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Abstract

This paper introduces a new class of demand systems to study oligopolistic pricing
games with multiproduct firms. We focus on the class of demand systems that can be
derived from discrete/continuous choice with iid type 1 extreme-value taste shocks. We
also show that these demand systems are integrable with quasi-linear preferences. The
pricing game is aggregative and payoff functions are uni-modal, although not necessarily
quasi-concave. Firms’ fitting-in and best-response functions can be entirely summarized
by a uni-dimensional sufficient statistic, called the iota-markup. This allows us to
show that, under fairly weak conditions, the pricing game has a Nash equilibrium.
Under stronger conditions, this equilibrium is unique. We also provide an algorithm
which exploits the aggregative nature of the game to compute the pricing equilibrium
with multiproduct firms and CES demands. The algorithm always converges. As an
application, we derive a number of results on the dynamic optimality of myopic merger

policy under differentiated Bertrand competition.

1 Introduction

We introduce a new class of demand systems that nests the standard multinomial logit and
CES demand systems. Using this demand system, we analyze an oligopoly pricing model

with multiproduct firms. Exploiting the aggregative games structure of the model, we prove
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existence of equilibrium under fairly general conditions and provide sufficient conditions for
uniqueness of equilibrium. We apply the model to static and dynamic merger analysis.

Analyzing the behavior of multiproduct firms in oligopolistic markets appears to be of a
first-order importance. Multiproduct firms are endemic and play an important role in the
economy. Even when defining products quite broadly at the NAICS 5-digit level, multiprod-
uct firms account for 91% of total output and 41% of the total number of firms (Bernard,
Redding, and Schott (2010)). Similarly, many markets are characterized by oligopolistic com-
petition: Even at the 5-digit industry level, concentration ratios are fairly high: for instance,
in U.S. manufacturing, the average NAICS 5-digit industry has a four-firm concentration
ratio of 35% (Source: Census of U.S. Manufacturing, 2002).

While there has been a lot of interest in multiproduct firms in the industrial organization
and international trade literatures, researchers have generally shied away from dealing with
the theoretical difficulties arising in oligopolistic models with multiproduct firms. The first
source of difficulties is the high dimensionality of firms’ strategy sets. The second source
is that even with “well behaved” demand systems such as the multinomial logit demand
system, firms’ payoff functions are typically not quasi-concave when firms offer multiple
products (Spady (1984), Hanson and Martin (1996)). The third is that action sets are not
bounded, and that it is often difficult to find natural upper bounds on prices.! The fourth is
that payoff functions typically fail to be supermodular or log-supermodular.

In light of these technical difficulties, it is perhaps not surprising that the burgeoning
literature on multiproduct firms in international trade has focused almost exclusively on
models of monopolistic competition (Bernard, Redding, and Schott (2011), Dhingra (2013),
Mayer, Melitz, and Ottaviano (2014), Nocke and Yeaple (2014)).? In industrial organization,
multiproducts firms are at the heart of the literature on bundling but the existing models
are highly stylized.> Multiproduct firms feature very prominently in the empirical industrial
organization literature on demand estimation where marginal costs are backed out under the
assumption that the pricing equilibrium exists and that first-order conditions are sufficient
(Berry (1994), Berry, Levinsohn, and Pakes (1995), Nevo (2001)).1

In the first part of this paper, we introduce a new class of quasi-linear demand systems

'For example, in the case of multinomial logit demand without an outside option, even a single-product
firm’s best-response price goes to infinity when the prices of rivals’ offerings become large.

2An exception is Eckel and Neary (2010) who study (identical) multiproduct firms in a Cournot model
with linear demand.

3Much of the bundling literature focuses on monopoly and/or two goods only (Schmalensee (1984),
McAfee, McMillan, and Whinston (1989), Armstrong and Vickers (2010), Chen and Riordan (2013)).

4A theoretical foundation of these assumptions is missing so far, and the assumptions are likely to be
violated in applications.



which nests standard CES and multinomial logit demand systems with heterogeneous quality
and price-sensitivity parameters. We provide necessary and sufficient conditions for the
demand system to be integrable, i.e., to be derivable from a representative consumer choice
problem. We show that, under the same conditions, the demand system is also derivable from
a discrete-continuous choice problem with random utility.> As the demand system satisfies the
Independence of Irrelevant Alternatives (ITA) axiom, the representative consumer’s indirect
(sub-)utility function can be written as as a function of a single-dimensional aggregator,
which is given by the sum (over all products) of transforms of product prices. This property
implies that the pricing game between multiproduct firms is aggregative; that is, each firm’s
profit can be written as a function of its own prices and the single-dimensional aggregator.

In the second part of the paper, we study a pricing game between multiproduct firms with
arbitrary product portfolios and product-level heterogeneity in marginal costs and qualities
(price-sensitivity parameters). The dimensionality of the problem is reduced, first, because
the pricing game is aggregative, and, second, by showing that a firm’s multidimensional pric-
ing strategy can be fully summarized by a unidimensional sufficient statistic. This allows us
to establish equilibrium existence under mild conditions, and equilibrium uniqueness under
more stringent conditions. In case equilibrium is not unique, equilibria can be Pareto-ranked
for the players (firms), with firms’ ranking being the inverse of consumers’ ranking of equi-
libria. The reduction in the dimensionality of relevant strategy sets not only helps proving
existence and uniqueness but also computing equilibria efficiently, as we show. In the special
cases of CES and multinomial logit demands, an additional aggregation property obtains: A
firm’s product portfolio with associated qualities and marginal costs can be fully summarized
by a unidimensional sufficient statistic.

In the third part of the paper, we apply the pricing game to static and dynamic merger
analysis. For the special cases of CES and multinomial logit demands, we extend Nocke and
Whinston (2010)’s result on the dynamic optimality of myopic merger approval policy to

mergers between arbitrary multiproduct firms.

2 Discrete/Continuous Consumer Choice

We consider a demand model in which consumers make discrete/continuous choices: a con-
sumer first decides which variety to patronize, and then, how much of this variety to consume.

We formalize discrete/continuous choice as follows:

®See Novshek and Sonnenschein (1979), Hanemann (1984), Dubin and McFadden (1984), Smith (2004)
and Chan (2006) for references on discrete-continuous choice.



Definition 1. A discrete/continuous choice model of consumer demand is a collection (hj)jeN,
where N is a finite and non-empty set, and, for every j € N, h; is a C* function from R, 4
to Ry such that h; < 0 and log (h;)" > 0.

For every j, v; = log (h;) is an indirect subutility function in a hypothetical quasi-linear
economy in which only variety j and an outside good are available. Conditions v; < 0 and
v > 0 are necessary and sufficient for v; to be an indirect subutility function (see Nocke and
Schutz, 2015). By Roy’s identity, the demand for product j in this hypothetical economy is
given by q; = —v}. Therefore, assumption A’ < (0 means that the demand for variety j never
vanishes. Let H be the set of C3, strictly decreasing, and log-convex functions from R, , to
R, ..

Let y be the consumer’s income. We normalize the price of the outside good to 1. The
consumer makes discrete-continuous choices as follows. He first observes all varieties’ prices
(pj)jen, and a vector of taste shocks (g;);jen. If he chooses variety k& € N, then he consumes
qr(pr) units of product k, uses the rest of his income to consume the outside good, and

receives utility y + vg(pg) + €. Therefore, the consumer chooses variety k only if
VieN, y+ulpr) +er > y+vi(py) + e

We assume that the components of vector (¢;);en are identically and independently drawn
from a type-1 extreme value distribution. Therefore, by Holman and Marley’s theorem,
variety k is chosen with probability

aVk(Pr) hk(pk)

Py(p) = Pr (Uk(pk) + e = max (v;(ps) + 5]‘)) = > o ) - > on I (py)

It follows that the expected demand for product k is given by

eﬂk(pk) _h;g (pk)

Py (p)qr(pr) = m (—vi(pr)) = m

This motivates the following definition:

Definition 2. The demand system generated by discrete/continuous choice model (hj)jeN
18: )
— Iy, (Pk)

Dy, ((pj)je/\/> = m, Vk € N, V(pj)jeN S R’i@. (1)

Our class of demand systems nests standard multinomial logit (if h;(p;) = e~ x  for all

j € N, where a; € R and A > 0 are parameters) and CES demands (if »;(p;) = ajpjl-_”, where
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a; > 0 and o > 1 are parameters) as special cases. The fact that CES demands can be derived
from discrete/continuous choice was already pointed out by Anderson, De Palma, and Thisse
(1987) in a slightly different framework without an outside good. As seen in equation (1),
the class of demand systems that can be derived from discrete/continuous choice is much
wider than CES and multinomial logit demands. Notice also that, by virtue of the iid type-1
extreme value distribution assumption, all these demand systems have the Independence of
Irrelevant Alternatives (ITA) property. The IIA property will allow us to greatly simplify the
multiproduct-firm pricing problem in Section 4.

The consumer’s expected utility can be computed using standard formulas (see, e.g.,
Anderson, de Palma, and Thisse (1992), Section 2.10.4):

E (y + fgﬁi%(ﬁj)) =y + log (Z e”‘“””) =y + log (Z hj(ﬁj)) : (2)

JEN JEN

Therefore, consumer surplus is aggregative, in that it only depends on the value of aggregator
H =3 e hi(p)-

Integrability. While much of the empirical industrial organization scholars have adopted
discrete choice models as a way of deriving consumer demands, other strands of literature,
such as the international trade literature, mainly use a representative consumer approach.
In the following, we investigate whether demand system (1) can be obtained from the max-
imization of the utility function of a representative consumer with quasi-linear preferences.

We recall the following definition from Nocke and Schutz (2015):

Definition 3. Letn > 1 and D : R} | — R%. We say that D is quasi-linearly integrable if
there exists a function u: R} — RU{—o0} such that for every (p,y) € Rt x Ry such that
p- D(p) <y, vector (y —p- D(p), D(p)) is the unique solution of

1(ma>§{qo+u(q)} st. qo+p-q<vy, q>0andq>0.
q0,9

When this is the case, we say that uw (resp. v : p € R%, — w(D(p))) is a direct (resp.

indirect) subutility function for demand system D.

We prove the following proposition:®

5Tn Appendix A.1l, we prove a more general result. We derive necessary and sufficient conditions for



Proposition 1. Let D be the demand system generated by discrete/continuous choice model
(hj)je v D is quasi-linearly integrable. Moreover, v is an indirect subutility function for D

if and only if there exists a constant o € R such that

v <(pj)je/\f) =a+log (Z hj(Pj)) :

JEN
Proof. See Appendix A.1. n

Therefore, any demand system that can be derived from discrete/continuous choice can
also be derived from quasi-linear utility maximization. The second part of the proposi-
tion says that the expected utility of a consumer making discrete/continuous choice and
the indirect utility of the associated representative consumer coincide (up to an additive
constant, which we can safely ignore). Therefore, the results we will derive on consumer
welfare do not depend on the way the demand system has been generated. Whether we use
discrete/continuous or a representative consumer approach, all that matters is the value of

aggregator H.

Remark: Consumer heterogeneity. One limitation of our approach is that the ¢ taste
shocks are the only source of consumer heterogeneity. This concern could be addressed as
follows: Let t € RV, the consumer’s type, be a random vector drawn from some probability
distribution P. Assume that h; depends not only on p;, but also on the j-th component
of the consumer’s type: h; (p;,t;). If the consumer observes his type before choosing which

variety to patronize, then the expected demand for variety k is given by:

_Ohy

(plmtk)
D N _ Opk
k <(p])]€/\f> RN Z]ENhJ (pjvtj)

dP(t),

i.e., the associated demand system is a mixture of the demand systems introduced in Defini-
tion 2. Notice that random coefficients logit demands are a special case. Unfortunately, our
aggregative games approach does not allow us to handle such demand systems.

The case where the consumer observes his type after having chosen which product to buy

is easier to accommodate. The consumer’s expected utility from choosing variety j is given

demand system
9k (Pk) N
Dy (ps). ==, VkeN, V(pj)..»€ER
k (( J)36N> ZjeN h;(p;) ( J)jEN ++

to be quasi-linearly integrable.



by:
[ 0w 0 (1) aP(e) = 1og (1 1,)

Under some technical conditions (which allow us to differentiate under the integral sign), the

consumer’s expected demand for product j conditional on having picked product j is:

2 [ 1o y0) 2P0 = L Qo 0,1

/ —9 (1og (hy(py, 1;))) dP(t) =

Differentiating once more under the integral sign, we also see that h;(-) is log-convex if (-, ¢;)
is log-convex for every t;. Therefore, h;(-) is the logarithm of an indirect subutility function.

Moreover, the expected demand for product £ is given by:

—hi(pr)

Pe(ex) = 5=y N Ve R

which is the same expression as in Equation (1). Another way of phrasing this discussion
is that our aggregative games tools allow us to handle consumer heterogeneity in ex post

demand, but not in choice probabilities.

3 Multiproduct Monopoly Pricing with an Outside Op-
tion

Fix a discrete/continuous choice model (hj)j cn- In this section, we partition set of products
N into two non-empty subsets: N and N°. A monopolist is the sole owner of all the
products in set N™. The constant unit cost of product k € N™ is denoted ¢; > 0. Products

in set N0 are exogenously priced at (p?) The monopolist therefore chooses its products’

JENO®
prices (p;),cpm SO as to maximize

Z (pk: _ Ck:) —h%(pk) _ Z (pk _ Ck) _hz’(pk)

ken™ >senn hi(0i) + Xjeno i (9)) 5 > jenm hips) + HO

where H? = 3.\ h; (p9). H® is called the (value of) the outside option.

The goal of this section is to derive conditions under which the above profit function
and maximization problem are well-behaved. We first study whether first-order conditions
are sufficient for local and/or global optimality. This is an important question, because the

aggregative games approach we will use in the next section relies on first-order conditions.



Next, we investigate whether the profit maximization problem has a solution, and whether

the solution is unique.

3.1 Sufficiency of First-Order Conditions
3.1.1 Definitions and Statement of the Theorem

We first define a multiproduct firm as a collection of products, along with a constant unit

cost for each product:

Definition 4. A multiproduct firm is a pair ((hj)jeN, (cj)j€N>, where N = {1,...,n} is
a finite and non-empty set, and for every j € N, h; € H, and ¢; > 0. The profit function

associated with multi-product firm M is:

(M) (0, HY) = 3 (o — 1) —e28)

. VpeRY,, VH®>o.
heN > jen hi(ps) + H® i

In the following, it will be useful to study multiproduct firms that can be constructed

from a set of products (i.e., a set of indirect subutility functions) smaller than H:

Definition 5. The set of multiproduct firms that can be constructed from set H' C H is:

MH)= | (H"xR},).

neNL 4
We can now define well-behaved multiproduct firms and well-behaved sets of products:

Definition 6. We say that multiproduct firm M € M (H) is well-behaved if for every
(p, H°) € R, VIT(M) (p, H°) = 0 implies that p is a local mazimizer of 11 (M) (., H°).
We say that product set H' C H is well-behaved if every M € M (H') is well-behaved.

Put differently, a set of products is well-behaved if for every multiproduct firm that can be
constructed from this set, for every value the outside option H° can take, first-order conditions
are sufficient for local optimality. In the following, we look for the “largest” well-behaved set
of products, where the meaning of “large” will be made more precise shortly.

We define the following differential operators: for every h € H, v(h) = (];1/,22, p(h) = %,
t(h)(z) = xf;,((mx)), for all z > 0, and v(h)(p,c) = E=¢(h)(p) for every p > 0 and ¢ > 0. The
condition that A is strictly decreasing and log-convex is equivalent to A’ < 0, h” > 0 and
p(h) = 1.




t(h) has a straightforward economic interpretation: Consider a hypothetical single-product
firm selling product h. Suppose that this firm behaves in a monopolistically competitive way,
in the sense that it does not internalize the impact of its price on aggregator H. This firm
therefore faces demand —h'(p)/H and, since it takes H as given, it believes that the price
elasticity of demand for its product is equal to the elasticity of —h'(p), which is exactly
t(h)(p). It will be useful to define the following set of products:

H ={heH: Vp>0, uh)(p)>1= (u(h) (p)=>0}.

Condition ¢(h)(p) > 1 == (¢(h)) (p) > 0 essentially says that the price elasticity of the
monopolistic competition demand for product h is non-decreasing when the price is high
enough. This condition is sometimes called Marshall’s second law of demand.

We also define the set of CES and logit products as follows:

HOES = {h eH: 3Fa,0) eRiy x(1,00)s.t. ¥p>0, h(p) = apl_”} ,

Jlosit — {h eH: 3a,\) ER xRy, s.t. ¥p >0, hip) = e;} .
Clearly, if h € HYFS then «(h) = o for some constant o > 1, and if h € H!*9" then
t(h)(p) = p/X for every p > 0, and for some constant A > 0. Therefore, H“FS C H* and

Hlogit g e

We are now in a position to state our theorem:

Theorem 1. H" is the largest (in the sense of set inclusion) set H' C H such that HEES C H'
and H' is well-behaved.

In words, H* is the largest set of products that contains CES products and that is well-
behaved.

3.1.2 Proof of Theorem 1

We first introduce new notation. For every k € N, define v = v (hi), pr = p(hx) and

1y =t (hg). Define also vg(pg,cr) = p"p;C’“ tk(pr). Note that
v _ % ion) + 2 () (3)
Opx, pi Pk "



In addition, since tx(px) = pr ;}Z;E;Z ’;), we also have that

vy, _ (Ve (prs cx) — 1) B (pr) — vi(Pr, ) ve (k) (4)
Opy, Vi (Pr) .

Differentiating the monopolist’s profit with respect to pp, we obtain:

O (M) =Ny (px) Dk — Ck —hi(p —h/( i)
8pk. N ]}’I (1 a Pk _h/ +J§[ > )
= %@k) (1 — V(P cr) +]%\:[Vj(pj,cj)%gj)> ; (5)

where H = Zj env hi(p) +H 0. Therefore, if the first-order conditions hold at price vector p,
then, for every k in N,

Vi(pg,cx) = 1+ Zuj(pj,cj)%l(g;j). (6)
JEN

Since the right-hand side of the above equation does not depend on the identity of product
k, it follows that

v(pi,ci) = v(pj cj), Vi,jeN.

We say that price vector p satisfies the common t-markup property. This is an important
property, which we will extend and discuss in greater detail in Section 3.2. For now, we note

that the constant (-markup property allows us to rewrite the first-order condition for product

1 (D, Cr) < Z (s ) =L (7)

JEN

k as follows:

Since we are interested in the sufficiency of first-order conditions for local optimality, we
need to calculate the Hessian of the monopolist’s profit function. This is done in the following

lemma:

Lemma 1. Let M € M (H), p >> 0 and H° > 0. If V,II(M) (p, H®) = 0, then the Hessian
of TI(M) (., H°), evaluated at price vector p, is diagonal, with typical diagonal element

Vi (pr) o (Pk» k)
HO+ 3 cnhip) Ope

Proof. See Appendix B.1. O

The following lemma is an immediate consequence of Lemma 1 and equation (3):

10



Lemma 2. Set H* is well-behaved.
Proof. See Appendix B.2. O

The next step is to rule out products that are not in H*. This is done in the following

lemma:
Lemma 3. Let h € H\H'. Then, HFS U {h} is not well-behaved.
Proof. See Appendix B.3. O

The idea behind the proof is as follows. Since hy = h ¢ H', there exists a price p > 0
such that ¢ (p) > 1 and // (p) < 0. By equation (3), vy (p,c1) < 0 for ¢; > 0 low enough.
We pair product h; with a well-chosen CES product hy € HFS, and find a p, > 0, a ¢,
and an H® > 0 that ensure that the first-order condition for product 1 (given price p and
marginal cost ¢;) holds, while the first-order condition for the other product holds as well.
Since dvy (p, 1) < 0, we can then use Lemma 1 to show that the multiproduct firm we have
constructed is not well-behaved.

