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Abstract

We characterize the effort-maximizing prize structure in contests with many players

and prizes that accommodate complete information, incomplete information, and ex-

ante asymmetric players.

Awarding numerous prizes of different values is optimal when players are risk averse

with linear effort cost, or risk neutral with convex effort cost. Awarding a small number

of maximal prizes is optimal when players are risk loving with linear effort cost, or risk

neutral with concave effort cost.

Our approach facilitates deriving closed-form approximations of the effort-maximizing

prize structure for concrete utility functions and distributions of players’ types. This

facilitates further analysis of large contests.
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1 Introduction

This paper investigates the following contest design question. Given a pool of (possibly) ex-

ante heterogeneous contestants, who may or may not have private information about their

abilities or prize valuations, and given a prize budget, what is the prize structure (the number

and values of prizes) that maximizes the aggregate equilibrium effort of the contestants?

Some answers to this question have been provided in the existing literature, but they

have often been partial or limited to environments with ex-ante identical players or identical

prizes, and relied on restrictive functional forms and informational assumptions.1 In reality,

contestants are often ex-ante asymmetric, their costs of effort and prize valuations may not

be linear, and they may have varying degrees of private information. When multiple prizes

are awarded, they are often not identical. These features make even contests with a given

prize structure difficult or impossible to solve, let alone solving and optimizing over the set

of all possible prize structures.

We consider contests with a large number of contestants, who may be ex-ante asymmetric

and may or may not have private information about their ability or prize valuations.2 We

model contests as multi-prize all-pay auctions, in which a player’s bid represents her effort (or

performance). Players’ prize valuations and effort costs need not be linear, and the contest

may award a combination of heterogeneous and identical prizes. Players’ type distributions

are independent, but need not be identical. Complete information is a special case. All

players choose their effort simultaneously. The player with the highest effort obtains the

highest prize, the player with the second-highest effort obtains the second-highest prize, etc.

To solve for the optimal prize structure we use the methods developed in Olszewski

and Siegel (2015) (henceforth: OS). They showed that the equilibrium outcomes of contests

with a large number of contestants and prizes can be approximated by certain incentive-

compatible (IC) and individually rational (IR) mechanisms. The approximation applies

uniformly across all equilibria, even when solving for a contest equilibrium may be difficult

1See, for example, Glazer and Hassin (1988), Barut and Kovenock (1998), Clark and Riis (1998), and

Moldovanu and Sela (2001, 2006). Konrad (2007) provides an overview of the contest literature.

2Settings with a large number of contestants who compete for prizes by expending resources include

college admissions (in 2012, 4-year colleges in the US received more than 8 mln applications and enrolled

approximately 1.5 mln freshmen), grant competitions (in each of the last several years, the National Science

Foundation received more than 40,000 grant applications and awarded more than 10,000 grants), sales

competitions in large firms (Cisco, which has more than 15,000 partners in the US, holds several sales

competitions among its partners), and certain sports competitions (between 2010 and 2012, Tokyo, London,

New York, Chicago, and Sydney each hosted a marathon with more than 30,000 participants).
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or impossible. This makes it possible to translate the contest design question to a tractable

mechanism design problem, namely, to maximize the expected revenue in the mechanism

across all prize structures that satisfy a budget constraint. We show that this is in fact a

calculus of variations problem, which can be solved by standard methods.

Our main results characterize the optimal prize structure. When effort costs are convex

(and prize valuations are linear) or when prize valuations are concave (and effort costs are

linear), it is optimal to award numerous prizes of different values. In the former case, if

the marginal cost of the first unit of effort is 0, it is optimal to award a prize to nearly

all contestants. The latter case corresponds to risk-averse contestants when the prizes are

denominated in monetary terms. When effort costs are linear or concave (and prize valuations

are linear) or when prize valuations are linear or convex (and effort costs are linear), it is

optimal to award only prizes of the highest possible value. As this value increases, the number

of optimally awarded prizes decreases, which in the limit corresponds to a single grand prize.

These results are in line with the findings of Moldovanu and Sela (2001) (henceforth: MS),

who studied the symmetric equilibrium of contests with ex-ante symmetric contestants with

incomplete information and linear prize valuations.3

In addition to characterizing the optimal prize structure, our approach characterizes

the equilibrium efforts of all players in an optimal contest. The approach also uncovers a

novel connection between optimal contests and Myerson’s (1981) optimal auctions, because

it uses a similar mechanism design formulation. The intuition behind this connection helps

to explain why in our setting solving for the optimal prize structure is a tractable problem.

In discrete contests, such as those of MS, increasing the value of a prize has countervailing

effects: it increases competition among contestants who have a good chance of winning this

prize, but discourages players with lower ability, who have a lower chance of winning this

prize. This makes the problem challenging in a symmetric environment, and intractable in

an asymmetric one. But the latter effect is absent in our mechanism design formulation,

and this makes the problem tractable. Our characterization can also be used to derive the

optimal prize structure in closed form once a functional form for the effort costs or prize

valuations is specified.4 Finally, our approach can be used to investigate contests that are

optimal with respect to other goals, such as maximizing contestants’ highest effort.5

3They showed that a grand prize is optimal when effort costs are linear or concave, but may be inferior

to a set of two prizes of different values when effort costs are convex. Section 5.2 provides a more detailed

comparison of our results for convex costs to those of MS.

4This is demonstrated by examples in Sections 4.4 and 5.3.

5Bodoh-Creed and Hickman (2015) study affirmative action by investigating a different large contest
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Section 2 describes the contest environment. Section 3 describes the mechanism design

framework and OS’s approximation result. Section 4 analyzes the optimal prize structure

when players have linear costs. Section 5 analyzes the optimal prize structure when players

have linear prize valuations. Section 6 briefly discusses maximizing contestants’ highest effort

and concludes. The Appendix contains proofs of results not given in the text.

2 Asymmetric contests

In a contest, n players compete for n prizes of known value. Each player is characterized

by a type x ∈ X = [0, 1], and each prize is characterized by a number y ∈ Y = [0,m] with

m ≥ 1. Prize 0 is “no prize.” The prizes are denoted yn1 ≤ yn2 ≤ · · · ≤ ynn, some of which may

be 0, i.e., no prize. Player i’s privately known type xni is distributed according to a cdf F
n
i ,

and these distributions are commonly known and independent across players. In the special

case of complete information, each cdf corresponds to a Dirac (degenerate) measure.

In the contest, each player chooses his or her effort level t, the player with the highest

effort obtains the highest prize, the player with the second-highest effort obtains the second-

highest prize, and so on. Ties are resolved by a fair lottery. The utility of a type x player

from exerting effort t ≥ 0 and obtaining prize y is

U(x, y, t) = xh (y)− c(t), (1)

where h (0) = c (0) = 0, and functions h and c are continuously differentiable and strictly

increasing.6 The functional form (1) and special cases thereof have been assumed in numer-

ous existing papers (see, for example, Clark and Riis (1998), henceforth: CR, Bulow and

Levin (2006), henceforth: BL, MS, and Xiao (2013)). We will be interested primarily in
concave functions h and convex functions c, which capture risk aversion (assuming that y

is a monetary prize, while t stands for effort, not for a monetary bid) and typical costs of

effort. However, most of our analysis does not require these assumptions, and Sections 4.3

and 5.2 provide results also for convex h and concave c.

Since we study some limits of sequences of contests when n diverges to infinity, we refer

to a contest with n players and n prizes as the “n-th contest.” Every contest has at least

one mixed-strategy Bayesian Nash equilibrium.7

model.

6Dividing each player’s utility by x to obtain h (y) − c (t) /x, which accommodates private information

about ability, has no effect on the results.

