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Abstract

This paper considers collective decision making processes with quasi-linear

dichotomous utilities and complete information. Agents iteratively reveal infor-

mation about their valuation through an ask-price process. The social planner

determines an outcome and monetary transfer on a “pay-as-bid” basis. We show

that the efficient allocation is achieved in a subgame perfect Nash equilibrium

regardless of details of an ask-price process. Moreover, if an allocation rule is

strongly monotone, there exists an equilibrium of threshold strategies, which

implements the allocation rule.

The equilibrium strategy is not truthful. We also show that if an iterative

revelation mechanism is ex post incentive compatible, it is an ascending-price

mechanism. No incentive compatible iterative mechanism exists in typical eco-

nomic problems such as public goods provision.
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1 Introduction

This paper considers a resource allocation problem or collective choice problem with

quasi-linear utility. In such problems, we generally focus on direct mechanisms for

mechanism design by the Revelation Principle. When we study an equilibrium anal-

ysis of particular allocation rules, we often formulate a kind of direct mechanism or

bidding games. In many real situations, however, direct mechanism is not practical

or applicable, but various type of indirect mechanisms are only available and actu-

ally used. In particular, domain of agents’ preferences or types is generally very rich

and it is practically hard for them to report the full preferences at once. Typical

mechanisms employ small massage spaces, so that the social planner can collect only

a part of information. In such a case, revelation mechanisms need multiple rounds

to collect information enough to find out the efficient outcome.

Consider a public good provision game for example. Suppose the social planner

or the government is going to determine whether or not to build a bridge. Although

the decision depends on each agent’s value for the bridge, an outcome and a corre-

sponding cost sharing are typically determined through simple voting or elections;

agents’ message space is just binary or at most a handful. A decision may sometimes

be made after a sequence of multiple votes.

Motivated by the above example, we consider a situation where the benevolent

social planner is not able to ask agents’ valuations directly, but asks simple binary

questions at once. To achieve the efficient outcome, the planner repeatedly asks

questions and gradually specifies their valuations. We formulate dynamic indirect

mechanisms that consist of “ask-price processes,” called iterative revelation mech-

anisms. In such a dynamic mechanism, agents observe the progress of questions

and responses. Thus, agents have a wide range of strategic behavior contingent on

the past history. The main question of this paper is whether the social planner

achieves the efficient outcome in equilibrium. We show that the answer is yes for

a limited environment in which agents have dichotomous preferences and complete

information.

We consider that agents have quasi-linear dichotomous preferences. In a di-

chotomous preference, outcomes are classified into just two categories: good or bad
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outcomes. Each agent makes the same value for any outcome in a category. Thus, the

type of an agent is represented by a single value with the assumption of quasi-linear

utility. Although dichotomous preferences are clearly restrictive, many interesting

economic problems are still included. These preferences are studied by Bogomolnaia

et al. (2005), Babaioff et al. (2005), and Mishra and Roy (2013) among others.

We show that under complete information, the efficient outcome is achievable

in a subgame perfect Nash equilibrium (SPNE) in an arbitrary way of an ask-price

process. We consider a multi-round version of Bernheim and Whinston’s (1986)

menu auction. In each round, the social planner asks an agent a price, and the agent

responds whether or not he wants to accept the price for achieving an outcome in

his interests. A particular strategy using a simple index is an equilibrium strategy

in any iterative revelation mechanism. In addition, with an additional condition of

excludability, the equilibrium outcome is in the core.

Our result applies to other allocation rules. We show that if an allocation rule is

strongly monotone, the allocation rule is implemented in SPNE of threshold strate-

gies.

In an iterative revelation mechanism, each agent strategically misreports their

preferences using the observed information. Therefore, our result critically relies on

complete information. When we take care of the case of incomplete information and

impose incentive compatibility or strategy-proofness, we show that iterative reve-

lation mechanism must be monotonic price (ascending price). Although ascending

price mechanism is necessary for incentives, it is not sufficient to attain incentive

compatibility. From the literature of ascending price auctions, it is known that an

ascending price mechanism is incentive compatible only in a limited environment.

1.1 Related Literature

This study is related to a growing literature on mechanism design with communica-

tion complexity. Single-object auction design under restricted message space is stud-

ied by Blumrosen et al. (2007) and Kos (2012). Blumrosen and Feldman (2013) con-

sider implementability of information-theoretically optimal allocation rules in several

settings. These studies consider static (simultaneous-move) mechanisms, whereas
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dynamic mechanisms reduce communication. Mechanism design with dynamic and

gradual revelation is studied by Van Zandt (2007). Fadel and Segal (2009) shows

that additional communication cost exists for implementing an implementable social

choice rule. Mookherjee and Tsumagari (2014) provide a necessary and sufficient

condition for Bayesian incentive compatibility.

In multiple-object auctions, preference elicitation is an important issue. In gen-

eral, bidders have complicated valuations function in which a value is evaluated for

each package of goods. Direct revelation is typically unrealistic because there are

exponentially many numbers of packages of goods. Conen and Sandholm (2001)

provide an algorithm for reducing communication about valuations in auction prob-

lem. Nisan and Segal (2006), however, show that the amount of communication for

finding the efficient allocation is exponential in number of goods in the worst case.

Ascending auctions are typical mechanisms that reduces the amount of commu-

nication compared to direct revelation mechanisms. Ausubel (2004, 2006) provides

incentive compatible ascending or dynamic auctions for multiple homogeneous or

heterogeneous goods. Ausubel and Milgrom (2002) and Bikhchandani and Ostroy

(2002) provide relationships between the Vickrey-Clarke-Groves outcome and core

of auction game. The VCG outcome is in the core if goods are substitutes, and they

propose ascending auction mechanisms that converge to the VCG outcome. These

mechanisms are incentive compatible in ex post equilibrium.

From the viewpoint of implementation theory, it is known that a wide range of

allocation rules are implementable in SPNE (Moore and Repullo, 1988). This study

is different from the literature of subgame perfect implementation in several ways.

First, the goal of this paper is to examine whether a particular class of mechanisms,

which mimic collective choice procedures in practice, achieve the efficient allocation

in equilibrium, whereas implementation theory tells what class of allocation rules

can be implemented. Second, in our iterative revelation mechanism, each agent

reports only a part of information about his own valuation. This is very different

because agents are often required to report a full state or information regarding the

the others’ valuations in a typical mechanism for subgame perfect implementation.

Instead of thinking of a limited type of mechanisms, we do not consider multiple
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equilibria very much.