Combining Lemma 2 and 3 proves Theorem 1. In the following, we focus on multiproduct
firms that are constructed from set H*, since any bigger set would necessarily imply that, for
some multiproduct firms, first-order conditions would not be sufficient for optimality, thereby
invalidating our aggregative games approach.

We close this section by noting that multiproduct-firms are special, in the sense that,
compared to single-product firms, they require strictly stronger restrictions on the set of
admissible products to be well-behaved. This statement is formalized in the following propo-

sition:

Proposition 2. Let h € H, ¢ >0 and M = (h,c). The following assertions are equivalent:
(i) Firm M is well-behaved.
(ii) For every p > 0 such that t(h)(p) > 1, («(h)) (p) > 0 or (p(h)) (p) > 0.

Proof. See Appendix B.4. O

3.2 Existence and Uniqueness of a Solution, and Sufficiency of

First-Order Conditions for Global Optimality

We start by proving the following technical lemma:

11



Lemma 4. Let h € H*. Then:

(i) There exists a unique scalar p(h) > 0 such that for every p >0, t(h)(p) > 1 if and only
if p> p(h). Moreover, (u(h))' (p) >0 for all p > p(h).

(i3) k) = iy oo t(R)(p) > 1.
(iii) For every p > p(h), (y(h))" (p) <O0.
(iv) Timyo0 v (h)(p) = 0.
(v) limy, o ph/(p) = 0.
(vi) If limy h =0 and fi(h) < 0o, then lim, .. p(h)(p) = ﬁ’(lh(%
Proof. See Appendix B.5. O

Fix a multiproduct firm M = <(hj)je/\/’ (Cj)jeN> e (HYY x RV, . Tt is useful to allow

firms to set infinite prices, to ensure that the profit maximization problem has a solution:

Definition 7. The profit function associated with multi-product firm M = ((hj)je/\/ , (Cj)jeN>
7

18!
(M) (p.H) = Y (pr—cx) _hﬁf(p’“). -, Vp € (0,00, VH® > 0. (8)
heN > hilp)+ Y lim 7o + H
P <00 je</\/ JEN
pj<oo pj=00

The assumption is that, if p, = 0o, then the firm simply does not supply product £, and
therefore does not earn any profit on this product. In the discrete/continuous choice model,
the consumer still receives a type-1 extreme value draw ¢, for product £, so he might still end

up “choosing” product k, but he will not consume a positive amount of it.® This explains the

"Throughout the paper, we adopt the convention that the sum of an empty collection of real numbers is
equal to zero.

8Suppose that lim,, —h'/h =1 > 0 (the limit exists, since h is log-convex). There exists zo > 0 such that
—h'(x)/h(z) > 1/2 for all x > z(. Integrating this inequality, we see that

h(x) l
—log <h(w0)) > i(x —xg), Vx> x.

Taking exponentials on both side, and letting x go to infinity, we obtain that lim., h = 0. Therefore, if
the consumer’s conditional demand for the product given that he chooses this product is strictly positive
when the price is infinite, then his probability of choosing this product is zero. Conversely, if the probability
that the consumer chooses this product when the price is infinite is strictly positive (lime h > 0), then the
consumer’s conditional demand at infinite price must be equal to zero. These two cases (as well as the case
in which the conditional demand and the choice probability are identically zero) are consistent with the
interpretation that the product is simply not available.

12



presence of > jen lime h; in the denominator of II(M). In the following, we write h;(oco)

instead of limoojhj.

Our goal is to study the following maximization problem for every H° > 0:

max II(M) (p, H°) , 9
max TI0M) (7. H°) )
Lemma 5. If h; € H" for every j € N, then mazimization problem (9) has a solution for
every H® > 0. Moreover, if p solves maximization problem (9), then p; > ¢; for all j € N

Proof. See Appendix B.6. O

The lemma is proven by exploiting the fact that [];.\[cj, 00] can essentially be treated
like a compact set (since there is a continuous bijection between this set and [0, 1]V), and
that, if (h)cy € (1YY, then II(M) (., H°) is “continuous” on [1enlej, o0] (in the sense
that, for every price vector p with finite and/or infinite components, lims_,, II(M) (p, H°) =
(M) (p, H®)). Prices below marginal cost are easy to rule out.

The next step is to solve the firm’s maximization problem using first-order conditions.
The problem is that the profit function is not necessarily differentiable at infinite prices, so
we will need to modify the definition of first-order conditions to account for that. Note first
that, if all products in N/ C A are priced at infinity, then profit function II (., H?) is still
C? in (pj)je N € R/_\(J\FN/, as can be seen by inspecting profit function (8). Next, we slightly
abuse notation, by denoting (pk, (pj)j e\ {k}> the price vector with k-th component py, and

with other components given by (pj)j EN\{k} We generalize first-order conditions as follows:

Definition 8. We say that the generalized first-order conditions of mazimization problem (9)

hold a price vector p € (0, 00N if for every k € N,

(a) 8%5;4) (p, H°) = 0 whenever pj, < oo, and

(b) (M) (5, 1) = 1) ((ps (55)jeny oy ) - H) Jor every pi € R whenever j, = oo.
It is obvious that generalized first-order conditions are necessary for optimality:

Lemma 6. If p € (0, 00V solves mazimization problem (9), then the generalized first-order

conditions are satisfied at price profile p.

Next, we want to show that, if the generalized first-order conditions hold at a price
vector, then this price vector satisfies a generalized version of the common -markup property
introduced in Section 3.1.2. To define this generalized common ¢-markup property, we first

need to establish a few facts about functions v;(.,.):

13



Lemma 7. For every h € H* and ¢ > 0, function v(h)(.,c) is a strictly increasing C*-
diffeomorphism from (c,00) to (0, u(h)). Denote its inverse function by r(h)(.,c). Then, for
all p € (0, i (h),

or(h) _ v(h) (r(h)(p; ) < 0. (10)

O (= () (r(h)(p, 0))) = (= 1) (=H (r(R)(p, ©)))

In addition, v(h) is strictly increasing in p and c, and r(h)(u,c) > p(h) whenever u > 1.
Proof. See Appendix B.7. O

In the following, it will be convenient to extend functions v(h) and r(h) by continuity as

follows:

v(h)(oco,c) = f(h), Ye >0,
r(h)(u,c) = oo, Yu > pu(h), Ye > 0.

We can now generalize the common ¢-markup property to price vectors with infinite

components (for every k, put r, = r(hy)):

Definition 9. We say that price vector p € (0, oo]N satisfies the common t-markup property

iof there exists a number p > 0, called the t-markup, such that
\V/kEN, pk:Tk(M,Ck).

For every k € N, extend 7, by continuity at infinity: v(co) = 0. The following lemma
essentially rewrites condition (6) (replace v; by p and p; by r; for every j € N') when infinite

prices are allowed. It allows us to simplify first-order conditions considerably:

Lemma 8. Suppose that the generalized first-order conditions for maximization problem (9)
hold at price vector p € (0, oo]N. Then, p satisfies the common t-markup property. The

corresponding t-markup, p, solves the following equation on interval (1,00):

> jen Vi (s ¢))
> jen by (ris cy)) + HO

p=1+pu (11)

In addition, TI(M) (p, H°) = pu — 1.
Proof. See Appendix B.8. O

All we need to do now is study equation (11):
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Lemma 9. Equation (7) has a unique solution on interval (1, 00).
Proof. See Appendix B.9. O]

Combining Lemmas 5-9 allows us to conclude our study of maximization problem (9).
The profit maximization problem has a solution, and generalized first-order conditions are
necessary for optimality. Moreover, there exists at most one price vector that satisfies the
first-order condition. Therefore, the profit maximization problem has a solution, and first-

order conditions are sufficient for global optimality.

Theorem 2. Maximization problem (9) has a unique solution. The generalized first-order
conditions associated with this maximization problem are necessary and sufficient for global
optimality. The optimal price vector satisfies the common t-markup property, and the cor-
responding p is the unique solution of equation (11). The mazximized value of the objective

function is p — 1.

Proof. See Appendix B.10. O]

3.3 Comments and Comparative Statics

Although the firm’s profit function is not necessarily strictly quasi-concave, we find that the
profit maximization problem has a unique solution, and that generalized first-order conditions
are necessary and sufficient for optimality. The optimal price vector satisfies the common
t-markup property: there exists a firm-level scalar ;> 1 such that for every product k € N/
that is sold at the monopolist’s optimum, vy (pg, ¢x) = . To gain some intuition, it is useful

to rewrite this condition as follows:

—c
Vk e N s.t. pp < o0, Pe” G _ _H

Dk ue(pe)

This formula resembles the inverse elasticity rule, in that the Lerner index on product k is
equal to the inverse of the monopolistic competition price elasticity of demand for product
k, multiplied by a number, u, which summarizes the impact of an increase in p; on the
aggregator H = H® + jen v (pj), as well as cannibalization effects. What is remarkable is
that this p is independent of the identity the product under consideration.

The profit maximization problem then boils down to finding the optimal value of p. From
a computational point of view, this result is very useful, as it allows the modeler to find the
firm’s optimal prices by solving a single equation in one unknown (equation (11)), instead of

resorting to complex, and potentially time-consuming, multivariate optimization methods.
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We will also use this result to simplify multiproduct oligopoly pricing games in the next
section.

Let H* <<Cj)jEN’HO>’ w ((cj)jeN,HO), i ((cj)jeN,HO) (k € N) be the equilibrium
values of H, 1 and py, respectively. Define also

N* <(Cj>j€./\/"HO> — {k eN: p; <(Cj)j€N7HO> < oo}

as the set of products that are sold in equilibrium.

We obtain the following comparative statics:

Proposition 3. As H® increases, u* and p; (k € N') decrease, H* increase, and N* expands.
As ¢ increases, p* and p; (k # j) decrease, pj increases, and N* expands. The impact on

H* is ambiguous.
Proof. See Appendix B.11. O

The first part of the proposition says that, as the outside option becomes more attractive,
the monopolist’s market power weakens, prices fall down and consumer surplus improves. In
addition, the model predicts that a firm that operates in a more competitive environment
(higher H) tends to sell more products (larger A*). To understand the intuition, consider
1—01

a simple environment in which the monopolist only has two CES products, hy(p1) = p;

and hy(py) = py 7%, with 1 < 0y < 0o. Applying Roy’s identity, we obtain the conditional

o;—1

demand for product i € {1,2} given that the consumer purchases this product: ¢;(p;) = =

Therefore, the monopolist makes a conditional profit of (o; — 1)’% on product i.

We first focus on the extreme case in which the outside option is worthless: H° = 0.
In this case, consumers will necessarily buy one of the monopolist’s product. Note that the
conditional profit on product 1 is bounded above by o; — 1, whereas the conditional profit on
product 2 can be made arbitrarily close to 09 — 1 > 07 — 1. The monopolist therefore wants
to retire product 1 to prevent consumers from choosing this product, and ensure that they
will go for product 2, which yields a higher conditional profit.”?

On the other hand, if the outside option is sufficiently attractive (H° >> 0), then the

monopolist starts worrying about consumers switching to it. The monopolist therefore has

9This idea is a bit hard to formalize, since, when H® = 0, the monopolist’s profit function,

2 1—0'1'

i — G D;
(p1,p2) — (s = 1) — oy’
; ’ Di p% ! +p§ 2

does not have a limit at (00, 00). However, the supremum of this function, oo — 1, can be approached by
letting p; go to infinity at a faster rate than ps.
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incentives to lower its prices and to make product 1 available.

The second part of Proposition 3 says that, as the marginal cost of product j increases,
the monopolist passes this cost increase on to consumers (p;" rises), and lowers the prices of
its other products. The latter effect is due to the fact that the monopolist has less incentives
to divert sales towards products 7, since this product is now less profitable. The proposition
also says that, everything else equal, a less productive firm tends to sell more products. This
comes from the fact that an inefficient monopolist makes relatively low profit on each of
the product it sells, and therefore has less incentives to withdraw a product to divert sales
towards other products. Finally, since the marginal cost increase has asymmetric effects on

prices, the impact on consumer surplus is ambiguous.

4 The Pricing Game

In this section, we study a price competition game between multiproduct firms with arbitrary

product heterogeneity. The pricing game is defined as follows:

Definition 10. A pricing game is a triple ((hj)jeN,]:, (cj)j€N>, where:
o (hj)ien € (MY is a discrete/continuous choice model of consumer demand,
e F, the set of firms, is a partition of N such that |F| > 2,
° (cj)jeN € Rﬂr is a profile of marginal costs.

Since | J rert = N, this definition does not seem to allow for an exogenously priced
outside option. However, such an outside option is easy to incorporate. Let (hj)j6 A be a
discrete/continuous choice model of consumer demand. Partition N into two sets: N, the set
of products sold by oligopoly players, and N°, the set of products sold at exogenous prices
(pj)jeno- Let H? =37\ hj(p;) > 0 be the value of the outside option. We can now define
another discrete/continuous choice model, (i;j)jeﬁ as follows: for every j € N , Ej = hj‘i_%.
Note that this transformation affects neither consumer surplus nor expected demands. There-
fore, it is equivalent to study price competition game with discrete/continuous choice model
(hj)j < and exogenous prices (p;)jeno, and price competition game with discrete/continuous
choice model (ﬁ;)jeﬁ and no outside option.

We now define our equilibrium concept (note that we continue to allow infinite prices):
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Definition 11. The normal-form game associated with pricing game <(hj>je/\/ , F, <Cj)jeN)
is triple (]—", ((O, oo]f>f€f, (Hf)fef), where for every f € F, p! € (0, oo]f and p~/ €
(0,00,

—~hi(pt) |

s ier hi(®]) + Lyens hsw;”)

Pr<oo

A pricing equilibrium of pricing game (<hj)j6/\f"/t" (Cj>j€/\/> is a Nash equilibrium of the

associated normal-form game.

4.1 An Aggregative Games Approach to Equilibrium Existence

There are three main difficulties associated with the equilibrium existence problem. First,
nothing guarantees that payoff functions are quasi-concave. In fact, it is well known that,
with standard multinomial logit demands, profit functions can fail to be quasi-concave (Spady
(1984), Hanson and Martin (1996)). Second, firms’ action sets are unbounded, and therefore
not compact. In addition, in many cases, best-response functions are not bounded above,
and it is therefore not possible to impose an upper bound on the set of feasible prices. For
instance, using the same notation as in Section 3, the optimal price of a monopolist owning a
unique CES product tends to infinity as H® goes to infinity. Third, payoff functions are not
necessarily supermodular. With single-product firms, it is possible to get around this issue by
showing that profit functions are log-supermodular (see Milgrom and Roberts (1990), Vives
(2000)).1° We are not aware of a similar trick for multi-product firms.

The first two difficulties imply that standard existence theorems for compact games (such
as Nash or Glicksberg’s theorems) based on Kakutani’s fixed-point theorem cannot be ap-
plied. The last two difficulties imply that existence theorems based on supermodularity
theory and Tarski’s fixed-point theorem (see Milgrom and Roberts (1990), Topkis (1998))
have no bite.

The idea behind our existence proof is to reduce the dimensionality of the problem in two
ways. First, we know from Theorem 2 that a firm’s optimal price can be fully summarized
by a uni-dimensional sufficient statistics, the firm’s -markup, which is pinned down by a

single equation in one unknown. Second, the pricing game is aggregative (see Selten (1970)),

107f f = {k} is a single-product firm, then, for every j € N such that j # k,

9*log (n7) _ R (pj) R, (pr)

> 0.
Op0p; > ien hi(pi)
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in that the profit of a firm only depends on its own profile of prices and on uni-dimensional

sufficient statistic H = 3, h;(p))-

N

Price vector p € (0,00]" is a Nash equilibrium if and only if, for every f € F, (p;)

Jef
maximizes IT/ <', (pj)j e\ f). Note that, in any Nash equilibrium, each firm sets at least one
finite price, since a firm setting only infinite prices makes zero profit. Let f € F, and fix
a price vector (pj)jeN\f with at least one finite component. Define H~/ = > jens i (p;)-

Then, firm f chooses (p;);ecs s0 as to maximize

; (p£ R Ck)zj‘ef ;]h(;;(;;{l H-f =1 ((<hj)j€N ’ <Cj)je/\/)) ((pj)je_j\/' ) Hif) )

We know from Theorem 2 that this maximization problem boils down to finding the unique

solution of the following equation on interval (1, 00):

Sier i (i ep))

f— f
W =14+p —.
Djerhi (ri(u ;) + HY

The equilibrium existence problem therefore reduces to finding a profile of .-markups (,uf ) er €
(1,00)” such that

>jer i (il ¢5))

f_ f
n = 1 +,u )
> ger 2ujeg N (ri(1d, c5))

VfeF.

This is, in turn, equivalent to finding an aggregator level H > 0 and a profile of --markups
(1) ;e € (1,00)7 such that H =37 > 37 . hy (r;(4?, ;) and for all f € F,

f_ 1 ijef Vi (rj(ufacj»

y (12)

Our approach to equilibrium existence consists in showing that this nested fixed point prob-

lem has a solution. We start by studying the inner fixed point problem:

Lemma 10. For every f € F, for every H > 0, equation (12) has a unique solution in p'
on interval (1,00). Denote this solution by m/(H).
Function m/(.) is continuous, strictly decreasing, and satisfies limo m’ = 1 and limgs m/ =

i, where if = maxjc; fi; .
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In addition, if H is such that m/(H) ¢ {ij}te;s then m’ is C1 in a neighborhood of H and

, m! (H)(m/ (H) — 1)
! (H) = —% - , <0. (13)
ket mf <y " (D) (=7 (re (m (1))
L+mf(H)(mf(H)—1) Z;EG;, T e i (re (m7 (1))

Proof. See Appendix C.1. O

We can now take care of the outer fixed point problem, which, by Lemma 10 consists in
finding an H > 0 such that Q(H) = 1, where

_ Zfe]—‘ Zkef I (Tk (mf(H)))
= 7 '

Q(H)

The following lemma guarantees that the outer fixed-point problem has a solution:
Lemma 11. There exists H* > 0 such that Q (H*) = 1.

Proof. See Appendix C.2. O]

We can conclude:

Theorem 3. Pricing game <(hj)je/\/7]:’ (Cj)j€N> has an equilibrium. In any equilibrium,
the common t-markup property holds for every firm. Moreover, a firm’s equilibrium profit is

equal to its t-markup minus 1.

4.2 Comments and Comparative Statics

Comparing equilibria. If we know that H* is an equilibrium aggregator level, then we
can compute consumer surplus (log (H*)), the profit of firm f € F (m/ (H*) — 1) and the
price of product k € f (ry (mf (H™), ck)) In addition, the following proposition states that,
if there are multiple equilibria, then these equilibria can be Pareto-ranked among players

(firms), with this ranking being the inverse of consumers’ ranking of equilibria:

Proposition 4. Suppose that there are two pricing equilibria with aggregators Hy and H5 >
HY, respectively. Then, each firm f € F makes a strictly larger profit in the first equilibrium
(with aggregator HY ), whereas consumers’ indirect utility is higher in the second equilibrium
(with aggregator Hy ).

In addition, there is an equilibrium with the largest value of H and an equilibrium with the

lowest value of H.

Proof. See Appendix C.3. O]
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Markups. Our class of demand systems can generate rich patterns of equilibrium markups
within a firm’s product portfolio. To see this, let us first consider the extreme case of CES
products with common o’s (h;(p;) = ajpjl."’ for all j € N). In this case, t; = o for all j,
and the common ¢-markup property states that, in equilibrium, pjp;jcj = % for all j € f.
Therefore, firm f charges the same Lerner index for all the products in its product portfolio,
and firm f charges higher absolute markups on products that it produces less efficiently
(since p; —¢j = %cj increases with ¢;).

