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Abstract

Though funded pensions have a role as forced saving, it is known that the intro-
duction of the funded pensions does not affect to the amount of saving in standard
models. On the other hand, from a practical viewpoint, consumers with disposable
income often face temptations that make them overspend. They cannot help feeling
psychological costs to resist this. Under this assumption, the forced saving is signifi-
cant since it leads consumers to optimal saving level with lower self-control cost. The
government maximizes the sum of consumers’ utilities taking account of self-control
cost by making each consumer choose a plan, a pair of premium and payout, from a
list. Problems are that the degree of temptation is differ among consumers, that a
government cannot observe the degree and that consumers can borrow money with
collateralizing their future payouts. We show that the optimal list consists of plans
that return just as managed premium paid by a consumer that chose the plan. Fur-
thermore, the consumer with smaller self-control cost chooses a smaller premium in
an equilibrium. If he pays the large amount of premium, he faces larger temptation
of borrowing since the premium brings him a large borrowing facility. So he chooses a
small premium to avoid it. We also show that the government does not need to know
the distribution of types. This is a beneficial feature from a practical viewpoint.

JEL Classification: D03; D82; H55;
Key Words: Self-Control; Overconsumption; Funded Pension

(One of) the justification(s) for social security is that many individuals will
not save enough for retirement if left to their own devices. · · · One could peg
the argument on the difficulty in obtaining suitable information for informed
judgement on the need for savings for retirement. · · · One could base the ar-
gument on efficiency in decision making rather than in information gathering.
Third one might simply fall back on the factors that lead people to spend more
now and less later than seems sensible. (Diamond, 1977: pp.281-282).

1 Introduction

We consider a public funded pension scheme. Social security policies including a funded
pension have some objectives. One of them is income redistribution. This is common ob-
jective in almost all social security policies such as funded pensions, social aid by taxation
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and pay-as-you-go pensions. Other important role of social securities is that as forced sav-
ing devices, which is specific to funded pensions. This is because funded pensions assure
subscribers that they can receive retirement incomes at least their contribution. However,
it is well known that for consumers in standard economic models, funded pensions do
not improve social welfare (e.g. Samuelson, 1975). For example, suppose that a consumer
found that his optimal amount of saving is $1000 per month. When there is no pension
policy, he privately saves $1000. When a pension is introduced and the premium that he
pays is $500 per month, he pays it and privately saves $500 because his optimal saving
is $1000. Since his total amount of saving does not change between before and after the
introducing of the pension, so does his lifetime utility. Of course, if the premium is larger
than $1000, he goes into oversaving that decreases his lifetime utility. Thus the pension
does not improve social welfare.

One of factors to justify funded pensions is temptation that leads consumers to over-
consumption (Diamond, 1977). Even if a consumer knows how much to save his income,
he often cannot help but overspending more than the amount when he has disposable in-
come. Once he faces this temptation, he feels psychological cost to self-control his wasteful
spending. So it is ideal for him not to face temptation by a valid way for commitment.
This is why we need funded pensions as a forced saving policy.

However, in the context of temptation, most of pension schemes presently used are not
suitable. It is natural that the degrees of temptation are not the same for all consumers.
While there are consumers that spend much of their income as soon as they earns them
and regret their myopic behavior, there are also consumers that can spend their income
farsightedly. Since pension schemes affect the behavior of consumers, they should be
designed with thinking of this point. However, in present pension schemes, a premium
that each consumer pays is determined mainly by his income level, not by his degree of
temptation. Our purpose is to design a pension scheme that maximizes social welfare
considering the difference in the degree of temptation.

In our model, the government proposes a pension schedule to consumers, where pen-
sion schedule is a list of pension plans, a pair of pension premium and its payout. Each
consumer choose a plan from the schedule and pay the premium according to the plan be-
fore his consumption, that is, before he faces to temptation. This is why the pension works
as forced saving 1. However, we allow the consumer to borrow money by collateralizing
his future payout.

Some literature studied policies as a way to resist temptation. It was shown that
funded pensions improve social welfare (Gul and Pesendorfer, 2004). This is because,
as stated above, they enable consumers to avoid temptation with less self-control cost.
In addition, pay-as-you-go pension is also able to improve social welfare if temptation is
sufficiently large (Kumru and Thanopoulos, 2008). Other way to relieve self-control cost is
to make consumption relatively unattractive. This works because the cost arises from the
gap between the attractiveness of normatively desirable alternatives and that of tempting
alternative. Krusell et al. (2010) shows that subsidies for savings improve social welfare
for this reason. Though these studies are important, their research objects are economies
with consumers whose degrees of temptation are the same for all of them. On the other
hand, our model can analyze the situation in which the degrees are different for different
consumers.

Galperti (2015) investigated an optimal contract as a commitment device. The agent is
either consistent or inconsistent, which is randomly determined and is private information

1We focus on sophisticated consumers, that is, each consumer knows that he will face to temptation at
the decision of consumption.
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of the agent. If he is inconsistent, he values his consumption in the second period smaller
than that in the first period. The characteristic of the model is that it takes in the
preference for flexibility. It is an important stuff especially when the problem has long
period. On the other hand, it is assumed that no third party can offer the agent contracts
that might interfere with the provider’s devices (Galperti, 2015:p.1431). It is the advantage
of our model that agents (consumers) are allowed to make debt after they choose their
devices.

Since we need a model that describes decisions with temptation and self-control, we
apply the model proposed by Gul and Pesendorfer (2001), henceforth GP. They consid-
ered two kinds of preferences over alternatives, normative preferences and temptation
preferences, which are represented by functions u and v, respectively. Using u and v, the
valuation of menu (a set of alternatives) M is defined by

W (M) ≡ max
x∈M

[u(x) + v(x)]−max
y∈M

v(y). (1)

GP assumes that, for a given menu M , a decision maker chooses an alternative x ∈ M
that maximizes u(x) + v(x). The intuition is that he chooses a compromise between
normative desirability and temptation desirability after facing temptation. Let x∗ ∈ M
be an alternative that maximizes u(x) + v(x). Then (1) is rewritten as

W (M) = u(x∗)−
{
max
y∈M

v(y)− v(x∗)

}
.

The term maxy∈M v(y) − v(x∗) represents self-control cost. For instance, suppose that
a consumer faces a menu M = {s, h}, where s and h represents salad and hamburger,
respectively. And suppose that he wants to diet but he likes meat. In GP model, u
corresponds to a desirability of health and v does to a desirability of having what he likes.
Thus u(s) > u(h) and v(h) > u(s) holds. If u(s)+v(s) > u(h)+v(h), he chooses salad for
his lunch. Note that salad does not maximize v, thus he gives up satisfaction of temptation
as much as v(h)− v(s). GP defined self-control cost by this difference. Generalizing this
concept, we have the expression above.

Menus correspond to budget sets in consumption choice problems. If a pension pre-
mium can shrink the budget sets, it works as a commitment device and decreases self-
control cost. Formally, assume that a pension premium makes a menu M shrink to
M ′ ⊂ M . Then we have maxy∈M ′ v(y) ⩽ maxy∈M v(y), thus maxy∈M ′ v(y) − v(x∗) ⩽
maxy∈M v(y) − v(x∗) follows. Especially, if the inequality holds strictly, the self-control
cost decreases strictly.

As an alternative approach to analyze myopic behaviors, we may use (quasi) hyperbolic
discounting model provided by Laibson (1997). Actually, some literature on economic
policies employ this approach (e.g. Roeder, 2014). The model describes the situation in
which preferences are time inconsistent. However, the model cannot describe self-control
cost explicitly. Since we want to treat effects of temptation and self-control separately, we
employ GP model that is proper for our objective.

Our main contribution is presenting a concrete way to design the optimal pension
scheme under the assumption that normative utility is log(c). This scheme has some
interesting character. First, the optimal schedule consists of plans that return just as
managed premium paid by a consumer that chose the plan. This implies that no income
redistribution is made. Second, the consumer with smaller self-control cost chooses a
smaller premium in an equilibrium. If he pays the large amount of premium, he faces
larger temptation of borrowing since the premium brings him a large borrowing facility.
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So he chooses a small premium to avoid it. If consumers cannot borrow money, the optimal
schedule has unique plan whose premium is equal to the amount of saving that consumers
choose when there is no temptation and no pension scheme. Third, the optimal schedule
does not depend on the information of types such as its distribution and even what types
there are. This means that the government does not need to know these information. This
is a beneficial feature from a practical viewpoint.

Section 2 introduces notations and assumptions used in the study and looks at the
consumption-saving decision of a consumer with a self-control preference. Section 3 studies
identical-type and two-type economies as benchmarks and shows the monotonicity of an
optimal pension. In section 4, we generalize the results in section 3 to finitely many types
and continuous-types model. We show that the results are robust for generalization. In
section 5, we discuss the effect of a borrowing constraint and extend the model to analyze
income diversity.

2 Model

The only difference between standard models of pension and our model is that consumers
have preference with temptation and self-control. There are consumers and an government.
At first, the government offers a set of pairs of pension payout and pension premium to each
consumer before his consumption decision in working age. Then the consumers choose one
of pairs from the set. After a payment of premium the consumer has chosen, he decides
how much to consume in working age.

2.1 Budget Constraint

We standardize the population of consumer to be 1. Each consumer is endowed with an
identical income of I ∈ R++. Let R ∈ R+ and P ∈ [0, I] be a pension payout and a
pension premium, respectively. We assume the upper bound of P to be I to rule out
situations in which consumers borrow money to pay the premiums. We call a pair of R
and P pension plan. For the simplicity of notation, we define the set of possible pension
plans as T ≡ R+ × [0, 1]. A pension schedule is a set of pension plans.

