).
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A Proofs

Proof of Theorem 1

Proof. Let a ∈ A be the TTC allocation of ⟨N,H,R, e⟩, and let {S1, . . . , SK} be the

partition of N obtained from the TTC algorithm.

First, we show that a is stable in ⟨N,H,R⟩. Suppose to the contrary that there exists

an allocation b such that b ̸= a and b(i)P̃ia(i) for all i ∈ T := {i ∈ N : b(i) ̸= a(i)}. Let

k′ be the smallest k such that Sk ∩ T ̸= ∅. Choose any i′ ∈ Sk′ ∩ T . Then b(i′)P̃i′a(i
′).

Since a(i′) is agent i′’s most preferred house at step k′, i′′ := b(i′) belongs to Sk′′ for some

k′′ < k′.18 Since i′′ ∈ Sk′′ , there is some j ∈ Sk′′ such that a(j) = i′′. Since Sk′′ ∩T = ∅, we

have b(j) = a(j). Then we have b(i′) = i′′ = b(j) and i′ ̸= j, contradicting the one-to-one

property of the allocation b.

Next, we show that a is in the irreversible γ-core of ⟨N,H,R, e⟩. Suppose to the contrary

that there exists an allocation b and coalition T such that b irreversibly γ-dominates a via

T in ⟨N,H,R, e⟩. Consider the case where there exists i ∈ T such that b(i) ̸= a(i). Let

T ′ = {i ∈ T : b(i) ̸= a(i)}. Then T ′ is nonempty, and let k′ be the smallest k such that

Sk ∩ T ′ ̸= ∅. Choose any i′ ∈ Sk′ ∩ T ′. Since b(i′) ̸= a(i′) and bRi′a, we have b(i′)P̃i′a(i
′).

Since a(i′) is agent i′’s most preferred house at step k′ in the TTC algorithm, i′′ := b(i′)

belongs to Sk′′ for some k′′ < k′. Since b(T ) = e(T ) and i′ ∈ T , we have i′′ ∈ T and thus

b(i′′) = a(i′′). Starting from i′′ ∈ Sk′′ ∩T , we can trace the owners of assigned houses along

the top trading cycle in Sk′′ , where each agent in the cycle belongs to Sk′′ ∩T . Hence, there

is some j ∈ Sk′′ ∩ T such that a(j) = i′′. Then b(j) = a(j), and we have b(i′) = i′′ = b(j)

and i′ ̸= j, contradicting the one-to-one property of the allocation b.

Now consider the case where b(i) = a(i) for all i ∈ T . Since bPia for some i ∈ T , we

have b ̸= a, and thus there is i /∈ T such that b(i) ̸= a(i). Choose any i′ ∈ T c such that

b(i′) ̸= a(i′). Note that b(i′) = e(i′), and thus a(i′) ̸= e(i′). Let k′ be the step at which agent

i′ is removed, i.e., i′ ∈ Sk′ . Since agent i′ points to a(i′) at step k′ while e(i′) is available,

we have a(i′)P̃i′e(i
′). Similarly, for any other agent i in the same top trading cycle as i′,

we have a(i) ̸= e(i) and thus a(i)P̃ie(i). Since b(T ) = e(T ) and b(i) = a(i) for all i ∈ T ,

trade in a occurs among agents in T and among those not in T . Hence, Sk′ ⊆ T c. Let S be

the union of top trading cycles that are outside of T and consist of more than one agent.

Then S is nonempty since i′ ∈ S, and a(i)P̃i[e(i) = b(i)] for all i ∈ S. This implies aPib

for all i ∈ S, while b(i) = a(i) for all i /∈ S. Hence, b is γ-dominated by a via S ⊆ T c in

⟨N,H,R, b⟩, a contradiction.

We show that a is in the δ-core of ⟨N,H,R, e⟩. Suppose to the contrary that there

18With an abuse of notation, for any allocation a ∈ A, we sometimes use a(i) to refer to the owner of a(i),
i.e., e−1(a(i)), when there is no ambiguity about the endowment allocation e.
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exists an allocation b and coalition T such that b δ-dominates a via T in ⟨N,H,R, e⟩. If

b(i) = a(i) for all i ∈ T , we have b = a, which is a contradiction. Thus, there exists i ∈ T

such that b(i) ̸= a(i), and we can apply the same logic as in the first case above to derive a

contradiction.