7This follows from Corollary 5.2 in Reny (1999).
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3 Mechanism-design approach to studying contests

The optimal design of asymmetric contests of the kind described in Section 2 is difficult or

impossible, because no method currently exists for characterizing their equilibria for most

type and prize distributions. And even in the few cases for which a characterization exists,

the equilibria have a complicated form, or can be derived only by means of algorithms (BL,

Siegel (2010), and Xiao (2013)). Therefore, we will use the mechanism-design approach to

studying the equilibria of large contests, which was developed in OS. We now describe this

approach.

3.1 Limit distributions

Let F n = (
Pn

i=1 F
n
i ) /n, so Fn (x) is the expected percentile ranking of type x in the n-th

contest given the random vector of players’ types. We denote by Gn the empirical prize

distribution, which assigns a mass of 1/n to each prize ynj (recall that there is no uncertainty

about the prizes). We assume that Fn converges in weak∗-topology to a distribution F

that has a continuous, strictly positive density f , and Gn converges to some (not necessarily

continuous) distribution G.8

The convergence of Fn and Gn to limit distributions F and G accommodates as a spe-

cial, extreme case complete-information contests with asymmetric players in which for some

distributions F and G, player i’s type in the n-th contest is xni = F−1 (i/n) and prize j is

ynj = G−1 (j/n), where

G−1(r) = inf{z : G (z) ≥ r}.

One example is contests with identical prizes and players who differ in their valuations for a

prize. For this, consider h (y) = y, F uniform, and G that has G(y) = 1− p for all y ∈ [0, 1)
and G(1) = 1, where p ∈ (0, 1) is the limit ratio of the number of prizes to the number
of players. Then xni = i/n and ynj = 0 if j/n ≤ 1 − p and ynj = 1 if j/n > 1 − p. The

n-th contest is an all-pay auction with n players and ppnq identical (non-zero) prizes, and
the value of a prize to player i is i/n. These contests were studied by CR, who considered

competitions for promotions, rent seeking, and rationing by waiting in line.

Another example with complete information is contests with heterogeneous prizes and

players who differ in their constant marginal valuation for a prize. For this, consider h (y) = y

and F and G uniform. Then xni = i/n and ynj = j/n. The n-th contest is an all-pay auction

with n players and n prizes, and the value of prize j to player i is ij/n2. These contests

8Convergence in weak∗-topology can be defined as convergence of cdf s at points at which the limit cdf is

continuous.
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were studied by BL, who considered hospitals that have a common ranking for residents and

compete for them by offering identity-independent wages.9

Many other complete-information contests with asymmetric players can be accommo-

dated, including contests for which no equilibrium characterization exists. One example is

contests with a combination of heterogeneous and identical prizes.

Another special, extreme case of the convergence of F n and Gn is incomplete-information

contests with ex-ante symmetric players that have the same iid type distributions F n
i = F .

This case includes the setting of MS. Beyond these extreme cases, our setting accommo-

dates numerous incomplete-information contests with many ex-ante asymmetric players. No

equilibrium characterization exists for such contests.

3.2 Assortative allocation and transfers

The assortative allocation assigns to each type x prize yA (x) = G−1 (F (x)). It is well known

that the unique incentive-compatible mechanism that implements the assortative allocation

and gives type x = 0 a utility of 0 specifies for every type x effort

tA (x) = c−1
µ
xh
¡
yA (x)

¢
−
Z x

0

h
¡
yA (z)

¢
dz

¶
. (2)

For example, in the setting corresponding to CR the assortative allocation assigns a prize

to each type higher than 1− p, and the associated efforts are tA (x) = 0 for x ≤ 1− p and

tA (x) = 1− p for x > 1− p. In the setting corresponding to BL, the assortative allocation

assigns prize x to type x, and the associated efforts are tA (x) = x2/2.

3.3 The approximation result

Corollary 2 in OS, which we state as Theorem 1 below, shows that the equilibria of contests

with many players and prizes are approximated by the unique mechanism that implements

the assortative allocation.

Theorem 1 For any ε > 0 there is an N such that for all n ≥ N , in any equilibrium of

the n-th contest each of a fraction of at least 1 − ε of the players i obtains with probability

at least 1− ε a prize that differs by at most ε from yA (xni ), and chooses effort that is with

probability at least 1− ε within ε of tA (xni ).

9Xiao (2013) presented another model with complete information and heterogenous prizes, in which

players have increasing marginal utility for a prize. He considered quadratic and exponential specifications,

which are obtained in our model by setting h (y) = y2 and h (y) = ey and F and G uniform.
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Theorem 1 implies that the aggregate effort in large contests can be approximated byZ 1

0

tA (x) f (x) dx. (3)

More precisely, we refer to the aggregate effort divided by n in an equilibrium of the n-th

contest as the average effort. We then have the following corollary of Theorem 1.

Corollary 1 For any ε > 0 there is an N such that for all n ≥ N , in any equilibrium of

the n-th contest the average effort is within ε of (3).

4 Optimal contests for risk-averse players

We now investigate the prize structures in large contests that maximize the aggregate effort

subject to a budget constraint. The constraint says that the average prize, or the prize per

contestant, cannot exceed a certain value. We will present the main steps of our analysis, and

relegate the technical details to the Appendix. In this section, we assume that U(x, y, t) =

xh (y) − t, i.e., that c(t) = t. In the next section, we obtain corresponding results for

U(x, y, t) = xy − c(t). This will show that different risk attitudes and curvatures of cost

functions play a similar role in optimal contest design.10

Our first result shows that in order to solve the design problem for large contests it is

enough to identify the prize distributions that maximize (3) in the limit setting subject to

the budget constraint that the expected prize does not exceed a certain value C > 0. To

formulate this result, consider a sequence of contests whose corresponding sequence of average

type distributions Fn converges to a distribution F with a continuous, strictly positive

density f . The corresponding empirical prize distributions Gn
max are ones that maximize the

aggregate effort. That is, Gn
max describes a set of n prizes that lead to some equilibrium with

maximal aggregate effort, subject to the budget constraint that the average prize does not

exceed some value Cn that converges to C.11 Denote the corresponding maximal aggregate

10We conjecture that we would obtain a similar result for our general utility function (1), but the analysis

would be more complicated and no new interesting insight would be obtained by combining different risk

attitudes and curvatures of cost functions.

11That a maximizing set of prizes exists can be shown by a straightforward upper hemi-continuity argument

of the kind used, for example, to prove Corollary 2 in Siegel (2009). We note, however, that our results do

not depend on the existence of such a maximizing set of prizes. For example, none of the analysis changes

if Gn
max is instead chosen to correspond to a set of n prizes that lead to some equilibrium with aggregate

equilibrium effort that is within 1/n of the supremum of the aggregate equilibrium efforts over all sets of n

prizes (subject to the budget constraint) and all equilibria for any given set of prizes.
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effort by Mn
max.

For the limit setting, denote by M the set of prize distributions that maximize (3)

subject to the budget constraint that the expected prize does not exceed C. An upper hemi-

continuity argument, given in the Appendix, shows thatM is not empty. Denote by M the

corresponding maximal value of (3). Finally, consider any metrization of the weak∗-topology

on the space of prize distributions.

Proposition 1 1. For any ε > 0, there is an N such that for every n ≥ N , Gn
max is within

ε (in the metrization) of some distribution in M. In particular, if there is a unique prize

distribution Gmax that maximizes (3) subject to the budget constraint, then Gn
max converges

to Gmax in weak∗-topology. 2. Mn
max/n converges to M . 3. For any ε > 0 and any G inM,

there are an N and a δ > 0 such that for any n ≥ N and any empirical prize distribution

Gn of n prizes that is within δ of G, the average effort in any equilibrium of the n-th contest

with empirical prize distribution Gn is within ε of Mn
max/n.