Mishra and Roy (2013) and Babaioff et al. (2005) study implementability under

quasi-linear dichotomous preferences. An important example of dichotomous pref-

erences in multiple-object auctions is single-minded bidders, who are interested in

particular packages of goods. Auctions with single-minded bidders are studied by

Lehmann et al. (2002), Sano (2011), and Milgrom and Segal (2013) among others.

A companion paper of mine (Sano, 2015) focuses on ascending price auctions with

single-minded bidders but allows flexible pricing rule. That paper also shows that

the efficient allocation is achievable in an SPNE, and that the efficiency may not be

achievable when a bidder is not single-minded.

In a discrete public good game, the efficient provision of a public good is achiev-

able in a complete information Nash equilibrium (Palfrey and Rosenthal, 1984).

Dynamic or sequential contribution mechanism to public goods or a joint project

is studied in several works (Admati and Perry, 1991; Varian, 1994). Admati and

Perry show that the efficient provision of public good is achieved in an SPNE when

monetary transfers are made only if contributions cover the production cost.

Bernheim and Whinston (1986) formulate a generalized first price auction named

menu auction, and show that the efficient (and core) outcome is achieved in a Nash

equilibrium. Bergemann and Valimaki (2003), in a framework of common agency,

extend to a kind of dynamic environment and a two-stage auction called agenda

game. In a first auction, a set of admissible outcomes is chosen by an auction,

and the final outcome is auctioned in the second stage from the selected admissible

outcomes. Our model is also considered as a dynamic version of the menu auction

in a different way from Bergemann and Valimaki (2003).

2 The Model

Let N ≡ {0, 1, 2, . . . , n} be the set of all individuals. The benevolent social planner

is denoted by 0, and I = {1, . . . , n} is the set of agents. The social planner chooses

an outcome x from a finite set of alternatives X along with monetary transfer.

Each agent has a quasi-linear utility function with integer-valued valuation function

ui : X → Z. Agent i ’s utility is denoted by πi = ui(x) − pi, where pi denotes the
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monetary transfer to the planner. Each agent has dichotomous preferences: i.e., he

has a non-empty set of interests and has the same value for each outcome of his

interests. Let Xi ⊂ X be the set of interests of i. Agent i ’s valuation function takes

a form of

ui(x) =

vi if x ∈ Xi

0 if x 6∈ Xi

. (1)

Domain of values is bounded and denoted by Vi ≡ [vi, v̄i].1 It is possible for agents

to have a negative value or cost vi < 0 for outcomes of interest. The social planner’s

personal utility function is given by π0 = u0(x) +
∑

I pi, where u0 : X → Z (or R) is

the planner’s personal valuation function. We do not assume that u0 is dichotomous,

however, u0 is commonly known to each other.

We assume that each agent’s interests Xi and domains of value Vi are all com-

monly known to each other including the planner. The state of the world is simply

the vector of values, v = (v1, . . . , vn) ∈ V ≡ ×i∈IVi ⊂ Zn. Moreover, we assume that

the state v is commonly known to each agent but only the social planner does not

know the state.

The objective of the social planner is to achieve an efficient outcome. Let X∗(v) ⊆

X be the set of efficient outcomes with respect to the state of the world v:

X∗(v) ≡ arg max
x∈X

∑
i∈N

ui(x).

Just for simplicity, the efficient outcome with respect to the true state is uniquely

determined by X∗(v) = {x∗}.

The social welfare function W (v) given a state of the world v is the maximum

social welfare in the efficient outcome:

W (v) = max
X

∑
N

ui(x). (2)

Similarly, we also consider the social welfare function when an agent i is silent, which

is denoted by

W−i(v−i) ≡ W (vi, v−i). (3)

1For simplicity of notation, a set of consecutive integers from a to b is denoted by [a, b].
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2.1 Iterative Revelation Mechanism

We consider an environment in which the planner is not able to directly ask each

agent his value. The social planner gradually collects information about the state of

the world via an “ask-price scheme” to find the efficient outcome. The planner offers

prices (or subsidies) for achieving an outcome of their interests at once. When the

planner offers pi to agent i and he is willing to pay pi (or receive −pi when pi < 0)

for x ∈ Xi, it implies vi ≥ pi. Conversely, when agent i responds that he is not

willing to pay pi, it implies vi < pi.2 By asking many times, the planner iteratively

identifies vi.

Formally, an iterative revelation mechanism Γ = ({J t, pt}t, g, p) is defined as

follows. For each round t = 1, 2, . . . , J t : Ht−1 → 2I determines a set of agents

whom the planner offers a price, where ht ∈ Ht indicates a history at the end

of round t with H0 = {∅}. The price the planner offers to agent i ∈ J t(ht−1)

is determined by pt
i : Ht−1 → Z. Each agent i ∈ J t(ht−1) at t makes a report

at
i ∈ {yes, no}. The mechanism terminates at T when JT+1(hT ) = ∅. For each

entire history h ∈ H, an outcome g(h) ∈ X and monetary transfers to the planner

p(h) ∈ Zn are determined. A decision rule g along with an ask-price scheme {J t, pt}

is sometimes called a protocol.

Using the responses by an agent up to t, the planner identifies the set of values

Vi(ht). Any value ṽi ∈ Vi(ht) is consistent with all the responses from i. Note that

Vi(ht) should have the form of Vi(ht) = [vi(ht), v̄i(ht)] with Vi(h0) = Vi. Let V (ht) ≡

×i∈IVi(ht) and V (h) = V (hT ), which indicate set of possible states consistent with

current and overall histories, respectively.

An ask-price scheme {J t, pt}t is arbitrary, however, the decision function g and

payment rule p are specified. We put several requirements for revelation mechanisms.

Assumption 0 (Informative Query) For any t, any ht−1, and any i ∈ J t(ht−1),

pt
i ∈ Vi(ht−1) \ {vi(ht−1)}.

Informative query is natural and it is without loss of generality.

2Revealed preference only implies vi ≤ pi when an agent rejects the offer. However, we assume

rejection is strict in order that the planner certainly identifies the efficient outcome.

7



Assumption 1 (Efficiency) For any profile of values ṽ ∈ V (h), the decision func-

tion g(h) ∈ X∗(ṽ).

The Efficiency indirectly restricts a protocol {J t, pt}t and determines a necessary

condition for termination of a process. The social planner needs to continue the

ask-price process until the efficient outcome is specified. At the same time, the

planner does not have to uniquely determine a state from responses. Typically,

a mechanism does not require the full revelation of agents’ values, which implies

economy of information transmission and preserving privacy. It is relaxed when

considering limited communication.

