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Abstract

We show that under standard assumptions every member of a broad class of

generalized Tullock contests with asymmetric information has a pure strategy

Bayesian Nash equilibrium. Next we study common-value Tullock contests. We

show that in equilibrium the expected payo¤ of a player is greater or equal to

that of any other player with less information, i.e., an information advantage

is rewarded. Moreover, if there are only two players and one of them has an

information advantage, then in the unique equilibrium both players exert the

same expected e¤ort, although the less informed player wins the prize more

frequently. These latter properties do not extend to contests with more than

two players. Interestingly, players may exert more e¤ort in a Tullock contest

than in an all-pay auction.
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1 Introduction

In a Tullock contest �see Tullock (1980) �each player�s probability of winning the

prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by all players.

Baye and Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking,

innovation tournaments, patent races) which are strategically equivalent to a Tullock

contest. Tullock contests also arise by design, e.g., in sport competition, internal

labor markets. A number of studies have provided an axiomatic justi�cation to such

contests, see, e.g., Skaperdas (1996) and Clark and Riis (1998).

There is an extensive literature studying Tullock contests, and their variations,

with complete information. Perez-Castrillo and Verdier (1992), Baye Kovenock and

de Vries (1994), Szidarovszky and Okuguchi (1997), Cornes and Hartley (2005), Ya-

mazaki (2008) and Chowdhury and Sheremeta (2009) study existence and uniqueness

of equilibrium. Skaperdas and Gan (1995), Glazer and Konrad (1999), Konrad (2002),

Cohen and Sela (2005) and Franke et al. (2013) look into the e¤ects of changes in

the payo¤ structure on the behavior of players, and Schweinzer and Segev (2012) and

Fu and Lu (2013) study optimal prize structures. See Konrad (2009) for a general

survey. Tullock contests with asymmetric information, the topic of the present pa-

per, received more limited attention �see Fey (2008) and Wasser (2013) for a recent

analysis of rent-seeking games under asymmetric information.1

In our setting, each player�s value for the prize as well as his cost of e¤ort depend

on the state of nature. The set of states of nature is �nite.2 Players have a common

prior belief, but upon realization of a state of nature, and prior to taking action,

each player observes some event that contains the realized state of nature. The

information of each player at the moment of taking action is described by a partition

of the set of states of nature. A contest is therefore formally described by a set

of players, a probability space describing players�uncertainty and their prior belief,

a collection of partitions of the state space describing the players� information, a

collection of state-dependent functions describing the players�values and costs, and

1Hurley and Shogren (1998), Warneryd (2003), Malueg and Yates (2004), Schoonbeen and Winkel

(2006) are among other key contributions.
2Our main results, Theorems 1 and 2, also hold for an in�nite state space �see Remark 2 and

Footnote 8.



a success function specifying the probability distribution that is used to allocate the

prize for each pro�le of e¤orts. This representation is equivalent to Harsanyi�s model

of Bayesian games that uses players�types �see Jackson (1993) and Vohra (1999).

(In a similar framework, Einy et al (2001, 2002) ([11] and [12]), Forges and Orzach

(2011), and Malueg and Orzach (2009, 2012) study common-value �rst- and second-

price auctions.)

We show that if players�cost functions are strictly increasing, convex and contin-

uous at zero, then a Tullock contest has a pure strategy Bayesian Nash equilibrium.

Moreover, the class of contests for which we establish existence of equilibrium extends

far beyond Tullock contests. Every contest in a broad class that we term general-

ized Tullock contests has a pure strategy Bayesian Nash equilibrium. This class is

characterized by the following three properties of the success function: (i) when the

total e¤ort is positive, each player�s probability of winning the prize is continuous

with respect to the e¤orts of all players; (ii) each player�s probability of winning is

non-decreasing and concave in his own e¤ort (and hence exhibits decreasing returns);

(iii) if only one player exerts positive e¤ort, then his probability of winning is 1 �i.e.,

his e¤ort is perfectly discriminated. The proportional success function de�ning the

Tullock contest obviously satis�es (i)-(iii), but so do more general versions of it, such

as the case where each player�s probability to win is de�ned by the ratio between the

score given to that player�s e¤ort and the total score of all players, provided each

player�s score function �translating his e¤orts into scores �is strictly increasing and

concave. Furthermore, our existence result applies regardless of whether players have

private or common values, or whether their costs of e¤ort is the same or di¤erent,

and makes no assumptions about the players�private information. (The literature

has focused on particular cases of interest. For example, Ryvkin (2010) establishes

existence of a symmetric Bayesian Nash equilibrium in Tullock contests in an in-

dependent private values setting, and Warneryd (2012) assumes that each player is

either completely informed, or has no information, about the continuously distributed

common value.)

We establish existence of a pure strategy equilibrium by using the result of Reny

(1999). The main step of the proof consists of showing that a generalized Tullock

contest is a better-reply-secure game, which is a premise for Reny�s theorem. The
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discontinuity of the expected payo¤ functions when all e¤orts are equal to zero in

some state of nature is what prevents us from using the standard Nash�s equilibrium

existence theorem.3

Next we study Tullock contests in which players have a common value for the

prize and a common state independent linear cost function, to which we refer simply

as common-value Tullock contests. We show that in any equilibrium of a common-

value Tullock contests, the payo¤ of a player is greater or equal to that of any other

player with less information. Thus, a common-value Tullock contests rewards any

information advantage. This result, which is a direct implication of a theorem of

Einy, Moreno and Shitovitz (2002) showing that in any Bayesian Cournot equilibrium

of an oligopolistic industry a �rm�s information advantage is rewarded, is established

by observing the formal equivalence between a common-value Tullock contest and a

certain oligopoly with asymmetric information.