Suppose that R has aligned interests among externality creators. We show that a is the

unique allocation that is stable in ⟨N,H,R⟩ and is in the irreversible γ-core of ⟨N,H,R, e⟩.
Suppose to the contrary that there is an allocation b, different from a, having the two

properties. Let T = {i ∈ N : b(i) ̸= a(i)}. Note that T is nonempty because b ̸= a. Let

k′ be the smallest k such that Sk ∩ T ̸= ∅. Choose any i′ ∈ Sk′ ∩ T . Since b(i) = a(i) for

all i ∈ S1 ∪ · · · ∪ Sk′−1, we have a(i′)R̃i′b(i
′). Since b(i′) ̸= a(i′), we have aPi′b. Suppose

that aPib for all i ∈ T . Then T γ-blocks b via a in ⟨N,H,R, b⟩, contradicting the stability

of b. So there exists i′′ ∈ T such that bPi′′a. Note that i′′ ∈ Sk for some k > k′. By the

construction of the TTC algorithm, we have a(i′′)R̃i′′e(i
′′), and thus b(i′′)P̃i′′e(i

′′). Define

a function a′ : N → H by a′(i) = a(i) for all i ∈ Sk′ and a′(i) = e(i) for all i /∈ Sk′ . Since

a(Sk′) = e(Sk′), the function a′ is an allocation. Since aPi′b, we have a
′Pi′b. Since i

′′ /∈ Sk′ ,

we have b(i′′)P̃i′′ [e(i
′′) = a′(i′′)] and thus bPi′′a

′. Let S = {i ∈ N : b(i) ̸= a′(i)}. Then

i′, i′′ ∈ S. Since R has aligned interests among externality creators, we have a′Iib for all

i /∈ S. Then a′Iib for all i ∈ Sk′ such that b(i) = a(i), while a′Pib for all i ∈ Sk′ such that

b(i) ̸= a(i). Also, we have i′ ∈ Sk′ with b(i′) ̸= a′(i′). Thus, Sk′ irreversibly γ-blocks b via

a′ in ⟨N,H,R, e⟩, which is a contradiction.

Finally, we show that a is the unique allocation that is stable in ⟨N,H,R⟩ and is in

the δ-core of ⟨N,H,R, e⟩. Suppose to the contrary that there is an allocation b, different

from a, having the two properties, and define T and k′ and choose i′ as in the previous

paragraph. Define a function a′ : N → H by a′(i) = a(i) for all i ∈ Sk′ , a′(i) = e(i) for

all i ∈ (∪j∈Sk′S
b,e
j ) \ Sk′ , and a′(i) = b(i) for all i /∈ ∪j∈Sk′S

b,e
j . Since a(Sk′) = e(Sk′),

the function a′ is an allocation, which can be obtained by a deviation of Sk′ from b in the

δ-model. We consider two cases. First, suppose that (∪j∈Sk′S
b,e
j ) \ Sk′ is nonempty, and

choose any i′′ in the set. Note that i′′ = b(i) for some i ∈ Sk′ , and thus b(i′′) ̸= e(i′′).

Since b is in the δ-core, we have b(i′′)P̃i′′ [e(i
′′) = a′(i′′)] and thus bPi′′a

′. Since a′Pi′b and

R has aligned interests among externality creators, we have a′Iib for all i ∈ N such that

b(i) = a′(i). Then Sk′ δ-blocks b via a′ in ⟨N,H,R, e⟩, which is a contradiction. Second,

suppose that (∪j∈Sk′S
b,e
j ) \ Sk′ is empty. Then {i ∈ N : b(i) ̸= a′(i)} = Sk′ ∩ T . Since

Sk′ ∩ T is nonempty and a′Pib for all i ∈ Sk′ ∩ T , the allocation b is not stable, which is a

contradiction.

Proof of Proposition 1

Proof. The “if” part follows from Theorem 1.
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To prove the “only if” part, suppose that an allocation a is stable in ⟨N,H,R⟩. By

definition, a is in the irreversible γ-core of ⟨N,H,R, a⟩. We show that there is no other

allocation in the irreversible γ-core of ⟨N,H,R, a⟩. Suppose to the contrary that there

is an allocation b, different from a, in the irreversible γ-core of ⟨N,H,R, a⟩. Let T =

{i ∈ N : b(i) ̸= a(i)}. Note that T is nonempty. Since a is stable, there exists i′ ∈ T

such that a(i′)P̃i′b(i
′). Then the coalition {i′} irreversibly γ-blocks b via a in ⟨N,H,R, a⟩

with b(i′) ̸= a(i′). This contradicts the assumption that b is in the irreversible γ-core of

⟨N,H,R, a⟩. Since the TTC algorithm yields a stable allocation in the irreversible γ-core

and a is the only such allocation, a is the TTC allocation of ⟨N,H,R, a⟩.