These markup patterns are not robust to small changes in the demand system. Suppose
for instance that all products are still CES products, but with potentially heterogeneous o’s

p_J 7Cj =

(hj(p;) = ajpjl-_aj for all j € ). Then, in equilibrium, ’;—j, and firm f no longer has
incentives to charge the same Lerner index over all its products (unless all these products
share the same o). Similarly, it does not necessarily charge higher absolute markups on high
marginal cost products.

The same point could be made about the other extreme case in which all products are

a; —Pj
A

multiproduct firm charges the same absolute markup over all its products (since ¢;(p;) = p;/A

logit with common \’s (h;(p;) = exp ( ) for all j € N). In this case, in equilibrium, a
for all 7), and sets a lower Lerner index on high marginal cost products. Again, this can be
overturned by allowing the \’s to differ across products.

In general, the pattern of markups within a firm’s product portfolio depends on supply-

side considerations ((c;);es) and on demand-side conditions, as captured by functions (¢;)ef.

Comparative statics. We now reintroduce an outside option H°, and ask how an increase

in H affects the set of equilibria. We prove the following proposition:

Proposition 5. Suppose that H° increases. Then, in both the equilibrium with the smallest
and largest value of the aggregator H, this induces (i) a decrease in the profit of all firms,
(i1) a decrease in the prices of all goods, (iii) an increase in consumer surplus, and (iv) an

expansion of the set of products sold at a finite price.

Proof. See Appendix C.4. O

Therefore, an increase in the value of the outside option has the same impact as in
the monopoly case: prices, :-markups and firms’ profits fall down, the set of products sold
expands, and consumers are better off. The result is proven by showing that an increase in
H° implies an upward shift in function Q(-).

Similar techniques can be used to analyze the impact of entry. Suppose that firm f° € Fis

initially inactive, i.e., p; = oo for every j € f°. Solving pricing game <(hj)je/\/\f0 S F\{f°}, (Cj)je/\/\f0>
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with outside option HY =} e fo h;(co) gives us the set of pre-entry equilibrium aggregator
levels. The set of post-entry equilibrium aggregator levels can be obtained by solving pricing

game ((hj)je o (cj)].e N) with outside option 0. We prove the following proposition:

Proposition 6. Suppose that a new firm enters. Then, in both the equilibrium with the
smallest and largest value of the aggregator H, this induces (i) a decrease in the profit of
all incumbent firms, (ii) a decrease in the prices of all goods, (iii) an increase in consumer

surplus, and (i) an expansion of the set of products sold at a finite price.

Proof. The result is proven in the same way as Proposition 5. After entry, function €(-)

shifts upward. O

An increase in a product (product k)’s marginal cost has ambiguous effects, for reasons
that were already discussed in the monopoly case. The firm owning this product, call it firm
f, has less incentives so shift sales towards this product, and therefore lowers its --markup p/.
What is unclear is whether this decrease in p/ raises or lowers firm f’s contribution to the
aggregator > . h;(r; (m/(H),c;)). On the one hand, hy decreases due to the direct effect
of the increase in ¢;. On the other hand, h; increases for every j in f such that j # &, due
to the fact that p/ decreases. Therefore, function {2 may shift up or down, and the impact
on the equilibrium aggregator level is unclear. In the end, consumers and rival firms (g # f)

may end up benefiting or suffering from an increase in c.!

Examples. Consider the following family of functions: for every A > 0, ¢ € [0, 1] and
x>0,
exp (—ALW) if ¢ >0,

= if p =0.

R (z) =

Note that for every z, A > 0, limg_,o h®*(z) = h%*(x), i.e., h®* converges pointwise to h%
when ¢ goes to zero.’> Note that h®* is CES when ¢ = 0 (with 0 = X\ + 1) and logit

1We do obtain clear-cut comparative statics with logit and CES demands. See Propositions 11 and 13 in
Section 5.
12To see this, note that

lim M — lim &P (plog(x)) — 1+ ¢27
¢—0 d) »—0 ¢
~ fim log(z) exp (¢ log(z)) + 2¢7
¢—0 1
~ 10g(),

where the second line follows by L’Hospital’s rule (note that exp (¢log(z)) — 1 ¢—(>) 0).
—
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when ¢ = 1. Therefore, our family of functions A% bridges the gap between CES and logit
demands.

We still need to check that h®* € H* for every ¢ € [0,1] and A > 0. Clearly, h®* > 0.
Taking minus the logarithmic derivative of h®* gives us the conditional demand for the

product: .
—% =z Yz >0.
This function is indeed positive and decreasing. When ¢ = 0, conditional demand is A\/z,
which is indeed the conditional demand for a CES product. When ¢ = 1, conditional demand
is constant, as in the logit case. Cases where ¢ € (0,1) allow us to capture situations where
conditional demand decreases faster than in the logit case, but slower than in the CES case.

Finally, we compute (%

_ dlog (—h'(z))

=1—o¢+Iz®, V>0,
dlogx

10N (2) =
which is indeed non-decreasing for all ¢ € [0,1] and A > 0. Therefore, h®* € H*, and all the

comparative statics and existence results proven so far apply.

An almost complete characterization of set H‘. Omne way of finding elements of H*
is to start with a function A that is positive, decreasing and log-convex, and to check that
the associated ¢ function is non-decreasing whenever it is strictly greater than 1. This is
tedious, because nothing guarantees that ¢ will have the right monotonicity property. Another
possibility is to start with a function ¢ that is non-decreasing, to integrate a second-order
differential equation to obtain a function h, and to adjust constants of integration to ensure
that h is positive, decreasing and log-convex. The following proposition states that there

exist constants of integration such that i does belong to H":

Proposition 7. Let 7 : Ry, — Ry, be a C' function such that T is non-decreasing,

limg+ 2 > 0, and t(x) > 1 for some x > 0. For every (o, ) € R, let

hf(z) = a <5 — /Ix exp (— /1t7<—;‘>du) dt) .

Then, there exists B > 0 such that, for every h € H', v(h) =T if and only if h = hebB for
some a >0 and § > f3.

Proof. See Appendix C.5. O]
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Non-linear pricing. We now assume that firms can charge two-part tariffs: for every
j € N, p; (resp. Fj) denotes the variable (resp. fixed) part of the two-part tariff contract
for product j. In equilibrium, firms find it optimal to set all variable parts equal to marginal
cost, and compete on the fixed parts. Intuitively, if firm f sets p; # ¢; for some j € f, then
it is profitable for this firm to deviate to p; = ¢;, and to adjust the fixed part in such a way
that product j is chosen with the same probability as before. Since this deviation raises the
joint surplus of the consumer and the firm (the consumer consumes the efficient quantity),
and since the consumer receives the same expected surplus as before (otherwise, the choice
probabilities would not be the same as before), this deviation is indeed profitable.

When all firms set variable parts equal to marginal costs, the consumer’s indirect utility
when choosing product j (net of the taste shock) is log h;(¢;) — F};, and his conditional demand

for product j is —h’(c;)/h;(c;j). Therefore, the profit of firm f is given by:

W= (B agi) S

kef jen hileg) et

These are the payoff functions of pricing game ((hj)jeN’]: (6 /\/) with linear tariffs,

where, for every j € N, h;(F;) = exp (log hj(c;) — Fj) (i.e., firms only have logit products),
o, hiten)
T hj(es) -
will soon show that this equilibrium is unique. The next step should be to compare the

and ¢; = We know that this pricing game has an equilibrium, and in fact, we

equilibria of the original pricing game with linear pricing and the unique equilibrium of
((E-)je/\/,]: ,(¢j)jenr |- One possible avenue (which we have not yet had time to explore)
would be to investigate whether social welfare and consumer surplus are higher under non-
linear pricing.

It is interesting to notice that, under non-linear pricing, all products are always being
sold, whereas, as discussed before, this is not necessarily the case under linear pricing. This
comes from the fact that the non-linear pricing game is equivalent to a linear pricing game
with logit demands, and logit products are such that fi; = oo (since 7;(F}) = F}). Intuitively,
a firm is better able to extract additive taste shock e; under non-linear pricing than under

linear pricing.
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4.3 Equilibrium Uniqueness

We now turn our attention to the question of equilibrium uniqueness. The idea is to derive
conditions under which Q'(H) < 0 whenever Q(H) = 1, which ensures that there is ex-
actly one value of H such that Q(H) = 1. To avoid non-differentiability issues (recall from
Lemma 10 that m/ is differentiable everywhere but at points H such that m/(H) = fi for
some k € f), we assume that, for every f € F and j € f, i/ = [i;. This ensures that
all products are always sold at finite prices (firm f would make zero profit if it were to set
p! > ) and that Q(-) is C* on R, . We also introduce the following notation: for all j € N,
0; = /v
We can now state our uniqueness theorem:

Theorem 4. Let <(hj)jeN,]:, (Cj)je/\/) be a pricing game. Assume that if = [i; for every
feFandje f. Suppose that, for every firm f € F, at least one of the following conditions
holds:

(1) minjes inprBj pi(p;) > maxjey suppj>gj 8,(p;).

(ii) @f < p*(~ 2.78), and for every j € f, limy h; = 0 and p; is non-decreasing on

(2,50)-

(iii) There exists a function h! € H* and ¢/ > 0 such that hj = h' and c; = ¢/ for all j € f.

In addition p’ is non-decreasing on (Qf, oo)
Then, the pricing game has a unique equilibrium.

Proof. The result follows from Lemmas D, F, G, H and K, stated and proven in Appen-
dices D.1-D 4. O

Comments. The theorem is proven in two steps. We first show that uniqueness condition
Y(H) < 0 can be rewritten as |F| independent firm-level conditions (Lemmas D and F). In
the second step, we show that each of conditions (i), (ii) and (iii) is sufficient for the firm-level
condition (Lemmas G, H and K).

We first discuss the condition that p; is non-decreasing on (]_93,00) for every j € f.
Consider a discrete / continuous choice model of demand in which only product j and out-

side option H® > 0 are available. Then, the expected demand for product j is given by:

13 Another possibility would be to follow an index approach and compute the sign of the determinant of
the Jacobian of the first-order conditions map. In Appendix D.8, we show that this approach is equivalent
to ours.

4 Condition lims, h; = 0 can be weakened. See Propositions A and B, and Corollaries A and B in
Appendix D.5.
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Dj(p;, H°) = —h;(p;)/ (hj(p;) + H®). Tt is easy to show that function p; € (&.,oo) —
1/D;(pj, H®) is convex if and only if p; is non-decreasing on (Bj’ oo> 15 Caplin and Nalebuff
(1991) argue that this convexity condition is “just about as weak as possible” (see the para-
graph after Proposition 3 page 38). They show that, under this condition, single-product
firms’ profit functions are quasi-concave in own prices. In their framework, equilibrium exis-
tence then follows from Kakutani’s fixed-point theorem.

We find that, although this convexity condition is not needed to obtain equilibrium ex-
istence, it guarantees equilibrium uniqueness, provided that some additional restrictions,
contained in conditions (i), (ii) and (iii), are satisfied. Note that condition (i) is indeed a
stronger version of the assumption that p; is non-decreasing. This is because p; is non-
decreasing on (Bj’ oo) if and only if p; > 6, on the same interval. Condition (i) imposes
that the highest possible value of 6; (j € f) be smaller than the lowest possible value of p;
(7 € f), which is indeed stronger.

Finally, note that if f = {j} and p; is non-decreasing on @j,oo), then condition (iii)
trivially holds. It is therefore easier to ensure equilibrium uniqueness for single-product firms

than for multiproduct firms.

Examples. In the following, we provide examples of demand systems that satisfy (or do
not satisfy) our uniqueness conditions. A priori, condition (i) seems tedious to check if the
firm under consideration has heterogeneous products. The following proposition shows that

a certain type of heterogeneity can be easily handled:

Proposition 8. Let h € H' such that sup,. ) 0(h)(r) < infspm p(h)(x). Let f be a finite

15T see this, note that, for every p; > p; and H? > 0,

2 1 (mrmo\
op3 Dj(p;, HO) h; ’

!
- ((h;—)g—h;-' (hj+H0>>

- (hy)”

HO\'
Vi

which, by Lemma 4-(iii), is non-negative for every p,; > P, and H? if and only if p(p;) > 0 for all p; > P,
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and non-empty set, and, for every j € f, (a;, B;,0;,¢;) € Ri, xR3. For every j € f, define
hi(p;) = o;h(Bip; +0;) + €5, Vp; > 0.

Then, h; € H* and ji; = i/ for all j € f, and max;c; sup,, ., 0j(p;) < minjepinf, >, p;(p;).
Proof. See Appendix D.6. O

Proposition 8 can be applied as follows. Let h(p) = e7? for all p > 0. We already know
that h € H'. In addition, p(p) = 6(p) = 1 for all p > 0. By Proposition 8, if firm f is such
that for all j € f, there exist A\; > 0 and a; € R such that h;(p;) = e% for all p; > 0 (i.e.,
firm f only has logit products), then condition (i) in Theorem 4 holds for firm f.

Similarly, let h(p) = p'= for all p > 0 (0 > 1). Again, we already know that h € H".
In addition, p(p) = 0(p) = 1. Therefore, if firm f is such that for all j € f, there exist
aj,b;,d; > 0 such that h;(p;) = a; (b;p; +dj)1_a for all p; > 0 (ie., if firm f only has
(generalized) CES products with a common o), then condition (i) in Theorem 4 holds for
firm f. Other candidates for the base h include h(z) = exp(e™), h(z) = 1 + o,
h(z) =1+ m, etc.

Some functions satisfy condition (ii), but not condition (i). Consider the following func-
tion: h(z) = m. It is easy to show that h € H*, limy, h; = 0, p is non-decreasing and
f = 2(< 2.78). Therefore, condition (ii) holds. However, condition sup #(x) < inf p(z) is not
satisfied.

It is easy to construct a multi-product firm that satisfies none of our uniqueness conditions.
For instance, let f = {1,2}, hi(p1) = pi~7" and hy(ps) = p; °2, where oy # 05. Then,
ft1 # fio, and Theorem 4 does not apply. It is also possible to find single-product firms
for which Theorem 4 has no bite. Consider for instance the family of function h®* € H*
introduced in Section 4.2. It is easy to show that p (h‘w‘) (+) is strictly decreasing whenever

¢ € (0,1). Therefore, none of our uniqueness conditions hold.

Equilibrium uniqueness when marginal costs are high or the outside option is
attractive enough. As discussed above, Theorem 4 is not powerful enough to guarantee
equilibrium uniqueness for every pricing game. In the following, we show that, for a given
discrete / continuous choice model of consumer demand (hj)j ¢, and a given partition of the
set of products F, pricing game <(h]~)je o (Cj>je N) has a unique equilibrium, provided
that firms are sufficiently inefficient and that consumers have access to an outside option.

From now on, we no longer assume that ji; = ji for every f € F and j € f.
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Proposition 9. Let (hj)jeN € (HL)N, and let F be a partition of N containing at least two

elements. Then,

o For every H° > 0, there exists ¢ > 0 such that pricing game ((hj)jGN,]:, (cj)j€N> with

outside option H® has a unique equilibrium whenever (Cj)jeN € [c, oo)N and H° > H°.

o For every c > 0, there exists H® > 0 such that pricing game <(hj)j€./\/' F, (Cj)jej\/> with

outside option H® has a unique equilibrium whenever (Cj)jeN € [c, oo)N and H° > H°.

Proof. See Appendix D.7. O

5 Type Aggregation with Multinomial Logit and CES

Demands

5.1 The CES case

In this section, we study a multiproduct-firm pricing game with CES demands and hetero-
geneous qualities and productivities. Let A be a finite set containing at least two elements.
For every k € N, for every x > 0, let hg(x) = apx'™7, where a; > 0 is the quality of product
k, and o > 1 is the elasticity of substitution. We have already shown in Section 4.3 that any
pricing game based on (hj)j <, has a unique equilibrium.

Firm f’s fitting-in function is pinned down by equation (12), which involves functions ~;

and r,. With CES demands, v (z) = %akxl"’. Recall that r; is the inverse function of

Vg @ D > p’“p_kc’“ te(pr). With CES demands, ¢, = o, so that v is just o times the Lerner
f
I

index. Therefore, for every u/ € [1,0), rp(p) = - . From now on, we redefine u/ as £,

so that p/ is firm f’s Lerner index, and takes values between 1/0 and 1. Equation (12) can

then be rewritten as follows:

-0
Thes T ()
ot |1 - =2 - — =1 (14)

Put T/ = > ks arc, . Simplifying and rearranging terms in (14), we get:

f—

= (15)

1
7~ (o= V(- ph)
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It follows from Lemma 10 that equation (15) has a unique solution. This implicitly defines a

Tf
H

that firms f and g have the same type (77 = T9) if and only if they share the same fitting-in

function m ( H) Firm f’s fitting-in function is H +— m ( . An immediate implication is
function.
Next, we claim, that if firms f and g have the same type, then their contributions to the

aggregator are the same. To see this, we introduce the following notation: for a given level

l—0o
of aggregator H, s, = W}’} is the market share of product k € A/, and s/ = Y ke s Sk 18 the

market share of firm f € F. Then, for every f € F and k € f,

I G 0) N R S
k — = .

H H

(1- Mf Yapel 1! AN 7!
E =—|1-m[— = — .
e H H H

Firm f’s market share function is H + § (%) Therefore, firms f and g share the same

Therefore,

market share function if and only if 7/ = T9. Put differently, firm f and ¢’s contributions
to the aggregator are identical if and only if they have the same type.
Recall that H is an equilibrium aggregator level if and only if Q(H) = 1, where

In words, H is an equilibrium aggregator level if and only if firms’ market shares add up to
1.

Last, we claim that, if firms f and g have the same type, then they earn the same profit:
for every f € F,

apy,’
= (- Ck)Tka
kef
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_ Z Dk — Ck akp};g
e f Pk H

()5 (7).
()

We summarize these findings in the following proposition:

Proposition 10. Let f and g be two CES multiproduct firms. Put T/ = Zkef arcy © and

T9 =3¢ g akc,lf_”. The following assertions are equivalent:
(i) TV =1T9.
(ii) Firms f and g have the same markup fitting-in function.
(iii) Firms f and g have the same market share fitting-in function.
(iv) Firms f and g have the same profit fitting-in function.

Under CES demands, firms’ types are aggregative as well. Firms f and g may differ
widely in terms of product portfolios, productivity and product qualities, but if their types
are the same, i.e., if Tf = T9, then they share the same fitting-in functions. This implies
that, no matter what the competitive environment is, these two firms will always behave in
the exact same way. If we replace firm f by firm ¢, then the equilibrium aggregator level
will not change, the behavior of firm f’s rivals will not be affected, and firm ¢ will end up
charging the same markup, having the same market share, and earning the same profit as
firm f. Interestingly, given a multiproduct firm f, there always exists an equivalent single-
product firm. To see this, define firm f as a firm selling only one product with quality
a=7 e s arc, 7 and marginal cost ¢ = 1. Then, T/ = Tf , and firms f and f are therefore
equivalent.

We also obtain the following comparative statics results:
Proposition 11. In a multiproduct-firm pricing game with CES demands,

(i) m', S, " >0.

(i) For every f € F, ZTL;, ‘%—f;, ‘;STJC;, Cfl’rT—ff* > 0, where superscript x indicates equilibrium
values, and d/dT7 is the total derivative with respect to T (taking into account the

impact of TS on the equilibrium aggregator level).
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L. dud* * *
(iii) For every f,g € F, f # g, Fr, Z%, % < 0.