In period 0, each consumer chooses a pension plan τ ∈ T , from a pension schedule
S ⊆ T . At the same time, he has to pay the government the pension premium he has
chosen. In period 1, he decides the amounts of consumption c1 ∈ R+ and saving I−P −c1
in working age. We assume that consumers can also borrow money in period 1 with
putting up their pension income as collateral. Thus, if I − P − c1 is strictly greater (less)
than 0, it represents the amount of saving (borrowing). Let r, ρ ∈ R++ be the interest
rate for saving and borrowing, respectively. Thus if a consumer chose τ = (R,P ), he can
borrow up to R

1+ρ . About interest rates, we assume that ρ > r > 0. This assumption
is natural from a practical standpoint. In period 2, he receives a pension income R and
decides consumption in old age c2 ∈ R+.

The budget set for consumers having chosen τ = (R,P ) is summarized as follows.

B(τ) ≡

(c1, c2) ∈ R2
+ :

c1 ⩽ I − P + R
1+ρ ,

I − P − c1 ⩾ 0 ⇒ c2 ⩽ (1 + r)(I − P − c1) +R,
I − P − c1 < 0 ⇒ c2 ⩽ (1 + ρ)(I − P − c1) +R

 .

Denote the set of all possible B(τ) by B. Figure shows this budget constraint. As you
see, the budget line kinks at (c1, c2) = (I − P,R).
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Figure 1: Budget constraint

2.2 Preference

Consumers have self-control preference introduced by GP. We begin with defining two
kinds of utility functions representing preference over consumption. One is normative
utility function u : R+ → R and the other is temptation utility function v : R+ → R. To
express the temptation, v is specialized as v(·, ·) ≡ λu(·, ·), where λ ∈ Λ ⊆ R+ denotes
the strength of the temptation. This form of temptation utility is also used in Gul and
Pesendorfer (2004). We assume the value λ differs across agent and is private information.
For any λ ∈ Λ, let nλ be a proportion of consumer, that is, nλ satisfies 0 ⩽ nλ ⩽ 1
and

∑
λ∈Λ nλ = 1. In section 4.2, we consider continuous Λ. Then the proportion is

represented by a distribution function F : Λ → [0, 1] with density function f : Λ → R+.
We impose a few assumptions about the normative utility function.

Assumption 2.1. u is twice continuously differentiable.

Assumption 2.2. u is strictly concave and satisfies u′(c) > 0 and u′′(c) < 0.

Assumption 2.3. limc→0 u
′(c) = ∞.

For example, these assumption is satisfied if normative utility functions is u(c) = log(c)
or u(c) = cα with α ∈ (0, 1). In the latter half of this chapter, we assume u(c) ≡ log(c) to
derive sharper results. Applying the utility function by Gul and Pesendorfer (2001), the
preference over budget sets is represented by the function W : B × R+ → R satisfies that

W (B(τ);λ) = max
(c1,c2)∈B(τ)

[
u(c1) + δu(c2) + λu(c1)

]
− max

(c1,c2)∈B(τ)
λu(c1)

= max
(c1,c2)∈B(τ)

[
(1 + λ)u(c1) + δu(c2)

]
− max

(c1,c2)∈B(τ)
λu(c1),

where δ ∈ (0, 1) is a discount factor.
Using assumption 2.2, we have the following claim.

Claim 2.1. max(c1,c2)∈B(τ) λu(c1) = λu
(
I − P + R

1+ρ

)
.

This is obvious by u′(c) > 0 (assumption 2.2) and the constraint for c1 is c1 ⩽ I −P +
R

1+ρ .
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2.3 Consumption

In this section, we consider the consumption problem contained in W (B(τ);λ), that is,
max(c1,c2)∈B(τ)

[
(1+λ)u(c1)+δu(c2)

]
. When the consumer of type λ ∈ Λ chooses a pension

plan τ ∈ T , let his optimal consumption in period t be cλt (τ).
There can be the three types of consumption: positive saving, zero saving (or balanced)

and negative saving (or borrowing). The type of optimal consumption depends on the
pension plan that a consumer has chosen. Intuitively, since a large premium brings too
little disposable income at a working age, it may be necessary for him to borrow to achieve
his desired level of consumption. Formally, we separate T as

T λ
s ≡ {τ ∈ T : cλ1(τ) < I − P}

T λ
b ≡ {τ ∈ T : cλ1(τ) = I − P}

T λ
d ≡ {τ ∈ T : cλ1(τ) > I − P}.

τλs , τ
λ
b and τλd denote the typical elements of T λ

s , T
λ
b and T λ

d , respectively. λ in superscript
is omitted if there is no threat of confusion. Note that if τ ∈ Tb, c

λ
2(τ) = R, since u′(c) > 0

and income in period 2 is only pension income R.
We have the necessary conditions for optimality in different form for τs and τd since

the budget constraint in period 2 differs. In this consumption optimization problem, an
objective function is U(c1, c2) ≡ (1 + λ)u(c1) + δu(c2). So (the absolute value of) the
marginal rate of substitution of c1 for c2 is

∂U(c1,c2)
∂c1

∂U(c1,c2)
∂c2

=
(1 + λ)u′(c1)

δu′(c2)
.

If τ ∈ Ts, the budget line has the slope of 1 + r. So the necessary condition for τs is 2

(1 + λ)u′(c1(τs))

δu′(c2(τs))
= 1 + r

⇔(1 + λ)u′(c1(τs)) = (1 + r)δu′(c2(τs)). (2)

On the other hand, if τ ∈ Td, the budget line has a slope of 1 + ρ. So the necessary
condition for τd is

(1 + λ)u′(c1(τd))

δu′(c2(τd))
= 1 + ρ

⇔(1 + λ)u′(c1(τd)) = (1 + ρ)δu′(c2(τd)). (3)

Since a budget line kinks at the consumption vector for τb, the slope of the line there is
not defined. Thus we cannot derive a condition as in other cases. However, we have at
least the following inequality:

1 + r <
(1 + λ)u′(c1(τb))

δu′(c2(τb))
< 1 + ρ

⇔(1 + r)δu′(c2(τb)) < (1 + λ)u′(c1(τb)) < (1 + ρ)δu′(c2(τb)).

2 There is not any corner solution because of assumption 2.3.
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2.4 Government

The government offers consumers a pension schedule S ≡ {τλ ∈ T : λ ∈ Λ} ⊂ T , a set of
pension plans. The objective of the government is to maximize the (expected) aggregated
welfare of consumers while controlling S to satisfy the following conditions:

W (B(τλ);λ) ⩾ W (B(τ ′);λ), ∀λ ∈ Λ, ∀τ ′ ∈ S (IC)

(1 + r)
∑
λ∈Λ

nλPλ ⩾
∑
λ∈Λ

nλRλ. (FB)

The first condition states that the consumers of type λ ∈ Λ will choose a plan τ(λ) at their
own initiative; in other words, this is the condition for not giving consumers any incentive
to report their types untruthfully. Note that this is not necessary when types are public
information since then government can force any plan on consumers.

The second condition states that S is feasible. We assume that pension management
interest rate r is the same as that of the private saving. This means that there is no
difference between the government and private banks in the ability to manage assets.

We also assume that we can ignore an individual rationality condition since the pension
is managed by the government, which has the power of consumers’ participation.

3 Benchmark

3.1 Identical-type consumers

In this section, we consider the simple case in which all consumers have identical type,
that is, Λ = {λ} and this is common knowledge. Then the condition (IC) can be ignored.
Moreover, since λ is identical, the condition (FB) is rewritten as private condition, that
is, (1 + r)P (λ) ⩾ R(λ).

Consider the individual welfare functionW (τ ;λ). Define σλ : T → R to be the marginal
rate of substitution of R for P on τ ∈ T , that is,

σλ(τ) = −
∂W (τ ;λ)

∂R
∂W (τ ;λ)

∂P

.

Since we cannot represent the optimal consumption in a general form, we have to consider
the optimal pension plan separately. However, the following lemma makes it easy to
analyze.

Lemma 3.1. For any individual welfare level, an indifference curve corresponding to the
level in R-P plane satisfies following properties.

(i) σλ(τs) is greater than or equal to 1
1+r , where equality holds if and only if λ = 0.

(ii) σλ(τd) is equal to 1
1+ρ < 1

1+r .

(iii) Every indifference curve is differentiable.

Proof of property (i). Consider arbitrary τ ∈ Ts. Then we have

W (B(τ);λ) = (1 + λ)u(c1(τ)) + δu
(
c2(τ)

)
− λu

(
I − P +

R

1 + ρ

)
.
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The marginal welfare of R is calculated as follows:

∂W (B(τ);λ)

∂R
=(1 + λ)u′(c1(τ))

∂c1(τ)

∂R
+ δu′

(
c2(τ))

)∂c2(τ)
∂R

− λ

1 + ρ
u′
(
I − P +

R

1 + ρ

)
Since c2(τs) = (1 + r)(I − P − c1(τs)) +R, ∂c2(τs)

∂R = −(1 + r)∂c1(τs)∂R + 1. Hence we have

∂W (B(τ);λ)

∂R
=
{
(1 + λ)u′(c1(τ))− (1 + r)δu′(c2(τ))

}∂c1(τ)
∂R

+ δu′(c2(τ))−
λ

1 + ρ
u′
(
I − P +

R

1 + ρ

)
= δu′(c2(τ))−

λ

1 + ρ
u′
(
I − P +

R

1 + ρ

)
.