Assumption 2 (Pay-as-bid) The payment rule is determined by

pi(h) =

vi(h) if g(h) ∈ Xi

0 if g(h) 6∈ Xi

.

If the final outcome is of i ’s interest, he needs to pay the minimum value in his

revealed set. Equivalently, each agent pays the maximum amount that he said “yes”

in the mechanism. Thus, this payment rule is a dynamic version of “pay-as-bid”

mechanism and can be viewed as an extension of Bernheim and Whinston’s (1986)

menu auction.

Assumption 2 is restrictive from mechanism design point of view, which considers

payment scheme that incentivizes agents. A justification for this assumption is that

the social planner has to minimize communication to find the efficient outcome. Fadel

and Segal (2009) show that there exists additional communication to calculate an

ex post incentive compatible payment rule. If the communication cost may be large,

the social planner might give up to collect additional information after the efficient

outcome is identified. Then, she might have to employ the simplest payment rule

that is individually rational.

Agents observe all the past information. A (pure) strategy σi ∈ Σi of agent i in

an iterative revelation mechanism Γ is a profile of actions ai(z) ∈ {yes, no} at every

decision node z = (ht−1, pt
i) such that i ∈ J t(ht−1). The equilibrium concept is a

subgame perfect Nash equilibrium (SPNE).
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3 Result

To simplify the analysis, we mainly focus on a special case in which for all t and all

ht−1, |J t(ht−1)| = 1. It is easy to arrange the result to the case of general number

of |J t|, which is described later.

To state the main result, we introduce some notions and an additional assumption

on tie-breaking rule. We introduce the notion of target values.

Definition 1 The target value vt
i of i at round t is defined by

vt
i ≡


vi if vi ∈ Vi(ht)

v̄i(ht) if vi > v̄i(ht)

vi(ht) if vi < vi(ht)

. (4)

Since agents observe all the past actions, they know the target value of each other.

Note that vt
i ∈ Vi(ht).

Because we consider complete information, we need to take care of ties in equi-

librium. We impose the following pre-determined tie-breaking for simplicity.

Assumption 3 The personal utility for the planner u0 is real-valued, and for any

x, x′ ∈ X, the difference u0(x)− u0(x′) is not integral; i.e., for any state v, X∗(v) is

singleton.

An alternative tie-breaking rule uses target values.

Assumption 4 For each x ∈ ∩ṽ∈V (h)X
∗(ṽ), define

τ(x) ≡ min{τ |∀s ≥ τ, x ∈ X∗(vs)}.

Then the decision function satisfies g(h) ∈ arg min τ(x).

This assumption does not mean that the social planner breaks ties in this manner,

but is imposed just for analysis. Assumption 4 is important when the planner’s

personal utility u0 takes integer values because a tie case is a general phenomenon

and a tie arises in equilibrium. Roughly speaking, Assumption 4 requires that the

efficient outcome is favored and chosen in equilibrium tie-breaking. At the same

time, the efficient outcome is not favored at the off-equilibrium path tie-breaking.
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Definition 2 An agent i ’s marginal contribution under v is

Mi(v) ≡ W (v) − W−i(v−i). (5)

In addition, we use the notation M t
i = Mi(vi, v

t
−i) for the marginal contribution

under the target values.

The main theorem of this paper is stated as follows. Notably, a specific strategy

forms an SPNE for every iterative revelation mechanism.

Theorem 1 Suppose that Assumptions 1, 2, and 3 (or 4) hold. In every iterative

revelation mechanism, there exists an SPNE in which each agent i takes the following

strategy:

ai(ht−1, pt
i) =

yes if pt
i ≤ dvi − M t−1

i e

no otherwise
. (6)

The equilibrium outcome is efficient.

All proofs are in the Appendix.

An intuition of Theorem 1 is given as follows. By definition of target values, each

agent j is willing to pay at most vt−1
j given the observed actions. Suppose that agents

would foresee that the equilibrium outcome is efficient under the current information,

x ∈ X∗(vt−1), and that agent i makes an action at round t and M t−1
i > 0. A

positive marginal contribution indicates the expected outcome X∗(vt−1) are of i ’s

interests. By definition of marginal contribution, i can make X∗(vt) remain the same

by revealing vt
i ≥ vi − M t−1

i . Thus, i needs to say yes for any price pt
i ≤ vi − M t−1

i

and say no for any higher price to reduce the payment.

Agents tell lies in equilibrium. They report no for a price over vi − M t−1
i to

reduce their payments. An interesting property is that the equilibrium strategy is

independent of the detail of an ask-price process although agents use all the past

responses and true values of the other agents. Particularly, the strategy (6) consti-

tutes an SPNE even if agents do not know whom and how much the social planner

will ask in the future.
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3.1 Core

In addition to the efficiency result of Theorem 1, the equilibrium outcome is located

in the core with respect to the true state of the world. To consider the core property

of the allocation problem, we additionally impose the excludability on the feasible

outcomes X.

Definition 3 A set X of alternatives satisfies the excludability if the following holds;

For each subset of agents J ⊂ I, there exists a set of feasible alternatives, denoted

by X(J) ⊂ X, achievable for J ∪ {0}, and for each i 6∈ J , Xi ∩ X(J) = ∅.

The excludability holds for various environment such as private goods allocation

(auction) problems and club goods. The excludability implies that any coalition

including the social planner can exclude agents outside the coalition. The coalition

value of J is defined as the maximum social welfare generated by J . The coalition

value function or characteristic function) ω : 2N × V → R is defined in a standard

manner by

ω(J ; v) =

maxX(J−0)

∑
j∈J uj(x) if 0 ∈ J

0 if 0 6∈ J
. (7)

In this formulation, we assume that the social planner has the authority to implement

an outcome x and thus any coalition by agents only generates zero value. A payoff

profile is in the core if it is efficient, individually rational, and not blocked by any

coalition. The core given a state of the world is denoted by

C(ω, v) = {π ∈ Rn+1|(∀i ∈ N)πi ≥ 0, (∀J ⊆ N)
∑
j∈J

πj ≥ ω(J, v)}.

The following theorem states that the payoff profile associated with Theorem 1

is in the core. In the above definition of core, the social planner is also included as

a player. This implies that in public goods provision, for example, the government’s

revenue from agents covers the provision cost. Similarly, in a double auction with

single-unit demand and supply, a Walrasian auctioneer has no budget deficit in

equilibrium.