Proof. See Appendix E.1. O

Point (i) says that a firm charges a high markup, has a high market share, and makes
high profits if it has many products, if it is highly productive, if it sells high-quality products
(high T7), or if it operates in a less competitive environment (low H). Points (ii) and (iii)
say that if firm f’s type increases, then consumers benefit, firm f’s markup, market share

and profit increase, to the detriment of its rivals.

5.2 The Logit Case

In this section, we study a multiproduct-firm pricing game with logit demands and hetero-
geneous qualities and productivities. Let A be a finite set containing at least two elements.
For every k € N, for every x > 0, let hy(z) = e, where a;, € R is the quality of product
k, and A > 0 is a substitutability parameter. We have already shown that any pricing game
based on (h;),.\ has a unique equilibrium.

As in the previous section, we want to reexpress firm f’s fitting-in function. With logit

demands, vy (z) = hi(x), and vy (pi) = -0 (py) = P55 Therefore, for every p! € [1,00),

re(p’) = A/ + ¢ Equation (12) can then be rewritten as follows:

ot (1 - %Zexp (M)) = 1. (16)

kef

Put T/ = Zkef exp (‘““Xck). Simplifying and rearranging terms in (16), we get:
T/
7 (1 - ﬁe_“f) — 1. (17)

This uniquely pins down a function m(.) such that pu/ = m (%) As before, define s, =

Ak —Pk

e~ x /Hand s/ = > ke Sk- Then,

ak—ck—/\uf

S S f T Tf
I o N Y i I R
g (o ()25 (5)
kef
We can then rewrite equilibrium condition Q(H) =1as } ;. » S (%) = 1. In addition, it is
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straightforward to check that

T! T! Tf
m =u's m( )S( >_7r< )

Therefore, firms’ types are still aggregative under logit demands:

Proposition 12. Let f and g be two logit multiproduct firms. Put T = Zkef exp(

and TY9 = Zkeg exp (“’“;c’“). The following assertions are equivalent:
(i) TV =1T9.

(ii) Firms f and g have the same markup fitting-in function.

(iii) Firms f and g have the same market share fitting-in function.

(iv) Firms f and g have the same profit fitting-in function.

We also derive the following comparative statics:

Proposition 13. In a multiproduct-firm pricing game with logit demands,

(i) m', S, " >0.

i dH* duf*  dsf*  dnf*
(ii) For every f € F, T s s arr > 0.
... dud*  ds9*  dm9*
(iii) For every f,g € F, f # 9, F5r, G7r> Srr < 0.

Proof. See Appendix E.2.

To summarize, we obtain type aggregation both under CES and logit demands. With CES
(resp. logit) demands, the relevant (-markup is the Lerner index (resp. the unnormalized

markup), and the relevant s/ is firm f’s market share in value (resp. in volume).

6 An Algorithm for CES Demands

Numerically solving for the equilibrium of a multiproduct-firm pricing game in an industry
with many firms and products can be a daunting task with standard methods, due to the
high dimensionality of the problem. Exploiting the aggregative structure of the pricing game
allows us to reduce this dimensionality tremendously: instead of solving a system of |N'| non-
linear equations in |[N|, we only need to look for and H > 0 such that Q(H) = 1. Of course,

there usually will not be a closed-form expression for Q(.), so we still need to approximate
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this function numerically. But Q(H) is simple to compute as well, since all we need to do
is solve for |F| separate equations, each with one unknown. Below, we describe how this
general approach can be implemented to solve a multiproduct-firm pricing game with CES
demands.

The algorithm use two nested loops. The inner loop computes Q(H) for a given H. The
outer loop iterates on H. We start by describing the inner loop. Fix some H > 0. As argued

in Section 5.1, we need to compute

F_t 1— f o—1
§ H ( H ) ’
where p/ is the unique solution of
;_ 1
K Tf (o—1)
o= (o= (%) -

or, equivalently,

Tf

(7= @ =0y ) ~1=0 (18)
H
=6 (1)

To do so, we solve equation (12) numerically using the Newton-Raphson method. The deriva-

tive of ¢/ can be computed analytically:

Tf

g— Tf ag—
=) pl o = 122 (1= )7,

() == (0= 1) 7

so we do not need to take finite differences to compute the Newton step. The usual problem
with the Newton-Raphson method is that it may fail to converge if starting values are not
good enough. This is a potentially major issue, because the value of Q(H) used by the

outer loop would then be inaccurate. Fortunately, the following starting value guarantees

;o L (H\T
,uo—max g, — ﬁ .

In fact, the Newton method converges extremely fast (usually fewer than 5 steps). Notice,

convergence:

in addition, that this method can be easily vectorized by stacking up the u/’s in a vector.
The outer loop iterates on H to solve equation (I') — 1 = 0. This can be done by

using standard derivative-based methods (we currently use Matlab’s implementation of the
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trust-region dogleg algorithm). The Jacobian can be computed analytically:

/ Tg ! Tg
Q'(H) :—Zﬁs (ﬁ) :
geF

-1 Fa—p)

- Lt (0 = 1257 (1= p9)7 % (u9)*

geF

We use the value of H that would prevail under monopolistic competition as starting value

(Ho =2 jer T (1 - %)071), and we always get convergence (usually in about 20 steps).'®

7 Application to Merger Policy

Throughout this section, we assume that demand is either of the CES or multinomial logit
forms. As shown in Section 5, in this case an additional aggregation property obtains: a firm’s
product portolio (with heterogeneous qualities and marginal costs) can be fully summarized
by its one-dimensional type 77, where T/ = Y ke f axc, ° in the case of CES demand and
TS = Y ke FEXP (%) For the following merger analysis, this allows us to expense with any
restriction on merger-specific synergies: some of the merged firms’ marginal costs may go up;
other marginal costs may go down; some of the products’ qualities may improve or degrade;
the merged entity may end up developing new products, or instead withdrawing some of

its products. All relevant information can be summarized in the merged firm’s post-merger

type.

7.1 Static Merger Policy

We consider a merger between firms f and g. Let H* (resp., H *) denote the equilibrium
value of the aggregator before (resp., after) the merger. As consumer surplus is increasing in
the value of that aggregator, we say that the merger is CS-increasing (resp., CS-decreasing)
it H* > H* (resp., H* < H*); it is CS-neutral if H* = H*. Assume that the merger partners’
pre-merger types are 77 and TY, respectively. Let T™ denote the merged firm’s post-merger

type.
We have:

Proposition 14. There ezists a cutoff T > T' + T9 such that merger M is CS-neutral
if TM = TM, CS-increasing if TM > TM, and CS-decreasing if TM < ™, Moreover, if

16Tn Breinlich, Nocke, and Schutz (2015), we use this algorithm to calibrate an international trade model
with two countries, 160 manufacturing industries, CES demands and oligopolistic competition.
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merger M is CS-nondecreasing (i.e., either CS-neutral or CS-increasing), then it is (strictly)
profitable.

Proof. See Appendix F.1. O

Inequality TM > Tf 4+ T9 means that, for a merger to be CS-increasing, the merger has to
involve synergies, as in Williamson (1968) and Farrell and Shapiro (1990). This implies that
a CS-neutral merger must be profitable, since it does not affect the intensity of competition,

but it allows the merging parties to benefit from synergies.

7.2 Dynamic Merger Review with CES/Logit Demand

We now turn to studying the interaction between mergers. Consider two mergers, M; and
M,, and assume that these mergers are disjoint, i.e., no firm takes part in more than one
merger. In the context of a homogeneous goods Cournot model, Nocke and Whinston (2010)
have established that that there is a sign-preserving complementarity in the consumer surplus
effect of (disjoint) mergers that share the same sign in terms of their consumer surplus effect.
The following proposition shows that this result carries over to mergers between arbitrary

multiproduct firms, provided demand takes the CES or multinomial logit forms.

Proposition 15. There is a sign-preserving complementarity in the consumer surplus ef-
fect of disjoint mergers that share the same sign in terms of their consumer surplus ef-
fect.. If merger M; is CS-nondecreasing (and hence profitable) in isolation, it remains CS-
nondecreasing (and hence profitable) if another merger M;, j #, that is CS-nondecreasing in
isolation takes place. If merger M; is CS-decreasing in isolation, it remains CS-decreasing if

another merger M;, j #, that is CS-decreasing in isolation takes place.
Proof. See Appendix F.2. O

Nocke and Whinston (2010)’s result on the interaction of CS-increasing and CS-decreasing

mergers also carries over to our setting with multiproduct firms:

Proposition 16. Suppose that mergers My and My are CS-nondecreasing and CS-decreasing,
respectively, in isolation. Then, merger My is CS-increasing (and hence profitable), condi-
tional on merger My taking place. Moreover, the joint profit of the firms involved in M, is

strictly larger if both mergers take place than if neither does.

Proof. The proof is identical to that of Proposition 2 in Nocke and Whinston (2010). It

involves inverting the order of the two mergers: at the first step, merger M, and, at the
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second step, merger M;. As consumer surplus must, by assumption, be (weakly) higher after
both mergers have taken place than before, and because consumer surplus (strictly) falls at
step 1 (again, by assumption), consumer surplus must (strictly) increase at step 2. That is,
M is CS-increasing, conditional on M, taking place. By Proposition 14, this implies that
the joint profit of the firms in M; must go up at step 2. Finally, we assert that the joint profit
of the firms in M; must go up at step 1 as well. This follows from an argument identical
to that used in the proof of Proposition 4, as the CS-decreasing merger at step 1 induces a
reduction in the equilibrium value of the aggregator H*, which benefits all outsiders to that

merger, including the firms involved in Mj. 0

We now embed our pricing game in a dynamic model with endogenous mergers and merger
policy, as in Nocke and Whinston (2010). There are T' periods, and a set {M;, M, ..., M}
of disjoint potential mergers. Merger M, becomes feasible at the beginning of period t with
probability px: € [0,1], where ), pry < 1. Conditional on becoming feasible, the post-merger
type of the merged firm M, is drawn from some distribution Cj,.!7 The feasibility of a
particular merger (including its efficiency) is publicly observed by all firms. In each period,
the firms involved in a feasible and not-yet-approved merger decide whether or not to propose
their merger to the antitrust authority. We assume that bargaining is efficient so that the
merger partners propose the merger if and only if it is in their joint interest to do so. Given
a set of proposed mergers, the antitrust authority then decides which mergers to approve (if
any). An approved merger is consummated immediately. Finally, at the end of each period,
the firms play the pricing game, given current market structure. All firms as well as the
antitrust authority discount payoffs with factor ¢ < 1.

Following Nocke and Whinston (2010), we define a myopically CS-mazimizing merger
policy as an approval policy, where in each period, given the set of proposed mergers and
current market structure, the antitrust authority approves a set of mergers that maximizes
consumer surplus in the current period. The most lenient myopically CS-mazimizing merger
policy is a myopically CS-maximizing merger policy that approves the largest such set (i.e.,
including CS-neutral mergers). (As shown in Nocke and Whinston (2010) such a policy is
well-defined.)

The following proposition shows that Nocke and Whinston (2010)’s result on the dynamic

optimality of a myopic merger approval policy carries over to our multiproduct firm setting:

Proposition 17. Suppose the antitrust authority adopts the most lenient myopically CS-

"The main result would not change if we assumed instead an arbitrary stochastic process governing (i)
when mergers become feasible, and (ii) the merged firms’ post-merger type.
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mazimizing merger policy. Then, all feasible mergers being proposed in each period after
any history is a subgame-perfect Nash equilibrium for the firms. The equilibrium outcome
mazximizes discounted consumer surplus (indirect utility) for any realized sequence of feasible
mergers. Moreover, for each such sequence, every subgame-perfect Nash equilibrium results

i the same optimal sequence of period-by-period consumer surpluses.

Proof. The result follows from Propositions 14, 15 and 16, which are the analogues of Corol-
lary 1 and Proposition 1 and 2 in Nocke and Whinston (2010). See Nocke and Whinston
(2010) for details. O

8 Concluding Remarks

TBW
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A Proofs for Section 2

A.1 Proof of Proposition 1

The aim of this section is to prove the following result:

Theorem A. Let N be a finite and non-empty set. For every k € N, let hy, (resp. gx) be a
C? (resp. C') function from Ry, to R, . Suppose that b}, > 0 for every k. Define demand

system D as follows:

gk (pk)

Dk; <(p])j€j\/'> Zje_/\/’hj(pj)7 Vk EN, v(p])j€N€R++

The following assertions are equivalent:

(i) D is quasi-linearly integrable.

(i1) There exists a strictly positive scalar « such that, for every k € N, gn = —ahl,.
Moreover, hi, > 0 for every k € N', and Y o Ve < D pen k-

When this is the case, function v(.) is an indirect subutility function for the associated demand
system if and only if there exists 5 € R such that v(p) = alog <Zj€/\/ hj(pj)) + B for every
p>> 0.

We first state and prove two preliminary technical lemmas, which will be useful to prove
Theorem A:

Lemma A. For every n > 1, for every (o), ;<, € R", define

1—o 1 1

Then,'®

n

(@) = 7 | (o) =35 | T o

j=1 \ 1<k<n
k#j

18We adopt the convention that the product of an empty collection of real numbers is equal to 1.
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Moreover, matriz M ((O‘i)lgign) 1s negative semi-definite if and only if a; > 1 for all 1 <

1 <n and
n

Z&gl.

=1

Proof. We prove the first part of the lemma by induction on n > 1. Start with n = 1. Then,
det (M (@) 1<icn)) =1 — a1 = (1) (a1 = 1),

so the property is true for n = 1.

Next, let n > 2, and assume the property holds for all 1 < m < n. By n-linearity of the

determinant,
1 1 1 1 1 1
det (M ((05)<10,)) = (—a1) 0 1 — o 1 . 1 1—ay 1
6 1 | — Qay, 1 1 e 1=y,

Applying Laplace’s formula to the first column, we can see that the first determinant is,
in fact, equal to det (/\/l ((C(i)Z <i gn)) The second determinant can be simplified by using

n-linearity one more time:

1 1 1 1 0 1 11 1
1 1—am 1 1 1 11 --- 1

. =—Q2| . .. . . )
1 1 e 1 —ay, 10 - 1—a, 11 -+ 1—q

= —Q>9 det (M (07 (QZ):}S'LSH)) + O’

where the second line follows again from Laplace’s formula and from the fact that the first

two rows of the second matrix in the first-line’s right-hand side are colinear. Therefore,

det M (<O‘i)1§i§n> = — qaq det (./\/l ((O‘i)2§z’§n)) — ap det (./\/l (0, <O‘i)3§i§n)) ,
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_ 1y (Hak>_z T oo | - T |-

j=2 \ 1<k<n k=2
k#j

n n
j=1 \ 1<k<n
oy
We now turn our attention to the second part of the lemma. Assume first that matrix
M ((ai)l <i<n) is negative semi-definite. Then, all its diagonal terms have to be non-positive,
i.e., a; > 1 for all i. Besides, the determinant of this matrix should be non-negative (resp.

non-positive) if n is even (resp. odd). Put differently, the sign of the determinant should be

(—=1)™ or 0. Since the a’s are all different from zero, this determinant can be simplified as

det (M ((01)1,)) = (~1)" (ﬁ ak> (1 _ Xn: O%) |

k=1

follows:

This expression has sign (—1)" or 0 if and only if 377, = < L.
Conversely, assume that the a’s are all > 1, and that > n_1 o < 1. The characteristic

polynomial of matrix M ((Ozl)1 <i gn) is defined as

l—a; — X 1 1

1 l—ag— X -- 1

P(X) = . . . .
1 1 el — X

This determinant can be calculated using the first part of the lemma. For every X > 0,

() (-$)

k=1
=0
n n 1
> I -
(HWX)) ( z)
k=1 PN k=1
=0 >0
>0
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Therefore, P(X) has no strictly positive root, matrix M ((O‘i)lgi Sn) has no strictly positive

eigenvalue, and this matrix is therefore negative semi-definite. O]

Lemma B. Let M be a symmetric n-by-n matriz, X # 0, and 1 < k < n. Let A* be the
matriz obtained by dividing the k-th line and the k-th column of M by X. Then, M is negative

semi-definite if and only if A is negative semi-definite.

and M
Finally, define Y as the n-dimensional vector obtained by dividing X’s k-th

Proof. Suppose M is negative semi-definite, and let X € R™. Write A* as (a;;), <ij<n

as (mij)lgi,jgn'

component by A. Then,

X’AkX = zn: Xn: Q35T 5,

i=1 j=1
2
= g E ai; x5 |+ 22y g ik Ti + TpQkk,
1<i<n 1<5<n 1<i<n
ik £k i£k
Ty T\ ?
= E E M T;T + 2T E MpT; + T Mk,
1<i<n 1<j<n 1<i<n
ik 4k i£k
2
= E 5 mijyiy; | + 2Yk E MikYi + Y Mgk,
1<i<n 1<j<n 1<i<n
itk k i+k
=Y'MY,

< 0, since M is negative semi-definite.

Therefore, A* is negative semi-definite.
The other direction is now immediate, since M can be obtained by dividing the k-th line
and the k-th column of matrix A* by 1/\. ]

We now have all we need to prove Theorem A:

Proof. To simplify notation, assume without loss of generality that N = {1,...,n}, and let
D(.) be the demand system associated with the demand component under consideration. For
every p >> 0, put J(p) = (%T?;(p))Ki,j@. Theorem 1 in Nocke and Schutz (2015) states
that D is quasi-linearly integrable if and only if J(p) is symmetric and negative semi-definite

for every p >> 0.
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We first show that matrix J(p) is symmetric for every p if and only if there exists a strictly
positive scalar v such that, for every k € N, g = —ahj. If J(p) is symmetric for every p,

then, for every 1 <, 7 < n such that ¢ # j, for every p >> 0,

_ h(pi)gi(pi)
(Sken hipr))”

It follows that, for every 1 <1 < n, for every x > 0,

hi(pi)g;(p;) .
(Sren hi(pr))”

= Ji,j(p) = Jji(p) = —

— il = g (19)

If B =0, then h, = 0 for every i, which violates the assumption that h; is strictly decreasing.

Therefore, 5 # 0, and we can define « = 1/8. It follows that g; = —ahl. Since g; > 0 and

h; < 0, we can conclude that o« > 0. Conversely, if there exists a strictly positive scalar «

such that, for every k € N, g, = —ahj, then, for every 1 <i,j <n, i # j, for every p >> 0,
R (pj)gi(pi) R (pj)bi(pi)

Jij(p) = — 7 — @ 7 = J5ip);
O ) e

and matrix J(p) is therefore symmetric for every p.

Next, suppose that there exists a > 0 such that, for every 1 < k < n, g, = —ah). We
want to show that J(p) is negative semi-definite for every p >> 0 if and only if A} > 0 for
every 1 <k <n,and > ;v <> 1, I

Fix p >> 0. To ease notation, we write hj, = hy(pi) for every k, and define H = ), _\- .