The second equality follows by the first order condition for optimal consumption, that is,
(1 + λ)u′(c1(τ)) = (1 + r)δu′(c2(τ)). Moreover, the last line can be rewritten as

1 + λ

1 + r
u′(c1(τ))−

λ

1 + ρ
u′
(
I − P +

R

1 + ρ

)
,

and this is strictly positive. To see this, use assumption 2.2. Since c1(τ) ⩽ I − P + R
1+ρ

and u′′(c) < 0, it holds that u′(c1(τ)) ⩾ u′
(
I − P + R

1+ρ

)
. By ρ > r and λ ⩾ 0, we have

∂W (τ ;λ)
∂R > 0.
Next, the marginal welfare of P is

∂W (B(τ);λ)

∂P
= (1 + λ)u′(c1(τ))

∂c1(τ)

∂P
− δu′(c2(τ))(1 + r)

(
1 +

∂c1(τ)

∂P

)
+ λu′

(
I − P +

R

1 + ρ

)
=
{
(1 + λ)u′(c1(τ))− (1 + r)δu′(c2(τ))

}∂c1(τ)
∂P

− (1 + r)δu′(c2(τ)) + λu′
(
I − P +

R

1 + ρ

)
= −(1 + λ)u′(c1(τ)) + λu′

(
I − P +

R

1 + ρ

)
.

By the same ways as in the previous paragraph, the equalities follow and the last line
is strictly negative.

Thus, σλ(τ) for τ ∈ Ts is

σλ(τ) = −
∂W (B(τ);λ)

∂R
∂W (B(τ);λ)

∂P

=
−δu′(c2(τ)) +

λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

) .
We show that this is greater than or equal to 1

1+r . Since ρ > r, we have

− (1 + λ)u′(c1(τ)) +
1 + r

1 + ρ
λu′
(
I − P +

R

1 + ρ

)
⩽ −(1 + λ)u′(c1(τ)) + λu′

(
I − P +

R

1 + ρ

)
,
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where equality holds if λ = 0. Furthermore, since u′
(
I − P + R

1+ρ

)
> 0 it holds only if

λ = 0. Using the first order condition,

− (1 + r)δu′(c2(τ)) +
1 + r

1 + ρ
λu′
(
I − P +

R

1 + ρ

)
⩽ −(1 + λ)u′(c1(τ)) + λu′

(
I − P +

R

1 + ρ

)
.

Note that the right-hand side is strictly negative. Thus this inequality is rewritten as,

−δu′(c1(τ)) +
λ

1+ρu
′
(
I − P + R

1+ρ

)
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

) ⩾ 1

1 + r

⇔σλ(τ) ⩾
1

1 + r
.

Proof of Property (ii). Calculating σλ(τ) for τ ∈ Td, we have

σλ(τ) =
−δu′(c2(τ)) +

λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

)
=

−(1 + ρ)δu′(c2(τ)) + λu′
(
I − P + R

1+ρ

)
(1 + ρ)

{
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

)} .
By the first order condition for τ ∈ Td in the consumption problem, we have

(1 + ρ)δu′(c2(τ)) = (1 + λ)u′(c1(τ)).

Therefore σλ(τ) =
1

1+ρ < 1
1+r .

Proof of Property (iii). It is enough to show that there exist τ ∈ Ts and τ ∈ Td such that
σλ(τ) is equal to that for τ ∈ Tb, respectively. We have found that the slopes are

−δu′(c2(τ)) +
λ

1+ρu
′
(
I − P + R

1+ρ

)
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

) , if τ ∈ Ts (4)

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) , if τ ∈ Tb (5)

−δu′(c2(τ)) +
λ

1+ρu
′
(
I − P + R

1+ρ

)
−(1 + λ)u′(c1(τ)) + λu′

(
I − P + R

1+ρ

) , if τ ∈ Td. (6)

Fix arbitrary P̂ ∈ [0, I] and choose any pair (R, P̂ ) such that (R, P̂ ) ∈ Ts. Similarly,
choose any pair (R′, P̂ ) such that (R′, P̂ ) ∈ Tb. Denote sup(R,P̂ )∈Ts

R by R(P̂ ). Note that
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P=
R

1+ r

Λ>0

Λ=0

1

1+ r
1

1+ Ρ

R

P

Figure 2: Indifference curves

consumption function is continuous. According to the definitions of Ts and Tb, it follows
that

c1(R, P̂ ) → I − P̂ , c2(R, P̂ ) → R(P̂ )

c1(R
′P̂ ) → I − P̂ , c2(R

′, P̂ ) → R(P̂ )

as R → R(P̂ ) and R′ → R(P̂ ).

Then we have

lim
R→R(P̂ )

σλ(R, P̂ ) =
−δu′(R(P̂ )) + λ

1+ρu
′
(
I − P̂ + R(P̂ )

1+ρ

)
−(1 + λ)u′(I − P̂ ) + λu′

(
I − P̂ + R(P̂ )

1+ρ

)
lim

R′→R(P̂ )
σλ(R

′, P̂ ) =
−δu′(R(P̂ )) + λ

1+ρu
′
(
I − P̂ + R(P̂ )

1+ρ

)
−(1 + λ)u′(I − P̂ ) + λu′

(
I − P̂ + R(P̂ )

1+ρ

) ,
that is, limR→R(P̂ ) σλ(R, P̂ ) = limR′→R(P̂ ) σλ(R

′, P̂ ). Therefore the indifference curve is

smoothly continuous at (R(P̂ ), P̂ ). Similarly we can prove the latter half of property
(iii).

Even though the consumption patterns are different for τ , this lemma states that
indifference curves for fixed welfare are smooth. Thus we can use the standard method of
welfare maximization. The indifference curve is shown in Figure 2. Here, the pension plan
that satisfies feasibility is in the upper-left area of the line P = R

1+r . Hence we find that
optimal plans are determined at the tangent point of the indifference curve and the line of
P = R

1+r . According to the lemma 3.1, the indifference curve does not have any tangent

to the line P = R
1+r at τ ∈ Ts and τ ∈ Td if λ > 0. Thus, if τ is optimal, it is included in

Tb except the case of λ = 0. If λ = 0, since σλ(τs) =
1

1+r , all τs ∈ Ts are optimal.
Let us consider optimal τ . First, we assume that λ > 0. As we discussed, it is enough

to obtain optimal plans to consider τ ∈ Tb. The optimal plan is determined at the tangent
point of the indifference curve and P = R

1+r . Here, we have

σλ(τb) =
−δu′(R) + λ

1+ρu
′
(
I − P + R

1+ρ

)
−(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) .
10



Thus the necessary condition is

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) =
1

1 + r
.

This can be rearranged as

λ =
(1 + r)δu′(R)− u′(I − P )

u′(I − P )− ρ−r
1+ρu

′
(
I − P + R

1+ρ

) .
The denominator on the right-hand side is obviously positive since I − P ⩽ I − ρ−r

1+ρP

andρ−r
1+ρ < 1. However, we cannot state whether the numerator is positive or negative.

Indeed, R = (1+r)P in the solution then the numerator is (1+r)δu′((1+r)P )−u′(I−P ).
This is positive for a sufficiently small P but negative for a sufficiently large P . Since λ
is greater than 0, in order to characterize the optimal plan, we consider only P such that
(1 + r)δu′((1 + r)P )− u′(I − P ) > 0. Define Q : P → Λ as

Q(P ) ≡ (1 + r)δu′((1 + r)P )− u′(I − P )

u′(I − P )− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
) , (7)

where P ≡ {P ∈ [0, I] : (1 + r)δu′((1 + r)P )− u′(I − P ) > 0}.
Let us see what properties Q has. Importantly, the following lemma says that the

optimal τ is unique for each λ > 0, that is, there exists an inverse function for Q.

Lemma 3.2. Q satisfies the following properties.

(i) Q is strictly decreasing.

(ii) Q(P ) → ∞ as P → 0.

(iii) Q(P ) = 0 if P satisfies (1 + r)δu′((1 + r)P )− u′(I − P ) = 0.

Proof of property (i). Let P and P ′ be arbitrary premiums such that P ′ > P . By the
assumptions of u′(c) > 0 and u′′(c) < 0, we have

u′(I − P ′)− ρ− r

1 + ρ
u′
(
I − ρ− r

1 + ρ
P ′
)

> u′(I − P )− ρ− r

1 + ρ
u′
(
I − ρ− r

1 + ρ
P

)
and

(1 + r)δu′((1 + r)P ′)− u′(I − P ′) < (1 + r)δu′((1 + r)P )− u′(I − P ).

So it follows that

Q(P ) =
(1 + r)δu′((1 + r)P )− u′(I − P )

u′(I − P )− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
) >

(1 + r)δu′((1 + r)P )− u′(I − P )

u′(I − P ′)− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
′
)

>
(1 + r)δu′((1 + r)P ′)− u′(I − P ′)

u′(I − P ′)− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
′
) = Q(P ′).

Therefore, Q is strictly decreasing.

11



Proof of property (ii). By assumption 2.3, we have

lim
P→0

Q(P ) = lim
P→0

(1 + r)δu′((1 + r)P )− u′(I − P )

u′(I − P )− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
)
 = ∞.

Proof of property (iii). Since u′(I−P )− ρ−r
1+ρu

′
(
I − ρ−r

1+ρP
)
is positive for any P ⩽ I < ∞,

the property is obvious.

The following theorem characterizes the optimal pension plan.