Theorem 2 Suppose that X satisfies the excludability. The equilibrium outcome

associated with Theorem 1 is in the core with respect to the true state of the world.
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3.2 When |J t| ≥ 2

The above result is easily arranged to the case where the social planner can simul-

taneously ask prices to many agents. The equilibrium strategy for such cases is

basically the same as Theorem 1, but some coordination of responses is necessary to

avoid a kind of tragedy, in which many agents simultaneously say no and their con-

tributions fall short to the efficient outcome. Thus, a coordination problem should

be solved in each round.

Corollary 1 Suppose |J t| can be more than 1. In every iterative revelation mecha-

nism, there exists a following SPNE: for any history ht−1 and (J t, pt), find a maximal

set J t
n ⊆ J̄ t ≡ {i ∈ J t|vi − M t−1

i < pt
i ≤ vi} satisfying the following conditions:

1. Agent i says no if i ∈ J t
n or if pt

i > vi,

2. Agent i says yes if i ∈ J̄ t \ J t
n or if pt

i ≤ dvi − M t−1
i e,

3. X∗(vt−1) ⊆ X∗(vt).

It is obvious that our result is not affected even when the social planner can ask

multiple prices to an agent. For example, we have the same equilibrium when the

planner ask a set of prices {pt
i1, . . . , p

t
ik} to agent i in a round. Agent i responds with

the maximum price that he accepts (or says yes) among the offered prices. Note that

a direct revelation of a value is equivalent to asking a set of prices {vi, vi +1, . . . , v̄i}.

Then, Theorem 1 shows that in a direct revelation pay-as-bid mechanism, there

exists an efficient Nash equilibrium as a corollary, which is a known result.

Corollary 2 (Bernheim and Whinston, 1986) In a one-shot (static) menu auc-

tion, there exists an efficient Nash equilibrium, in which each agent submits a bid of

bi = dvi − Mi(vi, b−i)e.

3.3 Limited Communication

We have considered the efficient allocation rule and assumed that the social planner

can ask as many questions as possible until the efficient outcome is specified. How-

ever, the social planner often has communication constraints that prevent from so
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many questions. For example, the planner may be able to ask only a limited number

of questions to each agent or in total. Alternatively, it may take a cost to ask an

agent a question. In the presence of communication constraints, the social planner

may not or cannot specify the efficient outcome but carefully designs a protocol that

finds an approximately efficient outcome. In a single-object auction problem, Blum-

rosen et al. (2007) and Kos (2012) examine an informationally efficient protocol that

maximizes the social welfare given a limited number of actions.3 However, it is quite

challenging to answer the question how we can maximize social welfare in a more

general allocation problem with limited communication.

In the current study we do not consider any specific form of communication

constraints or algorithmic methods that increase social welfare. Instead, we drop

Assumption 1 and extend the previous result to a wide range of allocation rules

consistent with limited communication.

For any protocol ({J t, pt}, g), let φ : V → H be a mapping from a state to

the associated history, assuming sincere reporting by agents. That is, φ is an in-

verse mapping of V (h). Then, a direct allocation rule f : V → X associated with

({J t, pt}, g) is formulated as f = g ◦ φ. The efficient allocation rule is denoted by f∗

and

f∗(v) ∈ arg max
X

∑
i∈N

ui(x).

An allocation rule f is said to be monotone if for all i ∈ I, all v ∈ V , and all ṽi > vi,

f(v) ∈ Xi ⇒ f(ṽi, v−i) ∈ Xi.

Moreover, an allocation rule f is said to be strongly monotone if for all i ∈ I, all

v ∈ V , and all ṽi > vi

f(v) ∈ Xi ⇒ f(ṽi, v−i) = f(v).

An iterative revelation mechanism Γ is said to be (strongly) monotone if the asso-

ciated direct allocation rule f is (strongly) monotone. Given a strongly monotone

3See Blumrosen and Feldman (2013) as well.
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allocation rule f , the critical value cf
i (v−i) is defined by

cf
i (v−i) =

min{ṽi ∈ Vi|f(ṽi, v−i) ∈ Xi} if exists

v̄i + 1 otherwise
. (8)

The following theorem states that if an iterative revelation mechanism Γ is

strongly monotone, there exists an SPNE in which each agent takes a threshold

strategy, and the allocation rule f is implemented in the equilibrium.

Theorem 3 Suppose that Assumptions 2 and 3 (or 4) hold. If an iterative revelation

mechanism Γ is strongly monotone, then there exists an SPNE in which each agent

i takes the following strategy:

ai(ht−1, pt
i) =

yes if pt
i ≤ cf

i (vt−1
−i )

no otherwise
. (9)

The SPNE implements f .

Notice that the efficient allocation rule f∗ is strongly monotone. The critical

value for the efficient allocation rule is given by cf
i (v−i) = dvi − Mi(v)e, thus that

Theorem 3 is a generalization of Theorem 1.

4 Incentive Compatibility

Theorem 1 shows that any iterative revelation mechanism achieves efficiency in an

SPNE but each agent may strategically misreport his preferences. Moreover, each

agent uses the others’ true values, so the result critically relies on the complete

information. We are naturally interested in incentive compatible mechanism. We

here consider ex post incentive compatibility.

Definition 4 An iterative revelation mechanism is ex post incentive compatible if

for any state v and any history, sincere reporting is an ex post equilibrium:

ai(ht−1, pt
i) =

yes if pt
i ≤ vi

no otherwise
.
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In addition to the ex post incentive compatibility, we also impose tightness for a

mechanism.

Definition 5 An iterative revelation mechanism associated with f is tight if for all t

and all ht, it holds that i 6∈ J t+1(ht) if ∀ṽ ∈ V (ht), f(ṽ) 6∈ Xi or if ∀ṽ ∈ V (ht), f(ṽ) ∈

Xi. An iterative revelation mechanism associated with f is weakly tight if for all t

and all ht, it holds that i 6∈ J t+1(ht) if ∀ṽ ∈ V (ht), f(ṽ) 6∈ Xi.

Notice that if ∀ṽ ∈ V (ht), X∗(ṽ) ∩ Xi = ∅ or X∗(ṽ) ⊆ Xi, the social planner does

not have to specify agent i ’s value any further since i ’s value is no longer critical for

determining the efficient outcome. A smart social planner would only ask questions

relevant to determining the efficient outcome.

Theorem 4 If an iterative revelation mechanism is monotone, ex post incentive

compatible, and weakly tight, and satisfies Assumptions 0 and 2, then it is an ascending-

price mechanism: ps
i < pt

i for all i and all s < t.