We obtain the following expression for matrix J(p):

(h))* — Wi H hi e S hihy,
P B R AR
- H?2 . . . :
hyhi hahe o (W) =W H
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J(p) is negative semi-definite if and only if

(WP WH MR e I
N A Y B 1
b, A O

is negative semi-definite. Applying Lemma B n times (by dividing row k£ and column k by

hi, 1 <k <n), this is equivalent to matrix

Wy
1 —(hll)QH 1” 1
1 1 — N2 1

1 1 1—WH

" H > 1 forall 1<

(k)

, 2
k<n,and £ >}, % < 1. This is equivalent to h} > 0 for all k, and >, v < > 1, I

being negative semi-definite. By Lemma A, this holds if and only if

Finally, Nocke and Schutz (2015) show that, v is an indirect subutility function for demand
system D if and only if Vv = —D. Clearly, this is equivalent to

v(p) = alog <Z hj(pj)) +08, Vp>>0,

JEN

where [ € R is an integration constant. [

B Proofs for Section 3

B.1 Proof of Lemma 1

Proof. Let M = <(hj)j€N, (cj)j€N> € M(H). Let p >> 0 and H° > 0, and suppose that
VII(M)(p, H°) = 0. For every 1 < k < n,

OAUM)  —hy [ Ow 1 [0y ;2N
opi  H (_5‘pk+ﬁ(8_m%+yw’“_yk H hk))
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_h;c 81/k 1 8yk ’ /
= SO (el — (. —1h
H ( opr | H (apﬂ’“ e = e = Dhy ) )

_he (0w L (0w O
- H opr, H 3pk% @Pk% 7

_ Iy 0w,
H opy’

where the first line follows from differentiating equation (5) with respect to p; and using
the fact that OII(M)/0pr = 0, the second line follows from equation (7), and the third line
follows from equation (4). Using the same method, we find that all the off-diagonal elements

of the Hessian matrix are equal to zero, which proves the lemma. O

B.2 Proof of Lemma 2

Proof. Let M = <(hj)jej\/7 (cj)j€N> € M(H). Let p >> 0 and H° > 0, and suppose that
VII(M)(p, H°) = 0. Then, by equation (7), vx(pk,cx) > 0 for every 1 < k < n. Since
te(pr) > 0, it follows that py > ¢ for every k. Therefore, by equation (3) and since hy, € H',
Ovg/Opr > 0. By Lemma 1, the Hessian of IT(M)(., H®) evaluated at price vector p is therefore

negative definite. Therefore, the local second-order conditions hold, p is a local maximizer of
(M)(., H°), M is well-behaved, and H* is well-behaved. O

B.3 Proof of Lemma 3

Proof. Since h ¢ H', there exists p > 0 such that «(p) > 1 and /(p) < 0. Our goal is to
construct a two-product firm M = ((hy, ha), (c1,¢2)), a price vector (pi,p2) € R%, and an
H > 0 such that V,II (M) ((p1, p2), H°) = 0 and g—;i(pl, ¢1) < 0. We begin by setting hy = h
and p; = p. We will tweak hsy, ps, c1, co and H? along the way.

Since ¢} (p1) < 0, equation (3) implies that there exists ¢ € (0, p;) such that g—;i(pl, c) <0
whenever ¢; < ¢.

For every s € (1,¢1(p1)), there exists a unique C4(s) € (0, p;) such that

P1— 01(8) L1(P1)
D1 S

= 1. (20)

Ci(+) is continuous and lim,_,, ;) Ci(s) = 0. In particular, there exists s € (1,u1(p1))
such that Ci(s) € (0,¢) whenever s € (s,u1(p1)). It follows that, when s € (s,u1(p1)),
condition (20) holds and g—;i (p1,Ci(s)) < 0.
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Let 0 € (s,u1(p1)), and ho(py) = py 7 for all p, > 0. Recall that ty(p;) = o and

’}/Q(pQ) = %hg(pg) for all P2 > 0.
For every H® > 0, define the following function:

+ =iy
n(p) g Yz > 0.

¢(x) =1- hl(p1)+$+H07

Notice that lim,, ¢ = % Moreover,

(1) — 5 (h(pr) + HO)
(hi(p1) + x + HO)?

¢'(x) =

Choose some H° such that vi(p;) — &2 (hy(p1) + H°) < 0. Then, ¢/(z) < 0 for all z > 0.
Therefore, ¢(z) > L for all z > 0.

Let (p2,c2) € R, The first-order condition for product 2 can be written as follows:

p2—020<1_ 71(p1) + 72(p2) ) 1
P2 hi(p1) + ha(p2) + H° ’

or, equivalently,
P2 — C2

D2

X o (p%_“) = 1.
———
>1, since ¢(z)>1/0
Therefore, for every py > 0, there exists a unique Cy(py) € (0, p2) such that the first-order
condition for product 2 holds.

The first-order condition for product 1 can be written as follows:

pr—c ulp)
g (pi)”

— o and o € (s,t1(p1)), there exists P» > 0 such that ¢ (1921_”)_1 €

p2—0t

-1

Since ¢ (py~7)

(s,t1(p1)). Put ¢ = (¢ (Pgl_")_l) Then, the first-order condition for product 1 holds,
c1 € (0,¢), and therefore, g—;’i(pl,cl) < 0.

To summarize, we have constructed a multi-product firm M = ((hq, ha), (¢1,¢2)) with
hy = h, ho(z) =277, ¢ = C} (qb (Pg_”)A) and ¢y = Cy(P), an H° > 0 and a price vector
(p1,p2) = (P, P») such that V,II(M) ((p1,p2), H) = 0 and g—;(pl,cl) < 0. By Lemma 1,
the Hessian matrix of II(M)(-, H°) evaluated at price vector (pi,ps) has a strictly positive
eigenvalue. Therefore, (p;,p2) is not a local maximizer of II(M)(-, H®), and multi-product

firm M is not well-behaved. It follows that HEES U {h} is not well-behaved. O
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B.4 Proof of Proposition 2

Proof. Let h € H, ¢ > 0 and M = (h,c). With single-product firms, first-order condition (7)

can be simplified as follows:
8
1— =1. 21
V( h+£ﬂ> (21)

By Lemma 1, 9*TI(M)/dp? has the same sign as dv/0p whenever condition (21) holds.

Assume that (ii) holds. We want to show that, for every (p,c, H) € R3 _, dv(p,c)/dp > 0
whenever condition (21) holds. Let p > 0. If «(p) < 1, then for every ¢, H* > 0,

v
1 - <1
0 < h+ H°> |
so there is nothing to prove. Next, assume that ¢(p) > 1. For every ¢ > 0, dv/dp is given
by equation (3). If /(p) > 0, then dv(p,c)/dp > 0 for every H* > 0 and 0 < ¢ < p. In

particular, Ov(p, ¢)/0p > 0 when condition (21) holds.
Assume instead that ¢/(p) < 0. Then, since (ii) holds, p'(p) > 0. Notice that

5= (s ()

h/ l// h/l

1
nt §+—h/‘

It follows that

/ / /

pE=ps —p— — 1+,
p L h
oo
=p———-—1+y,
L p

!V 1
—pitu(1-=) -1
! p

Since ¢/ < 0 and p’ > 0, it follows that ¢ (1 — %) —1>0.
For every H® > 0, there exists a unique ¢ (H°) such that condition (21) holds. This ¢ (H?)

is given by:
c(H°) =p (1 - ﬁ) : (22)

— )

Since ¢ <1 — %) —1>0, c(H® € (0,p) for every H® > 0. Notice also that ¢ (H°) > 0. All
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we need to do now is check that

ov c(HY p—c(HY),

a_p<p>C(H0)): P2 L+ P L

is strictly positive for every H® > 0. Since the right-hand side is strictly increasing in ¢ (H°)
and ¢ (H®) > 0, this boils down to checking that dv (p, ¢(0)) /dp > 0:

R e
1
e

dp )>:13 (p L
y 1(1 )
:@(L(“z)‘”p%)’

p—1

which is indeed non-negative. Therefore, (i) holds.

Conversely, suppose that (ii) does not hold. There exists p > 0 such that ¢(p) > 1, //(p) <0
and p/(p) < 0. We distinguish two cases. Assume first that ¢ (1 — %) — 1 > 0. Then, the
¢ (H?) defined in equation (22) satisfies ¢(H®) € (0,p) and

. 0
p—cH) (1 v \_4
D h+ HO

for every HY > 0. In addition, as proven above,

ov p
o (p, ¢(0)) =

By continuity, there exists ¢ > 0 such that 2 (p, c(¢)) < 0. It follows that 222 (p ) = 0

Op Op
and 82;0(5\4 ) (p,e) > 0. Therefore, M is not well-behaved.

Next, assume that ¢ (1 — %) — 1 < 0. Then, there exists H° > 0 such that ¢ (H°) = 0.
Notice that g—; (p,0) = (p) < 0. Therefore, by continuity of Ov/dp and ¢(.), for € > 0 small

enough,
@ (p,c (HO +8)) <0,
Ip
and ¢ (H® +¢) > 0. Therefore, multiproduct firm (h,c(H° + ¢)) is not well-behaved. O
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B.5 Proof of Lemma 4

Proof.

(i). Assume for a contradiction that ¢(p) < 1 for all p > 0 (we drop argument A from
function ¢ to ease notation). Then, for all p > 0, ph”(p) + h'(p) < 0, i.e., dip (ph/(p)) > 0.
Integrating this inequality between 1 and p > 1, we obtain that ph/(p) —h'(1) > 0. Therefore,
for all p > 1, B'(p) < K'(1)/p. Integrating this inequality between 1 and p, we obtain that,
forall p > 1,
h(p) < h(1) + h'(1)log (p) — —oo.
~

This contradicts the assumption that h > 0.
Therefore, there exists p > 0 such that ¢(p) > 1, and

p=inf{pe R, : (p)>1} <oo.

We prove two claims:
Claim 1: p¢ {p>0: u(p) > 1}.

If p = 0, then this is obvious. If instead p > 0, then the claim follows immediately from
the continuity of ¢.

Claim 2: ((y) > «(z) whenever 0 < x < y and «(x) > 1.

Assume for a contradiction that «(y) < ¢(x). Put S = {z € [z,y]: u(z) <1}. If S is
empty, then ¢(z) > 1 for every z € [z,y]. Since h € H*, //(z) > 0 for every z € [z,y], and ¢ is
non-decreasing on interval [z, y|. It follows that ¢(y) > ¢(x), which is a contradiction.

Next, assume that S is not empty. Then, y = inf S € [z,y] and, by continuity of ¢,
t(g) = 1. In addition, ¢(z) > 1 for every z € [z,9). Using the same reasoning as above, it
follows that

1=u(9) > w(z) > 1,
which is a contradiction.

Combining Claims 1 and 2, it follows that {z > 0: «(z) > 1} = (p,00), and that ¢ is

non-decreasing on (E? oo), which proves point (i).

(ii). Since ¢ is monotone on (p, 00), fi exists. Assume for a contradiction that fi < 1. Then,

by monotonicity, «(p) < fi <1 for every p > p. This contradicts point (i).
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(iii). Let p > p. Notice that

W)
v(p) = o) (p(=h'(p))) .
_ —ph'(p)
u(p)
Therefore,
Y (p) = — s (— (PH"(0) + H(p)) x 1p) + ¢ (p) X pH(P))
(¢(p))
= L W) 1= ip) ) + )P () < 0,
(¢(p))

as ¢/ > 0 and «(p) > 1 for all p > p.

1 B 1\

7 is strictly positive and, as shown in (iii), strictly decreasing on (p, 00). Therefore, lim,, v =1

(iv). Notice first that

exists, and [ € [0,00). Assume for a contradiction that [ > 0, and let ¢ > 0. There exists

po > p such that
1
l

YVt > po, + €.

()

Integrating this inequality between py and p > x(, we get:

(%—FE)(p_po) Z/I?j;g) = —h%(p) —ilg@.

=M>0 =A>0

Therefore,
1

A+ M(p—po)’
Integrating this inequality between py and p > pgy, we get:

Vp > po.

—l'(p) >

dx
< —h(p) + h(po).
o A+ M(x — po)J
P
Therefore, lim,, h = —oo, which contradicts the assumption that h > 0.

49



(v). Notice that

%ﬂ—mam>=—wwy—mwwx

= —h(p) (1 —up)),

which is strictly negative for all p > p. Therefore, —ph’(p) is strictly decreasing for p high
enough, and lim, ,., —ph/(p) is a non-negative real number. Call this number /, and assume
for a contradiction that [ > 0. Let pg > p. Since —ph/(p) is decreasing on (po, 00), —ph’(p) > 1
for all p > pg. It follows that

h(po)—h(p):/p_h/@)dtz/pédt.
po Po

—r 0
p—o0

Therefore, lim,, h = —oo, which is a contradiction.

(vi). Suppose ji < oo and limg, h = 0. For all p > p,

hp)M” ()

(W' (p))?

ph"(p) _h(p)

~ ' (p) —pH(p)’
)

_ () P
a Qﬂ—pﬁ()

p(p) =

By assumption, lim., h = 0. By (v), lim, .. —ph’(p) = 0. Moreover,

| & 1 (p)
proo T (phi(p) v —H(p) — pH (D)
poe i(p) — 1
1
=3
Therefore, by L’Hospital’s rule,
1
lim h(p)

20



and lim, p = ;% [

B.6 Proof of Lemma 5

Proof. We first rule out prices below marginal costs. Let p >> 0. Put N ={k e N': pp < cx}
and N = {k e N': ¢, < pr < o}. Define p as follows: for every k € N, p,. = max (py, cx).
Since the hys are decreasing, >, o Pi(Pe) > D pep hi(Pr). Therefore,

M) (0, HY) = 3 (01 — ) ek £ —hi(pe)

kEN" Z]GNh (p] + HO keN" ZJENh (p]) +HO’

<0+ > () i)

keN Z]ENhj(p])+H0’

. —h, (Pr)
<0+ (Pr — cx) B ;

— 1) (5. 7).

Therefore, (pg),c, is not a solution of maximization problem (9).
For every k € N and z; € [0, 1], define

if z, < 1,

() =

Note that lim; ¢ = ¢(1) = oo. For every x € [0, 1]", define ¢(z) = (¢1(21), ..., ¢u(zn)). ¢ is
a bijection from [0,1]" to [[,_,[ck, 00]. Finally, put

U(z) = (M) (¢(z),H°), Vz €0,1]"

Since ¢ is a bijection, maximization problem max,¢jo1» ¥(x) has a solution if and only if
maximization problem (9) has a solution. All we need to do now is show that ¥ is continuous
on [0, 1]

Clearly, ¥ is continuous at every point x such that x; < 1 for every 1 < k < n. Next, let
x such that z, = 1 for some 1 < k < n. To fix ideas, suppose that xy =1 forall 1 < k < K,
and that z, < 1 for all K +1 <k <n, where K > 1. Then,

—h'(k( k)
e ‘hmz P = o) (o)) +
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2 lim oy (D0 (E8) — ) (=P, (Gk(Tk)))
> iy limg o, hy (05(25)) + HO 7
_ 04 D ke (Drln) — i) (=Ph (Pr(2r)))
Sy (00) + 300k by (65(p) + HO
= U (),

where the third line follows by Lemma 4-(v). Therefore, ¥ is continuous. Combining this
with the fact that [0, 1] implies that maximization problem max,cpj» ¥(x) has a solution.

This concludes the proof. O

B.7 Proof of Lemma 7

Proof. Let ¢ > 0. Since h € H*, Ov(h)(p,c)/Op > 0 for every p > ¢ (see equation (3)). It
follows from the inverse function theorem that v(.,c) is a C'-diffeomorphism from (c, 00) to
v ((¢,00)), and that dr/dp = (8v/dp)~" (we drop argument h to ease notation). Therefore,

equation (10) follows immediately from equation (4). Since v(.,c) is strictly increasing,

v (fe.0e).0) = (om0, i vipo))

p—cC

= (0, ).

The fact that r is increasing in ¢ follows immediately from the fact that v is decreasing
in ¢ and increasing in p. Finally, let us show that 7(u,c) > p whenever p > 1. Let p > 1. If
¢ > p, then this is trivial. Assume instead that ¢ < p. Then,

v(p,c) <up)=1<p.

Since r is increasing in y, it follows that r(u,c) > p. O

B.8 Proof of Lemma 8

Proof. Put N' ={k € N': pp < oo}. Clearly, N' # (), because if this set were empty, then
the firm could obtain a strictly positive profit by pricing, say, product 1, at ¢;+1, which would
violate condition (b) in Definition 8. Assume without loss of generality that N” = {1,..., K},
where 1 < K < n. Define a new multiproduct firm M’ = ((hj)lngK : <Cj)1gng>v and note
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that, for every (p;),.;x € RE.,

I (M) ((ﬁl,...,ﬁK),Ho—l— > hj(oo)> =1I1(M) ((p1,-..,Px,00,...,00), H%).

J=K+1

Then, Condition (a) in definition 8 is equivalent to

VI (M) ((Pl,---,pK),HO—i— Z hj(OO)) =0.

J=K+1
We have shown in Section 3.1.2 that this implies that v;(p;, ¢;) = v;(pj,¢;) for every 1 <
i,7 < K, and that condition (6) holds for every 1 < k < K. Put u = v4(p1,¢1). Then, for

every 1 < j < K, by definition of function r; (see Lemma 7), p; = r;(1, ¢;), and condition (6)

can be rewritten as follows:

S e (e, )
o S T ey)) + s iy (00) + HY

(23)

In addition,

0_s 1 (p)
1M . 1) = ;@k - Ck)Z}Ll h;(p;) + HO’
_ = br — CkL ’yk(pk)
- ; o k(pk)Z?ZI b (p;) - HO
- = ’Yk(]?k)
— ;uk(l?k, Ck)2?:1 h(py) T+ HO
=1 S (i, )

D e P (13, €5)) + 325 gc4q i (00) + HO
= p — 1, by equation (23).

Next, we claim that, for every j > K+1, r; (i, ¢;) = 00, or, equivalently, fi; < p. Assume
for a contradiction, that, for some j > K + 1, i; > p. To fix ideas, assume that this j is
equal to K + 1. Define a new multiproduct firm M"” = <(hj)1§j§KJr1 , (Cj>1§j§K+1>7 and note
€ (0, 00]K+1,

that, for every (ﬁj)lngKH

IT(M") <(ﬁ1,...,ﬁK+l),H0+ > hj(oo)> =TL(M) ((B1, - -, Prc+1,00, .., 00) , H?) = pu—1.

j=K+2
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Using equation (5), we see that, for every z € R,

M((ph...,p[(,x),ﬂo-i- i hj(oo)>

OPK+1 Pyt
—hlg 1 (7)

S By () + B (2) g hi(00) + HO
S5 — ) (=R(p))) + (2 — e (13))
S R (0) + et () + X oo hy(o0) + HO )

>0

_h’ ~
_ K1) v
S hi(py) + hucir () + X7y hj(00) + HO

(1 — Vg1 (%, crq1) +

Ve

1- Vk+1 (maCKJrl)—i_H(MH) <(p17"'7pK7:U)7HO+ Z h](00)>
—_———

— BK+1 N Jj=K+2 B
xr—ro0 -~
ed i

Since, by assumption, fi; > f, this implies that

M ((ph...,p}(,l’),HO + zn: hj(oo)>

apK—H JoKt2

is strictly negative when x is high enough. Therefore, there exists pxy1 € Ry such that

H(M) ((plv'"7pKa]3K+1;OO7"'700)7H0) = H(MH) ((p17"'7pK7]5K+1)aH0+ Z hj(OO)> )

j=K+2

> H(MH> ((p17"'7pK7OO)7HO+ Z h]<oo>> )

=1(M) ((p1, -, Pk, 00,...,00), H’)

which contradicts condition (b) in definition 8.

o4



Therefore, r; (11, ¢;) = oo for all j > K + 1, and we can rewrite equation (23) as

=0

A\

S e (e, ) + Z Ve (i cx))
p=1+p k=K+1
ZJI'; hj (ri(p, c;)) + Z] w1 1 (151, ¢5)) +HO
(o0)
=h; (oo
=1+4u > e v (T )

Zj L hy (rj(ps ) + HO

This concludes the proof. O

B.9 Proof of Lemma 9

Proof. Assume without loss of generality that i1 < fi2 < ... [, Put S = {i;}, ;. Set S
contains K < n distinct elements: ji; < fis < ... < fig. We define the following function:

¢:pe€(1,00) = (1 — (Zh 75 (1, ¢5)) +H>—MZ% 7 (1, ¢5))
7j=1

Note that p solves equation (11) if and only if ¢(u) = 0. ¢ is continuous and
limo=—23 7 (r(1,¢;) <0.
j=1

Next, we show that ¢(u) is positive for p high enough. Assume first that jix < co. Then, for
all > fire, p(p) = (u—1)H® > 0 (recall that h;(o0) = vj(00) = 0 and lim,, e 75 (1, ¢j) = o0
for all j). Next, assume instead that jix = 0o. Let i be the smallest j € {1,...,n} such that
fi; = oo. Then,

lim ¢ = lim 4 (MT_l (HO + > hy (s C))) - Z%’ (%’(M@)) ;

j=i

= <Jg§ou> (Jggo (uT—l (HO + Zhj (TJ(M,C))) - Z%‘ (W(%@))) :

Jj=i
_ . 0 . )
= (Jﬂﬂ) (H + E; lgjnhj> ,

J=t

Q.
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It follows from the intermediate value theorem that ¢ has a zero. Moreover, all the zeros of
¢ are contained in (1, fix).