Theorem 3.1. The optimal pension plan is determined by the inverse function of Q.

Proof. Q corresponds to an arbitrary pension premium P ∈ P to type λ ∈ Λ whose
optimal pension premium is P . By the lemma 3.2, Q is one to one function. In addition,
properties (i) and (ii) say that Q is onto function. Therefore, for Q, there exists an inverse
function that determines the optimal pension premium for any λ ∈ Λ.

Theorem 3.1 together with property (i) in the lemma 3.2 says that it is optimal to set a
lower premium for consumers that feel greater temptation. This result can be understood
by the following discussion. Consider the situation when a consumer does not save and
not borrow at all. His welfare function is rewritten as

W (B(τ);λ) = (1 + λ)u(I − P ) + δu((1 + r)P )− λu

(
I − ρ− r

1 + ρ
P

)
= u(I − P ) + δu((1 + r)P )− λ

[
u

(
I − ρ− r

1 + ρ
P

)
− u(I − P )

]
.

The summation of the first and second terms represents the utility of consumption and
the third term represents the cost of self-control. Differentiate both sides with P and we
have the marginal utility minus the marginal cost of P ,

∂W (B(τ);λ)

∂P
= −u′(I − P ) + (1 + r)δu′((1 + r)P )

− λ

[
−u′

(
I − ρ− r

1 + ρ
P

)(
ρ− r

1 + ρ

)
+ u′(I − P )

]
.

The first-order condition says that the marginal utility equals the marginal cost at optimal
P . Differentiate this again with P and we have

∂2W (B(τ);λ)

∂P 2
=u′′(I − P ) + (1 + r)2δu′′((1 + r)P )

− λ

[
u′′
(
I − ρ− r

1 + ρ
P

)(
ρ− r

1 + ρ

)2

− u′′(I − P )

]
.

By assumption 2.2, the marginal utility decreases as P increases. And in the proof of the
lemma 3.2, we have seen that the marginal cost increases as P does. Note that the increase
in λ raises the marginal cost and we can see that P , at the point where marginal utility
equals marginal cost, moves lower. Therefore, higher λ implies lower P (λ). Intuitively,
the increase in P has two effects. One effect reduces the amount of money the consumer
can use when she is young. For the optimal plan, it holds that R = (1 + r)P . Hence

12
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R
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Figure 3: Optimal plans

the increase of P means the increase of R. Thus another effect enlarges the amount of
money that the consumer can borrow when she is young and it increases the temptation
of borrowing. For consumers with larger λ, the latter effect is stronger. Therefore to avoid
a high self-control cost, it is not proper to apply a large pension premium to a consumer
with large λ. This result can be understood also by a picture. In Figure 3, each of three
indifference curves for τL, τM , τH , where ,τL < τM < τH , is a tangent to line P = R

1+r .
The tangent points are the optimal plans. Obviously, as λ increases, the optimal plan is
determined in the lower-left area of the plane.

At the end of this subsection, we consider the value of (1+ r)δu′((1+ r)P )−u′(I −P )
in property (iii). It is equivalent to the amount of saving when λ = 0 and there is no
pension policy. We have already shown that any τ ∈ T 0

s is optimal for a consumer with
λ = 0. That is, when a consumer does not feel any temptation, it is optimal to impose
an arbitrary premium between 0 and the optimal amount of saving. This is a well-known
result: if the pension earns the same interest rate as private savings, these two ways
of saving are indifferent and so the pension does not improve welfare (For example, see
Samuelson, 1975). Interestingly, however, when a consumer has λ > 0, this result does
not hold. Even if the interest rates are equal to each other, the private saving and the
pension are not equivalent.

3.2 Two types of consumers

In this section, we consider two types of heterogeneous consumers. The assumption of
complete information is a useful benchmark. So we begin with the situation where the
government knows what type each consumer has. Denote the types as λL and λH , where
0 < λL < λH . And the population of λL and λH are nL and nH , respectively, where we
assume that nL > 0, nH > 0 and nL + nH = 1. Note that, unlike in the identical-type
case, we cannot state that R = (1+r)P is always satisfied at optimal schedules since there
may be transfer between the types.

Remember that the marginal welfare of P for each agent is negative. Hence the pension
schedule S ≡ {τL, τH} such that PL > RL

1+r and PH > RH
1+r is not optimal since the schedule

satisfies the feasibility constraint slackly, so that a sufficiently small decrease in P is feasible
and improves social welfare. It is also clear that the pension schedule such that PL < RL

1+r

and PH < RH
1+r is not feasible.

13



(R

,P

)

1
1 + r

R

P

Figure 4: Individually feasible schedules for (R̂, P̂ )

In addition, the following lemma holds.

Lemma 3.3. If a pension schedule {τ̂L, τ̂H} is feasible, then the schedules {τL, τH} such
that [

PL ⩾ RL − R̂L

1 + r
+ P̂L, τH = τ̂H

]
(8)

or [
PH ⩾ RH − R̂H

1 + r
+ P̂H , τL = τ̂L

]
(9)

are also feasible.

Proof. Without loss of generality, we show that the schedule that satisfies (8) is feasible.
Suppose that {τ̂L, τ̂H} is feasible; that is,

(1 + r)(nLP̂L + nH P̂H) ⩾ nLR̂L + nHR̂H

⇔(1 + r)nLP̂L ⩾ −(1 + r)nH P̂H + nLR̂L + nHR̂H . (10)

Choose a schedule such that PL ⩾ RL−R̂L
1+r + P̂L, τH = τ̂H arbitrarily. Then it follows that

PL ⩾ RL − R̂L

1 + r
+ P̂L

⇔(1 + r)nLPL − nL(RL − R̂L) ⩾ (1 + r)nLP̂L.

Together with (10), we have

(1 + r)nLPL − nL(RL − R̂L) + (1 + r)nH P̂H ⩾ nLR̂L + nHR̂H

⇔(1 + r)(nLPL + nH P̂H) ⩾ nLRL + nHR̂H .

By τH = τ̂H , it follows that

(1 + r)(nLPL + nHPH) ⩾ nLRL + nHRH .

Thus, the schedule {τL, τH} is feasible. We can show the feasibility of the schedule that
satisfies (9).
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1 + r

1
1 + r

R

P

Figure 5: τ is not optimal plan

For a given plan (τ̂λ), we call the plans τλ that satisfy Pλ ⩾ Rλ−R̂λ
1+r + P̂λ individually

feasible. Figure 4 depicts the set of schedules that is individually feasible for (R̂, P̂ ). The
lemma 3.3 is useful for searching for solutions. For example, in Figure 5, σλ(τ) is lower
than 1

1+r . Note that with complete information, we can ignore the incentive compatibility
conditions. Hence a pension plan for another type can be fixed arbitrarily. Then there
is room for the improvement. Indeed, obviously τλ is not optimal since we can find
individually feasible and more preferable plans in the hatched area in the Figure. The
point is that if this improvement is available, it works individually; that is, it does not
need transfer between types. Thus this is a Pareto improvement.

The next lemma is important for proving the lemma 3.5.

Lemma 3.4. For any λ ∈ Λ ⊆ R+, τ such that σλ(τ) =
1

1+r satisfies R > 0.

Proof. Fix arbitrary λ ∈ Λ ⊆ R+ and choose τ such that σλ(τ) = 1
1+r . Note that

σλ(τ) =
1

1+r implies τ ∈ Tb. σλ(τ) is equal to

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) .
Then, by assumption 2.3,

lim
R→0

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
−(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

)
=
− limR→0 δu

′(R) + λ
1+ρu

′(I − P )

−u′(I − P )

=
−∞

−u′(I − P )
= ∞.

Since σλ(τ) is decreasing in R, τ such that σλ(τ) =
1

1+r satisfies R > 0.

The following lemma, derived from the previous lemma gives the condition for opti-
mality.

Lemma 3.5. In the optimal schedule with complete information {τL, τH}, both σL(τL)
and σH(τH) are equal to 1

1+r .
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Proof. Suppose that either σL(τL) or σH(τH) is not equal to 1
1+r . Without loss of gener-

ality, suppose that σL(λL) ̸= 1
1+r .

(i) σL(τL) >
1

1+r
Consider ε1, ε2 > 0 such that ε2 = ε1

1+r . For such ε1 and ε2, let R′ ≡ RL + ε1 and
P ′ ≡ PL + ε2. Then it follows that

ε2 =
ε1

1 + r

⇔PL + ε2 =
RL + ε1 −RL

1 + r
+ PL

⇔P ′ =
R′ −RL

1 + r
+ PL,

that is, τ ′ = (R′, P ′) is individually feasible by lemma 3.3. The line represented by this
equation has the slope of 1

1+r on R-P plane and passes through (RL, PL). Furthermore,

the marginal rate of substitution at τL is σL(τL) > 1
1+r . Thus for sufficiently small ε1

and ε2, τ
′ brings more individual welfare. Since there exists an another schedule that is

feasible and preferable to {τL, τH}, {τL, τH} is not optimal.

(ii) σL(τL) <
1

1+r
Consider ε1, ε2 > 0, which satisfies that ε2 =

ε1
1+r . For such ε1 and ε2, let R

′ ≡ RL−ε1
and P ′ ≡ PL − ε2. Here, for τL such that σL(τL) <

1
1+r , it is satisfied that R > 0 by the

lemma 3.4. Then, similar to the previous case, it is satisfied that

ε2 =
ε1

1 + r

⇔PL − ε2 =
RL − ε1 −RL

1 + r
+ PL

⇔P ′ =
R′ −RL

1 + r
+ PL,

that is, τ ′ = (R′, P ′) is individually feasible by the lemma 3.3. This line has the slope of
1

1+r and passes through (RL, PL). Furthermore, the marginal rate of substitution at τL is

σL(τL) < 1
1+r . Thus, for sufficiently small ε1 and ε2, τ

′ brings more individual welfare.
Since there exists another schedule that is feasible and preferable to {τL, τH}, {τL, τH} is
not optimal.