As a corollary of Theorem 4, the English auction is a unique iterative mechanism

that is efficient and ex post incentive compatible in a single-object auction.

Corollary 3 In a single-object auction environment, the English auction is a unique

iterative revelation mechanism that is efficient, ex post incentive compatible, and

tight, and has the pay-as-bid monetary transfer.

Theorem 4 provides several findings along with a knowledge from ascending price

auctions theory. When we focus on “ascending-price auctions,” the following result

is known.

Proposition 1 (Ausubel and Milgrom, 2002; etc.) There exists an efficient and

incentive compatible ascending-price mechanism if for any state v, coalition value

function is submodular: for any J ′ ⊆ J ,

ω(J ′ ∪ i; v) − ω(J ′; v) ≥ ω(J ∪ i; v) − ω(J ; v).

It is easily verified that in many environments of dichotomous preferences, the

coalition value function is not submodular. Roughly speaking, the submodular con-

dition corresponds to substitutes condition, whereas dichotomous preferences typi-

cally exhibit complementarity. In a public good problem, for example, each agent’s
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marginal contribution to the economy ω(J) − ω(J−i) is non-decreasing in the size

of the economy J . Thus, there exists no incentive compatible iterative revelation

mechanism in general.

The negative result depends on both the pay-as-bid pricing rule and tightness.

Fadel and Segal (2009) show that even when we drop Assumption 2, an efficient

protocol may not be implemented in ex post equilibrium. This is because an ex post

incentive compatible payment rule is equivalent to that of the Vickrey-Clarke-Groves

mechanism, whereas an efficient protocol may not collect information enough to cal-

culate the Vickrey-Clarke-Groves payments. However, Fadel and Segal also show

that every efficient allocation rule (protocol) is implemented in Bayesian Nash equi-

librium using a payment rule similar to the “AGV mechanism.” In the multi-object

auction model, Mishra and Parkes (2007) propose an ex post incentive compatible

ascending auction for general valuations, which does not satisfy pay-as-bid rule or

tightness.

5 Conclusion

Iterative revelation mechanism is a class of indirect mechanisms in which the social

planner iteratively asks a binary choice question and identifies the state of the world

after a sequence of questions and responses. With complete information and dichoto-

mous preferences, the efficient outcome is achievable in an SPNE regardless of the

way of asking prices. However, agents strategically misreport their values contin-

gent on the others’ past responses. From the perspective of incentive compatibility,

price asking scheme must be monotonic. However, an incentive compatible iterative

revelation mechanism often fails to exist in general.

We have assumed that the planner has knowledge about agents’ interests. It is

an open question when the planner does not know agents’ interests and needs to

ask their interests too. Another extension is relaxing the assumption of dichotomous

preferences. Knowledge from combinatorial auctions tells us that there exists an

incentive compatible ascending combinatorial auctions when goods are substitutes.

Unfortunately, however, Sano (2015) shows that in the presence of complementarities,

an ascending combinatorial auction does not achieve the efficiency in SPNE.
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A Proofs

In the proofs, we use the following fact that is easily verified: if X∗(v) ∩ Xi 6= ∅,

then X∗(ṽi, v−i) ⊆ Xi for all ṽi > vi. In addition, the set of agents whose interests

include x is denoted by N(x) ≡ {i ∈ I|x ∈ Xi}.

A.1 Proof of Theorem 1

We give the proof under Assumption 4 here. Proof under Assumption 3 is similar

and omitted. Under Assumption 4, u0 is integer, and Mi(v) is integer for all v too.

For each subgame starting from a decision node z = (ht−1, pt
i), let I(z) be the set

of all agents who make actions in the subgame. In addition, let τ≤t(x) = min{τ |(t ≥

∀s ≥ τ), x ∈ X∗(vs)}, and define X∗(ht) ≡ arg minx∈X∗(vt) τ≤t(x) ⊆ X∗(vt). An

outcome in X∗(ht) is denoted by xt ∈ X∗(ht). We prove by backward induction.

Step 1. |I(z)| = 1; That is, agent i is a unique agent who makes actions in the

subgame from z.

Step 1.1. Suppose that xt−1 6∈ Xi for all xt−1 ∈ X∗(ht−1). It implies W (vt−1) =

W−i(vt−1) and M t−1
i = 0.

Suppose vi < vi(ht−1) = vt−1
i . Further suppose that there is a path achieving

an outcome x̃ ∈ Xi. (If not, any action profile is optimal in the subgame and we

have done.) Then, agent i ’s payment must be pi = vi(hT ) > vi(ht−1) > vi. Thus,

the resulting payoff is vi − pi < 0. When agent i plays the proposed strategy, he

reports as if he has a value vt−1
i = vi(ht−1). Hence, vi(ht−1) ∈ Vi(hs) for all s ≥ t

and vt = vt−1 = (vi(ht−1), vt−1
−i ) ∈ V (h). By the efficiency of the mechanism, the

resulting outcome is g(h) = x 6∈ Xi and i ’s payoff is 0.

Suppose vi ∈ Vi(ht−1) and vi = vt−1
i . Further suppose that there is a path

achieving an outcome x̃ ∈ Xi. Let Ṽi(h) = [ṽi(h), ˜̄vi] be the revealed set at the

termination of such a path. Since Vj(h) = Vj(ht−1) for all j 6= i, x̃ ∈ X∗(ṽi(h), vt−1
−i ).

By x̃ 6∈ X∗(vi, v
t−1
−i ), we have vi < ṽi(h) = pi(h), and agent i results in a negative

payoff. When agent i plays the proposed strategy, he results in zero payoff by the

same argument in the previous paragraph.

Suppose vi > v̄i(ht−1) = vt−1
i . Since xt−1 6∈ Xi and Vi(h) ⊆ Vi(ht−1), the final
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outcome must be xt−1 regardless of i ’s actions, thus we have done.

Step 1.2. Suppose that there exists xt−1 ∈ Xi and M t−1
i ≥ 0.

Suppose vi < vi(ht−1) = vt−1
i . Since xt−1 ∈ X∗(vi(ht−1), vt−1

−i ), we have xt−1 ∈

X∗(ṽi, v
t−1
−i ) for all ṽi ∈ Vi(h) regardless of i ’s actions. For payment minimization,

it is optimal to report as if he has a value of vi(ht−1). This is consistent with the

proposed strategy.