We then proceed to study other properties of the equilibria of common-value

Tullock contests. We show that a two-player contest in which one player has an in-

formation advantage over his opponent (i.e., the partition of one player is �ner than

that of his opponent) has a unique (pure strategy) Bayesian Nash equilibrium, which

we explicitly describe4. In equilibrium both players exert the same expected e¤ort, al-

though the player with less information wins the prize more frequently. Furthermore,

assuming that the distribution of the players�values for the prize is not too disperse,

we show that when one player is better informed than the other, the total e¤ort ex-

erted by the players is smaller (and thus the share of the total surplus they capture

is larger) than when both players have the same information. These properties have

been established by Warneryd (2003) in the framework where players�common value

3The use of Nash�s existence theorem is still a viable alternative. Einy et al (2013) ([10]), the

discussion paper upon which the current work is based, provides another (somewhat longer) proof

that �rst considers �truncated�contests in which players choose e¤orts from a compact interval with

a positive lower bound, on which the expected payo¤ functions are continuous, thereby allowing the

use of the Nash�s theorem to deduce existence of equilibrium. The crux of this proof is to show

that a limit point of the sequence of equilibria of truncated contests with a lower bound on players�

e¤orts approaching zero is an equilibrium in the original contest.
4Explicit description of equilibrium in a common-value Tullock contest also appears in Section

5.2 of Warneryd (2003), but only for the binary case where there are two possible values of winning

�low and high.
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is a continuous random variable, and one player observes the value precisely while

the other player does not observe anything. Warneryd�s results do not automatically

carry over into the setting with a discrete state space considered here, however. We

establish these properties in our setting as corollaries of the explicit characterization

of equilibrium strategies.

It turns out that the equilibrium properties mentioned above need not hold when

there are more than two players. Speci�cally, we construct a three-player contest in

which two of the players have symmetric information, which is superior to that of the

third player, and the expected e¤orts exerted by the players di¤er. We also provide

an example of a contest in which a player that has an information advantage over all

other players (who are symmetrically informed) wins the prize with a greater ex-ante

probability than that of any other player.

Finally, we study the relative e¤ectiveness of Tullock contests and all-pay auctions

in inducing the players to exert e¤ort when one player has an information advantage.

Einy et al (2013) ([13]) characterize the unique equilibrium of a two-player common-

value all-pay auction, which is in mixed strategies, and provide an explicit formula

that allows to compute the players�total e¤ort. Using the results in Einy et al (2013)

([13]) and our results we show that the sign of the di¤erence in the total e¤ort exerted

by players in a Tullock contest and an all-pay auction is undetermined, and may be

either positive or negative depending on the distribution of the players� value for

the prize. (Fang (2002), Epstein, Mealem and Nitzan (2011), and Dubey and Sahi

(2012) compare the outcomes of Tullock contests and all-pay auction under complete

information.5)

The rest of the paper is organized as follows: in Section 2 we describe the gen-

eral setting. In Section 3 we establish that every generalized Tullock contest has a

pure strategy Bayesian Nash equilibrium. In Section 4 we study common-value Tul-

lock contests. Section 5 studies the relative e¤ectiveness of common-values Tullock

contests and all-pay auction in inducing players to exert e¤ort.

5Dubey and Sahi (2012) also consider the incomplete information case, but in a binary framework

(with just two possible e¤orts) and a common certain value for the prize.
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2 Contests with Asymmetric Information

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort in R+. Players�uncertainty about the state of nature is described by

a probability space (
; p); where 
 is a �nite set and p is a probability distribution

over 
 describing the players�common prior belief about the realized state of nature.

W.l.o.g. we assume that p(!) > 0 for every ! 2 
. The private information about
the state of nature of player i 2 N is described by a partition �i of 
: The value for

the prize of each player i is given by a random variable Vi : 
 ! R++, i.e., if ! 2 

is realized then player i�s (�private�) value for the prize is Vi(!). The cost of e¤ort

of each player i 2 N is described by a function ci : 
� R+ ! R+, such that for any

! 2 
 the function ci(!; �) is strictly increasing, continuous, convex, and vanishes at
0.

A contest starts by a move of nature that selects a state ! from 
 according to the

distribution p: Every player i 2 N observes the element �i(!) of �i which contains

! �the set of states of nature between which i cannot distinguish given !. Then

players simultaneously choose their e¤ort levels, which results in a pro�le of e¤orts

(x1; :::; xn) 2 Rn+. The prize is awarded to the players in a probabilistic fashion,
according to a state-dependent success function � : 
� Rn+ ! �n that attributes to

each ! 2 
 and pro�le of e¤ort levels x 2 Rn+ a probability distribution �(!; x) in the
n-simplex �n; according to which the prize recipient is chosen if ! is realized. Hence,

the payo¤ of player i 2 N; ui : 
�Rn+ ! R, is given for every ! 2 
 and x 2 Rn+ by

ui(!; x) = �i (!; x)Vi(!)� ci (!; xi) : (1)

Thus, a contest is described by a collection (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �):
In a contest, a pure strategy of player i 2 N is a �i-measurable function Xi : 
!