By the lemma 3.5, if a pension schedule is optimal, it holds that σλ(τ) =
1

1+r for all
λ ∈ Λ. Together with the lemma 3.4, if a pension schedule is optimal, we have Rλ > 0
for all λ ∈ Λ. That is, if a consumer feels temptation, the funded pension improves social
welfare.

Here, we have the following result.

Theorem 3.2. If λ ̸= λ′, it is not optimal that τλ = τλ′.

Proof. Consider an arbitrary λ, λ′. By the lemma 3.5, if the singleton schedule of {τ} is
optimal, it is satisfied that

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) =
1

1 + r
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and

−δu′(R) + λ′

1+ρu
′
(
I − P + R

1+ρ

)
(1 + λ′)u′(I − P ) + λ′u′

(
I − P + R

1+ρ

) =
1

1 + r
,

then it must be follow that

−δu′(R) + λ
1+ρu

′
(
I − P + R

1+ρ

)
(1 + λ)u′(I − P ) + λu′

(
I − P + R

1+ρ

) =
−δu′(R) + λ′

1+ρu
′
(
I − P + R

1+ρ

)
(1 + λ′)u′(I − P ) + λ′u′

(
I − P + R

1+ρ

) . (11)

This is a necessary condition for τ is optimal. For simplicity, we abbreviate some parts
of (11) as follows:

A ≡ −δu′(R)

B ≡ 1

1 + ρ
u′
(
I − P +

R

1 + ρ

)
C ≡ u′(I − P )

D ≡ u′(I − P ) + u′
(
I − P +

R

1 + ρ

)
.

Then (11) is rewritten to,

A+ λB

C + λD
=

A+ λ′B

C + λ′D

⇔(A+ λB)(C + λ′D) = (A+ λ′B)(C + λD)

⇔(λ− λ′)(AD −BC) = 0.

By assumption 2.2, AD = −δu′(R)
[
u′(I − P ) + u′

(
I − P + R

1+ρ

)]
is strictly negative

and BC = 1
1+ρu

′
(
I − P + R

1+ρ

)
u′(I − P ) is strictly positive, it must be that λ = λ′.

This implies (11), necessary condition for singleton schedule to be optimal, is satisfied
only if λ = λ′.

That is, if consumers have different strength of temptation, applying a common pension
plan is not optimal. This is consistent with our first intuition.

Next we construct the optimal schedule in this situation. To obtain a precise result,
henceforth we specialize in the normative utility function as u(c) = log c for all c ∈ R+.
log c satisfies assumptions 2.2 and 2.3. For this specialized utility function, we have the
following consumptions:

c1(τ) =


(1+λ)

(
(1+r)(I−P )+R

)
(1+r)(1+δ+λ) if 0 ⩽ P < I − (1+λ)R

(1+r)δ

I − P if I − (1+λ)R
(1+r)δ ⩽ P ⩽ I − (1+λ)R

(1+ρ)δ

(1+λ)
(
(1+ρ)(I−P )+R

)
(1+ρ)(1+δ+λ) otherwise,

c2(τ) =


δ
(
(1+r)(I−P )+R

)
1+δ+λ if 0 ⩽ P < I − (1+λ)R

(1+r)δ

R if I − (1+λ)R
(1+r)δ ⩽ P ⩽ I − (1+λ)R

(1+ρ)δ

δ
(
(1+ρ)(I−P )+R

)
1+δ+λ otherwise.
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Next we consider the locus of points at which σλ(τ) equals
1

1+r . According to the lemma

3.1, it is enough to obtain the locus to consider τ such that I − (1+λ)R
(1+r)δ ⩽ P ⩽ I − (1+λ)R

(1+ρ)δ .
Consider an arbitrary λ ∈ Λ. Then the individual welfare for such τ is

W (B(τ);λ) = (1 + λ) log(I − P ) + δ log(R)− λ log

(
I − P +

R

1 + ρ

)
.

We have

σλ(τ) =
− δ

R + λ
(1+ρ)(I−P )+R

− 1+λ
I−P + (1+ρ)λ

(1+ρ)(I−P )+R

.

The relation between P and R such that σλ(τ) =
1

1+r is as follows:

P = I −KλR,

Kλ ≡
1 + ρ+ (1 + r)(λ− δ) +

√
(1 + r)2δ2 + (1 + ρ+ (1 + r)λ)2 + 2δ(1 + r)(1 + (1− r)λ+ (1 + 2λ)ρ)

2δ(1 + r)(1 + ρ)
.

Proposition 3.1. For any λ > 0 and λ′ > 0 such that λ ̸= λ′, if σλ(τ) = σλ′(τ ′) = 1
1+r ,

then τ ̸= τ ′.

Proof. Fix arbitrarily λ > 0 and λ′ > 0 such that λ ̸= λ′. Suppose that for τ and τ ′,
σλ(τ) = σλ′(τ ′) = 1

1+r . Then it holds that P = I − KλR and P ′ = I − Kλ′R′. Note

that the relation between P and R and that between P ′ and R′ are linear with the slopes
of −Kλ and −Kλ′ , respectively. We show that if λ > λ′, then Kλ > Kλ′ . Calculating
Kλ −Kλ′ , we have

Kλ −Kλ′

=
1 + ρ+ (1 + r)(λ− δ) +

√
(1 + r)2δ2 + (1 + ρ+ (1 + r)λ)2 + 2δ(1 + r)(1 + (1− r)λ+ (1 + 2λ)ρ)

2δ(1 + r)(1 + ρ)

−
1 + ρ+ (1 + r)(λ′ − δ) +

√
(1 + r)2δ2 + (1 + ρ+ (1 + r)λ′)2 + 2δ(1 + r)(1 + (1− r)λ′ + (1 + 2λ′)ρ)

2δ(1 + r)(1 + ρ)

=
(1 + r)λ+

√
(1 + r)2δ2 + (1 + ρ+ (1 + r)λ)2 + 2δ(1 + r)(1 + (1− r)λ+ (1 + 2λ)ρ)

2δ(1 + r)(1 + ρ)

−
(1 + r)λ′ +

√
(1 + r)2δ2 + (1 + ρ+ (1 + r)λ′)2 + 2δ(1 + r)(1 + (1− r)λ′ + (1 + 2λ′)ρ)

2δ(1 + r)(1 + ρ)
.

Comparing inside the square roots, the former is larger than the latter. Thus we have
Kλ > Kλ′ . Though τ = τ ′ holds only if R = R′ = 0, R > 0 and R′ > 0 by the lemma 3.4.
Therefore τ ̸= τ ′.

This proposition states that the point at which the indifference curve of each consumer
is tangential to the feasibility frontier differs according to the type.

By the lemma 3.5, the optimal schedule satisfies that σL(τL) = σH(τH) = 1
1+r so we

have

PL = I −KLRL

PH = I −KHRH .
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As we have mentioned, the feasibility condition is satisfied with equality for the optimal
schedule. Hence, according to the feasibility condition, we have

(1 + r)[nLPL + nHPH ] = nLRL + nHRH

⇔(1 + r)[nL(I −KLRL) + nH(I −KHRH)] = nLRL + nHRH

⇔(1 + r)[I − nLKLRL − nHKKRH ] = nLRL + nHRH

⇔(1 + (1 + r)KH)nHRH = (1 + r)I − (1 + (1 + r)KL)nLRL

⇔RH =
(1 + r)I

(1 + (1 + r)KH)nH
− (1 + (1 + r)KL)nL

(1 + (1 + r)KH)nH
RL.

Thus the summarized problem is that

max
{τλ}λ=L,H

nL

[
(1 + λL) log(I − PL) + δ logRL − λL log

(
I − PL +

RL

1 + rρ

)]
+ nH

[
(1 + λH) log(I − PH) + δ logRH − λH log

(
I − PH +

RH

1 + rρ

)]
s.t. PL = I −KLRL, PH = I −KHRH

RH =
(1 + r)I

(1 + (1 + r)KH)nH
− (1 + (1 + r)KL)nL

(1 + (1 + r)KH)nH
RL.

Substituting PL, PH , and RH , this problem can be seen as simply one variable problem.
The first-order condition is

∂W

∂RL
=
nL[(nH + nL)(1 + (1 + r)KL)RL − (1 + r)I](1 + δ)

RL(nL(1 + (1 + r)KL)RL − (1 + r)I)
= 0

⇔RL =
(1 + r)I

1 + (1 + r)KL
.

Then we have

PL = I − KL(1 + r)I

1 + (1 + r)KL
=

I

1 + (1 + r)KL

RH =
(1 + r)I − (1 + (1 + r)KL)nL

(1+r)I
(1+(1+r)KL)

(1 + (1 + r)KH)nH
=

(1 + r)I

1 + (1 + r)KH
.

PH = I −KH
(1 + r)I

1 + (1 + r)KH
=

I

1 + (1 + r)KH
.

Seeing this result, we find that the optimal schedule satisfies Rλ = (1 + r)Pλ for λ ∈ Λ.
In this situation, the incentive compatibility condition is strictly satisfied. Therefore, we
have the following theorem.