Suppose vi ≥ vi(ht−1) and vt−1
i = min{vi, v̄i(ht−1)}. Consider the terminal

revealed set Ṽi(h) of i satisfying g(h) ∈ Xi. For all ṽi ∈ Ṽi(h), (ṽi, v
t−1
−i ) ∈ V (h) and

ṽi +
∑

j∈N(g(h))

vt−1
j + u0(g(h)) ≥ W−i(vt−1

−i ). (10)

Inequality (10) is equivalent to ṽi ≥ vi−M t−1
i . Hence, ṽi(h) ≥ vi−M t−1

i is necessary

and sufficient for g(h) ∈ Xi. When vi(ht−1) ≥ vi − M t−1
i , we have g(h) ∈ Xi

regardless of i ’s actions. Hence, the proposed strategy is optimal by the payment

minimization. When vi(ht−1) < vi − M t−1
i , the final outcome is xt−1 ∈ Xi or some

x̃ 6∈ Xi. The resulting payoff for x̃ is 0. When agent i plays the proposed strategy,

vi−M t−1
i ∈ Vi(h) and thus g(h) = xt−1. In addition, agent i says no at s ≥ t for any

ps
i > vi−M t−1

i and thus pi(h) ≤ vi−M t−1
i . Hence, i ’s payoff is vi−pi(h) ≥ M t−1

i ≥ 0.

(On the other hand, if under the proposed strategy pi(h) < vt−1
i − M t−1

i , then it

holds that vi(hT ) +
∑

N(g(h)) vt−1
j + u0(g(h)) < W−i(vt−1

−i ), which is a contradiction.

Thus pi(h) = vi − M t−1
i .)

Therefore, the proposed strategy is optimal. Under the strategy, it holds that

xt−1 ∈ X∗(vt) for all t and g(h) ∈ X∗(ht−1) in equilibrium by the tie-breaking rule.

Step 2. |I(z)| = m ≥ 2. In addition, the proposed strategy consists an SPNE for

all m′ ≤ m − 1 and |I(z)| = m′. In addition, after each action of agent i at round t,

|I(ht, pt+1
j )| = m − 1.

Step 2.1. Suppose that xt−1 6∈ Xi for all xt−1 ∈ X∗(ht−1). It implies W (vt−1) =

W−i(vt−1) and M t−1
i = 0.

Suppose that after agent i ’s action at round t, xt ∈ Xi. By the tie-breaking

assumption, it implies for all x ∈ X∗(vt−1), x 6∈ X∗(vt). Then, induction hypothesis

implies that g(h) = xt. There are two cases for such an event arises:

1. vt
i = vi(ht) > vt−1

i = vi(ht−1) > vi.
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2. vt
i = vi(ht) > vt−1

i = vi.

In each case, pt
i = vt

i = vi(ht) > vi. By induction hypothesis, agent i earns vi −

pi(h) ≤ vi − vi(ht) < 0. On the other hand, if he plays the proposed strategy and

reports no for pt
i > vi, it holds vt

i = vt−1
i and X∗(vt) = X∗(vt−1), thus that i earns

zero payoff by induction hypothesis. Therefore, the proposed strategy is optimal and

X∗(vt) = X∗(vt−1).

Step 2.2. Suppose that there exists xt−1 ∈ Xi.

Step 2.2.1. Suppose pt
i ≤ vi − M t−1

i . Under the proposed strategy, agent i reports

yes. This implies vt
i = vt−1

i . Note that vt
j = vt−1

j for all j 6= i, so

W (vt) = W (vt−1) ≥ W−i(vt−1
−i ) = W−i(vt

−i). (11)

Hence, xt−1 ∈ X∗(vt) and by induction hypothesis xt−1 is the final outcome in

equilibrium. Agent i earns a payoff of vi − pi(h) ≥ vi − pt
i ≥ 0.

If agent i reports no, then it implies v̄i(ht) = pt
i − 1, (and by the induction

hypothesis, v̄i(h) = pt
i − 1). Since

pt
i − 1 +

∑
j∈N(xt−1)\{i}

vt
j + u0(xt−1) < vi − M t−1

i +
∑

j∈N(xt−1)\{i}

vt
j + u0(xt−1)

= W−i(vt),

(12)

we have

xt−1 6∈ X∗(vt). (13)

By induction hypothesis, the final outcome in equilibrium is in X∗(vt), thus that

agent i earns zero payoff. Therefore, the proposed strategy is optimal, and it holds

X∗(vt−1) ⊆ X∗(vt)

Step 2.2.2. Suppose pt
i > vi −M t−1

i . In the proposed strategy, agent i reports no. It

is obviously optimal to report no when pt
i > vi. Suppose vi−M t−1

i < pt
i ≤ vt−1

i , where

vt−1
i = min{vi, v̄i(ht−1)}. When agent i reports yes, we have vt = vt−1 and xt−1 ∈ Xi

is achieved by induction hypothesis. Agent i ’s payoff is vi − vi(h) ≤ vi − pt
i. When

agent i reports no as in the proposed strategy, vt
i = v̄i(ht) = pt

i − 1 and vt
−i = vt−1

−i .
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Then for xt−1 ∈ Xi,∑
j∈N(xt−1)

vt
j + u0(xt−1) = pt

i − 1 +
∑

j∈N(xt−1)\{i}

vt−1
j + u0(xt−1)

≥ vi − M t−1
i +

∑
j∈N(xt−1)\{i}

vt−1
j + u0(xt−1)

= W (vt−1
−i ) = W (vt

−i).

(14)

Hence, xt−1 ∈ X∗(vt) and by the induction hypothesis it is achieved in equilibrium.

Then, agent i ’s payoff is vi−vi(h) ≥ vi−vi(ht−1) > vi−pt
i. Therefore, the proposed

strategy is optimal and X∗(vt−1) ⊆ X∗(vt).

Step 3. |I(z)| = m ≥ 2. In addition, the proposed strategy constitutes an SPNE for

all m′ ≤ m−1 and |I(z)| = m′. Suppose that in round t+τ after z, |I(ht+τ−1, pt+τ
j )| =

m and |I(ht+τ , pt+τ+1
j′ )| ≤ m − 1. Take the largest τ for any subgame starting from

z. We show that for each m ≥ 2 and each τ ≥ 0, the proposed strategy is optimal

by induction.

We have shown that the proposed strategy is optimal for each m and τ = 0

at Step 2. Suppose τ ≥ 1 and the proposed strategy constitutes an SPNE for all

τ ′ ≤ τ − 1.

Step 3.1. Suppose that xt−1 6∈ Xi. It implies W (vt−1) = W−i(vt−1) and M t−1
i = 0.