Proof of Proposition 2

We first strengthen Lemma 3 of Roth (1982) as follows.

Lemma 1. Fix any R̃ ∈ R̃N and any i ∈ N . Let a = φT (R̃). Let R̃′
i ∈ R̃ be any preference

relation over own-allotments such that a(i)P̃ ′
ih for all h ̸= a(i). Let a′ = φT (R̃′

i, R̃−i). Then

a = a′.19

Proof. For simplicity, let R̃′ = (R̃′
i, R̃−i). Let k and k′ be the steps at which agent i

is removed in the TTC algorithm for preference profiles R̃ and R̃′ (written as T (R̃) and

T (R̃′)), respectively.

Suppose that k < k′. Then by Lemma 2 of Roth (1982), T (R̃) and T (R̃′) have the same

top trading cycles at any step l < k. Let (j1, . . . , jm, i) be the top trading cycle containing

agent i formed at step k of T (R̃). Then (j1, . . . , jm, i) is a chain at step k of T (R̃′).20 Since

a(i) = j1, agent i’s most preferred house in R̃′
i is owned by j1, and thus agent i points to j1

and is removed at step k of T (R̃′). This is a contradiction. Hence, we have k ≥ k′.

Again, by Lemma 2 of Roth (1982), T (R̃) and T (R̃′) have the same top trading cycles

at any step l < k′. Suppose that k = k′. Then T (R̃) and T (R̃′) have the same top trading

cycles at step k′ and at any step l > k′. Hence, we have a = a′. Now suppose that k > k′.

Let (j1, . . . , jm, i) be the top trading cycle containing agent i formed at step k′ of T (R̃′).

Since every agent removed before step k′ receives the same allotment at a and a′, a(i) is

available at step k′ of T (R̃′), and thus we have j1 = a′(i) = a(i). Then (j1, . . . , jm, i) is a

chain at step k′ of T (R̃), and by Lemma 1 of Roth (1982), it is a chain and thus a cycle at

step k of T (R̃).

Consider any top trading cycle formed at step l of T (R̃), where k′ ≤ l < k. Since it does

not contain any of the agents in (j1, . . . , jm, i), it is also a cycle at step l of T (R̃′). If there

19Lemma 3 of Roth (1982) concludes that a(i) = a′(i).
20We say that a sequence (i1, . . . , im) of agents is a chain at a step of the TTC algorithm if agent il points

to agent il+1 for all l = 1, . . . ,m− 1 at that step.
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is any top trading cycle other than (j1, . . . , jm, i) at step k of T (R̃), then it is also a cycle at

step k of T (R̃′), and T (R̃) and T (R̃′) proceed in the same way afterwards. If (j1, . . . , jm, i)

is the only top trading cycle at step k of T (R̃), then any cycle at step l of T (R̃) is formed

at step l − 1 of T (R̃′) for any l > k. In either case, top trading cycles formed in T (R̃) and

T (R̃′) are the same, resulting in a = a′.

Now we prove Proposition 2.

Proof. Suppose to the contrary that the TTC mechanism φT is not coalitionally strategy-

proof. Then there existsR ∈ R, nonempty T ⊆ N , andR′
T ∈ RT such that φT (R′

T , R−T )Riφ
T (R)

for all i ∈ T and φT (R′
T , R−T )Piφ

T (R) for some i ∈ T . For simplicity, let R′ = (R′
T , R−T ).

Let R̃ and R̃′ be the preference profiles over own-allotments associated with R and R′,

respectively. Let a = φT (R̃) and a′ = φT (R̃′). By applying Lemma 1 repeatedly to R̃′, we

can assume without loss of generality that agent i’s most preferred house in R̃′
i is a

′(i) for

all i ∈ T .

First, suppose that a(i) = a′(i) for all i ∈ T . Then starting from R̃, we can obtain R̃′

by changing R̃i into R̃′
i one by one over all i ∈ T . For any i ∈ T , a(i) = a′(i), and thus

agent i’s most preferred house in R̃′
i is a(i). Then, by Lemma 1, the TTC allocation does

not change as we replace R̃i by R̃′
i for each i ∈ T . By applying this argument repeatedly

over all i ∈ T , we obtain a = a′, which contradicts a′Pia for some i ∈ T .