R+ (i.e., Xi is constant on every element of �i); that represents i�s choice of e¤ort in

each state of nature following the observation of his private information. We denote

by Si the set of strategies of player i, and by S = �ni=1Si the set of strategy pro�les.
For any strategy Xi 2 Si and �i 2 �i; Xi (�i) stands for the constant value that Xi (�)
takes on �i. Also, given a strategy pro�le X = (X1; :::; Xn) 2 S; we denote by X�i

the pro�le obtained from X by suppressing the strategy of player i 2 N: Throughout
the paper we restrict attention to pure strategies.
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Let X = (X1; :::; Xn) be a strategy pro�le. We denote by Ui(X) the expected

payo¤ of player i, i.e.,

Ui(X) � E[ui(�; (X1 (�) ; :::; Xn (�))]:

For �i 2 �i; we denote by Ui(X j �i) the expected payo¤ of player i conditional on
�i; i.e.,

Ui(X j �i) � E[ui(�; (X1 (�) ; :::; Xn (�)) j �i]:

An N -tuple of strategies X� = (X�
1 ; :::; X

�
N) is a (Bayesian Nash) equilibrium if

Ui(X
�) � Ui(X�

�i; Xi) (2)

for every player i 2 N , and every strategy Xi 2 Si; or equivalently,

Ui(X
� j �i) � Ui(X�

�i; xi j �i) (3)

for every i 2 N; every �i 2 �i; and every e¤ort xi 2 R+ of player i (viewed here as a
strategy in Si with the constant value xi on the set �i).

3 Existence of Equilibrium in Generalized Tullock

Contests

In this section we show that every contest in a class to which refer as generalized

Tullock contests has a pure strategy Bayesian Nash result. This class is characterized

by contest success functions satisfying some simple properties. For x 2 Rn+ we denote
by x�i 2 Rn�1+ the pro�le of e¤orts obtained from x by suppressing the e¤ort of player

i, and by 0 2 Rn+ the zero vector (i.e., the pro�le of zero e¤orts in our context).
A generalized Tullock contest is a contest in which the success function � has the

following properties at each ! 2 
:
(i) � (!; �) is continuous on Rn+�f0g;
(ii) for each i 2 N and x�i 2 Rn�1+ ; �i (!; x�i; xi) is non-decreasing and concave

in the e¤ort xi of player i; and

(iii) for each i 2 N and xi > 0; �i (!;0�i; xi) = 1; i.e., if all players but i make zero

e¤ort at !, any positive e¤ort by i guarantees that he gets the prize with probability
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1 at that state of nature.6

A Tullock contest is a particular case of a generalized Tullock contest, in which

the state-independent success function �T is given for each x 2 Rn+nf0g and i 2 N
by

�Ti (x) =
xi
x
; (4)

where �x �
PN

k=1 xk is the total e¤ort exerted by the players. It is easy to see that �
T

satis�es conditions (i), (ii) and (iii). More generally, conditions (i)�(iii) are satis�ed

by any success function � that is given for any ! 2 
; x 2 Rn+nf0g and i 2 N by

�i (!; x) =
gi (!; xi)Pn
j=1 gj (!; xj)

; (5)

where for every ! 2 
 and j 2 N the state-dependent score function gj(!; �) :
R+ ! R+; translating player j�s e¤orts into scores, is strictly increasing, continuous,

concave, and vanishes at 0: Thus, contests with success functions given by (5) are

also generalized Tullock contests.7

Theorem 1. Every generalized Tullock contest has a (pure strategy) Bayesian Nash

equilibrium.

Proof. Let C = (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �) be a generalized Tullock
contest. Since the cost function of each player is strictly increasing and convex in

the player�s e¤ort, it follows from (1) that there exists a su¢ ciently large Q > 0 so

that ui(�; x) < 0 for every i 2 N and every x 2 Rn+; provided xi � Q: Consider a
bounded variant of the contest, denoted by C; in which the e¤ort set of each player i is

restricted to be the bounded interval [0; Q] : In C; the set of strategies of player i, Si, is

identi�able with the compact set [0; Q]�i via the the bijection Xi  ! (Xi (�i))�i2�i,

and player i�s expected payo¤ function Ui is concave in i�s own strategy (as the state-

dependent payo¤ function ui(�; x) is concave in the variable xi, which follows from
condition (ii) and the convexity of costs).

The expected payo¤ function Ui is not continuous on S = �ni=1Si; but it is con-
tinuous on S+; where S+ � S consists of strategy-pro�les X such that X (�) 6= 0 on

6Notice that (iii) implies (ii) for x�i = 0�i (due to the assumption that �i (!;0) � 1), and hence
it would have su¢ ced to state property (ii) only for x�i 2 Rn�1+ �f0�ig.

7Existence of equilibrium in contests with success functions belonging to this class was established

for the complete information case by Szidarovszky and Okuguchi (1997).

7




: (The function Ui is continuous on S+ since the success function � is continuous

on Rn+�f0g by condition (i), and the state-dependent cost function is continuous on
R+.) Moreover, each Ui is lower semi-continuous in the variable Xi 2 Si; i.e., for a
�xed X�i 2 S�i � �j 6=iSj and every sequence

�
Xk
i

�1
k=1
� Si that converges (point-

wise) to Xi; lim infk!1 Ui
�
X�i; X

k
i

�
� Ui (X�i; Xi), since the ith component of the

success function, �i; is lower semi-continuous in xi 2 R+ as follows from conditions

(i) and (iii).