Theorem 3.3. Assume u(c) = log c and |Λ| = 2. The optimal pension schedule has the
following form: for any λ ∈ Λ,

Pλ =
I

1 + (1 + r)Kλ
,

Rλ = (1 + r)Pλ.

We can see some things from the result. First, there is no monetary transfer among
types since the optimal plans are balanced for each type. Second, similar to the identical-
type case, there are no private saving and borrowing at the optimal schedule. This implies
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that the monetary market is balanced. Third, and importantly, the optimal schedule
does not depend on the distribution of types.Indeed, it does not contain nL and nH .
Furthermore, consider the following mechanism. The government shows a pension schedule
such that {

(R,P ) ∈ T : P =
R

1 + r

}
and let each consumer announce the maximal amount of pension she foresees wanting
in old age. Then the consumer is enrolled in the pension plan that is in accord with
her decision. Though formal proof is omitted, this mechanism implements the optimal
schedule with a weakly dominant strategy. This follows by the convexity of individual
welfare and not by the existing externality between types. Note that this mechanism does
not need any information about types, such as the distribution and even what types there
are.

4 Generalization

In this section, we generalize our model. One generalization is about the number of
types. First, we consider the case of many finite types. Then we consider the case of
continuous types. As in the previous section, we specialize the normative utility function
as a logarithm function.

4.1 Finite types

Consider the set of types Λ = {λ1, λ2, . . . , λm}, where m < ∞. Denote the population
of type λi by ni, where it is assumed that

∑m
i=1 ni = 1 and ni > 0 for all λi ∈ Λ. The

problem is that

max
S

m∑
i=1

ni

{
(1 + λi) log(I − Pi) + δ logRi − λi log

(
I − Pi +

Ri

1 + ρ

)}

s.t. (1 + r)
m∑
i=1

niPi ⩾
m∑
i=1

niRi.

We can apply the lemma 3.5 also in this model. Thus, by substituting Pi = I −KiRi in
the problem, we have

max
S

m∑
i=1

ni

{
(1 + λi) logKiRi + δ logRi − λi log

((
Ki +

1

1 + ρ

)
Ri

)}

s.t. (1 + r)

m∑
i=1

ni(I −KiRi) ⩾
m∑
i=1

niRi.

The associated Lagrangian is

L ≡µ0

[
m∑
i=1

ni

{
(1 + λi) logKiRi + δ logRi − λi log

((
Ki +

1

1 + ρ

)
Ri

)}]

+ µ1

[
(1 + r)

m∑
i=1

ni(I −KiRi)−
m∑
i=1

niRi

]
.

20



The necessary condition is

∂L

∂Rj
= µ0

[
nj

{
1 + λi

Rj
+

δ

Rj
− λj

Rj

}]
+ µ1[−(1 + r)njKj − nj ] = 0, ∀λ ∈ Λ

(µ0, µ1) ⩾ 0

(µ0, µ1) ̸= 0

µ1

[
(1 + r)

m∑
i=1

ni(I −KiRi)−
m∑
i=1

niRi

]
= 0.

Note that [−(1+r)njKj−nj ] < 0. Then if µ0 = 0, the first order condition is satisfied only
if µ1 = 0. This contradicts the non-zero condition of Lagrange multipliers. Thus µ0 > 1
and we can standardize this as µ0 = 1. Then the first-order conditions are rearranged as

nj
1 + δ

Rj
− µ1[(1 + r)njKj − nj ] = 0, ∀λ ∈ Λ. (12)

µ1 is not zero since the first term is strictly positive. So the feasibility condition is satisfied
with equality. By (12), we have

µ1 =
1

(1 + r)Kj + 1

(
1 + δ

Rj

)
.

Thus for any λj ∈ Λ and λk ∈ Λ, it follows that

1

(1 + r)Kj + 1

(
1 + δ

Rj

)
=

1

(1 + r)Kk + 1

(
1 + δ

Rk

)
⇔[(1 + r)Kj + 1]Rj = [(1 + r)Kk + 1]Rk. (13)

By the feasibility condition with equality, we have

(1 + r)

m∑
i=1

ni(I −KiRi)−
m∑
i=1

niRi = 0

⇔
m∑
i=1

ni((1 + r)Ki + 1)Ri = (1 + r)I

m∑
i=1

ni = (1 + r)I.

Fixing arbitrarily λj ∈ Λ and using (13), it follows that

(1 + r)I =

m∑
i=1

ni((1 + r)Ki + 1)Ri = ((1 + r)Kj + 1)Rj

m∑
i=1

ni

= ((1 + r)Kj + 1)Rj

⇔ Rj =
(1 + r)I

(1 + r)Kj + 1
.

Substituting this to Pj = I −KjRj , we have

Pj = I −Kj
(1 + r)I

(1 + r)Kj + 1
=

((1 + r)Kj + 1)I − (1 + r)KjI

(1 + r)Kj + 1
=

I

(1 + r)Kj + 1
.

Thus in the solution Rj = (1 + r)Pj is satisfied for any type λj ∈ Λ. This is the same
result as in the two types case.
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4.2 Continuous types

Let Λ = [λ, λ], where λ ⩾ 0. λ ∈ Λ are distributed according to the distribution function
F . (R(λ), P (λ)) denotes the pension plan for the consumer whose type is λ ∈ Λ. We
assume that R(λ) and P (λ) are continuous and differentiable.

Similarly, considering the problem with complete information, it follows that P (λ) =
I −K(λ)R(λ), cλ1 = I − P (λ) and cλ2 = R(λ) for each λ, where K(λ) is the constant that
has the same form as Kλ in the previous section. The problem is that

max
S

∫ λ

λ

[
(1 + λ) log(I − P (λ)) + δ log(R(λ))− λ log

(
I − P (λ) +

R(λ)

1 + ρ

)]
dF (λ)

s.t.

∫ λ

λ

[(1 + r)P (λ)−R(λ)] dF (λ) = 0

P (λ) = I −K(λ)R(λ),

where we can assume that the solution satisfies the feasibility condition with equality
for the same reason as in the previous section. Since the feasibility constraint includes a
integration, we rewrite it. We define a new state variable h as

h(λ) ≡
∫ λ

λ
[(1 + r)P (x)−R(x)] dF (x).

Then, h satisfies the following conditions, conversely implying the feasibility condition.

h′(λ) = (1 + r)P (λ)−R(λ),

h(λ) = 0 and h(λ) = 0.

Thus, we have the rewritten problem:

max
S

∫ λ

λ

[
(1 + λ) log(I − P (λ)) + δ log(R(λ))− λ log

(
I − P (λ) +

R(λ)

1 + ρ

)]
dF (λ)

s.t. h′(λ) = (1 + r)P (λ)−R(λ),

h(λ) = 0 and h(λ) = 0

P (λ) = I −K(λ)R(λ).

The associated Hamiltonian is,

H ≡(1 + λ) log(I − P (λ)) + δ log(R(λ))− λ log

(
I − P (λ) +

R(λ)

1 + ρ

)
+ µ(λ)h′(λ)

= (1 + λ) log(I − P (λ)) + δ log(R(λ))− λ log

(
I − P (λ) +

R(λ)

1 + ρ

)
+ µ(λ) [(1 + r)P (λ)−R(λ)] ,

where µ is the co-state variable. Substituting P (λ) = I −K(λ)R(λ), we have,

H = (1 + λ) log(K(λ)R(λ)) + δ log(R(λ))− λ log

((
K(λ) +

1

1 + ρ

)
R(λ)

)
+ µ(λ) [(1 + r)I − ((1 + r)K(λ) + 1)R(λ)] .
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By Pontryagin’s principle,

∂H

∂R(λ)
=

1 + λ

R(λ)
+

δ

R(λ)
− λ

R(λ)
− µ(λ)((1 + r)K(λ) + 1)R(λ)

=
1 + δ

R(λ)
− µ(λ)((1 + r)K(λ) + 1 = 0 (14)

µ′(λ) = − ∂H

∂h(λ)
.

Note that −∂H /∂h(λ) = 0, so u′(λ) = 0. This implies that u(λ) does not depend on λ.
Hence we can simply wreeite µ(λ) = µ. (14) can be rearranged as,

R(λ) =
1 + δ

((1 + r)K(λ) + 1)µ
.

By the feasibility condition,∫ λ

λ
(1 + r)(I −K(λ)R(λ))−R(λ)dF (λ)

=

∫ λ

λ
(1 + r)I − ((1 + r)K(λ) + 1)R(λ)dF (λ)

=

∫ λ

λ
(1 + r)I − ((1 + r)K(λ) + 1)

1 + δ

((1 + r)K(λ) + 1)µ
dF (λ)

=

(
(1 + r)I − 1 + δ

µ

)∫ λ

λ
dF (λ) = (1 + r)I − 1 + δ

µ
= 0

⇔ µ =
1 + δ

(1 + r)I

Therefore we have,

R(λ) =
1 + δ

((1 + r)K(λ) + 1)µ
=

1 + δ

((1 + r)K(λ) + 1) 1+δ
(1+r)I

=
(1 + r)I

(1 + r)K(λ) + 1
,

P (λ) = I −K(λ)R(λ) = I − (1 + r)K(λ)I

(1 + r)K(λ) + 1
=

I

(1 + r)K(λ) + 1
.

Again we obtained the relation R(λ) = (1 + r)P (λ). For the same reason as in the
previous section, if we construct the pension schedule of such plans, the IC condition is
strictly satisfied. The following theorem summarizes this section.