Suppose that after agent i ’s action at round t, xt ∈ Xi. By the tie-breaking

assumption, it implies for all x ∈ X∗(vt−1), x 6∈ X∗(vt). Then, induction hypothesis

implies that g(h) = xt. There are two cases for such an event arises:

1. vt
i = vi(ht) > vt−1

i = vi(ht−1) > vi.

2. vt
i = vi(ht) > vt−1

i = vi.

In each case, pt
i = vt

i = vi(ht) > vi. By induction hypothesis, agent i earns vi −

pi(h) ≤ vi − vi(ht) < 0. On the other hand, if he plays the proposed strategy and

reports no for pt
i > vi, it holds that vt

i = vt−1
i and X∗(vt) = X∗(vt−1), so that i earns

zero payoff. Therefore, the proposed strategy is optimal and X∗(vt) = X∗(vt−1).

Step 3.2. Suppose that there exists xt−1 ∈ Xi.

Step 3.2.1. Suppose pt
i ≤ vi − M t−1

i . Under the proposed strategy, agent i reports
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yes. This implies vt
i = vt−1

i . Note that vt
j = vt−1

j for all j 6= i, so

W (vt) = W (vt−1) ≥ W−i(vt−1
−i ) = W−i(vt

−i). (15)

Hence, xt−1 ∈ X∗(vt) and by induction hypothesis xt−1 is the final outcome in

equilibrium. Agent i earns a payoff of vi − pi(h) ≥ vi − pt
i ≥ 0.

If agent i reports no, then it implies v̄i(ht) = pt
i − 1. Since

pt
i − 1 +

∑
j∈N(xt−1)\{i}

vt
j + u0(xt−1) < vi − M t−1

i +
∑

j∈N(xt−1)\{i}

vt
j + u0(xt−1)

= W−i(vt),

(16)

we have

xt−1 6∈ X∗(vt). (17)

By induction hypothesis, the final outcome in equilibrium is in X∗(vt), thus that

agent i earns zero payoff. Therefore, the proposed strategy is optimal and it holds

that X∗(vt−1) ⊆ X∗(vt).

Step 3.2.2. Suppose pt
i > vi − M t−1

i . In the proposed strategy, agent i reports no.

It is obviously optimal to report no when pt
i > vi. Suppose vi − M t−1

i < pt
i ≤ vt

i .

When agent i reports yes, we have vt = vt−1 and xt−1 ∈ Xi is achieved. Agent i ’s

payoff is vi − vi(h) ≤ vi − pt
i. When agent i reports no as in the proposed strategy,

vt
i = v̄i(ht) = pt

i − 1 and vt
−i = vt−1

−i . Then for xt−1,∑
j∈N(xt−1)

vt
j + u0(xt−1) = pt

i − 1 +
∑

j∈N(xt−1)\{i}

vt−1
j + u0(xt−1)

≥ vi − M t−1
i +

∑
j∈N(xt−1)\{i}

vt−1
j + u0(xt−1)

= W (vt−1
−i ) = W (vt

−i).

(18)

Hence, xt−1 ∈ X∗(vt) and by the induction hypothesis it is achieved in equilibrium.

Then, agent i ’s payoff is vi−vi(h) > vi−pt
i since v̄i(h) < pt

i. Therefore, the proposed

strategy is optimal and X∗(vt−1) ⊆ X∗(vt). ¥
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A.2 Proof of Theorem 2

Because the equilibrium allocation x∗ associate with Theorem 1 is efficient, for each

feasible allocation x ∈ X, we have

u0(x∗) +
∑

N(x∗)

vj(h) ≥ u0(x) +
∑

N(x)∩N(x∗)

vj(h) +
∑

N(x)\N(x∗)

v̄j(h). (19)

Consider any coalition J including the social planner. Obviously, it suffices to con-

sider the case of J = N(x) ∪ {0} for any feasible outcome x ∈ X.∑
J

πj = u0(x∗) +
∑

N(x∗)

vj(h) +
∑
N(x)

πj

≥ u0(x) +
∑

N(x∗)∩N(x)

vj(h) +
∑

N(x)\N(x∗)

v̄j(h) +
∑
N(x)

πj

= u0(x) +
∑

N(x∗)∩N(x)

vj +
∑

N(x)\N(x∗)

v̄j(h)

≥ u0(x) +
∑

N(x∗)∩N(x)

vj +
∑

N(x)\N(x∗)

vj

= ω(J ; v).

(20)

The third line comes from the fact that πj = vj − vj(h) for every j ∈ N(x∗) and

πj = 0 for j 6∈ N(x∗). Note that in the SPNE of Theorem 1, M t
i = 0 for all i 6∈ N(x∗)

and all t. Hence, v̄j(h) ≥ vj for each i 6∈ N(x∗), which induces the fourth line. ¥

A.3 Proof of Theorem 3

A decision node is denoted by z = (ht−1, pt
i). Let I(z) be the set of agents who make

an action in the subgame starting from z.

Step 1. Suppose |I(z)| = 1. Agent i is a unique agent making actions at z and all

the subsequent nodes.

Step 1.1. Suppose f(vt−1) 6∈ Xi. If ∀ṽi ∈ Vi(ht−1), f(ṽi, v
t−1
−i ) 6∈ Xi, then agent

i earns zero payoff regardless of his responses, and any strategy is indifferent and

optimal. Hence, suppose ∃ṽi ∈ Vi(ht−1), f(ṽi, v
t−1
−i ) ∈ Xi. Because f(vt−1) 6∈ Xi,

we have vt−1
i < cf

i (vt−1
−i ) and cf

i (vt−1
−i ) ∈ Vi(ht−1). Because vt−1

i 6= v̄i(ht−1), we

have vt−1
i = max{vi, vi(ht−1)} ≥ vi. Under the proposed strategy, agent i responses
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sincerely regarding vi (equivalently vt−1
i ), so that the final allocation must be f(vt−1)

and agent i earns zero payoff. If agent i deviates and takes another strategy achieving

some x ∈ Xi, then the social planner knows that i ’s revealed value is ṽi ≥ cf
i (vt−1

−i ).

This indicates that agent i says yes for a price ps
i ≥ cf

i (vt−1
−i ) at a round s ≥ t, and

that i ’s payoff is negative: vi − pi(h) ≤ vi − ps
i < 0. Hence, the proposed strategy is

optimal.

Step 1.2. Suppose f(vt−1) ∈ Xi. If vt−1
i = vi(ht−1) ≥ vi, it implies for any ṽi ∈

Vi(ht−1), f(ṽi, v
t−1
−i ) ∈ Xi. For payment minimization, it is optimal to say no for all

prices, which is consistent with the proposed strategy because cf
i (vt−1

−i ) ≤ vi(ht−1).