Part 1 of Proposition 1 shows that the optimal empirical prize distributions in large

contests are approximated by the prize distributions that maximize (3) subject to the budget

constraint. Part 2 shows that the maximal aggregate equilibrium effort is approximated by

the maximal value of (3) subject to the budget constraint. Part 3 shows that any empirical

prize distribution that is close to a prize distribution that maximizes (3) subject to the

budget constraint generates aggregate equilibrium effort (in any equilibrium) that is close to

maximal. For example, given a prize distribution G that maximizes (3) subject to the budget

constraint, the set of n prizes defined by ynj = G−1 (j/n) for j = 1, ..., n generates, for large

contests, aggregate equilibrium effort that is close to maximal; moreover, the average prize

Cn for the so defined distributions Gn converges to the expected prize C for the distribution

G.12

4.1 Reduction to a calculus of variations problem

By Proposition 1, we can focus on solving the following problem:

maxG
R 1
0
tA (x) f (x) dx

s.t.
R m
0
ydG (y) ≤ C.

The parameter C > 0 should be interpreted as the budget per contestant, denominated in

units of the prize y = 1. Similarly, prizes are denominated in units of the prize y = 1, that

is, prize y costs y. Thus, the expected prize cannot exceed C.

12It is easy to see that for any G, distributions Gn close to G can always be chosen so that Cn does not

exceed C.
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To solve this problem, we will show that it is equivalent to a calculus of variations problem

in variable G−1. For this, we first transform the objective function. By substituting (2) into

(3) and integrating by parts, we obtain the following expression for the aggregate effort in

the mechanism that implements the assortative allocation:Z 1

0

tA (x) f (x) dx =

Z 1

0

h
¡
yA (x)

¢µ
x− 1− F (x)

f (x)

¶
f (x) dx. (4)

To gain some intuition for why (4) approximates the average effort in large contests,

observe that (4) coincides with the expected revenue from a bidder in a single-object inde-

pendent private-value auction if we replace h
¡
yA (x)

¢
with the probability that the bidder

wins the object when his type is x (Myerson (1981)). In the auction setting, increasing the

probability that type x obtains the object along with the price the type is charged allows

the auctioneer to capture the entire increase in surplus for this type, but requires a decrease

in the price that higher types are charged to maintain incentive compatibility. In a large

contest, increasing the prize that type x obtains also allows the auctioneer to capture the

entire increase in surplus for this type, because the higher prize increases the competition

with slightly lower types until the gain from the higher prize is exhausted. But the prize

increase also decreases the effort and competition of higher types for their prizes, since the

prize of type x becomes more attractive to them.

For the remainder of the analysis, we make the following assumption, which is standard

in the mechanism design literature:13

Assumption 1. x− (1− F (x)) /f (x) strictly increases in x.

We rewrite (4) using the change of variables z = F (x) to obtainZ 1

0

h
¡
G−1 (z)

¢µ
F−1 (z)− 1− z

f (F−1 (z))

¶
dz =

Z 1

0

h
¡
G−1 (z)

¢
k (z) dz, (5)

where k (z) = F−1 (z)− (1− z) /f (F−1 (z)).14 By Assumption 1, k (z) strictly increases in

z.

We now transform the budget constraint. Since G is a probability distribution on

[0,m], we have
R m
0
ydG (y) = m−

R m
0
G (y) dy (by integrating by parts) and

R m
0
G (y) dy +R 1

0
G−1 (z) dz = m (by looking at the areas below the graphs of G and G−1 in the square

[0,m]× [0, 1]). Thus, the budget constraint can be rewritten asZ 1

0

G−1 (z) dz ≤ C. (6)

13The assumption is implied, for example, by a monotone hazard rate.

14Even though G−1 may be discontinuous, it is monotonic, so the change of variables applies.
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This is the desired form of our maximization problem, because maximizing (5) subject to

(6) is a calculus of variations problem in variable G−1.

4.2 Conditions describing the solution

In this section, we derive the conditions that must be satisfied by the optimal G−1. Consider

an optimal G−1. Because it is non-decreasing, left-continuous, and takes values in [0,m],

there are zmin ≤ zmax in [0, 1] such that G−1 (z) = 0 for z ≤ zmin, G−1 (z) = m for z > zmax,

and G−1 (z) ∈ (0,m) for z ∈ (zmin, zmax).
There are two cases:

Case 1 (zmin < zmax): Then, there exists a λ ≥ 0 such that h0 (G−1 (z)) k (z) = λ for

z ∈ (zmin, zmax]; in addition, h0 (0) k (zmin) ≤ λ, and h0(m)k (zmax) ≥ λ if zmax < 1.

Case 2 (zmin = zmax): Then, h0 (0) k (zmin) ≤ h0 (m) k (zmax).

A rigorous proof that G−1 satisfies the conditions described in the two cases is pro-

vided in the Appendix. To gain some intuition for Case 1, note that h0 (G−1 (z)) k (z) is

the derivative of the integrand of (5) with respect to G−1 (z) for a given z. Thus, if

h0 (G−1 (z)) k (z) < h0 (G−1 (z)) k (z) for some z, z ∈ (zmin, zmax), then an infinitesimal in-
crease in G−1 (z) accompanied by a simultaneous decrease in G−1 (z) of the same infinites-

imal size would raise the value of the objective function (5) without affecting the budget

constraint (6). At z = zmin or z > zmax, we have only inequalities, as the value of G−1is 0

or m, respectively, and cannot be decreased or increased. Since k is increasing and contin-

uous, the inequality h0 (m) k (z) ≥ λ for z > zmax is equivalent to h0(m)k (zmax) ≥ λ.15 The

intuition for Case 2 is analogous.

4.3 Concave and convex functions h

Denote by x∗ ∈ (0, 1) the unique type that satisfies x∗ − (1− F (x∗)) /f (x∗) = 0. Such a

type exists because, by Assumption 1, x − (1− F (x)) /f (x) strictly increases in x, and f

is continuous and strictly positive on [0, 1]. For types x < x∗, the value of the integrand in

(4) is negative, and for x > x∗ the value is positive. Let z∗ = F (x∗) ∈ (0, 1), so k (z∗) = 0.
Then, optimizing the integrand in (5) leads to G−1 (z) = 0 if z ≤ z∗ and, if the budget allows,

15Finally, h0
¡
G−1 (z)

¢
k (z) = λ at z = zmax by left-continuity of G−1 and continuity of h0 and k.
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to G−1 (z) = m if z > z∗.16 This G−1 is left-continuous and monotonic, so the corresponding

G is a prize distribution and is therefore optimal. We thus obtain the following result.

Proposition 2 If C ≥ m (1− F (x∗)), then for any function h the optimal prize distribution

assigns mass 1− F (x∗) ∈ (0, 1) to the highest possible prize m and mass F (x∗) to prize 0.

Proposition 2 shows that an all-pay auction with identical prizes, as studied by CR, is

optimal when the budget constraint is not binding. Moreover, it shows that when the budget

is large some of the budget is optimally left unused. This is analogous to a monopolist limiting

the quantity sold.

Of course, a binding budget constraint seems more relevant in practice. So, for the

remainder of our analysis we make the following assumption:

Assumption 2. C < m (1− F (x∗)).

This assumption implies that for the optimal prize distribution the budget constraint (6)

holds with equality. We now derive the form of the optimal prize distribution for convex

and concave functions h by using the conditions derived in Section 4.2. We first present the

simpler, although perhaps less interesting, result for convex functions h.

Proposition 3 If h is weakly convex, then the optimal prize distribution assigns mass C/m
to the highest possible prize and mass 1− C/m to prize 0.