Theorem 4.1. Assume u(c) = log c and Λ = [λ, λ]. The optimal pension schedule has the
following form: for any λ ∈ Λ,

P (λ) =
I

(1 + r)K(λ) + 1

R(λ) = (1 + r)P (λ).

5 Discussion

5.1 The effect of a borrowing constraint

So far, we have assumed that consumers are allowed to borrow money in the first period.
In this section, we consider the special case in which consumers can borrow no money;
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that is, we restrict s ⩾ 03. In the context of self-control preference, this assumption has an
important meaning. The impossibility of borrowing after paying a premium strengthens
the funded pension scheme as a commitment device.

With the borrowing constraint in place, the budget constraint is simply

B(τ) = {(c1, c2) ∈ R2
+ : c1 + s ⩽ I − P, c2 ⩽ (1 + r)(I − c1) +R}.

For simplicity, we specialize a normative utility function as u(c) = log(c). Then the
consumption in period 1 is

c1(τ) =

{
(1+λ)[(1+r)(I−P )+R]

(1+r)(1+δ+λ) if 0 ⩽ P < I − (1+λ)R
δ(1+r)

I − P if I − (1+λ)R
δ(1+r) ⩽ P ⩽ I.

Similar to the case in section 3.1, we assume the identical type. Then R = (1+r)P follows.
Calculating an optimal pension plan, we have

Pλ =

{
any number P ∈ [0, δI

1+δ ] if λ = 0
δI
1+δ if λ > 0

Rλ = (1 + r)Pλ, ∀λ ⩾ 0.

Note that P does not depend on the type if λ > 0. This optimal P is equal to optimal
saving when there is no temptation and no pension policy. Intuitively, by the consumption
decision above, a consumer who paid δI

1+δ consumes all of remaining money in period 1.

Since δI
1+δ is the optimal saving, the optimal consumption includes all of the remaining

money. Thus, naturally, welfare is maximized without the harm of temptation. The
interest rate for the pension is the same as that for private saving, so there is no difference
in the amount of payout between the pension and saving. However, the pension, which
make her pay a premium in advance has a role as a commitment device. Saving does not
have the role since a consumer decide how much to save after she faces the temptation.
Furthermore, importantly, now the consumer is not allowed to borrow, so the effect of
an increase in the premium further strengthens the budget set: there is no temptation to
borrow. This result is very different from that in sections 3 and 4.

5.2 Income diversity

In this section, we study the case when the income can be differ for each consumer. The
income is one of the elements in I = {I1, I2, . . . , Im} and the degree of temptation is drawn
from Λ = {λ1, λ2, . . . , λk}, where 0 < I1 < I2 < · · · < Im < ∞ and 0 < λ1 < λ2 < · · · <
λk < ∞. Consumers are characterized by the pair (Is, λt) ∈ Θ ⊆ I × Λ. nst denotes
the proportion of the consumers having (Is, λt) ∈ Θ. A pension plan for consumer with
(Is, λt) is the pair (Rst, Pst). We assume that Rst and Pst are weakly positive and that
consumers have to be able to make their payment for the pension, that is, Pst ⩽ Is.

Differently from the degree of temptation, it is natural that the government can observe
the income of consumers. In fact, the government uses the information for an income tax
imposition. Thus we assume that the government can observe the income of consumers
but does not know the degree of temptation. However, as in the previous section, we
consider the problem with complete information at first. Then we can use lemma 2.3.5
again because the result does not depend on income, so we can focus on the pension plans

3There may be various strengths of the constraint, but here we consider only the strongest borrowing
constraint.
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which satisfies Pst = Is −KtRst. Using this, the constraint that 0 ⩽ Pst ⩽ Is is rewritten
as 0 ⩽ Rst ⩽ Is/Kt. The feasibility condition can also be rearranged as

(1 + r)
∑

(s,t)∈Θ

nstPst ⩾
∑

(s,t)∈Θ

nstRst ⇐⇒ (1 + r)
∑

(s,t)∈Θ

nst(Is −KtRst) ⩾
∑

(s,t)∈Θ

nstRst

⇐⇒
∑

(s,t)∈Θ

nst {(1 + r)Is − (1 + (1 + r)Kt)Rst} ⩾ 0.

The solution satisfies the following property.

Lemma 5.1. If a pension schedule is optimal, it holds that Rst > 0 for all s and t.

Proof. At first, we show that there is at least one type whose pension return is strictly
positive. Suppose that there exists consumer with (Is, λt) whose pension plan is Rst = 0.
Then private welfare of the consumer is

(1 + λt) log(Is − Pst) + δ logRst − λt log

(
Is − Pst +

Rst

1 + ρ

)
= (1 + λt) log(Is − Pst) + δ log 0− λt log(Is − Pst) = log(Is − Pst) + δ log 0 = −∞.

Note that private welfare is bounded above by the constraints. Then the social welfare
in this case is −∞. On the other hand, let (R′

st, P
′
st) = (ε, ε/(1 + r)) for all s and t with

ε > 0 that satisfies ε/(1 + r) < I1. A pension schedule composed of this plan is feasible.
In fact, it holds that∑

(s,t)∈Θ

nst

{
(1 + r)P ′

st −Rst

}
=

∑
(s,t)∈Θ

nst {ε− ε} = 0.

The social welfare of this schedule is∑
(s,t)∈Θ

nst

{
(1 + λt) log

(
Is −

ε

1 + r

)
+ δ log ε− λt log

(
Is −

ε

1 + r
+

ε

1 + ρ

)}

This is strictly larger than −∞ since the antilogarithm of the first and the second term is
greater than 0 and the third term is bounded above by ε/(1 + r) < I1 < ∞ and λk < ∞.
Therefore, the schedule that assign Rst = 0 for all consumers is not a solution.

Next suppose that Rst = 0 for some s, t in the optimal shcedule. Z denote the set of
these (s, t). By the discussion above, there is at least one s̃, t̃ whose plan satisfies Rs̃t̃ > 0.
As we saw, social welfare when there exist some consumers whose pension return is 0 is
−∞. Let R′

s̃t̃
be ε ∈ (0, Rst) and the return for consumers whose initial return is 0 be R′

s̃t̃
that satisfies ∑

(s,t)∈Z

nstR
′
st = ns̃t̃(Rs̃t̃ − ε).

For other consumers that does not included in Z ∪ {s̃, t̃}, their plans are not be changed
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from initial plans. This assures that the feasibility condition holds. Actually,∑
(s,t)∈Θ

nst{(1 + r)P ′
st −R′

st}

=
∑

(s,t)∈Z

nst{(1 + r)Pst −R′
st}+

∑
(s,t)̸∈Z∪{(s̃,t̃)}

nst{(1 + r)Pst −Rst}+ ns̃t̃{(1 + r)Ps̃t̃ − ε}

=
∑

(s,t)∈Z

nst(1 + r)Pst +
∑

(s,t)̸∈Z∪{(s̃,t̃)}

nst{(1 + r)Pst −Rst}+ ns̃t̃{(1 + r)Ps̃t̃ −Rs̃t̃}

=
∑

(s,t)∈Θ

{(1 + r)Pst −Rst} ⩾ 0

since the last line is feasibility condition for initial schedule. By the same reason as
the discussion above, the social welfare of the revised schedule is strictly larger than
−∞. Therefore, the schedule that assign zero return to more than one consumer is not
optimal.

We use this result in the analysis below. The government’s problem is as follows:

max
S

∑
(s,t)∈Θ

nst

{
(1 + λt) logKtRst + δ logRst − λt log

(
Kt +

1

1 + ρ

)
Rst

}
s.t

∑
(s,t)∈Θ

nst {(1 + r)Is − (1 + (1 + r)Kt)Rst} ⩾ 0

0 ⩽ Rst ⩽ Is/Kt, ∀(s, t) ∈ Θ.

The associated Lagrangian is

L = µ0

∑
(s,t)∈Θ

nst

[
(1 + λt) logKtRst + δ logRst − λt log

(
Kt +

1

1 + ρ

)
Rst

]

+ µ1

∑
(s,t)∈Θ

nst [(1 + r)Is − (1 + (1 + r)Kt)Rst] +
∑

(s,t)∈Θ

µ2stRst +
∑

(s,t)∈Θ

µ3st

(
Is
Kt

−Rst

)
,

where µ0, µ1, µ2st and µ3st are Lagrange multipliers. Note that µ2st = 0 for all (s, t) in
the solution because of the complementary slackness conditions for the constraint Rst ⩾ 0
and lemma 5.1. Then the first order conditions for Rst are

∂L
∂Rst

= µ0nst
1 + δ

Rst
− µ1nst(1 + (1 + r)Kt)− µ3st = 0. (15)

We can see that µ0 is strictly positive in the solution. Suppose that µ0 = 0. Then µ1 = 0
and µ3st = 0 must hold for all (s, t) by (15). However, this contradicts non-zero condition
of Lagrange multipliers. Hence we can standardize µ0 as 1. Then (15) is rewritten as

µ1 =

(
1 + δ

Rst
− µ3st

nst

)
1

1 + (1 + r)Kt
. (16)

The left hand side is independent of (s, t), the right hand side is equivalent for all (s, t).
We can exclude a schedule with Rst = Is/Kt for all (s, t) from a candidate of solution

since this schedule is infeasible. In addition, here we show the following lemma.