Suppose vi > vi(ht−1) and vt−1
i = min{vi, v̄i(ht−1)}. If cf

i (vt−1
−i ) ≤ vi(ht−1),

then the proposed strategy is clearly optimal as in the previous paragraph. Hence,

suppose cf
i (vt−1

−i ) > vi(ht−1). By f(vt−1) ∈ Xi, it holds that cf
i (vt−1

−i ) ≤ vt−1
i ≤ vi.

If agent i reports as if his value is ṽi < cf
i (vt−1

−i ), then his resulting payoff is zero. If

agent i takes the proposed strategy, it holds that cf
i (vt−1

−i ) ∈ Vi(h) regardless of the

ask-price process. Hence, we have

g(h) = g
(
φ(cf

i (vt−1
−i ), vt−1

−i )
)

= f
(
cf
i (vt−1

−i ), vt−1
−i

)
= f(vt−1) ∈ Xi. (21)

The first equality is from vt−1
j ∈ Vj(h) for all j 6= i. The third equality is from

strong monotonicity. In addition, agent i says no for any ps
i > cf

i (vt−1
−i ) for all s ≥ t,

his payoff is at least vi − cf
i (vt−1

−i ) ≥ 0. It is clearly suboptimal for i to say yes for

ps
i > cf

i (vt−1
−i ) for some s ≥ t.

Therefore, we have shown that the proposed strategy constitutes an SPNE and

g(h) = f(vt−1) when |I(z)| = 1.

Step 2. Now we consider any decision node z of round t and the corresponding

mover i. We impose the following induction hypothesis; For every subsequent node

z′ of round t′ > t after z, the proposed strategy is an SPNE and f(vt′) = f(vt′−1)

for all t′ > t. Hence, f(vt) is chosen in the SPNE by the hypothesis.

Step 2.1. Suppose f(vt−1) 6∈ Xi and pi ∈ Vi(ht−1) \ {vi(ht−1)}. If cf
i (vt−1

−i ) >

v̄i(ht−1), we have f(vt) 6∈ Xi regardless of i ’s action.4 By the induction hypothesis,
4It is not guaranteed that f(vt) = f(vt−1).
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i ’s resulting payoff is zero, and the proposed strategy is optimal.

Suppose cf
i (vt−1

−i ) ≤ v̄i(ht−1). Because vt−1
i < cf

i (vt−1
−i ) < v̄i(ht−1), we have

vt−1
i = max{vi, vi(ht−1)}. If pt

i < cf
i (vt−1

−i ), then vt
i ∈ {vt−1

i , pt
i, p

t
i − 1} after any

response of agent i. Hence, f(vt) 6∈ Xi regardless of i ’s response. Hence, the proposed

strategy is optimal, and under the strategy we have vt
i = vt−1

i , which induces f(vt) =

f(vt−1).

Suppose pt
i ≥ cf

i (vt−1
−i ). If, following the proposed strategy, agent i says no,

then vt
i = vt−1

i and f(vt) = f(vt−1). If he deviates and says yes, then vt
i = pt

i

and f(vt) = f(pt
i, v

t−1
−i ) ∈ Xi. By induction hypothesis, the final allocation is f(vt).

Because i pays at least pt
i, his payoff is negative.

Step 2.2. Suppose f(vt−1) ∈ Xi and pi ∈ Vi(ht−1)\{vi(ht−1)}. If cf
i (vt−1

−i ) < vi(ht−1),

we have f(vt) = f(vt−1) ∈ Xi regardless of i ’s action by strong monotonicity. Hence,

for payment minimization, the proposed strategy in which agent i says no for all

pt
i ∈ Vi(ht−1) is optimal.

Suppose cf
i (vt−1

−i ) > vi(ht−1). Because vt−1
i ≥ cf

i (vt−1
−i ), we have vt−1

i = min{vi, v̄i(ht−1)}.

If pt
i ≤ cf

i (vt−1
−i ), agent i says yes under the proposed strategy, and we have vt

i = vt−1
i

(because pt
i ≤ vt−1

i ). Hence, f(vt) = f(vt−1) ∈ Xi and by induction hypothesis,

g(h) = f(vt). Because agent i says no for any price ps
i > vi for any subsequent node,

his payoff must be nonnegative vi − pi(h) ≥ 0. If agent i deviates and says yes, then

vt
i = pt

i − 1 < cf
i (vt−1

−i ) and f(vt) 6∈ Xi. By induction hypothesis, i ’s payoff is zero,

so that the proposed strategy is optimal and f(vt) = f(vt−1) holds.

If pt
i > cf

i (vt−1
−i ), agent i says no under the proposed strategy, and we have

vt
i = min{vi, p

t
i − 1}.5 Because pt

i − 1 ≥ cf
i (vt−1

−i ), we have f(vt) = f(vt−1) ∈ Xi by

strong monotonicity. By induction hypothesis, g(h) = f(vt). Agent i ’s payment is at

most pt
i − 1, so that his resulting payoff is at least vi − pt

i +1. If agent i deviates and

says yes, then vt
i = max{vt−1

i , pt
i} ≥ vt−1

i and f(vt) = f(vt−1) ∈ Xi. By induction

hypothesis, g(h) = f(vt). Agent i ’s payment is at least pt
i, so that his resulting payoff

is at most vi − pt
i. Therefore, the proposed strategy is optimal and f(vt) = f(vt−1)

holds. ¥

5Remember that vt−1
i = min{vi, v̄i(h

t−1)} and pt
i ≤ v̄i(h

t−1).
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A.4 Proof of Theorem 4

Suppose for contradiction there exists agent i and ∃s < t, ps
i > pt

i. By informative

query, as
i = no. Consider the revealed information at round t−1. By weak tightness,

there exists v ∈ V (ht−1) and f(v) ∈ Xi. In addition, v ∈ V (hs−1) since Vj(ht−1) ⊆

Vj(hs−1) for each agent. Suppose that the true state is (v̂i, v−i) with v̂i ∈ Vi(hs−1)

and v̂i > ps
i . By monotonicity, f(v̂i, v−i) ∈ Xi. Under sincere reporting, agent i

reports yes at round s with ps
i , and he earns a payoff v̂i − pi ≤ v̂i − ps

i . If agent i

reports no at ps
i and pretends to have vi, then the final outcome is still in Xi and he

earns a payoff v̂i − pi > v̂i − ps
i , which is a contradiction. ¥
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