Proof : In this case, we have zmin = zmax. Indeed, since h0 is weakly increasing and

k is strictly increasing, for any z0 < z00 in (zmin, zmax) we would have h0 (G−1 (z0)) k (z0) <

h0 (G−1 (z00)) k (z00), which would violate h0 (G−1 (z0)) k (z0) = h0 (G−1 (z00)) k (z00) = λ.

Proposition 3 shows that an all-pay auction with identical prizes remains optimal when

the budget constraint is binding, provided that agents’ marginal prize utility is non-decreasing.

If prizes are monetary, this condition says that agents are risk neutral or risk loving. If the

highest possible prize, m, is increased, fewer maximal prizes are optimally awarded. The

limit as m grows arbitrarily large corresponds to a “single grand prize.”

We now consider concave functions h.

Proposition 4 If h is weakly concave (but not linear on [0,m]), then any optimal prize
distribution assigns positive mass to intermediate prizes y ∈ (0,m). An optimal prize distri-
bution may have atoms only at 0 (no prize) and m (the highest possible prize).

16Notice that this corresponds to Case 2 in Section 4.2, with zmin = zmax = z∗.
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Proof : In this case, we have zmin < zmax. Indeed, since h0(0) > h0(m), we cannot

have that zmin = zmax and h0 (0) k (zmin) ≤ h0 (m) k (zmax), unless k (zmin) = k (zmax) ≤ 0.
But k (zmax) ≤ 0 implies that zmax ≤ z∗, so G−1 (z) = 1 for z > zmax violates the budget

constraint (6). This yields the first part of the result. To obtain the second part, notice

that G−1 (z) strictly increases in z on interval (zmin, zmax). This follows from the fact that

h0 (G−1 (z)) k (z) = λ on (zmin, zmax] and the fact that k (z) strictly increases in z.

Our next result, whose proof is in the Appendix, shows that as the highest possible prize,

m, becomes arbitrarily large, the optimal prize distribution is “continuous” on all non-zero

prizes.

Proposition 5 Let Gm
max be a distribution that maximizes (5) subject to the budget constraint

when m is the highest possible prize. If h is weakly concave (but not linear [0,m]), then when

m diverges to infinity Gm
max converges to a distribution that may have an atom only at 0 (no

prize).

We now show that when h is strictly concave the constrained maximization problem has

an explicit, closed-form solution. As shown in the proof of Proposition 5, h0 (0) k (zmin) = λ.

Thus,

zmin = k−1(λ/h0 (0)). (7)

Since h0 (G−1 (zmax)) k (zmax) = λ and h0 is decreasing, h0 (m) k (zmax) ≤ λ. If zmax < 1,

then we also have h0(m)k (zmax) ≥ λ (because we are in Case 1 of Section 4.2), so we obtain

h0 (m) k (zmax) = λ. Thus,

zmax = 1 or k−1(λ/h0 (m)). (8)

In addition,

G−1 (z) = (h0)
−1
(λ/k (z)) for z ∈ (zmin, zmax] (9)

and

G−1 (z) =

⎧⎨⎩ 0 z ≤ zmin

m z > zmax
.

Thus, G−1 is pinned down by λ. The value of λ is determined by the binding budget

constraint.

11



4.4 Example

To illustrate our solution, let F be uniform and let h (y) =
√
y.17 Then k (z) = 2z − 1,

x∗ = z∗ = 1/2, h0 (0) = ∞, h0 (s) = 1/ (2
√
s), and (h0)

−1
(r) = 1/(4r2). The budget

constraint is binding if C < m (1− F (x∗)) = m/2. By (7), zmin = 1/2. Suppose first that

zmax = 1. By (9) and the binding version of (6), we have
R 1
1/2
(2z − 1)2 /(4λ2)dz = C. Solving

for λ, we obtain λ = 1/
√
24C. This yields G−1 (z) = 6C (2z − 1)2; in particular, zmax = 1

implies C ≤ m/6. Thus, we have that

G (y) =

⎧⎨⎩ 1
2
+
p

y
24C

y ∈ [0, 6C]

1 y ∈ [6C,m]
.

This is a continuous distribution over an interval of positive intermediate prizes (along with

a mass 1/2 of “no prize”). The corresponding aggregate effort, given by (5), is
√
6C/6.

Suppose now that zmax < 1. By (8), zmax = λ
√
m + 1/2. The binding version of (6)

implies that
R λ√m+1/2
1/2

((2z − 1)2 /(4λ2))dz +
R 1
λ
√
m+1/2

mdz = C. Solving for λ, we obtain

λ = (3m/4 − 3C/2)/ (m√m). This implies that G−1 (z) = 0 for z ∈ [0, 1/2], G−1 (z) =
4 (2z − 1)2m3/(3m − 6C)2 for z ∈ (1/2, (5m/4 − 3C/2)/m], and G−1 (z) = m for z ∈
((5m/4− 3C/2)/m, 1]. Since zmax = λ

√
m+ 1/2 < 1, we have C > m/6. Thus,

G (y) =

⎧⎨⎩ 1
2
+
q

y(3m−6C)2
16m3 y ∈ [0,m)

1 y = m
.

This is a continuous distribution over an interval of positive intermediate prizes, along with

a mass (6C −m) /4m of the highest possible prize (and a mass 1/2 of “no prize”). The

corresponding aggregate effort, given by (5), is (12C (m− C) +m2) / (16m
√
m).

17Although h0 (0) =∞, it is straightforward to show that a slight modification of our characterization of
the solution from the previous subsection still applies.
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The following figure depicts these results for m = 1.

Figure 1: The optimal prize distribution as C increases from 0 to 1/2 (left), and the resulting aggregate effort (right)

To summarize, for m ∈ (2C, 6C) the optimal prize distribution has atoms at y = 0 and
y = m, and is continuous and strictly increasing on the interval of prizes y ∈ (0,m). When
m = 6C, the optimal prize distribution has only an atom at y = 0, and is continuous and

strictly increasing on the interval of prizes y ∈ (0, 6C). The same distribution is also the
optimal one for any m > 6C. The resulting aggregate effort increases in m ∈ (2C, 6C), and
is constant in m ≥ 6C.18

5 Optimal Contests for Agents with Convex Costs

We now suppose that U(x, y, t) = xy − c (t), where c (0) = 0 and c is continuously differen-

tiable and strictly increasing. The discrete contests of MS correspond to this utility function.

To simplify the analysis, we assume that the limit type distribution F is uniform.19

5.1 Conditions describing the solution

The arguments from the beginning of Section 4, including Proposition 1, also apply to the

present case. Thus, (2) and (3) imply that the effort-maximizing prize structures in large

contests are approximated by the prize distributions that solve the following problem:

18Form ≤ 2C the optimal prize distribution has atoms at y = 0 and y = m of size 1/2 each (by Proposition

2).

19Our analysis can be extended to general F and h (instead of h(y) = y) without any conceptual difficulty,

but such an extension requires more involved notation and calculations.
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max
G−1

½Z 1

0

c−1
µ
zG−1 (z)−

Z z

0

G−1 (r) dr

¶
dz

¾
subject to

Z 1

0

G−1 (z) dz ≤ C.

We first transform the objective function to a more convenient form. By looking at the

areas below the graphs of G and G−1 in the rectangle [0, G−1 (z)] × [0, z], we have thatR G−1(z)
0

G(y)dy+
R z
0
G−1 (r) dr = zG−1 (z). Thus, the objective function can be rewritten asZ 1

0

c−1

ÃZ G−1(z)

0

G(y)dy

!
dz. (10)

The difficulty with (10) is that it contains G and G−1, unlike (5) which contained only

G−1. Nevertheless, conditions similar to those in Section 4.2 can be provided in this case as

well.