Given the compactness of Si and the concavity of Ui in the variable Xi 2 Si;
for each i 2 N; existence of equilibrium in C is guaranteed by Theorem 3.1 of Reny

(1999), provided C is in addition better-reply-secure: if (a)
�
Xk
�1
k=1
� S is a sequence

such that the (pointwise) limit X � limk!1X
k exists and X is not a Bayesian Nash

equilibrium in C; and (b) wi � limk!1 Ui(X
k) exists for every i 2 N; then there must

be some player i that can secure a payo¤greater than wi atX; i.e., there exist Yi 2 Si,
zi > wi; and an open neighborhood W � S�i of X�i such that Ui(X 0

�i; Yi) � zi for
every X 0

�i 2 W:
We will show that C is indeed better-reply-secure. Let

�
Xk
�1
k=1

; X, and (wi)i2N
be as above. If X 2 S+; then the functions (Ui)i2N are continuous at X and hence

wi = Ui(X) for every i 2 N: Since X is not an equilibrium by assumption, there exist

i 2 N and Yi 2 Si such that

Ui(X�i; Yi) > wi + " (6)

for some " > 0: It can be assumed w.l.o.g. that Yi is strictly positive, as Ui is

lower semi-continuous in the ith variable. By the continuity of Ui at (X�i; Yi) 2 S+;
Ui(X

0
�i; Yi) � zi � wi + "

2
for every X 0

�i in some open neighborhood W of X�i; and

thus i can secure at X a payo¤ greater than wi:

Assume now that X 2 SnS+; thus, X (!�) = 0 for some !� 2 
: Consider an
accumulation point (ep (!))!2
 of the sequence f�� �!;Xk (!)

��
!2
g

1
k=1; and assume

w.l.o.g. (passing to a subsequence if necessary) that limk!1
�
�
�
!;Xk (!)

��
!2
 =

(ep (!))!2
 : De�ne, for every ! 2 
 and i 2 N;
ewi (!) � epi(!)Vi(!)� ci (!;Xi (!)) :

By the continuity of the cost function, wi = E ( ewi (�)) :
8



Since ep (!�) is a probability vector, there exists i 2 N for whom

epi (!�) < 1: (7)

For any 0 < " < Q; consider a strategy Y "i 2 Si given by Y "i (�) � maxfXi(�); "g: (In
particular, Y "i (�i(!

�)) = ".) Then for any ! 2 
 with X (!) 6= 0;

lim
"!0+

ui(!;X�i (!) ; Y
"
i (!)) = lim

"!0+
[�i (!;X�i (!) ; Y

"
i (!))Vi(!)� ci (!; Y "i (!))] = ewi (!) ;

(8)

since �i is continuous at X (!) 6= 0 and hence lim"!0+ �i (!;X�i (!) ; Y
"
i (!)) =

limk!1 �i
�
!;Xk (!)

�
= epi (!) : And for any ! 2 
 with X (!) = 0;

lim
"!0+

ui(!;X�i (!) ; Y
"
i (!)) = lim

"!0+
[�i (!; 0�i; ")Vi(!)� ci (!; ")] = Vi(!) � ewi (!)

(9)

by property (iii) of �; with a strict inequality for ! = !� as follows from (7): It is

then implied by (8) and (9) that8

lim
"!0+

Ui(X�i; Y
"
i ) > E ( ewi (�)) = wi: (10)

Now �x some " > 0 for which Ui(X�i; Y
"
i ) > wi+ " (it exists by (10)), and denote

Yi � Y "i : By de�nition, (X�i; Yi) satis�es (6), and repeating the arguments following

(6) shows that i can secure a payo¤ greater than wi: Thus C is better-reply-secure,

and hence it possesses some Bayesian Nash equilibriumX�. In particular, X� satis�es

(3) for every x 2 [0; Q] :
Finally, note that every xi > Q leads to a negative expected payo¤ to player i

conditional on �i 2 �i; which can be improved upon by lowering the e¤ort to zero.
Thus, in contemplating a unilateral deviation from X�

i (�i) conditional on �i; player

i is never worse o¤ by limiting himself to e¤orts 0 � xi � Q: But this means that X�

satis�es (3) for every x 2 R+: Since this is the case for every i 2 N and every �i 2
�i; X

� is a Bayesian Nash equilibrium of the original contest C. �

Theorem 1 makes no assumptions about players�private information, and applies

regardless of whether players have private or common values, or whether their costs

of e¤ort are the same or di¤erent. Theorem 1 also implies existence of a Bayesian

8If we were to apply this proof to a contest with a countable state space 
; as in Remark 2 after

this proof, (10) would follow by the bounded convergence theorem.
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Nash equilibrium in a generalized Tullock contest in the Harsanyi types model, where

each player�s uncertain type represents his private information, and players have a

common prior distribution over all possible realizations of types. (In the discrete

case, these two models of incomplete information games are equivalent �see Jackson

(1993) and Vohra (1999).)

Under additional conditions, a generalized Tullock contest has a unique equilib-

rium. Remark 1 states this result, which follows from Ewerhart and Quartieri (2013)�s

Theorem 1.