Next, suppose that a(i) ̸= a′(i) for some i ∈ T . Let {S1(R̃), . . . , SK(R̃)} and {S1(R̃′), . . . , SK′
(R̃′)}

be the partitions of N obtained from T (R̃) and T (R̃′), respectively. Let S̄k(R̃) = S1(R̃) ∪
· · ·∪Sk(R̃) for all k = 1, . . . ,K, and let S̄k(R̃′) = S1(R̃′)∪· · ·∪Sk(R̃′) for all k = 1, . . . ,K ′.

Let T ′ = {i ∈ T : a(i) ̸= a′(i)}. Then T ′ is nonempty, and let k′ be the smallest k such

that Sk(R̃) ∩ T ′ ̸= ∅. Choose any i′ ∈ Sk′(R̃) ∩ T ′. Since a(i′) ̸= a′(i′) and a′Ri′a, we

have a′(i′)P̃i′a(i
′). Since a(i′) is agent i′’s most preferred house at step k′ of T (R̃), we have

a′(i′) ∈ S̄k′−1(R̃). Then there exists j ∈ S̄k′−1(R̃) such that a′(j) /∈ S̄k′−1(R̃), because oth-

erwise there cannot be a top trading cycle containing the arc (i′, a′(i′)) in T (R̃′). Below we

show that a(i) = a′(i) for all i ∈ S̄k′−1(R̃). Then, since j ∈ S̄k′−1(R̃), we have a(j) = a′(j)

and a(j) ∈ S̄k′−1(R̃), which contradicts a′(j) /∈ S̄k′−1(R̃), and we are done.

To show that a(i) = a′(i) for all i ∈ S̄k′−1(R̃), we prove by induction that every top

trading cycle in S̄k(R̃) is a top trading cycle in S̄k(R̃′) for all k = 1, . . . , k′ − 1. Note that

a(i) = a′(i) for all i ∈ S̄k′−1(R̃)∩T , and thus agent i’s most preferred house in R̃′
i is a(i) for

all i ∈ S̄k′−1(R̃)∩T . First, consider any top trading cycle (j1, . . . , jm) in S̄1(R̃). In R̃′, agent

jl’s most preferred house is owned by jl+1 = a(jl), regardless of whether jl ∈ T or not, for all

l = 1, . . . ,m, where we take jm+1 = j1. Hence, (j1, . . . , jm) is a top trading cycle in S̄1(R̃′).

Next, suppose that every top trading cycle in S̄k(R̃) is a top trading cycle in S̄k(R̃′), and

consider any top trading cycle (j1, . . . , jm) in Sk+1(R̃), where k + 1 ≤ k′ − 1. Let agent jl
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be an agent who is removed first in T (R̃′) among those in (j1, . . . , jm). If jl ∈ T , agent jl is

assigned the house owned by jl+1 = a(jl) in T (R̃′) since a(jl) = a′(jl). Suppose that jl /∈ T .

If a′(jl)P̃jla(jl), then a′(jl) ∈ S̄k(R̃), but this is not possible because a(i) = a′(i) for all

i ∈ S̄k(R̃) by the induction hypothesis. Thus, if jl /∈ T , then a(jl)R̃jla
′(jl). Since agent jl is

an agent who is removed first in T (R̃′) among those in (j1, . . . , jm), jl+1 = a(jl) is available

at the step where agent jl is removed in T (R̃′), and thus a′(jl) = a(jl). Hence, agent jl+1

is removed at the same step as agent jl in T (R̃′), and applying the same argument to jl+1

and so on, we can see that all the agents in (j1, . . . , jm) are removed simultaneously forming

a top trading cycle in T (R̃′). Suppose that the agents in (j1, . . . , jm) are available at step

k+1 of T (R̃′). If jl ∈ T , agent jl’s most preferred house in R̃′
jl
is owned by jl+1 = a(jl). If

jl /∈ T , agent jl’s most preferred house in R̃jl among those owned by agents in N \ S̄k(R̃)

is owned by jl+1 = a(jl). Since no agent in S̄k(R̃) is available at step k + 1 of T (R̃′) by

the induction hypothesis, (j1, . . . , jm) is a top trading cycle in Sk+1(R̃′). This shows that

(j1, . . . , jm) is a top trading cycle at step k+1 or earlier of T (R̃′), i.e., it is in S̄k+1(R̃′).

Proof of Proposition 3

Proof. Theorem 1 and Proposition 2 imply that the TTCmechanism is individually rational,

stable, and strategy-proof, which proves the “if” part.

To prove the “only if” part, we can apply the proof of Theorem 2 in Svensson (1999)

using stability instead of Pareto efficiency.
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