Consider an optimal G−1. There exist zmin ≤ zmax in [0, 1] such that G−1 (z) = 0 for

z ≤ zmin, G−1 (z) = m for z > zmax, and G−1 (z) ∈ (0,m) for z ∈ (zmin, zmax).
There are two cases:20

Case 1 (zmin < zmax): Then, there exists a λ ≥ 0 such that

(c−1)0(l(z))z −
Z 1

z

(c−1)0(l(r))dr = λ, (11)

where l(z) =
R G−1(z)
0

G(y)dy, for z ∈ (zmin, zmax]; in addition,

(c−1)0(0)zmin −
Z 1

zmin

(c−1)0(l(r))dr ≤ λ and (c−1)0 (l (1)) (2zmax − 1) ≥ λ. (12)

Case 2 (zmin = zmax): Then,

(c−1)0(0) ≤ (c−1)0 (l (1)) . (13)

5.2 Convex and concave functions c

As in Section 4.3, we first present the simpler, although perhaps less interesting, result for

concave functions c.

20The intuition for these cases is similar to the one given in Section 4.2. The details are in the Appendix.
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Proposition 6 If the budget constraint binds and c−1 is weakly convex, then the optimal

prize distribution assigns mass C/m to the highest possible prize m and mass 1 − C/m to

prize 0.

Proof : In this case, we have zmin = zmax. Indeed, since (c−1)0 and l are weakly increasing,

(c−1)0(l(z))z strictly increases in z; in turn,
R 1
z
(c−1)0(l(r))dr weakly decreases in z. Therefore,

the left-hand side of (11) strictly increases in z.

Proposition 6 mirrors Propositions 2 and 4 in MS, which show that when the cost function

is linear or concave it is optimal to award the entire budget as a single prize. The discrepancy

between MS’s single prize and the mass of identical highest prizes prescribed by Proposition

6 arises because MS do not impose a bound on the highest possible prize. Increasing the

highest possible prize, m, in our setting leads to optimally awarding a smaller mass of this

prize. This corresponds, in the limit, to “awarding the entire budget as a single prize.”

We now turn to the analysis of convex cost functions c. The results hold under, and are

formulated for, conditions somewhat weaker than convexity.

Proposition 7 If (c−1)0(0) > (c−1)0(r) for all r > 0, then the optimal prize distribution

assigns a positive mass to intermediate prizes y ∈ (0, 1). If (c−1)0(r) > 0 for all r, then the
optimal prize distribution may have atoms only at 0 (no prize) and m (the highest possible

prize).

Proof : The first part is true because it follows from (13) that zmin < zmax. For the second

part, an atom at some intermediate prize would mean that Case 1 must hold and G−1 (z) =

G−1 (z) for some zmin < z < z < zmax. Then, however, l(z) = l(z), so (c−1)0(l(z))z <

(c−1)0(l(z))z; in turn,
R 1
z
(c−1)0(l(r))dr ≥

R 1
z
(c−1)0(l(r))dr. Thus, the left-hand side of (11)

with z = z would be higher than with z = z, which contradicts (11).

Proposition 7 is related to Proposition 5 of MS, which shows that with a convex cost

function splitting the budget into two prizes is sometimes better than awarding the entire

budget as a single prize. Our results go beyond showing that it may not be optimal to award

the entire budget as a single prize, and instead characterize the optimal prize structure.

In addition, while Propositions 6 and 7 are related to the results in MS, the set of

contests and equilibria to which they apply are different from those studied by MS. While

MS studied contests with any finite number of players, the players were restricted to being

ex-ante symmetric and having private information about their cost, and the analysis focused

on the symmetric equilibrium. Our results apply to all equilibria of contests with a large,
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but finite, number of players. The players may be ex-ante symmetric or asymmetric, and

may or may not have private information.

The next result shows that Proposition 5 extends to the setting with convex cost function

c.

Proposition 8 Let Gm
max be the distribution that maximizes (10) subject to the budget con-

straint when m is the highest possible prize. If c is weakly convex (but not linear on any

interval with lower bound 0), then as m diverges to infinity, Gm
max converges to a distribution

that may have an atom only at 0 (no prize).

5.3 Example

To illustrate our solution, and also show that for specific utility functions we can derive

the corresponding optimal prize distributions G in closed form, let F be uniform and let

c (t) = t2. Proposition 7 shows that zmin < zmax and the optimal prize distribution G may

have atoms only at 0 and m. For simplicity, let m = 1.

Define an auxiliary function m (z) = (c−1)0(l(z)). Plug m (z) into (11), and differentiate

with respect to z to obtain the differential equation m0(z)z+2m(z) = 0 for m(z).21 Solving
this equation, and substituting back into (11), we obtain (c−1)0(l(z)) = λ/z2. By the defi-

nition of l (z), and using the equality
R G−1(z)
0

G(y)dy = zG−1 (z)−
R z
0
G−1 (r) dr, we obtain

((c−1)0)
−1
(λ/z2) = zG−1 (z) −

R z
0
G−1 (r) dr. Assuming differentiability of G−1, we obtain

(G−1)0(z) = (−2λ/z4)(((c−1)0)−1)0(λ/z2).22

Since c−1 (z) =
√
z, (c−1)0 (z) = 1/ (2

√
z),23

¡
(c−1)

0¢−1
(z) = 1/ (4z2), and

³¡
(c−1)

0¢−1´0
(z) =

−1/ (2z3). Thus, G−1 (z) = z3/(3λ2) + ymin, where ymin is the “lowest prize” awarded. Since

(c−1)0(0) =∞, the first inequality in (12) implies that we have zmin = 0. We must therefore
have ymin = 0, as otherwise G−1 (z) can be “shifted down” to G−1 (z) − ymin. This would

reduce by ymin the cost of providing the prizes without affecting players’ incentives, leading

to the same aggregate equilibrium effort and relaxing the budget constraint.

21The solution can be verified to be differentiable.

22We will show that an optimal prize distribution G with differentiable inverse G−1 exists. No other prize

distribution will lead to higher aggregate effort, since the aggregate effort corresponding to any prize distri-

bution can be approximated arbitrarily closely by the aggregate effort corresponding to a prize distribution

with a differentiable inverse.

23Although
¡
c−1
¢0
(0) =∞, it is straightforward to show that a slight modification of our characterization

of the solution from Section 5.1 still applies.
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Suppose first that zmax = 1. Substituting the expression for G−1(z) into the binding

budget constraint, we obtain λ = 1/
√
12C, which gives G−1 (z) = 4z3C, so C ≤ 1/4.

Substituting G−1 into the target function, the aggregate effort is
√
3C/3, which increase in

the budget C.

Now suppose that zmax < 1. The binding budget constraint gives λ = z2max/(12(C −
1 + zmax))

1/2, so 1 = G−1 (zmax) = 12 (C − 1 + zmax) / (3zmax), which implies that zmax =

4(1 − C)/3. Since zmax < 1, we must have that C > 1/4. Substituting the expression for

zmax into the expression for λ, and substituting the resulting expression into the expression

for G−1, gives G−1 (z) = 27z3/
¡
64 (1− C)3

¢
. Substituting into the target function, the

aggregate effort is
p
(1− C) (1− 8 (1− C) /9). This expression increases for C in (1/4, 5/8],

and decreases for C in [5/8, 1]. Notice that the value of this expression at C = 1/4 coincides

with the one for zmax = 1.

We therefore conclude that the budget constraint binds for C ≤ 5/8. For C ≤ 1/4 the
maximal aggregate effort is

√
3C/3, and the optimal prize distribution is G (y) = 3

p
y/4C

for y ≤ 4C and G (y) = 1 for y > 4C. For C in (1/4, 5/8] the maximal aggregate effort isp
(1− C) (1− 8 (1− C) /9), and the optimal prize distribution is G (y) = 3

√
y4 (1− C) /3

for y < 1 and G (y) = 1 for y = 1.