Next, we claim that ¢ is strictly increasing. To see this, we divide interval (1, fix) into
intervals (1, fi1), (fu1, fto), - .-, (fix—1, furc). Pick one of these intervals, call it (a,b), and let 4
be the smallest j € {1,...,n} such that i; = b. Then, for all u € (a,b),

P(p) = (1 — (Zh ri (1, ¢;) +H0> NZ% ri(k, ¢;))

J=

and, by Lemma 7, ¢ is C! on (a,b). ¢'(u) is given by (we omit the arguments of functions to

save space):

/ f " O " O
¢(M)=HO+Z(hj—%’)+(M—1)(Z%hg —p .%7} :

= H Y (=) + ) g—;? ((=75) = (= D(=h)).

=i 7 _
NV

=7; by Lemma 7

=H"+> h;>0.
j=i
Therefore, ¢ is strictly increasing on intervals (1, fi1), (fu1, f12), - - -, (fix—1, firc). By continuity,
it follows that ¢ is strictly increasing on (1, fix). Therefore, equation (11) has a unique

solution. u

B.10 Proof of Theorem 2

Proof. Let p* be a solution of maximization problem (9). Such a p* exists by Lemma 5.
By Lemmas 6, p* satisfies the generalized first-order conditions. Therefore, by Lemma 8§,
p* satisfies the common (-markup property, and the corresponding p solves equation (11).
By Lemma 9, this equation has a unique solution, which we denote p*. Therefore, p* =

(ri(1*, ¢i))1<i<n> and maximization problem (9) has a unique solution. The fact that
(M) (p*, H®) = p* — 1

follows immediately from Lemma 8.

Conversely, assume that the generalized first-order conditions hold at price vector p.
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Then, by Lemmas 8 and 9, p = (r;(11%, ¢;)),<;<, = P It follows that generalized first-order

conditions are sufficient for global optimality. O

B.11 Proof of Proposition 3

Proof. Recall that p solves the monopolist’s first-order condition if and only if ¢(u) = 0,

where

P(p) = (1 — (Zh 7k, c;)) +H°> MZ% ri(p,¢;)) V> 1

7j=1

In the proof of Lemma 9, we established that ¢ is increasing in pu.

Suppose that H® increases. Since ¢ is increasing in H° and decreasing in p, the optimal
value of u decreases. Therefore, all prices decrease (since r decreases with p), the set of
products with finite prices expands (or, at least, does not shrink), and the equilibrium value
of H increases (because both H” and Y.\ h;(p;) increase).

Next, suppose that ¢; increases for some j € N. If p; was initially infinite, then nothing

changes, since the value of ¢ is unaffected. Assume instead that p; < co. Note that!?

8¢ aTj

5o ~ e (= V)RS (r(p, ¢5)) = o (i, 5))
%
=75 (15 (1, ¢5)) %-
e

Since 0¢/0u = H, it follows from the implicit function theorem that

. (91"]
o™ Y B
de;  H 87“] ’

J op

which is strictly negative. Therefore, the optimal p decreases and the set of products sold with
finite prices expands as ¢; increases. Since rj decreases with p, it follows that p; decreases
for every k # j. Finally, p} increases, since

0% _ o, | ow o,

aCj N 8Cj Ocj 0,u’
_ Oy Vi

19Cases where ¢ is not differentiable can be handled as in the proof of Lemma, 9.
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which is strictly positive since h; > ;. [

C Proofs for Section 4

C.1 Proof of Lemma 10

Proof. p/ solves equation (12) if and only if

(! H) = ! (1  Djer i (Igj(ﬂfﬂj))> ~ 1.

Note that (., H) is continuous on (1,00) x R, . In addition, if i/ < oo, then ¥ (i/, H) =
p/ > 1 for all u/ > i/, Therefore, equation 12 does not have a solution on [/, 00).

Next, note that ¥(1) = 1 — M < 1. Suppose that there exists u/ > 1 such
that > (rj(u',¢;)) = H. Then, since v;(-) is decreasing and 7;(-, ¢;) is increasing (see
Lemmas 4 and 7), > .7 (rj(u",¢;)) > H for all pu/” < /. Define

Hf :sup{,uf € (1,00) : Zyj (Tj(,uf,cj)) > H},

Jef

and note that Hf < 00, since Y ;7 (rj (u!, cj)) goes to zero as p/ goes to infinity. For all
p' <ptp(p! H) < 1.

Therefore, equation 12 does not have solutions outside interval (Ef 1)) (put Hf =1if
D eV (rj(uf,¢;)) < H for all uf > 1). In addition, ¢ (uf, H) < 1 and limgs ¢ > 1. By
the intermediate value theorem, equation (12) has a solution on interval (Hf ,ji'). Since 1 is
strictly increasing in p/ (see Lemmas 4 and 7), this solution is unique. This establishes the
existence and uniqueness of m/(H). In addition, since 1 is strictly increasing in p/ and H,
m/ is strictly decreasing in H.

Let H > 0. Assume for a contradiction that m/ is not continuous at H. There exists
go > 0 and (H"), € RY, such that H" —_ H and |m/ (H") — m/(H)| > &, for every
n > 0. Let 0 < n < H. Then, for high enough n, H" € [H—n, H+n]. By monotonicity of m/,
it follows that m/ (H") € [m/ (H +n),m! (H —n)]. Therefore, (m/ (Hn>)n20
and we can extract a convergent subsequence: there exists ¢ : N — N strictly increasing
and pf € (1, i7) such that m/ (HS™) _ p’. Since m/ (H™) is bounded away from m/(H),

it follows that p # m/(H). By definition of m/, for every n >0, ¢ (m/ (H*™) , H*™) = 1.

Since v is continuous, we can take limits, and obtain that ¥ (u, H) = 1. By uniqueness, it

is bounded,
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follows that = m/(H), which is a contradiction. Therefore, m/ is continuous.

Finally, we study the differentiability properties of m/. Let H° > 0 such that m/(H?) #
fir for all k € f, and choose & > 0 such that (m/(H") —e,m/(H) +¢) N {fir},c; = 0 and
mf (H°) > Hf + ¢. We introduce the following notation: for every H > 0, put

f={kef: ml/(H) <}

Note that if f were empty, then 1 (mf(HO), HO) would be equal to m/(H®) > 1, a contra-

diction. Define

b (W H) € (m!(H®) —e,m! (H°) + &) x Ry > i/ (1 _ 2 5ei i (g(ﬂfﬂj))> ’

and note that (uf, H) = ¢(u/, H) for all (i, H) € (m/ (H®) — e,m? (H®) + ¢). In addition,
o (mf (H®),H) =1, ¢ is C',

8—1; (mf(HO),HO) =1 M —l—mf(HO) ( Zkef g;’?%) 7

out HO H°
ar, /
1 Zkef B (=)
= HO I
m! (H°) + (m! (H”) - 1) O g
which is strictly positive, and
812} Zk F Yk
20 o)1) = e B
mf(H®) — 1

By the implicit function theorem, there exist > 0 and a C' function
m! o (H* —n, H* +n) — (m! (H°) —e,m/ (H°) + ¢)
such that ) (m!(H),H) =1 for all H € (H° —n, H’ +n). In addition,
1 m! (H®) (m/ (H°) — 1)

HO R YA
U (H9) o (110) — 1) Pt D)

m!'(H®) =

which is indeed strictly negative. Since functions 1 and t coincide on (m! (H®) — e, m/ (H®) + £) x
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R, and by uniqueness of m/, it follows that m/ and 1/ coincide on (H°—n, H+n). There-
fore, m’ is C* in an open neighborhood of H°, and m/'(H®) = m/'(H"). O

C.2 Proof of Lemma 11

Proof. By Lemmas 7 and 10, 2 is continuous on R, .. In addition, when H goes to oo, the

SO b (1)),

feF kef

numerator of €2 goes to

which is finite. Therefore, lim,, 2 = 0. If we show that {2 is strictly greater than 1 in
the neighborhood of 0%, then we can apply the intermediate value theorem to obtain the
existence of H*.

Assume first that there exists j € N such that lim,, h; = > 0. Since h; is decreasing,
hj(xz) > 1 for all x > 0. Let f € F such that j € f. Then, for all H > 0,

h; (r; (m/(H)))

a(H) > =)
[
> — — .
_HHAO‘FOO

Therefore, limg+ 2 = co > 1.

Next, assume that hy(x) e 0 for all k € N. Let f € F, we define threshold H” > 0
as follows. If fi, = i for all k € f, then put H” = 1. If fi, < i/ for some k € f, then,
since limg+ m/ = i/, there exists H > 0 such that m/(H) > max ((/lk)kef \ {ﬁf}> whenever
H < H. In this case, put H/' = H. Having done that for every f € F, put H' = minscr H''.
Then, for every H € (0, H'),

QH) = %fz E; hy (ry (m! (H), ;).
€F jEi

We partition the set of firms into two sets: F' and F”, where
F={feF: i/ =occ}

and F" = F\F'.
Let f € F”. Then, by Lemma 4-(vi), limy, p = ﬂ’j}—il for every k € f such that ji, = ji/.

In addition, by Lemmas 7 and 10, for every k € f, 7y (mf (H )) H—>+ 00. Therefore, there
—0
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exists H/" > 0 such that

1
2|7

Pk(Tk(mf(H)))> i <1

> —— ) VH < H'" Vk e fst. =i’
M_

Let H” = minscz H/" (or any strictly positive real number if F” is empty), and H =
min (H', H"). For every H < H,

Q(H):% fz ; h (1 (m! (H), c1,)) +fZ“ ; hi (ri (m? (H), i) |

> [ S e e (o) + 325 (o (e (), )) e (7 (1) |
feF’ —ki/j;f feF [L’]:i/éf
S

> Z % Z Ve (ri (m? (H), k) + Z Mfu— ] (1 — ﬁ) % Z Ve (i (mf (H), e1))
fer 715{# feF! ﬂfiéf

- > ke W (e (m (H), i) i 1\ per e (e (mf (H), cr))

_Z/ o +Z,,ﬂf—1<1_2|f|) o ’
fer fer

B m/(H) -1 m/(H) -1 i/ 1 , ,

= fez]-" W + f;/ () W — 1 (1 - m) , using equation (12).

When H goes to 07, the right-hand side term on the last line goes to

1 1
/ Z
F = — > | Fl — —

which is strictly greater than 1. Therefore, Q(H) > 1 when H is small enough. This concludes
the proof. n

C.3 Proof of Proposition 4

Proof. The first part of the proposition follows immediately from equation (2), Theorem 3
and Lemma 10.

Next, we prove that largest and smallest (in terms of the value of H) equilibria exist.
If there is a finite number of equilibrium aggregators, then this is trivial. Next, assume

that there is an infinite number of equilibria. We have shown in the proof of Lemma 11
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that Q(H) > 1 for H low enough and Q(H) < 1 for H high enough. Therefore, the set of

equilibrium aggregators is contained in a closed interval [H, H|, with H > 0. Put
H =sup {He[H H: QH)=1}.

Let (H™)n>o be a sequence such that Q(H") = 1 for all n and H* — H . Since Q is

n—oo

— ==

continuous on [H, H|, we can take limits and obtain that Q(H ) = 1. Therefore,
H = max {H € [H,H]: Q(H)=1}

is the highest equilibrium aggregator level. The existence of a lowest equilibrium aggregator

follows from the same line of argument. O

C.4 Proof of Proposition 5

Proof. Let H° > 0. Given outside option H° > 0, H > 0 is an equilibrium aggregator level
if and only if Q(H, H°) = 1, where

HO+ 3 x> iephy (7 (mf(H)’Cj))'

Q(H, H°) = -

Let H” > H® > 0, and note that Q(H, H”) > Q(H, H°) for all H > 0. Let H and H (resp.
H and H') be the highest and lowest equilibrium aggregator levels when the outside option
is HY (resp. H”). We know from the proof of Lemma 11 that Q(H, H°) > 1 for all H < H.
Therefore, for all H < H,

Q(H,H”) > Q(H,H") > 1.

It follows that, when the outside option is H?, there is no equilibrium aggregator level weakly
below H. Therefore, H < H'. The fact that H < H follows from the same line of argument.
This establishes point (iii) in the proposition.

Points (i), (ii) and (iv) follow from the fact that a firm’s profit is equal to its :-markup
minus one (Theorem 3), m/ is decreasing (Lemma 10), and r;(-, ¢;) is increasing (Lemma 7).

]

C.5 Proof of Proposition 7

Proof. Tt is straightforward to show, using standard differential equation techniques, that

—2r = Ux) for all  if and only if h = h*? for some a # 0 and 3 € R. All we need to

62



do now is look for the set of pairs («, 3) such that h®? € H*. Note first that h*# cannot be
in H* if @ < 0. In addition, if h*? € H* for some a > 0 and § € R, then h*# € H* for all
o' > 0. Therefore, we can set a equal to 1 without loss of generality.

The problem now boils down to finding the set of $’s such that h® = h'# is strictly

positive, decreasing and log-convex. For all 5 € R,

PP (z) = —exp (— /1 %du) ,

which is strictly negative for all . So the fact that A” has to be decreasing does not impose
any constraint on /.

Next, we show that limy, h° (which exists, since h° is monotone) is finite and strictly
negative. It is trivial to see that this limit is strictly negative. Let 2 > 0 such that 7(z°) > 1.
Proving that lim, h° is finite is equivalent to showing that function ¢ — exp (— flt Z(Tu)du> is

0

integrable on [z°, 00). For every t > 2°,

0 ~

oo (= [ 1) < exp <_ [ [ L<i0>du> |
~ exp (- /1 ’ @du) exp (—7(930) log (%)) , (24)
( A Qd) ()

The last expression is integrable on [2°, 00), since 7(2°) > 1. Therefore, t — exp (— flt @du)

u

~

0 00) and B = limy, h° is finite and strictly negative. It follows that function

is integrable on [x
h? is strictly positive if and only if 5 > B .

Let g > B Then,

. ’BHCL’ 5$_ 5,I 2 — BB (x —hB(x
40 (@) B (@) = (@)1 hﬁ()<f(:c)—x ”ﬁ“).

dr h(z) A (x)? Tz hf(x) he(z)
B _ . c oo~ 7h5’(x) . 8 .
Therefore, h” is log-convex if and only if 7(x) > 73 @y for all z > 0. Since h (x) increases

with 3 and h#(x) does not depend on g, it follows that, if h? is log-convex and 3’ > 3, then

h?" is also log-convex.
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Moreover, using (24), we see that, for every = > &,

0
= 3 ~T(a)
—zh?(z) < xexp (—/ Malu) (%) ,
L x
" w) (a®
— exp (_/ —du) (IO)L(JC )xl—f(zo) — 0,
1 u T—00

where the last line follows from the fact that 7(z") > 1.

Let 5 > B Then, lim., h? > 0, and therefore, lim,_, xfﬂﬁ(’ (‘;‘" = 0. Since limy ¢ > 0, it
follows that there exists  such that i(z) > x5 (( 2) whenever x > 2. In addition, since h”
increases with 3, we also have that, for all 5/ > 3, 7(x) > x= hﬁ, ( ) ) whenever z > #.

Next, we turn our attention to lim, o+ _fLZ—[(Z()I). Note that

D CohP() = —H(x) (1~ T(x)).

dx

Therefore, if limg+ 7 > 1 or limg+ 7 < 1, then x — (—xh”(z)) is monotone in the neighborhood
of zero, and lim,_,o+ —wh?(z) exists. If instead limg+ 7 = 1, then either there exists ¢ > 0
such that 7(x) < 1 for all x € (0,¢), or Z(x) > 0 for all z > 0. In both cases, x — (—xh”(z))
is still monotone in the neighborhood of zero, and lim,_,o+ —xh? (z) therefore exists. Note
that limg+ A? trivially exists, since h? is monotone.

We distinguish two cases. Suppose first that lim,_,o+ —zh”(z) is finite, and denote this
limit by {. If limg+ h® = oo, then

—hs
@) iz o,
hB(xz) a—o0t of

z)—x

Therefore, there exists & > 0 such that o(z) > == ) for all z € (0,z]. In addition, the

inequality also holds if we replace 8 by g’ > 5. If, 1nstead, limg+ h¥ < oo, then

- —h(z) . l
x)—z ) — lim7 —— - =
h (Z‘) z—0t 0t hm0+ hp + B — /8
>0

which is strictly positive for 8 high enough For such a high enough 3, we again get the
existence of an # such that 7(z) > =15 for all z € (0, Z].
Next, assume instead that 11m$_>0+ —xhﬂ () = oo. Let M > 0. There exists € > 0 such

that h?(z) < —M/x whenever z < e. Integrating this inequality between x and e, we see
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that
hP(x) > hP(e )+M10g— — 0.

T x—0t

Therefore, limg+ h? = 0o, and we can apply 'Hospital’s rule:

_phB _ e hBN _p
i iy = e =T
Therefore, B
o(x) — x%i)x) = 1>0.
Again, this gives us the existence of an Z such that o(z) > r—5-* ) for all z € (0, |.

To summarize, we have found a 3 > B and two strictly positive reals £ and z such that

for all 5/ > B, t(z) > = hB,((a)‘“) whenever x > 7 or x < Z. If £ > 7, then we are done:
there exists 3 > 4 such that 7(z) > 2= x) for all x > 0. Assume instead that ¥ < z.
Let x; € argmingez (x) and x4 € arg maxze[jm :E_,f;(( ) Note that r1 and x, exist, since

Z, 2| is compact and the functions being optimized are Contlnuous If t{xq) > @Lz(),
g RA@2)

then we are done, since this would imply that (x) > x5 hﬁ( ) for all z € [z, Z]. Suppose

—hB (:EQ
hB (22

instead that 7(x1) < 25— . Since hP(zy) B—> oo and 7(z1) > 0, there exists 8 > 3 such

that xo _:B/(Z)Z) < (). By definition of x; and 9, and since h® increases with 3, we can

conclude that 7(z) > x=

) for all & € [z, 4]. It follows that 7(z) > z= x) for all z > 0.

hf" hB’

This implies that set
= {B > B . KW is log—convex}

is non-empty. In addition, we also know that if 5 > 8 and § € B, then ' € B. Put
B = inf B. Assume for a contradiction that 3 ¢ B. Then, there exists 2 > 0 such that

- —h? ()
Then, by continuity of h? in 3, there exists 3’ > B such that

—hﬁl’(x)

z) < xhﬁ'—(:c)

But then, 8 € B and h” is not log-convex, a contradiction. Therefore, the set of 8’s such

that h? is positive, decreasing and log-convex is B, 00). ]
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D Proofs for Section 4.3

In this section, we fix a pricing game ((hj)jej\f F, (Cj>j€/\/')'

D.1 Preliminaries

In this section, we prove several technical lemmas, which will allow us to derive firm-level
conditions for equilibrium uniqueness.