Remark 1. A generalized Tullock contest in which: (i) the success function �

is given by (5) for state-dependend score functions (gi(!; �))i2N;!2
 that are twice
di¤erentiable; (ii) players�state-dependent cost functions (ci(!; �))i2N;!2
 are twice
di¤erentiable; and (iii) �i(!; 0) < 1 for every i 2 N and ! 2 
; has a unique (pure
strategy) Bayesian Nash equilibrium.

Remark 2. Our assumption that the state space 
 is �nite is made primarily for

simplicity of exposition and notations. Theorem 1 on equilibrium existence holds for

a generalized Tullock contest with an in�nite 
, provided: (i) information partitions

(�i)i2N are at most countable; (ii) the value functions (Vi)i2N are integrable; (iii) the

state-dependent cost function ci (!; �) of each player i is (uniformly in !) bounded
from above and from below by strictly increasing convex functions; and (iv) the state-

dependent success function � is measurable with respect to _i2N�i (�the coarsest
partition that re�nes each �i) in its �rst variable. Indeed, the positive probability

elements of _i2N�i can be viewed as the state space 
0 instead of 
, and the values,
costs, and probabilities of success can be rede�ned by taking the conditional expecta-

tion of these functions on 
 at each of the new states in 
0. The induced generalized

Tullock contest with the (at most countable) state space 
0 is strategically equivalent

to the original contest, and the proof of Theorem 1 applies to the induced contest

(due to countability of the state space) with some minor changes in wording (see,

e.g., footnote 9).
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4 Common-Value Tullock Contests

Henceforth we study Tullock contests (with � = �T de�ned in (4)), in which play-

ers have a common value for the prize and a common state-independent linear cost

function, i.e., for all i 2 N; Vi = V; and ci (�; x) � x on 
. We refer to these

contests as common-value Tullock contests, and they are described by a collection

(N; (
; p); (�i)i2N ; V ).

We say that player i 2 N has an information advantage over player j 2 N if

partition �i is �ner than partition �j: Thus, if i has an information advantage over j;

then �i (!) � �j (!) for every ! 2 
; i.e., player i knows the realized state of nature
with at least the same precision as player j.

We begin by establishing in Theorem 2 a general property of common-value Tul-

lock contests: these contests reward information advantage. This is a direct impli-

cation of the theorem of Einy, Moreno and Shitovitz (2002), that shows that infor-

mation advantage is rewarded in any Bayesian Cournot equilibrium of a symmetric

oligopolistic industry in which the �rms�cost function is linear.

Theorem 2. Let X� = (X�
1 ; :::; X

�
n) be any equilibrium of an n-player common-

value Tullock contest.9 If player i has an information advantage over player j, then

Ui(X
�) � Uj(X�).

Proof. An n-player common-value Tullock contest (N; (
; p); (�i)i2N ; V ) is for-

mally identical to an oligopolist industry (N; (
; p); P; c; (�i)i2N); where the market

demand P and the cost function c are de�ned for (!; x) 2 
� R++ as

P (!; x) =
V (!)

x
;

and

c(!; x) = x;

respectively. With this convention, the state-dependent pro�t of �rm i 2 N in the

industry coincides with the payo¤ of player i 2 N in the contest, i.e., for ! 2 
 and
9Theorem 2 also holds for common-value Tullock contests with in�nite state space 
 (under

conditions set forth in Remark 2), with the same proof.
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X 2 S;

ui(!;X) =
V (!)Pn
s=1Xs(!)

Xi(!)�Xi(!)

= P (!;
nX
s=1

Xs(!))Xi(!)� c(!;Xi(!)):

Theorem 2 then follows from the theorem of Einy, Moreno and Shitovitz (2002).10 �

Theorem 2 shows that when e¤ort is monetary, the bene�ts of the �exibility of

having superior information, which allows the player with an information advantage

to exert a larger e¤ort when the value of the prize is high, outweigh the bene�ts of

committing to exert a relatively high e¤ort that inferior information allows. When

the cost of e¤ort is not linear, however, the bene�ts of commitment may be greater

that those of �exibility �see Einy, Moreno and Shitovitz (2002) for an example in an

oligopolistic setting.

Next we study other properties of equilibrium of common-value Tullock contests.

We begin by considering two-player common value Tullock contests in which one

player has an information advantage over his rival. Existence and uniqueness of equi-

librium in these contests follows by Remark 1 whenever �Ti (0) < 1 for every i 2 N .
We show that equilibrium exists and is unique �even when �Ti (0) = 1 for some i �

by calculating it explicitly (Proposition 1). The formulas that we obtain for equilib-

rium e¤orts of the players allow us to establish some basic properties of equilibrium

(Proposition 2). We then show by means of examples that these properties do not

extend to contests with more than two players.