Lemma 5.2. For all (s, t) ∈ Θ, Rst < Is/Kt.
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Proof. To show this, we assume that Rst = Is/Kt for some (s, t) ∈ Θ and derive optimal
plans for other (s̃, t̃) ̸= (s, t). We propose a contradiction between a condition that Rs̃t̃ > 0
and a condition that µ3st ⩾ 0. Define C to be C ≡ {(s, t) ∈ Θ: Rst = Is/Kt}. By the
definition and the complementary slackness, µ3s′t′ = 0 for (s′, t′) ̸∈ C, which implies two
things. First, µ1 > 0 by (16), that is, the feasibility condition is satisfied with equality.
Second, by (16) again, it holds that

1 + δ

Rst

1

1 + (1 + r)Kt
=

1 + δ

Rs′t′

1

1 + (1 + r)Kt′

⇐⇒ (1 + (1 + r)Kt)Rst = (1 + (1 + r)Kt′)Rs′t′ (17)

for any (s, t), (s′, t′) ̸∈ C. Using this relation, we have∑
(s,t)∈Θ

nst [(1 + r)Is − (1 + (1 + r)Kt)Rst]

=
∑

(s,t)̸∈C

nst [(1 + r)Is − (1 + (1 + r)Kt)Rst]

+
∑

(s,t)∈C

nst

[
(1 + r)KtIs − (1 + (1 + r)Kt)Is

Kt

]
= 0

⇐⇒ (1 + (1 + r)Kt̃)Rs̃t̃

∑
(x,t) ̸∈C

nst = (1 + r)
∑

(s,t)̸∈C

nstIs −
∑

(s,t)∈C

nstIs
Kt

⇐⇒ Rs̃t̃ =
1

(1 + (1 + r)Kt̃)
∑

(s,t)̸∈C nst

(1 + r)
∑

(s,t) ̸∈C

nstIs −
∑

(s,t)∈C

nstIs
Kt


for any (s̃, t̃) ̸∈ C. This is positive if and only if

(1 + r)
∑

(s,t)̸∈C

nstIs >
∑

(s,t)∈C

nstIs
Kt

. (18)

On the other hand, it must hold that µ3st ⩾ 0 for (s, t) ∈ C. By (16), for any (s, t) ∈ C
and (s′, t′) ̸∈ C, we have the following:

1 + δ

Rs′t′

1

1 + (1 + r)Kt′
=

(
1 + δ

Rst
− µ3st

nst

)
1

1 + (1 + r)Kt

⇒µ3st = nst(1 + δ)

(
Kt

Is
−

(1 + (1 + r)Kt)
∑

(s,t) ̸∈C ns
t

(1 + r)
∑

(s,t)̸∈C ns
tIs −

∑
(s,t)∈C(nstIs/Kt)

)
.

A sufficient and necessary condition for µ3st ⩾ 0 is

Kt

Is
⩾

(1 + (1 + r)Kt)
∑

(s,t) ̸∈C ns
t

(1 + r)
∑

(s,t)∈C ns
tIs −

∑
(s,t)∈C(nstIs/Kt)

⇐⇒ Is
Kt

(1 + (1 + r)Kt)
∑

(s,t)̸∈C ns
t

(1 + r)
∑

(s,t)∈C ns
tIs −

∑
(s,t)∈C(nstIs/Kt)

⩽ 0

⇐⇒ (1 + r)
∑

(s,t)̸∈C

ns
tIs <

∑
(s,t)∈C

nstIs
Kt

(19)

Thus, (19) contradicts (18).
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By lemma, we can focus on an inner solution. Then by the complementary slackness
conditions, µ3st = 0 for all (s, t) ∈ Θ and we can derive the relation (17) for any pair
(s, t), (s′, t′) ∈ Θ. Moreover, the feasibility condition is satisfied with equality by (16) and
µ3st = 0. Substituting (17) to the feasibility condition, we have

Rst =
(1 + r)

∑
(s̃,t̃)∈Θ ns̃t̃Is̃

1 + (1 + r)Kt

for all (s, t) ∈ Θ. To derive Pst, substitute Rst to Pst = Is −KtRst. Then

Pst = Is −Kt

(1 + r)
∑

(s̃,t̃)∈Θ ns̃t̃Is̃

1 + (1 + r)Kt

=
[1 + (1 + r)Kt]Is −Kt(1 + r)nstIs −Kt(1 + r)

∑
(s′,t′ )̸=(s,t) ns′t′Is′

1 + (1 + r)Kt

=
Is + (1 + r)Kt

∑
(s′,t′)̸=(s,t) ns′t′Is − (1 + r)Kt

∑
(s′,t′)̸=(s,t) ns′t′Is′

1 + (1 + r)Kt

=
Is + (1 + r)Kt

∑
(s′,t′)̸=(s,t) ns′t′(Is − Is′)

1 + (1 + r)Kt
.

We need to check whether consumers have incentive to untruthfully tell their degree
of temptation. Since their optimal plans that we have derived is determined on the locus
of σst(τst) = 1/(1 + r), one sufficient condition for no-deviation is that plans for arbitrary
two consumers with the same income are on the same line with the gradient of 1/(1 + r).
Actually, this is satisfied.

Proposition 5.1. For any (s, t) and (s, t′), it holds that

Pst − Pst′

Rst −Rst′
=

1

1 + r
.

Proof. We calculate Rst −Rst′ and Pst − Pst′ in practice.

Rst −Rst′ =
(1 + r)

∑
(s̃,t̃)∈Θ ns̃t̃Is̃

1 + (1 + r)Kt
−

(1 + r)
∑

(s̃,t̃)∈Θ ns̃t̃Is̃

1 + (1 + r)Kt′
=

(1 + r)(Kt′ −Kt)
∑

(s̃,t̃)∈Θ ns̃t̃Is̃

[1 + (1 + r)Kt][1 + (1 + r)Kt′ ]
,

Pst − Pst′ = (Is −KtRst)− (Is −K ′
tRst′)

=
Kt′((1 + r)

∑
(s̃,t̃)∈Θ ns̃t̃Is̃)

1 + (1 + r)Kt
−

Kt((1 + r)
∑

(s̃,t̃)∈Θ ns̃t̃Is̃)

1 + (1 + r)Kt′

=
Kt′ [1 + (1 + r)Kt′ ]−Kt[1 + (1 + r)Kt]

[1 + (1 + r)Kt][1 + (1 + r)Kt′ ]

∑
(s̃,t̃)∈Θ

ns̃t̃Is̃

=
(Kt′ −Kt)

∑
(s̃,t̃)∈Θ ns̃t̃Is̃

[1 + (1 + r)Kt][1 + (1 + r)Kt′ ]
.

Hence, we have the intended result.

Therefore, we can conclude that the solution we have derived is not only for the problem
with complete information but also for the problem with incomplete information.

Theorem 5.1. In the unique optimal schedule, the plan of consumer with (Is, λt) is

Rst =
(1 + r)

∑
(s̃,t̃)∈Θ ns̃t̃Is̃

1 + (1 + r)Kt

Pst =
Is + (1 + r)Kt

∑
(s′,t′ )̸=(s,t) ns′t′(Is − Is′)

1 + (1 + r)Kt
.
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Figure 6: An optimal schedule

Figure 6 shows an example of the optimal schedule when I = {I1, I2} and Λ = {λ1, λ2}.
Four points are the elements of optimal schedule. Note that the consumers can lie about
only their degree of temptation. Thus the deviation that we have to think is between
(I1, λ1) and (I1, λ2) and between (I2, λ1) and (I2, λ2). We can see that the deviation
makes loss for any types.

The optimal schedule above has some characteristic property. First, clearly, this sched-
ule is the generalization of the result in the previous section with identical income. You
can see this by assuming I1 = I2 = · · · = Im in the plan for (s, t). Second, the pension
return is equivalent for two consumers if and only if their degree of temptation are equiv-
alent. That is, the determination of the amount of return depends only on the degree
of temptation and not on income. On the other hand, third, the payment for the pen-
sion fund depends both of income and the degree of temptation. Especially, consumers
with relatively higher income pay more amount, since the summation in the numerator of
Pst become larger when Is is high. This implies that there is a monetary transfer from
high-income consumers to low-income consumers through the differences of payments.

6 Conclusion

We have considered optimally funded pensions for consumers who face the temptation
to overconsume and as well as for those who have enough self-control to withstand their
temptation. Since funded pensions tighten consumers’ budgets , they can serve as com-
mitment devices to avoid overconsumption. We applied the pension to an economy in
which consumers have heterogeneous self-control. We showed that funded pensions can
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improve social welfare even if the interest rates they draw are the same as those for private
saving. In addition, consumers do not save individually when they choose the pension plan
that is optimal for them. Furthermore, interestingly, lower pension premium and lower
pension payout are applied for a higher temptation economy. This result is related to
borrowing constraints. In an identical-type economy, an increase in the premium leads
to increased pension income, and this augments possibility of debt. Since consumers are
tempted to overconsume, this works stronger for consumers who have strong temptations.
This effect is greater than the benefit of strengthening the budget set. As a main result,
we have considered an optimal pension schedule when there exist two or more types in the
economy. In that situation, we show the necessary conditions for the optimal schedule. If
the normative utility function is a logarithm, it is characterized in the same way as that
for an economy with identical-type. We show that monetary transfer among types will
not occur for the optimal schedule. An important result is that the optimal schedule does
not depend on the distribution of types, that is, what the government has to know is only
what types are in the economy. This make the operation of the pension policy easier.

We have showed the construction of optimal pension scheme in which income redis-
tribution occurs. In the future research, we will extend the model to the situation of
overlapping generations model. We study the relation between relieving of self-control
cost and intergenerational redistribution. Then we can this make scheme fitted to the
more realistic pension policy.
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