We introduce the following notation. For every f € F, for every u/ € (1, /),

j_m -1
w! = T
i
]
o = lim ,
W=t pd
and for every k € N, for every x > P,
(x) — 1
Xk(r) = —F—.
(z) ()

The following lemma is useful to understand our uniqueness conditions:
Lemma C. For every f € F, w/ € (0,&7) and k € f:

e For every x such that xix(r) > w/, 1 —w/Oi(z) > 0.

e In particular, for every ¢, > 0, for every x > ry (ﬁ, ck>, 1 —w/f(z) > 0.

e In particular, for every x > p . xx(2)0k(z) < 1.

Proof. Let f € F, k € f, w! € (0,07), and x such that x,(z) > w/. Put p/ = —+. Then,
ue(z) > p/. Therefore, there exists ¢ > 0 such that vy(x,c) = p/. We know from Lemma 7
that

%(Mf ¢) = (e, cr))
ot (= (e s ) — (0 = 1) (= Ry (e, )
o) 1 >0

In addition, by Lemmas 4-(iii) and 7, 7},(z) < 0. Therefore, 1 —w/8(z) > 0. This establishes

the first bullet point in the statement of the lemma.
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Next, let ¢ > 0 and & > 7(u’, ¢). Then, since v (., c) is increasing, vi(z,c) > p/. Since
c > 0, it follows that tx(x) > p/, and that xx(z) > w’. It follows from the first part of the
lemma that 1 — w/6(z) > 0.

Finally, let 2 > p, . Put w! = xi(x). Then, for every y such that x.(y) > w/, 1—w/0,(y) >
0. By monotonicity of xj, this implies that, for every y > x, 1 — xx(x)8k(y) > 0. Therefore,
by continuity of 0y, xx(z)0k(z) < 1. O

Lemma D. Assume that il = ji; for every f € F and j € f. If, for every f € F,

o 1 w'
! of E—“ k _ 1 p
v € (0,67, ( 1 —wfek%) <Zk€f hi Dey ’Yk) = (25)

kef

where, for every k, functions 0y, vx and hy are all evaluated at point pr = ry < =0T ck> then

pricing game (<hj)je/\/>‘7:7 (Cj>je/\/> has a unique equilibrium.

Proof. By Theorem 3, ((hj)je o (cj)].€ N) has a pricing equilibrium. To prove that there
is only one equilibrium, we show that Q(.) is strictly decreasing. Let H > 0, and, for every
feF, u =ml(H)and wf =

/H):Hme'(H)Zr' )hk rk Zth rk

feF kef fEF keEN

:Z W (! _21 (Zrk ) —th , by Lemma 10.
keka

feF \ 14 puf(pf —1) Seos kef kef

Therefore, a sufficient condition for this derivative to be strictly negative is that, for all

ferF,

Z ' (—h
! — 1) Zegg )
EE (26)
finf _ kef T\ Vi
L pl(pf =)=

Let f € F. Then,

f ’Yk(_h;c) f Wk(_'V;C)
2oer M wf (=)= =D (=hy) 2o M wl (=) —(uf =1)(=hy,)
Zkef hu Zkef Tk

Zkef g, (=hi,) Zkef /ﬁfrfg(—%/g)> -1

— (uf = 1) <1,
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9 1
f Zk‘ef l—wkfek Tk Zk’éf 1-w/ oy Tk
= (u - 1) — <1,
Zkef hy, Zkef Tk
(4 wf 0y
f Zk;ef 1fwkf9k Tk Zkef 1wl Tk
— (' -1) -1- <1,
Zkef b, Ekgf Vi
Qk 1 wf
= -1) -1+ Vi <1,
;f 1 —wloy Zkef h, Zkef Tk

wfo, 1 wf
= TR - <1,
(22;]"wf9k7k> <§:k6fh* Zkef%)

where, for every k € f, functions 6, y and hy are evaluated at point pp = 7(p/) =
Tk <ﬁ> Since condition (25) holds by assumption, {2 is strictly decreasing. Therefore, the

pricing game has a unique equilibrium. O

Lemma E. Assume that i/ = [i; for every f € F and j € f. Let (Ct)pen € Rﬁﬂr. If, for
every f € F,

- 1
vw! € (0,a7), V(T )es € H |:7"k (1——wf’gk> ,OO) ;

kef

27
w! O (z1) 1 wf (27)

2 T o) M\ S ) T S ) <

kef Wk Lk kef 1Tk ke s Vi(Zk
or, equivalently, if
wa € (O,(Iif) iIZ’k kef € H |:7”k ( f’—k) OO) ’

ket (28)

(s
S sates) () T~ pda ) <0

i.jef
then pricing game <(hj)jeN . F, (Cj)je/\/) has a unique equilibrium for every (c;) ;.\ € IT;eplc;s 00).

Proof. Assume that condition (27) holds, and let (cx),cp € [Tienlcr, 00). We want to show
that condition (25) holds, so let f € F, w/ € (0,&/) and p/ = =. Let k € f and
pe = ri(pf, c). Since ¢, > ¢, and 1y is increasing in its second argument, it follows that
pe > mi(pf, c.). Therefore, (Pr)res € ey [ (1!, ¢;,) ,00). It follows that condition (25)
holds. By Lemma D, pricing game (N (i) ken s F s (Ch) e N) has a unique equilibrium.
Finally, we show that conditions (27) and (28) are equivalent. Let f € F, w/ € (0,07),
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and (7)yer € [Ties [rk (ﬁ,gk) ,oo). Then,

wf o, 1 wf
Z 1_wfo.* N <1
kef 1 —wloy Zkefhk Zkef’ﬁc

= (51t (5 ) (29)(59)

ief JEf ief JEf
wfo, /

> Zl—oﬂ"@ Z% —wlp;) | - Zpi% Z%‘ <0,

i€ Jjef icf Jjef

1 — wfp~
. fp.-__ = 1H _
< évzvj (w ezl—wfﬁi pz> < 0. O
Z7j

Lemma F. Assume that i/ = [i; for every f € F and j € f. If, for every f € F,

Vol € (0,67), V(wi)yes € { (@h)yey €RLL: VEE f, xa(an) > ! |

wfﬁk(xk) " 1 _ wf (29)
(; 1 —wft%(l’k)’yk( k)> (Zkef hie(ar) Zkef%(fk)> =h

or, equivalently, if*°

V! € (0,@7), Y (24)pe; € {(:ck)kef eR], : Vke f, yalan) > wf},

— wl iz
PIRACHHCH (wfﬁz-(%)ll—Tm ) pi(“”)) -

hLJES

(30)

then pricing game ((hj)jeN,}", (Cj)j€N> has a unique equilibrium for every <Cj)j€N € Rﬁ\rcr
Proof. Let (cg)pen € RY,, and assume that condition (29) holds. Let f € F, w! € (0,07)

and u/ =1/(1 — w’). Let (@k)res € ey [ri(p!, cx),00). Then, for every k € f,

() > vz, cx) = .

Therefore,
(#i)es € {@h)uey €RLL: VR E £, xa(wn) > o'},

and, by condition (29), condition (27) holds for (¢;),crr = (¢k)gepn- By Lemma E, pricing
game (N () kens s F s (Ch) e /\/) has a unique equilibrium. In addition, as shown in the proof

20Recall that p, = A&
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of Lemma E, conditions (29) and (30) are equivalent. O

All we need to do to prove Theorem 4 is show that, for every f € F, conditions (i), (ii)
in Theorem 4 imply condition (29) (or, equivalently, condition (30)), and that condition (iii)

implies condition (25).

D.2 Sufficiency of condition (i)

We prove the following lemma:

Lemma G. Assume that i/ = [i; for every f € F andj € f. Let f € F. Ifminjc; infy, >, pj(p;) >
maxje f SUp,, ~,, 8,(p;), then condition (29) holds for firm f.

Proof. We show that condition (30) holds for firm f. Let f € F, w/ € (0,&7), and

(xk)kefe{( k) f€R++ Vk € f, Xk(xk)>wf}

Since for every k € f, xx(xr) > w/, it follows that ¢4 (x;,) > 1. Therefore, 2 > p, for every
k, and

<
max Or (k) T,fllﬂ ()

Therefore,

1 —wl
Z ViV ( i C:)fgj - pz') < Z Y5 (Wl pi — pi)

i,jE€f L,jef

< (W =1) ) wve <0,
i,jEf

where the first inequality follows by Lemma C and maxyef 0 (x)) < minges pg(xy). Therefore,
condition (30) holds for firm f. O

D.3 Sufficiency of condition (ii)

The aim of this section is to prove the following lemma:

Lemma H. Assume that if = ji; for every f € F and j € f. Let f € F. Suppose that,
il < pr(~ 2.78), and for every j € f, limy, h; = 0 and p; is non-decreasing on <]_)J,,OO>.
Then, condition (29) holds for firm f.

This lemma is proven in several steps. Start with the following technical lemmas:
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Lemma 1. Assume that i/ = [i; for every f € F and j € f. Let f € F. Suppose that
il < oo, and for every j € f, limy hj = 0 and p; is non-decreasing on (Bj’ oo). Then, for
every w! € (0,&7), for every k € f, for every x > 0 such that xp(x) > w/,

1—w 1
of 1 —wf

< < !

< pr(z) < of

Proof. Let k € f and w/ € (0,07). By Lemma 4-(vi), limy, pj, = ﬁf}—il = ;. In addition, p;
is non-decreasing. Therefore, py(z) < w—lf for all =z > Py In particular, this inequality is also
satisfied if x is such that y.(z) > w’.

In addition, as shown in the proof of Lemma 4-(vi),

%@—%@Lﬁﬁg
Therefore,
) i (-1 2.
i (g ).
B Z:Eg - ;;:2) (on () xk () = 1),
e

where the last inequality follows from the fact that y;(z) < @/ and pp(7) < =

s () = ™
< [,

. Therefore,

for all z > %

Therefore,




In particular, if x;(z) > w’/, then

11— 1
ol 1 —wl

pr(z) >

Lemma J. For every w € (0, 1], for every w € (0,w), define

1—-w 1 1]2 1 —wz 1 —wy
wy w

w,@ - ) € - - T s
Poa i (9:2) {w l-—w w

There exists a threshold w* € (0,1) (w* ~ 0.64) such that if @ < w*, then ¢,5 < 0 for all
w e (0,w).

Proof. Let @ € (0,1) and w € (0,@). Define

M(w,@) = max 2¢w,@<y7z)'

w.2)e[ 3% 53]
Notice that ¢, 4(y, 2) = ¢uw(z,y) for every y and z. It follows that

M(w,@) = max 2¢w@(y7z)'
w452 2505
y<z

1 1—wz\”
= w —wlz— (1 —w2) |,
1 —wz 1—wy

1
1 —-wz

=w—1<0.

(w—w’2— (1 —wz)), since y < z,

<
€
=
N
A
-
€
7 N
[S—
|
€l
—_
vz\z
~__
Il
=
€
€l
S

Therefore,



Since

w::,w<z>=<1— = 1f°°)< 20 g,

l—-w @ 1 —wz)?

function 9, 4 (.) is strictly convex. Therefore,

l1-0 1 1—-w 1 l—w 1 1
M ) = w,w — ) — ) Yw,w — ) — .
(w,®) rnax{<b7 ( 0o 1l-w @ 1—w) 2 ( o 1-w w)}

Since @ z(2,2) = 2(w — 1)z < 0 for every z, it follows that M (w,w) < 0 if and only if
((w,w) <0, where

w - o=t — l—w w l—w
w(l—w) w l—-w 1 1
— - + — — - - —,
w (1—-w)w o l-w @
1 w—2
= —w.
1—w w

For every w € (0,w),
aC 1 1
—=——+—-——1>0.
Ow (1 —w)? * w
Therefore, ¢ is strictly increasing in w on interval (0,w). It follows that M (w,w) < 0 for

every w € (0,w) if and only if £ (w) < 0, where

§(@) =¢(w,w),
1 _
=—+4+1-w—-—

1—w w
For every @ € (0,1),

1 2

"(w) = + —-1>0.

Therefore, £ is strictly increasing on (0,1). Since limg+ £ = —oo and lim;- = 400, there

exists a unique threshold w* € (0,1) such that {(w) < 0 if and only if @ < w*. Numerically,
we find that w* ~ 0.64. This concludes the proof. O

We can now prove Lemma H:

Proof. Assume that @/ < w* (or, equivalently, that i/ < p* ~ 2.78). Splitting the sum in
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two terms, condition (30) can be rewritten as follows:

Vw! € (O,(Df)u V(xk)kef € {(mk)kef = Ri+ D Vk € f, xi(zr) > Wf}7

LS~ ) (/s Lm0 g L= wioie)

21%72( z)%( J)( 91( l)l—wf@-(xi) + ‘9]( ])l—wfej(xj) pz( z) ;0]( ])> (31)
i

+ (;%(&)2 (wfﬁi(xz’)i_TgZEx:; —,Ol(xl))> < 0.

Let us first show that the second sum is strictly negative. Let w/ € (0,&7), i € f and x; such
that y;(z;) > w’/. Therefore,

1 — w/pj(as)

fo. () —= 171

— pi(z:) <w!0;(x:) — pi(:) <0,
where the first inequality follows from the fact that p; is non-decreasing (0;(z;) < p;(z;)) and
Lemma C (1 — w/6;(x;) > 0).

Next, we turn our attention to the first sum. Let w/ € (0,@7) and (k) e, such that

xk(zx) > w! for every k € f. By Lemma I,

1-of 1 1

Vkef, p(@) € |17 oF |-

In addition, as shown above, for every k € f, 0y.(x1) < pr(xk) (< w—lf) Therefore,

—wloi(x. — whp;(x;
3 2 oyt (/00 T 10,0 S (o) (o)

— wfO.(r. — o fO. (.
byt 1 — wfb;(z;) 1 —wl6;(z;)
i

1
< 2 Z Vi(2i)7i (@) Pur wr (pi(xi), pj(25))
i#]

<0, by Lemma J.
This concludes the proof. O

D.4 Sufficiency of condition (iii)

We prove a slightly more general result:

Lemma K. Assume that i/ = ji; for every f € F and j € f. Let f € F. Assume that
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there exist h' € R&j, ¢/ >0 and (k) € RY, such that for every k in f, ¢, = ¢/, and
for every x > 0, hi(x) = axh’ (x). Assume in addition that p/ is non-decreasing. Then,
condition (25) holds.

Proof. Let k € f. It is straightforward to show that 0, = 0/, pp = p/, v = !, e =/,

and xx = x’/. In addition, v, = v/. Therefore, r, = r/. Condition (25) is equivalent to

fof 1 w!
ol € (0.5 _wlef - <1
@ €09, <Z 1 —wf9fak7> (Zkef aph! Zkef ak7f> ’

kef

where all functions are evaluated at rf <ﬁ> This is equivalent to

| — wl pf wigf

<1,

which clearly holds, since 6/ < p/. m

D.5 Condition (ii) when limh; > 0

In this section, we extend condition (ii) in Theorem 4 to cases where lim, h; is not necessarily

equal to zero. We start with the following technical lemma:

Lemma L. Assume that i/ = [i; for every f € F and j € f. Let f € F. Assume that p; is
non-decreasing on (&,oo) for every j € f. Then, for every k € f,

Sk = {w € (0,&7): Fr>p, w=xu(r) = Pk%x)}

contains at most one element. If Sy is empty, then, either xx(x)pr(z) > 1 for every x > P,

or xx(z)pr(x) <1 for every x > p, . If, instead, Sy = {w}, then, for every x >p

. 0k<x> < %7 and

o if pr(z) < 3, then pi(z) = 1525

Proof. Let k € f, and assume for a contradiction that Sy contains two distinct elements.
There exist 2,y > p, such that xx(2)p(x) = 1, xx(y)pr(y) = 1 and xx(z) # xx(y). To fix
ideas, assume xx(y) > xx(z). Then, since yj is non-decreasing, y > x. Since pj is non-

decreasing, pi(z) < pi(y). Therefore, xi(z)pr(x) < xr(y)pr(y) = 1, which is a contradiction.
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Let k:x € (]_)k, 00) — pr(z)xk(z), and notice that  is continuous and non-decreasing. If
Sy, = 0, then, there is no x such that x(x) = 1. Since & is continuous, either x > 1, or x < 1.
Next, let z > p, . If p(z) < 1. then, O(z) < pr(z) < £. Assume instead that pg(z) > =.
Let 2 such that xx(2) =@ = pk;(a?)' Then, py(z) > pr(2) = + and, by monotonicity, z > 2.
Therefore, () > xx(2) = ©. Next, we claim that 0 (z) < -1

o = xx(@)
() = xﬁg) Therefore,

. To see this, notice that

=i i)y
=3 (1w i)
=2 (1)
Therefore,
Ou(z) = 1 () L w(r) 1

1 1
Therefore, O(2) < 75 < 7

Next, assume that py(z) < =. We know from the proof of Lemma I that for every

t € [z, ],

Integrating this inequality between z and Z, we obtain that Z ’;Eg < 2253 Therefore,

1 | a
w 1= xi(x)

Proposition A. Assume that i/ = [i; for every f € F and j € f. Let f € F. Assume that
p; 18 non-decreasing on (Bj’ oo) for every j € f and that &/ < w*. Assume also, using the

notation introduced in Lemma L that, for everyi € f, S; = {@w} . Then, condition (30) holds
for firm f.
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Proof. As in the proof of Theorem H, the expression in condition (30) can be split in two
terms (see equation (31)). Since p; is non-decreasing for every j € f and by Lemma C, the
second sum is strictly negative. Next, we turn our attention to the first sum. Let w/ € (0,0/),

i,j € f, and z;, z; such that y;(z;) > w/ and x;(z;) > w/. We want to show that

1 — w/pi(:)

1— wfp- T
I\

1—wl0;(x;) — pi(zi) — pj(x;) < 0. (32)

To fix ideas, assume that p;(2;) < p;(x;). If p;i(x;) > -7, then condition (32) is clearly
satisfied, since, by Lemma C, 1 — w/0;(z;) and 1 — w/0;(z;) are strictly positive. Assume

instead that p;(z;) < &. Then, we claim that w/ < @. Assume for a contradiction that

© < w/. Since S; = {@}, there exists &; > p, such that x;(%;) = &w = ﬁz) Therefore,

pi(x;) < pi(Z;) and, by monotonicity, z; < &;. Since x; is non-decreasing, it follows that
wh < xilz) < xi(@:) = @,

which is a contradiction. Therefore, w/ < .

We distinguish three cases. Assume first that p;(z;) < % Then, by Lemma L,

1—w 1 1—o 1
pr(xr) > 5 >

T—xu(ze) = @ 1—wl’

for k € {i,j}. In addition, 1_%2;()%) <2 1};’()%) and 1—?)”(;6;()95]-) < & J}(ij()xj). Therefore,

v S qbwf,dz (pZ(xz)vpj(xJ)) )
which, by Lemma J, is non-positive, since & < @/ < w*.
Next, assume that p;(z;) < + < p;(z;). Then, by Lemma L,

( )>1—d) 1 >1—d} 1
i\Li) 2 = = N )
g @ 1= xi(:) O 1-wf

and 0;(x;) < 1. Therefore,

w

w!0;(z;) w! wl 1
g« wilr) [, W S (1 — !l py(z) — i) — =
< 2o (12 ) 4 S - ) - o) - 3,

w! pi(z;) ! w! 1
< = - 2 w 1—wfpi(x;)) — ps(z;) — =

7



1
= <I5wf,w (/%(Iz')a 5) )
< 0 by Lemma J.