Notice that regardless of C, the prizes awarded begin with the lowest prize y = 0, but

in contrast to the case of concave h studied in Section 4.4, there is no atom at the lowest

prizes, i.e., every player gets a positive prize. This is because the marginal cost of effort at 0

is 0 (so (c−1)0(0) = ∞). In addition, even when the budget constraint does not bind, there
is a positive mass of intermediate prizes.

The following figure depicts these results.

Figure 2: The optimal prize distribution as C increases from 0 to 5/8 (left), and the resulting aggregate effort (right)

The two solved examples, h (x) =
√
x and c (t) = t2, demonstrate that there are differ-

ences as well as similarities between concave valuations and convex costs. One difference
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is that with t2 every player obtains a positive prize, while with
√
x there is a mass 1/2 of

players who get a prize of 0. Another difference is that as the prize budget increases, with
√
x the prize distribution approaches a mass 1/2 of the highest possible prize, whereas with

t2 the prize distribution with an unrestricted budget is still a range of prizes, plus an atom

at the highest possible prize.

6 Conclusion

This paper investigated the effort-maximizing prize structure in all-pay contests with asym-

metric players and heterogeneous prizes. Such contests are often difficult or impossible to

solve when the number of players is small, which makes contest design intractable. We em-

ploy the methods developed in OS to solve the design question in a general contest setting

with a large number of players. Our key insight is that contestants’ risk aversion and convex

effort cost call for numerous prizes of different values. In contrast, risk neutrality or love call

for a small number of prizes of the highest possible value, or a single grand prize. The same

is true for concave effort costs, which is in line with the results of MS.

Our methods also allow for deriving closed-form approximations of the effort-maximizing

prize structure for concrete utility functions and distributions of players. This facilitates

further analysis of large contests.

Finally, our framework can also be used to investigate other contest design questions.

One example is identifying the prize structure that maximizes the highest efforts, rather

than the aggregate, or average, effort. This is relevant, for example, in innovation contests

whose goal is to generate the best inventions, products, or technologies. In the Appendix

we show that the optimal prize structure in such settings with many contestants is a small

number of prizes of the highest possible value. This is true regardless of contestants’ risk

attitude and cost curvature.

7 Appendix

Proof of Corollary 1. Theorem 1 shows that for large n, in any equilibrium of the n-th

contest the average effort is within ε/2 ofPn
i=1

R 1
0
tA (x) dFn

i (x)

n
=

Z 1

0

tA (x) dFn (x) ,
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where the equality follows from the definition of Fn. In addition,Z 1

0

tA (x) dF n (x)→n

Z 1

0

tA (x) dF (x) ,

which follows from the fact that tA is monotonic and the assumption that F is continuous,

because
Z
gdF n →n

Z
gdF for any bounded and measurable function g for which distribu-

tion F assigns measure 0 to the set of points at which function g is discontinuous. (This fact

is established as the first claim of the proof of Theorem 25.8 in Billingsley (1995).) Thus,

for large n,
R 1
0
tA (x) dF n (x) is within ε/2 of

R 1
0
tA (x) dF (x).

Proof thatM 6= ∅. Let (Gn)∞n=1 be a sequence on which (3) converges to its supremum,

and which satisfies the budget constraint. By passing to a convergent subsequence (in the

weak∗-topology) if necessary, assume that Gn converges to some G. We will show below

that (Gn)−1 converges almost surely to G−1. This will imply that (yn)A(x) = (Gn)−1(F (x))

converges almost surely to yA(x) = G−1(F (x)), and since functions h and c−1 are continuous,

also that (tn)A(x) given by (2) with G replaced with Gn converges almost surely to tA(x)

given by (2). This will in turn imply that the value of (3) with (Gn)−1 instead of G−1

converges to the value of (3). Finally, as Gn satisfies the budget constraint with Cn, and

Cn converges to C, we have that G satisfies the budget constraint with C. Indeed, the

budget constraints are integrals of a continuous function (mapping y to y) with respect to

distributions G and Gn
max, respectively, and weak

∗-topology may be alternatively defined by

convergence of integrals over continuous functions.

Thus, it suffices to show that (Gn)−1 converges to G−1, except perhaps on the (at most)

countable set R = {r ∈ [0, 1] : there exist y0 < y00 such that G(y) = r for y ∈ (y0, y00)}.
Suppose first that for some r ∈ [0, 1] and δ > 0 we have that (Gn)−1(r) ≤ G−1(r)− δ for

arbitrarily large n. Passing to a subsequence if necessary, assume that the inequality holds

for all n, and that (Gn)−1(r) converges to some y ≤ G−1(r)− δ. Then, there exists a prize

z such that y < z < G−1(r) and G is continuous at z. We cannot have that G(z) = r, since

this would imply that G−1(r) ≤ z. Thus, G(z) < r. Since Gn(z) converges to G(z), as G

is continuous at z, we have that Gn(z) < r for large enough n. This yields z ≤ (Gn)−1(r),

contradicting the assumption that (Gn)−1(r) converges to y < z.

Suppose now that for some r ∈ [0, 1]−R and δ > 0 we have that (Gn)−1(r) ≥ G−1(r)+ δ

for arbitrarily large n. Passing to a subsequence if necessary, assume that the inequality

holds for all n, and that (Gn)−1(r) converges to some y ≥ G−1(r) + δ. Then, there exists

a prize z such that G−1(r) < z < y and G is continuous at z. We have that r < G(z), as

r /∈ R. Since Gn(z) converges to G(z), as G is continuous at z, we have that r ≤ Gn(z)
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for large enough n. This yields (Gn)−1(r) ≤ z, contradicting the assumption that (Gn)−1(r)

converges to y > z.

Proof of Proposition 1. Since every sequence of distributions has a converging sub-
sequence in weak∗-topology, suppose without loss of generality that Gn

max converges to some

distribution G. Denote the value of (3) under distribution G by V . If Part 1 is false, then

G /∈M, so V < M . The distribution G satisfies the budget constraint, since distributions

Gn
max satisfy the budget constraint.

Consider a distribution Gmax ∈M, and for every n consider an empirical distribution Gn

of a set of n prizes, such that Gn converges to Gmax in weak∗-topology. For example, such a

set of n prizes is defined by ynj = G−1max (j/n) for j = 1, ..., n.

Corollary 1 shows that for large n the average effort in any equilibrium of the n-th contest
with empirical prize distribution Gn exceeds 2 (V +M) /3. On the other hand, Corollary

1 also shows that for large n the average effort in any equilibrium of the n-th contest with

empirical prize distribution Gn
max falls below (V +M) /3. This contradicts the definition of

Gn
max for large n.

For Part 2, Corollary 1 applied to the sequenceGn defined above implies that lim infMn
max/n ≥

M . If lim supMn
max/n > M , then there is a corresponding subsequence of Gn

max. A converg-

ing subsequence of this subsequence has a limit G. For this G, the value of (3) is by Corollary

1 strictly larger than M , a contradiction.

Part 3 follows from part 2 and the fact that Corollary 1 shows that the average effort in
any equilibrium of the n-th contest with empirical prize distribution Gn converges to M .

Proof for the conditions in Cases 1 and 2 from Section 4.2. To simplify notation,
we assume that m = 1.

We will show that in Case 1 the condition h0 (G−1 (z)) k (z) = h0 (G−1 (z0)) k (z0) holds for

all z, z0 ∈ (zmin, zmax). For this, we first approximateG−1 by a sequence of inverse distribution
functions ((Gn)−1)∞n=1 that satisfy the budget constraint and whose value of (5) converges

to that for G−1. We then show that if the condition fails there exists a sequence of inverse

distribution functions ((Hn)−1)∞n=1 that satisfy the budget constraint such that for large n

the value of (5) for (Hn)−1 exceeds that for (Gn)−1 by a positive constant independent of

n, and therefore improves upon G−1. The second condition in Case 1 and the condition in

Case 2 are obtained by analogous arguments.