Let us index the set of states of nature as


 = f!1; :::; !mg:

For k = 1; :::;m, write

p(!k) = pk and V (!k) = vk;

10The demand function P (!; x) is not di¤erentiable at x = 0 �it is not even de�ned at 0 �and

therefore does not formally satisfy the assumptions of Einy, Moreno and Shitovitz (2002). However,

it is easy to see that in any equilibrium X of a common-value Tullock contest the total e¤ort is

positive in all states of nature, i.e., X(�) 6= 0: Thus the non-di¤erentiability at 0 is irrelevant, and

the proof of the theorem in Einy, Moreno and Shitovitz (2002) applies in this case with no change.
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and w.l.o.g. assume that

0 < v1 � v2 � ::: � vm:

Assume further that player 2 has an information advantage over player 1. Then we

may postulate w.l.o.g. that the only information player 1 has about the state is the

common prior belief, i.e., �1 = f
g, whereas player 2 has perfect information about
the state of nature, i.e., �2 = ff!1g; :::; f!mgg.11 In such contests a strategy pro�le is
a pair (X; Y ); where X can be identi�ed with a number x 2 R+ specifying player 1�s
unconditional e¤ort, and Y can be identi�ed with a vector (y1; :::; ym) 2 Rm+ specifying
the e¤ort of player 2 in each of the m states of nature. Abusing notation, we shall

write X = x and Y = (y1; :::; ym) whenever appropriate.

Proposition 1 below describes the unique equilibrium in a two-player common-

value Tullock contest in which player 2 has an information advantage over player 1.

In doing so we extend the exercise of Warneryd (2003, section 5.2), who computed

equilibrium strategies in the binary framework (with two states of nature, representing

a high and a low value for the prize), into the general setting with m states of nature.

The following notation will be needed in characterizing the pure strategy Bayesian

Nash equilibrium. For k 2 f1; :::;mg write

Ak =

 
mX
s=k

ps
p
vs

! 
1 +

mX
s=k

ps

!�1
: (11)

Note that

A1 =
E(
p
V )

2
:

Lemma 1 establishes a key property of the sequence fAkgmk=1 :

Lemma 1. If
p
v�k > A�k for some �k < m; then

p
vk > Ak and A�k > Ak for all

k > �k:

Proof. Assume that
p
v�k > A�k for some �k < m: From (11),0@1 + mX

s=k̂

ps

1AAk̂ = mX
s=k̂

ps
p
vs

11This assumption entails no loss of generality, since, if �1 is a non-trivial partition of 
; a separate

anlalysis can be caried out conditionally on the realization of each �1 2 �1: In the conditional
analysis player 1 has the nill information endowment.
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and 0@1 + mX
s=k̂+1

ps

1AAk̂+1 = mX
s=k̂+1

ps
p
vs;

which implies 0@1 + mX
s=k̂+1

ps

1A�Ak̂ � Ak̂+1� = pk̂ �pvk̂ � Ak̂� :
Since by assumption

p
vk̂ > Ak̂; we have: (i) Ak̂ > Ak̂+1; and (ii)

p
vk̂+1 > Ak̂+1 (as

vk̂+1 � vk̂). The statement of the lemma follows by induction. �

Let k� 2 f1; :::;mg be the smallest index such that pvk > Ak: Since

p
vm >

pm
(1 + pm)

p
vm = Am;

k� is well de�ned.

Proposition 1. A two-player common-value Tullock contest in which player 2 has

an information advantage over player 1 has a unique Bayesian Nash equilibrium

(X�; Y �) = (x�; y�1; :::; y
�
m); which is given by x

� = A2k�, y
�
k = 0 for k < k�, and

y�k = Ak�
�p
vk � Ak�

�
for k � k�. Moreover, if he distribution of values is not too

disperse, i.e.,
p
v1 > E(

p
V )=2, then the equilibrium is interior (i.e., k� = 1).

Proof. Let (X; Y ); where X = x and Y = (y1; :::; ym), be a Bayesian Nash

equilibrium, whose existence is guaranteed by Theorem 1. We show that x > 0: If

x = 0; then �T2 (0) = 1; since otherwise player 2 does not have a best response against

x = 0: But then y1 = y2 = ::: = ym = 0; and therefore player 1 can pro�tably deviate

by exerting an arbitrarily small e¤ort " > 0: Hence x > 0: Moreover, yk > 0 for some

k 2 f1; :::;mg since otherwise x > 0 is not a best response of player 1:
Since x > 0 maximizes player 1�s payo¤ given Y ,

@

@x

 
mX
s=1

ps

�
vs

x

x+ ys
� x
�!

=
mX
s=1

psvs
ys

(x+ ys)
2 � 1 = 0: (12)

And since ys maximizes player 2�s payo¤ in state !s given x;

@

@ys

�
vs

ys
x+ ys

� ys
�
= vs

x

(x+ ys)
2 � 1 � 0; (13)

(with equality if ys > 0) for each s = 1; :::;m.
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Notice next that if yk > 0 for some k < m; then yk0 > 0 for all k0 > k: Since

x > 0; if yk > 0 then yk =
p
x
�p
vk �

p
x
�
by (13), and since vk0 � vk for all k0 > k;

p
x
�p
vk0 �

p
x
�
> 0, i.e.,

vk0
x

x2
� 1 > 0;

for all k0 > k: Then yk0 = 0 would violate inequality (13) for s = k0: Hence yk0 > 0:

Let k� be the smallest index such that yk > 0: Thus, (12) implies

mX
s=1

psvs
ys

(x+ ys)
2 =

mX
s=k�

psvs
ys

(x+ ys)
2 = 1;

and (13) implies yk0 =
p
x
�p
vk0 �

p
x
�
> 0 for all k0 � k�: Hence x = A2k� ; yk =

Ak�
�p
vk � Ak�

�
for all k � k�; and yk = 0 for all k < k�:

We now show that k� = k�, which establishes that the pro�le (x�; y�1; :::; y
�
m)

identi�ed in Proposition 1 is the unique equilibrium. Assume �rst that k� < k�:

Then
p
vk� � Ak� since k� is the smallest index such that

p
vk > Ak; and hence

yk� =
p
x
�p
vk� �

p
x
�
= Ak�

�p
vk� � Ak�

�
� 0; a contradiction as yk� > 0 by the

de�nition of k�: Assume next that k� > k�: In this case, yk� = 0: Since
p
vk� > Ak� ;

by Lemma 1

A2k� > A
2
k� = x; (14)

and therefore

vk�
x

x2
� 1 = A2k�

A4k�

�
vk� � A2k�

�
> 0:

This stands in contradiction to (13), as yk� = 0 by the de�nition of k�(> k�): We

conclude that indeed k� = k�. �

Proposition 1 in particular implies uniqueness and symmetry of equilibrium in

the complete information case, i.e., when m = 1. In this case k� = 1; and therefore

y�1 = A1(
p
v1�A1) = v1=4 = A21 = x� (this result is well known in the literature). This

observation implies that a two-player common value Tullock contest with incomplete

but symmetric information has a unique equilibrium, which is symmetric and involves

players exerting e¤ort equal to E(V )=4 in expectation.

With asymmetric information, i.e., when m > 1, our su¢ cient condition for an

interior equilibrium, the inequality
p
v1 > E(

p
V )=2; holds when, e.g., vm < 4v1.

However, when the distribution of values is very disperse, we may well get a corner

equilibrium with k� > 1 : player 2 will be inactive in all "low-value" states of nature
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(those in which vk < vk�), but will exert positive e¤ort in all "high-value" states of

nature (those in which vk � vk�).12

Having explicit formulae for equilibrium strategies of the players allows a quali-

tative comparison of players�chances to win and their conditional expected payo¤s

across the states of nature where player 2 is active, i.e., when k � k� and hence

y�k > 0: The equilibrium probability that player 1 wins the prize when the state is !k

is

��1k := �
T
1 (x

�; y�k) =
A2k�

A2k� + Ak�
�p
vk � Ak�

� = Ak�p
vk

when k � k�; whereas the probability that player 2 wins the prize is ��2k = 1 � ��1k:
Thus, the larger is the realized value of the prize, the smaller (larger) is the probability

that player 1 (player 2) wins the prize, i.e., ��1k0 � ��1k and ��2k0 � ��2k for k0 > k � k�;
with a strict inequality if vk0 > vk: Of course, the larger is the realized value of the

prize, the larger is the e¤ort of player 2, i.e.,

y�k0 = Ak� (
p
vk0 � Ak�) � Ak� (

p
vk � Ak�) = y�k:

for k0 > k � k� (with a strict inequality if vk0 > vk). Additionally, for k0 > k � k�;

��1k0vk0 = Ak�
p
vk0 � Ak�

p
vk = �

�
1kvk

(with a strict inequality if vk0 > vk), i.e., the larger is the realized value of the prize,

the larger is the conditional expected payo¤ of player 1; also,

��2k0vk0 � ��2kvk0 � ��2kvk

(with a strict inequality if vk0 > vk), i.e., the larger is the realized value of the prize,

the larger is the conditional expected payo¤ of player 2.

Proposition 2 below establishes other basic properties of the equilibrium of a two-

player common value Tullock contest in which a player has an information advantage:

(1) both players exert the same expected e¤ort, (2) the player with an information

advantage wins the prize less frequently than the less informed player, and (3) players�

total e¤ort is below the e¤ort they exert when they have symmetric information. We

will later present examples showing that parts 1 and 2 of Proposition 2 do not extend

to contests with more than two players. (Recall that, on the contrary, Theorem 2

12See Example 1 that illustrates this result when m = 2:
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applies to contests with more than two players: when a player has an information

advantage over some other player, then in any equilibrium the expected payo¤ of the

former is greater or equal to that of the latter.)

Warneryd (2003) establishes counterparts to Proposition 2, as well as a version

of Theorem 2 for two-player common value Tullock contest in which a player has an

information advantage, when the players�common-value V is distributed according

to a continuous cumulative distribution. As far as we can see, Warneryd (2003)�s

results do not apply to our discrete setting.13

Proposition 2. In the equilibrium of a two-player common-value Tullock contest in

which player 2 has an information advantage over player 1:

1. Both players exert the same expected e¤ort, i.e., E(Y �) = x� = A2k� ; and hence

the expected total e¤ort is TE = X� + E(Y �) = 2A2k� :

2. If v1 < v2 < ::: < vm, then the ex-ante probability that player 2 wins the prize

is less than that of player 1.

3. If v1 < vm and
p
v1 > E(

p
V )=2, then the players�exert less e¤ort and hence

capture a greater share of the surplus than when both players have symmetric

information.

Proof.

Part 1. By Proposition 1,

E(Y �) =
mX
s=1

psy
�
s

=
mX
s=k�

psAk� (
p
vs � Ak�)

= Ak�
mX
s=k�

ps
p
vs � A2k�

mX
s=k�

ps

= A2k�

 
1 +

mX
s=k�

ps

!
� A2k�

mX
s=k�

ps

= A2k� :

13Exception being the already mentioned computation of equilibrium in the binary setting in

Warneryd (2003, Section 5.2), that our Proposition 1 extends.