Finally, assume that p;(z;) > . By Lemma L, 6;(z;) < £ and 6;(x;) < 1. Therefore,

1
w w

10, (2 ! 10, (x; !
U< w!0;(x;) (1_w_)+ wQJ(%)' <1_w_)_i_l

- 1- wfﬁz(xz) X

w
wl f wl N1
< “f<1—°f)+ wf(l—"f)—r—r,
_wl w _ ol w w W

< 0 by Lemma J.

This concludes the proof. O

Condition S; = {@w} Vi in Proposition A may look a little bit arcane. The following

corollary is easier to understand:

Corollary A. Assume that if = [; for every f € F and j € f. Let f € F. Assume
that p; is non-decreasing on <£j, oo) for every j € f and that wf < w*. Assume also that

there exist h € RET and (o, Br)kes € (RiJr)f such that for every k € f, for every x > 0,
hi(z) = agh(Brz). Then, condition (30) holds for firm f.

Proof. Let us first show that S; C S for all 4,5 € f. Let ¢,57 € f. If S; is empty, then,
trivially, S; C S;. Assume instead that S; # 0, and let @ € S;. There exists &; > p, such that

1
pi(Z:)

Xi(Z) = w =

Since h;(z;) = a;h(fiz), it is straightforward to show that p;(Z;) = p(5;z;) and y;(&;) =
X(ﬁziz) Let .f?j = B—;ii'l Then,

I B |
pi(2:)  p(Bidi)  pi(E;)

Therefore, w € S;, and S; C S;. It follows that S; = 5 for all 4,5 € f.
If S; # 0, then, by Proposition A, condition (30) holds for firm f. Assume instead that
S; =0 for all i. Let ¢ € f. By Lemma L, either x;(x;)p;(z;) < 1 for all ;, or x;(z;)pi(z;) > 1
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for all z;. Assume first that x;(x;)pi(x;) <1 for all x;. Let j € f and x; > p; Then,

Bi Bi
X;(5)pi(x;) = Xi <—j%‘ pi| i) <1
Bi Bi
Therefore, x;p; < 1 for every j in f. It follows that

lim p; < limi = ;f < 00.

o0 © X W
Therefore, lim,, h; = 0 for every j € f (if lim h; were strictly positive, then p;(z;) would
go to 0o as x; goes to 0o0). By Lemma H, condition (30) holds for firm f.

Finally, assume that x;(x;)p;(z;) > 1 for all z;. Then, using the same argument as above,
X;p; > 1forevery j € f. Let ¢ € f, and assume for a contradiction that p, > 0. Since 1/y; is
non-increasing, and since, by continuity;, Li(gi) =1, it follows that limpj % = 00. Therefore,
lim + pi = 00, which is a contradiction, since p; is non-decreasing. Therefore, p, = 0.

Assume for a contradiction that limg+ ¢; = 1. Then, using the same reasoning as in the
previous paragraph, limg+ p; = 0o, which is again a contradiction, since p; is non-decreasing.

Therefore, limg+ ¢; > 1, and @ = limg+ x; is strictly positive. In addition, since

X;(®) = xi (%x) ,

limg+ x; = w for every j € f. Notice that, for every j € f, for every z > 0,

. . 1
pile) 2 limp; 2 lim == 7,
and that, by Lemma C,
1 1 1
b,(z) < <lim— = —.
xj(x) — oty w

It follows that

1 ..
maxsup #; < — < mininf p;,
icf w ief

i.e., condition (i) in Theorem 4 holds. By Lemma G, condition (30) is therefore satisfied for
firm f. O]

Proposition B. Assume that jif = ji; for every f € F and j € f. Let f € F. Assume that
p; 18 non-decreasing on (]3]., oo) for every j € f, that & < w*, and that 0, < w—lf for every k
in f. Then, condition (30) holds for firm f.



Proof. Let i,j € f, w' € (0,&0f) and z;,z; > 0 such that x;(z;) > w/ and x;(z;) > w’.
Define
w!0;(x;) w!0;(x;)
W= _—— """ (1 oo —— () — () — pi(xs) — ().
T wia ey () gy U7 ) = k) et
As in the previous proofs, all we need to do is show that ¥ < 0. Assume first that p;(x;) > @if
and p;(z;) > 2. Then,

max (0;(;), 0;(x;)) < min (ps(x:), p;(x;)) -

Therefore, ¥ < 0.

Next, assume that p;(z;) < =7 and p;(x;) > 2. Then, we claim that

(33)

To see this, assume first that S; = {&;}, where &; € (0,wf). Since pi(z;) < =5 < =, by

of
Lemma L,
1—w; 1 S 1-of 1

pi(x;) >

Assume instead that S; = (). By Lemma L, either y;p; < 1 or x;p; > 1. If x;p; > 1, then we
know from the proof of Corollary A that
1 1
pi = sup — > —.
xi @
This contradicts our assumption that p;(z;) < wif If, instead, x;p; < 1, then we know from

the proof of Corollary A that lim,, h; = 0. Therefore, by Lemma I, inequality (33) holds.

Therefore,

w!0;(x;) w’ w! 1
< A _ w —woF (e — i) —
Y=g — wl () (1 2 ) oy (L-wiaie) = pile) = 55

w! pi(z;) w' w! 1
< ) ) 2 © 1—wlpi(x)) = pi(z;) — —
- 1—wfpi(93i)( B >+ =57 (L= wlpi) = pilw) Wl

1
= Gt o (Pi(ﬂfi), J) ,

< 0 by Lemma J.
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Finally, assume that p;(z;) < 27 and p;(z;) < 2. Then, as above,

1—wf 1
ol 1 —wf

pr(Tr) >
for k € {i,j}. Therefore,
V< s ar (pilwi), pi(;))

which is non-positive by Lemma J. [

Corollary B. Assume that i/ = fi; for every f € F and j € f. Let f € F. Assume that p;
1s non-decreasing on (1_9J,,oo> for every j € f, that @ < w*, and that 0}, is non-decreasing
for every k in f. Then, condition (30) holds for firm f.

Proof. Let k € f. Since 6 is non-increasing, for every z > P,

1 1
0r(z) < sup b =limf;, <lim — = —.
ee © Xk W

where the second inequality follows from Lemma C. Therefore, by Proposition B, condi-
tion (30) holds for firm f. O

D.6 Proof of Proposition 8.
Proof. Let 7 € f. Then, for all z > 0,
= Oéjﬁjh%ﬁjl’ + 5]) < 0,

(z)

() = ajﬁ?h"(ﬁjx +6;) > 0,
i(@) = ayy(Bjz + 65),
(z)
(z)

Vi(x) = ;B (B + 65),
.
pi\xr) = p(ﬁjl‘ + 53) + m > p(ﬁj$ + 6]')’
8]<I> = 6(5]$ -+ 5j>7
Li(x) = %L(ﬁjx +35).

Therefore, h; is positive, decreasing and log-convex, ¢; is non-decreasing whenever ¢; is > 1,

and fi; = limy ¢. In addition, for every z > P

1 <j(x) < u(Bjx+9;).
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Therefore, 8;x + d; > p, and
0;(x) < sup0(y).

y>p

It follows that sup,., 0;(y) < sup,.,0(y). Using the same reasoning, we also obtain that
p P

inf,~, pj(y) > infys, p(y). Therefore,

max sup 6;(z) < maxsupf(x),
Jjerf z>p, j( ) Jef T>p ( )

< supf(z),

T>p

< inf p(z),

T>p

< min inf
_Ijneljrgglcggp(x),

< min inf p;(z).
= ooy, /0]( )

D.7 Proof of Proposition 9

In this section, we let m/ (H , (cj)j c f> be firm f’s fitting-in function when its costs are given

by (¢j);e;- It is straightforward to adapt the proof of Lemma 10 to show that m/ is non-

increasing in (¢;) and that

JES?

lim m/ (H, (cf,...,cf)) =1.

cf =00

Fo
We introduce the following notation: For every f € F, put Hf = minjes fi; and w/ = Hu—fl

(or w! = 1if pf = o0). For every ¢ > 0, define

e S s

H(c) I}lé;_llnf{H>0. m(H,(g,...,g))<H}.

By Lemma 10, H(c) is finite, and m/ (H, (c,...,¢)) < p/ for all f € F whenever H > H(c).
jer) <l forall H > H(c), f €

and (¢;),.; € [c, o0)/. Note also that H is non-increasing in ¢, and that lim, ., H(c) = 0.

In addition, since m/ is decreasing in (c;);ef, m’ (H, (¢;)

We prove the following preliminary technical lemma:
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Lemma M. Let ¢ > 0. If, for every f € F,

1
vw! € (0,w?), V(xk)kef € H [Tk (m>g> 700> ’

kef

w! O () 1 w! ) (34
(; 1 —wak(:Ek)’Yk(fEk)) (Ekef hi(xy) B Zkef ’Vk(xk)> <1,
or, equivalently, if
Vol € (0,w”), V (24)1es € H [Tk <1——1wf’g) ,oo) :
ey (35)
5 st (/00 TS )] <o

then, for every (¢;) e € [c, oo)V, pricing game ((hj)jeN,]:, (Cj)je/\/) has at most one equi-

librium aggregator level in (H(c),o0).
Proof. The proof is exactly the same as the proof of Lemma E. O]
We can now prove Proposition 9:

Proof. We only prove the first bullet point. The proof of the second bullet point is similar,
and therefore omitted.
Let H° > 0, and H° > H°. Recall that pricing game ((hj)jeN,]:, (Cj)jeN> with outside

option HY is equivalent to pricing game ( (hf()). JF, (Cj)je N) with outside option 0,

where .

H
0
M =hj+ ——

VieN.
N

Note that, for every H* > H® and j € N, pJHO > pjﬁo and lim, ., pfo = 0.

Fix some ¢ > max;jey p.. For every j € N and = > ¢,%!

1 1 1
< < max

x;(x) = xj(c) T keN xi(c) 97

0;(x) <

where the first inequality follows by Lemma C. Since lim,, pjﬁo = oo for every j € N, there

exists ¢ > ¢ such that, for every j € N, pjﬂ0 (r) > 0 whenever x > ¢. Therefore, for every

21Since neither 6; nor y; depend on H®, we drop superscript H® to ease notation.
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H°>H feF,i,j€f, x;>c and z; >, pffo(xi) > Qfo(asj), and, in particular,

Vw! € (0,w’) M (1 —wprO(:v)) —p(z) < 0.
T 1= w0 (xy) 7 B

Therefore, condition (35) holds, and, for every H° > H® and (¢j)jen € ¢ ,00)V, pricing
game <(h]H0)j€N F, (Cj)je/\/> has at most one equilibrium aggregator level in (H(c’), 00).
Next, choose ¢ > 0 such that H(¢”) < H°. Since lim,, H = 0, such a ¢’ exists. Put
¢ =max (¢, c"). Since H(-) is non-increasing, H(c) < H°. Combining this with our previous
findings, we can conclude that for every H° > H" and (¢);en € o oo)V, pricing game
((hj)je noFo () e N> with outside option H° has at most one equilibrium aggregator level
in (H° 00). Since this pricing game has an equilibrium (Theorem 3), and since no equilib-
rium aggregator level can be less than H?, it follows that this pricing game has a unique

equilibrium. N

D.8 Establishing Equilibrium Uniqueness Using an Index Approach

The reader may wonder whether we could obtain weaker uniqueness conditions by using
more standard approaches. Uniqueness of a fixed point is usually established by using the
contraction mapping approach, the univalence approach or the index (Poincaré-Hopf) ap-
proach. It is well known that the index approach is more general than the others, and that
it provides an “almost if and only if” condition for uniqueness. We will therefore focus on
the index approach. Since we will be working with matrices, we will sometimes assume that
F={1,...,F}, and that firm f’s set of products is N'/.

We know that establishing uniqueness in the pricing game is equivalent to establishing
uniqueness in the auxiliary game in which firms are simultaneously choosing their u/’s. We
also know that a profile 4 = () sex is an equilibrium of the auxiliary game if and only if

for every f € F,

o' (n) = (1 —1) <th> DD || = Y w=0

keNT gEF keN | keN’
9#f

Therefore, all we need to do is show that map ¢ has a unique zero. By the index theorem,

this holds if the determinant of the Jacobian matrix of ¢ evaluated at pu is strictly positive
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whenever ¢(u) = 0. We have shown in the proof of Lemma 9 that

f
%—ZthEH(u).

fEF keN S

Moreover, if g # f, then

a¢f f BN
8_Mg =W -1 keZNg T3P
Therefore,
H(p) (11 = 1) 2pene il o (= 1) Xpenr i1
det J(¢) = (2 = 1) 3 enn T H(u) s (2 = 1) Y e T
(1" = 1) Ypern mihic (07 = 1) Ypepe rihy - H(p)

) . ) e H(p)
(}g(“ 1)k§f kh’“) det M ((1 - (1 =1) > hens 7‘2(—%))5)051”’) ’

where the second line has been obtained by dividing row f by puf — 1 and dividing column
by > pens Tihy, for every fin {1,..., F} and by using the F-linearity of the determinant.

By Lemma A,
det (J()) (f];f(u 1)k§f ;m) (—1) ((fl; (1 T D) S 7“2(—%)))
_ H(p)
21 (e Srens r;(—h;))> /

— f_ PR (—1)F H(p)
(E(" D2, kh’“>( g (g(”wf—l)zkewu—h;)))
1
X 1_2 H(p) ’

feF 1+ (W =1) Y enr Th(=RE)

_ <H (H(u) + (=1 Té(—hk))) 1= 1H(u)

reF v jer Lt s i

J/

-~

>0
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Therefore, we need to show that

Z b kens M=)

“f - / (36)
fer L+ Sy 2Zkens TR(=hE)

whenever ¢(u) = 0. Notice that

(W = 1) D penr T (=15)
(36)<:>Z 1+uf 12 /( h/>_zhk <0
JeF H(u) 2<keNT TR ey
(1 = 1) Y pens (= hk
Z - (#f 1)2 T Z hiy | <0, since ¢(p) =
fGJ: ZkENf Yk kENf
f_1 r (=h,
A Z uf ]_Z(:i./\ff Tk()(u?kle)fv;’ )k(uf( kW)k)JFNf( 1) - Z ] <0
fer \ 1+ M et Tk ket
f 1 (—=h,
Z (N )Zke/\/f Tk( k/) _ Z hr | <0, by Lemma 7,
> _uf71+(ﬂf_1)w
feF e PR keNT
Fuf =1 T
Z ! (p ) 2 kens Ti( Z he | <0,
1+ pf (uf — 1)% g
feFr D wentf Ve keN

<= Q' (H(u)) < 0 (see the proof of Lemma D).

Therefore, the index approach gives us the exact same condition as the aggregative game

approach.

E Proofs for Section 5

E.1 Proof of Proposition E.1

Using the definition of function S and equation (15), it is easy to see that m(z) and S(z) are
jointly pinned down by:
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Differentiating wrt x, we get:

(o —1) (m(x))* §'(2),
(1 —m(2))"" = (o = Dzm/(2) (1 = m(z))”"*.

S(z) = (1- m(ﬂﬁ))ala2 >0,
1+ (c—1)2z(1 —m(x)) (m_(x))
S a1 (163 i EC5) G

L+ (o = 1)% (1 —m(2))” (m())’

Since m = m.S, it follows that 7’ > 0.

Applying the implicit function theorem to equation Q(H) = 1 yields:

s (%)

dH* -0
dI’ YperwS (7))
Next, notice that
f
(%) | T
dor  H* H*dT! )’
! 1 ? i <T_f) >0
m\ R ) "
and that, for g # f,
d (L 9 *
(r:) __ A,
dor H*2 dT7

Therefore, points (ii) and (iii) follow immediately by applying the chain rule.

E.2 Proof of Proposition 13

Proof. Applying the implicit function theorem to equation (17), we see that, for every = > 0,

m(z)e ™)

> 0.
+m (z) xe—m@)

1

Notice also that S(z) = ze @) =1 — )

Therefore, S > 0 and 7’ > 0.
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Points (ii) and (iii) follow by applying the implicit function theorem to equation

55

feFr

as we did in E.1. ]

F Proofs for Section 7

F.1 Proof of Proposition 14

Proof. Using the notation introduced in Section 5, let

™ =H*S™ <S (?) +S(Zg>) (37)

If TM = TM e have:

RS

leF

- () o)

leF\(fug)

where the first equality is the pre-merger equilibrium condition whereas the second equality
follows from T™ = TM_ As equilibrium is unique when demand is CES or multinomial logit,
we have H* = H*. That is, the merger is CS-neutral if 7™ = 7M. As S'() > 0,if T™ > ™,

we have -y i
S(H*>+ > S(H*>>1,
leF\(fug)

implying that H* > H*, so the merger is CS-increasing. Similarly, if TM < TM . then

H* < H *, so the merger is CS-decreasing.
Next, we note that a CS-neutral merger involves synergies in that TM > Tf 479, Suppose
otherwise that 7™ < T + T9. Then,

™ T/ + 19
< N




where the first inequality follows from S’(-) > 0 and the second from S”(-) < 0, as can be
verified to hold under both CES and multinomial logit demands. But then the merger would
be CS-decreasing, a contradiction. Hence, ™ > Tf 479,

To see that a CS-neutral merger is profitable, note that:

() = () (%)
() (5 s (3]
o (B () o (2)5(2)
= () 7 ()

where the second equality follows because the merger is CS-neutral, and the second inequal-
ity follows because T > T/ + T9 > max (T7,79) and m/(-) > 0, both under CES and

multinomial logit demands. Hence, merger M is profitable if TM = ™.

Next, consider the effect of an increase in firm type T™ on the equilibrium level of the

aggregator H*. Applying the implicit function theorem to Q(H*) = Y, >S5 (5=) = 1, we

H*
obtain:
M
a5 (%) .
TR S e R

where the inequality follows as S’(+) > 0. The effect of an increase in T on M’s equilibrium

profit is thus given by

() () (v

™ N H* H* dTM
) (o ) )
= —=|1- - - > 0,
H- H* 3 x5+ (57)

where the inequality follows as () = m(-)S(:), m'(-) > 0 and S’(-) > 0, implying that
7'(-) > 0. That is, an increase in a firm’s type induces an increase in that firm’s equilibrium

profit. It follows that merger M is profitable if 7™ > TM .., it is CS-nondecreasing. [
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F.2 Proof of Proposition 15

We first prove the following lemma:

Lemma N. In a multiproduct-firm pricing game with CES or Logit demands, €' < 0, where
S'(z)
S(z

e(x) == for all x > 0.

Proof. Under CES demands,

e(z) = !
14 (0 —1)22(1 — m(x))72m(z)?’
1
1+ (0 —1)28 () 2l

which is indeed decreasing in x, since m and S are decreasing.

Under Logit demands,

(=) :
e(xr) =
14+ m(z)2S(x)’
which is also decreasing in z, since m and S are decreasing. O

We can now prove Proposition 15:

Proof. We first show that d7™ /dH* < 0. Differentiating equation (37), we obtain
™\ ar™ ™ (TM\ 1 [T/ T9 [ TY
! . ! . ! . !
S (H) aa (H) 7o (H) o (H)
™ ™ T/ T/ T9 T9
()5 () < ()5 (7)< () (7).
™ T/ T9 T/ T/ T9 T9
-<(5) () 5 (7)) ()= () = ()5 ()

< 0,

where the third line follows by definition of TM and the last line follows from Lemma N and
from the fact that 7™ > T 4 T9.

Suppose M; is CS-nondecreasing in isolation, which means that 7™t > TMt If the CS-
nondecreasing merger M; takes place, the equilibrium value of the aggregator H* weakly
increases, and so the cutoff 7 weakly decreases. As TM! was initially above the cutoff, it
therefore remains so after M; has taken place, i.e., M; is still CS-nondecreasing. A similar
argument can be used to show the sign-preserving complementarity for mergers that are

CS-decreasing in isolation. O]
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