To define (Gn)−1, partition interval [0, 1] into intervals of size 1/2n, and set the value of

(Gn)−1 on interval (j/2n, (j + 1)/2n] to be constant and equal to the highest number in the
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set {0, 1/2n, 2/2n, ..., (2n − 1)/2n, 1} that is no higher than G−1(j/2n). By left-continuity of

G−1, (Gn)−1 converges pointwise to G−1, so the value of (5) for (Gn)−1 converges to that for

G−1.

Suppose that h0 (G−1 (z)) k (z) < h0 (G−1 (z)) k (z) for some z, z ∈ (zmin, zmax). By

left-continuity of G−1, and continuity of h0 and k, the previous inequality also holds for

points slightly smaller than z and z. Thus, there are δ > 0, N , and intervals (j/2N , (j +

1)/2N ] and (l/2N , (l + 1)/2N ], such that for every n ≥ N we have h0 ((Gn)−1 (z)) k (z) −
h0 ((Gn)−1(z0))k (z0) > δ for any z ∈ (j/2N , (l + 1)/2N ] and z0 ∈ (l/2N , (j + 1)/2N ].
Denote the infimum of the values h0 ((Gn)−1(z))k (z) for n ≥ N and z in the former

interval by I, and the supremum of the values h0 ((Gn)−1(z))k (z) for n ≥ N and z in the

latter interval by S. Now, define functions ( eHn)−1 by increasing the value of (Gn)−1 on

(j/2N , (j+1)/2N ] by ε, and decreasing the value of (Gn)−1 on (l/2N , (l+1)/2N ] by ε, so the

budget constraint is maintained. For sufficiently small ε > 0, the former change increases (5)

at least by
¡
ε/2N

¢
(I − δ/3), and the latter change decreases (5) at most by

¡
ε/2N

¢
(S + δ/3).

This increases the value of (5) by at least δε/2N (for all n ≥ N).

If functions ( eHn)−1 are monotonic, they are inverse distribution functions, so it suffices

to set (Hn)−1 = ( eHn)−1. Otherwise, define (Hn)−1 by setting its value on interval (0, 1/2n]

to the lowest value of ( eHn)−1 over intervals (0, 1/2n], (1/2n, 2/2n], ..., ((2n − 1)/2n, 1], set-
ting its value on interval (1/2n, 2/2n] to the second lowest value of ( eHn)−1 on these intervals,

etc. The value of (5) is higher for (Hn)−1 than for ( eHn)−1 because k is an increasing function.

Proof of Proposition 5. Let zmmin, zmmax, and λm denote zmin, zmax, and λ for a given

m. The proof of Proposition 4 shows that zmmin < zmmax for all m. We claim that λm weakly

increases with m. Suppose to the contrary that λm
0
> λm

00
for some m0 < m00.

Since h0
¡
(Gm

max)
−1 (z)

¢
k (z) = λm for all z ∈ (zmmin, zmmax] and h0 is decreasing, h0 (0) k (z) ≥

λm for all z ∈ (zmmin, zmmax], and since k is continuous, we have h0 (0) k (zmmin) ≥ λm. Since

we also have h0 (0) k (zmmin) ≤ λm (because we are in Case 1 of Section 4.2), we obtain

h0 (0) k (zmmin) = λm. Since k is increasing, this implies that zm
0

min > zm
00

min. In particular, we

have (a): (Gm0
max)

−1 (z) = 0 ≤ (Gm00
max)

−1 (z) for all z ≤ zm
0

min, and the inequality is strict for

z ∈ (zm00
min, z

m0
min). Since h

0 ¡(Gm
max)

−1 (z)
¢
k (z) = λm for all z ∈ (zmmin, zmmax] and h0 is decreasing,

we have (b): (Gm0
max)

−1 (z) ≤ (Gm00
max)

−1 (z) for all z ∈ (zm0
min,min{zm

0
max, z

m00
max}]. If zm

0
max ≥ zm

00
max,

then we have (c): (Gm0
max)

−1 (z) ≤ m0 < (Gm00
max)

−1 (z) = m00 for z > min{zm0
max, z

m00
max}. If

zm
0

max < zm
00

max ≤ 1, then h0(m0)k
¡
zm

0
max

¢
≥ λm

0
(because we are in Case 1 of Section 4.2).

But h0
³¡
Gm00
max

¢−1 ¡
zm

0
max

¢´
k
¡
zm

0
max

¢
= λm

00
, so λm

0
> λm

00
implies that

¡
Gm00
max

¢−1 ¡
zm

0
max

¢
≥ m0.

Thus, as the inverse of any CDF is increasing, we again obtain (c), except (Gm00
max)

−1 (z) ≤ m00.
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Now, (a), (b), and (c) imply that the budget constraint cannot be satisfied with equality by

both Gm0
max and Gm00

max, which completes the argument.

By h0 (0) k (zmmin) = λm, we obtain that zmmin also weakly increases with m.

Notice now that either (a) zmmax = 1 for sufficiently large m, or (b) λ
m converges to some

λ as m diverges to infinity. Otherwise, the condition that h0(m)k (zmmax) ≥ λm if zmax < 1

would be violated. In case (a), the monotonicity of zmmin and λ
m implies that λm stabilizes at

some λ for sufficiently large m,24 and case (b) implies that zmmax converges to 1 as m diverges

to infinity, otherwise the budget constraint would be violated.25 Therefore, in both these

cases Gm
max converges to a distribution that may have an atom only at 0.

Proof for the conditions in Cases 1 and 2 from Section 5.1. To simplify notation,
we again assume that m = 1.

The proof that G−1 satisfies the conditions described in the two cases is analogous to

that for the conditions in Section 4.2. The argument is, however, more involved, because the

objective function (10) depends on G as well as on G−1. For the argument, it is convenient
to extend the functional l(z) to functions G−1 that are not monotonic. We define l(z) by

adding with the plus sign the area above the graph of G−1 between 0 and z and below the

line y = G−1(z), and with the minus sign the area below the graph of G−1 between 0 and z

and above the line y = G−1(z). (This is illustrated in Figure 3, where l(z) is equal to the

sum of the shaded areas taken with the signs marked on them.)

24If λm increases, then zmmin increases, and h0
³
(Gm

max)
−1 (z)

´
k (z) = λm implies that (Gm

max)
−1 (z) de-

creases for z ∈ (zmin, zmax). Thus, once zmmax stabilizes at 1, λm can no longer increase, since (6) holds with

equality.

25If zmmax were bounded away from 1 for sufficiently large m, G−1 (z) would be equal to m on an interval

of lenth bounded away from 0, so
R 1
0
G−1 (z) dz would diverge to infinity.
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z = G(y)

+

+

-

y = G-1(z)

Figure 3: The definition of l (z)

To derive the first condition in Case 1, consider some inverse distribution function G−1

that takes values only in the set {0, 1/2n, 2/2n, ..., (2n − 1)/2n, 1}, and is constant on each
interval (0, 1/2n], (1/2n, 2/2n], ..., ((2n−1)/2n, 1]. Suppose that we increase the value of (G)−1

on an interval (l/2n, (l + 1)/2n] by ε > 0. (That is, we move the graph of (G)−1 in Figure

4 to the right, by the shaded square.) This change does not affect the integrand in (10) on

intervals (k/2n, (k+1)/2n] for k < l. It increases
R G−1(z)
0

G(y)dy for z ∈ (l/2n, (l+1)/2n] by
ε(l/2n) (the darkened rectangle in Figure 4), so to a first-order approximation it increases

the integrand in (10) on (l/2n, (l + 1)/2n] by (c−1)0(l(z))ε(l/2n). For any k > l, it decreasesR G−1(z)
0

G(y)dy by ε(1/2n) (the shaded square in Figure 4) on (k/2n, (k+1)/2n], so to a first-

order approximation it decreases the integrand in (10) on (k/2n, (k+1)/2n] (for all k > l) by

(c−1)0(l(z))ε(1/2n). Letting z = l/2n, we have that, in total, (10) increases approximately

by

ε(1/2n)

∙
(c−1)0(l(z))z −

Z 1

z

(c−1)0(l(r))dr

¸
.
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(l+1)/2n

G-1(l/2n)
before 
the 
increase

l/2n

G-1(l/2n)
after the 
increase

Figure 4: Increasing G−1

Thus, if the first condition in Case 1 is violated for an optimal G−1, we could construct

functions (Gn)−1 that converge to G−1 and functions ( eHn)−1, as in the proof for the condi-

tions from Section 4.2. If functions ( eHn)−1 are monotonic, we would obtain a contradiction

to the optimality of G−1.

If a ( eHn)−1 is not monotonic, then there is a monotonic (Hn)−1 whose value of (10) is

higher than that for ( eHn)−1. Indeed, consider two adjacent intervals (k/2n, (k + 1)/2n] and

(l/2n, (l + 1)/2n] (that is, k + 1 = l) such that ( eHn)−1(z) = U on (k/2n, (k + 1)/2n] and

( eHn)−1 (z) = D on (l/2n, (l + 1)/2n], where D < U . By changing the value of ( eHn)−1 on

(k/2n, (k+1)/2n] to D, and changing the value of ( eHn)−1 on (l/2n, (l+1)/2n] to U , we raise

the value of (10). This is easy to see in Figure 5, in which the graph of (Hn)−1 is obtained

from the graph of ( eHn)−1 by moving it to the left by the shaded square, and moving it to the

right by the darkened square. This makes the value of l(z) on (k/2n, (k+1)/2n] higher than

its previous value on (l/2n, (l + 1)/2n] by the shaded area. Similarly, the value of l(z) on

(l/2n, (l+1)/2n] becomes higher than its previous value on (k/2n, (k+1)/2n] by the shaded

area. This increases the integrand of (10) on (k/2n, (l + 1)/2n]. Finally, the value of l(z)
and the integrand of (10) on other intervals of the partition stay the same.
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(k+1)/2n = l/2n

D

k/2n

U

(l+1)/2n

Figure 5: Making ( eHn)−1 monotonic

For the second condition in Case 1, notice that the inequality (c−1)0(l(z))z−
R 1
z
(c−1)0(l(r))dr ≥

λ for z > zmax reduces to (c−1)0(l (1))(2zmax − 1) ≥ λ by taking the limit as z tends to zmax.

For Case 2, notice that the left-hand side of (11) for z = zmin is equal to (c−1)0(0)zmin −R 1
zmin
(c−1)0(l(r))dr, and the limit of the left-hand side of (11) as z tends to zmax is (c−1)0l (1) zmax−R 1

zmax
(c−1)0(l(r))dr. This yields the condition in Case 2, as zmin = zmax.

Proof of Proposition 8. Notice that by (11) and the first part of (12), and the

assumption that (c−1)0 is decreasing, we have that

(c−1)0(0)zmin −
Z 1

zmin

(c−1)0(l(r))dr = λ. (14)

Let zmmin, z
m
max, and λm denote zmin, zmax, and λ for a given m. As argued in the proof of

Proposition 7, zmmin < zmmax for all m. We claim that λm weakly increases with m. Suppose

to the contrary that λm
0
> λm

00
for some m0 < m00.

By (14), zm
0

min > zm
00

min. In particular, we have (a): (G
m0
max)

−1 (z) = 0 ≤ (Gm00
max)

−1 (z) for

all z ≤ zm
0

min, and the inequality is strict for z ∈ (zm
00

min, z
m0
min). By (11) and the fact that

the left-hand side of (11) is decreasing in G−1(z), we have (b): (Gm0
max)

−1 (z) ≤ (Gm00
max)

−1 (z)

for all z ∈ (zm0
min,min{zm

0
max, z

m00
max}]. If zm

0
max ≥ zm

00
max, then we have (c): (G

m0
max)

−1 (z) ≤ m0 <

(Gm00
max)

−1 (z) = m00 for z > min{zm0
max, z

m00
max}. If zm

0
max < zm

00
max ≤ 1, then (c−1)0 (l0 (1)) (2zm

0
max −

1) ≥ λm
0
(by the second part of (12)). But (11) implies that (c−1)0

¡
l00
¡
zm

0
max

¢¢
(2zm

0
max −

1) ≤ λm
00
. Thus, l00

¡
zm

0
max

¢
≥ l0 (1), and this is possible only when (c) is satisfied (except
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(Gm00
max)

−1 (z) ≤ m00). Now, (a), (b), and (c) imply that the budget constraint cannot be

satisfied with equality by both Gm0
max and Gm00

max, which completes the argument.

Notice now that λm converges to some λ as m diverges to infinity, because otherwise

the condition (c−1)0 (l (1)) (2zmmax − 1) ≥ λm would be violated. Thus, Gm
max converges to a

distribution G. This G may have an atom only at 0, because otherwise the budget constraint

would be violated for sufficiently large m.26

Proof of the claim from Section 6. To formalize the problem, we consider the prize
structure that maximizes the expected aggregate effort of the fraction ε of the players with

the highest efforts. We then take ε to 0. For any ε, it is straightforward to show that

the optimal prize distribution in the limit setting approximates the optimal prize structures

in large contests. Thus, it suffices to consider the optimal prize distributions in the limit

setting.

In this setting, we known that the measure ε of agents with the highest efforts are those

with the highest types, i.e., those with types x for which F (x) ≥ 1− ε. Consider first linear

costs, i.e., U(x, y, t) = xh (y)− t. From (2) we obtain that the aggregate effort of the mea-

sure ε of the agents with the highest efforts are
R 1
x∗

¡
xh
¡
yA (x)

¢
−
R x
0
h
¡
yA (z)

¢
dz
¢
f (x) dx,

where F (x∗) = 1 − ε. From this, it is clear that setting yA (x) = G−1 (F (x)) = 0 for

x < x∗ is optimal. We can therefore rewrite the target function as
R 1
x∗(xh

¡
yA (x)

¢
−R x

x∗ h
¡
yA (z)

¢
dz)f (x) dx. From this, it is easy to see that for sufficiently small ε it is optimal

to set yA (x) = G−1 (F (x)) = 1 for x ≥ x∗. Indeed, changing the order of integration givesR 1
x∗ h(y

A (x))(xf(x)− (1− F (x)))dx, so increasing yA (x) slightly increases the integrand by

at least h0(yA (x))(xf (x)− ε), and f (x) is assumed continuous and positive on [0, 1] and is

therefore bounded away from 0.

Now consider non-linear costs, i.e., U(x, y, t) = xh (y) − c (t). It is again optimal to

set yA (x) = G−1 (F (x)) = 0 for x < x∗, so we can again rewrite the target function asR 1
x∗ c

−1(xh(yA (x)) −
R x
x∗ h(y

A (z))dz)f (x) dx. Assuming that (the positive and continuous)

(c−1 (z))
0 lies in an interval [L,H], L > 0, for z in [0, h (1)], we can apply the same intuition

and conclude that for sufficiently small ε it is optimal to set yA (x) = G−1 (F (x)) = 1 for

x ≥ x∗. This is because increasing yA (x) slightly increases the target function by at least

h0
¡
yA (x)

¢
(xf (x)L− εH).

26See footnote 25.
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