17



Part 2. Given (yk� ; ::::; ym) 2 Rm�k
�+1

+ de�ne the function

�p2 (yk� ; :::; ym) :=
mX

k=k�

pkyk
yk +

Pm
s=k� psys

:

Denote by ��2 the ex-ante probability that player 2 wins the prize. Since x
� satis�es

x� = E(Y �) by Part 1, obviously

��2 = �p2 (y
�
k� ; :::; y

�
m) :

We will show that a maximum point y of �p2 on K = f(yk� ; ::::; ym) 2 Rm�k
�+1

+ j
yk� � yk�+1::: � ymg must satisfy yk� = ::: = ym: Hence

max
K
�p2 =

Pm
s=k� ps

1 +
Pm

s=k� ps
� 1
2
: (15)

Since y�k� < ::: < y
�
m (the inequalities are strict, which follows from our assumption

that v1 < v2 < ::: < vm and the expressions for (y�k)
m
k=k� given in Proposition 1), (15)

will imply

��2 = �p2 (y
�
k� ; :::; y

�
m) < max

K
�p2 � 1=2;

and this will yield Part 2 of the proposition.

To this end, di¤erentiate �p2 with respect to yk for k 2 fk�; :::;mg to obtain

@�p2
@yk

= pk

 
mX

t=k�;t6=k

ptyt
(yk +

Pm
s=k� psys)

2
�

mX
t=k�;t6=k

ptyt
(yt +

Pm
s=k� psys)

2

!
: (16)

For every (yk� ; :::; ym) 2 K such that yk� < yk�+1 � ::: � ym; @�p2=@yk� (y) > 0;

and therefore necessarily yk� = yk�+1. Suppose now that it has already been shown

that yk� = yk�+1 = ::: = yk; m � 1 � k > 1: We show that yk+1 = yk as well.

Indeed, if yk� = yk�+1 = ::: = yk < yk+1 � ::: � ym, then by (16) we obtain that
@�p2=@yk (y) > 0; a contradiction. Thus yk� = ::: = ym:

Part 3. When player 2 has an information advantage,
p
v1 > E(

p
V )=2 implies

that the equilibrium is interior by Proposition 1, and therefore the expected total

e¤ort is TE = 2A21 =
�
E(
p
V )
�2
=2 by Proposition 2.1. As noted previously, when

players have symmetric information the expected total e¤ort TE is TE = E(V )=2.

Then v1 < vm together with Jensen�s inequality imply

TE � TE = E(V )

2
�

�
E(
p
V )
�2

2
> 0:�
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Example 1 illustrates the results of Proposition 2 for a binary state space (Warn-

eryd (2003) demonstrated his central ideas in continuously distributed common value

contests by a similar binary example). This example will be useful in our discussion

in the next section.

Example 1. Assume m = 2. Write p1 = 1� p; where p 2 (0; 1); and normalize the
common value so that v1 = 1 and v2 = v with v 2 (1;1): Then E(V ) = 1� p(1� v),
E(
p
V ) = 1� p(1�

p
v); A1 = E(

p
V )=2, and A2 = p

p
v=(1+ p): If v < (1 + p)2 =p2;

then
p
v1 = 1 > A1 and k� = 1; otherwise k� = 2: In a Tullock contest in which

player 2 observes the value but player 1 does not, the unique equilibrium is

X� = A21; Y
� = (A1 (1� A1) ; A1

�p
v � A1

�
);

and the total e¤ort is TE = 2A21 = [1 � p(1 �
p
v)]2=2 when v < (1 + p)2 =p2.

Otherwise, the unique equilibrium is

X� = A22; Y
� = (0; A2

�p
v � A2

�
);

and the total e¤ort is TE = 2A22 = 2p
2v=(1+p)2: If v < (1 + p)2 =p2; then the ex-ante

probability that player 1 wins the prize ���1 is

���1 = (1� p)A1 + p
A1p
v
=
1

2

�
p+ (1� p)

p
v
� 1� p+ ppvp

v
� 1

1 + p
>
1

2
:

Otherwise, this probability is

���1 = (1� p) + p
A2p
v
= (1� p) + p2

1 + p
=

1

1 + p
>
1

2
:

Hence, consistent with Proposition 2.2, the informed player wins the prize less fre-

quently than the uninformed player. Further, if v < (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = (1� p) A1 (1� A1)� A

2
1

A21 + A1 (1� A1)
+ pv

A1 (
p
v � A1)� A21

A21 + A1 (
p
v � A1)

= (1� p) p
�
1�
p
v
�2

> 0:
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And if v � (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = � (1� p) + pvA2 (

p
v � A2)� A22

A22 + A2 (
p
v � A2)

=
1� p
p+ 1

(p(v � 1)� 1)

>
1� p
p

> 0:

That is, consistent with Theorem 2, the payo¤ of the informed player is greater or

equal to that of the uninformed player. Under symmetric information the equilibrium

total e¤ort in a Tullock contest is E(V )=2 > maxf2A21; 2A22g; i.e., the total e¤ort when
player 2 has an information advantage is less than when both players have the same

information.

The following examples show that the properties established in propositions 2.1

and 2.2 do not extend to common-value Tullock contests with more than two players.

In Example 2 player 1 has only the prior information whereas players 2 and 3 have

complete information. In equilibrium the expected e¤ort of the uninformed player is

below that of each of the informed players.

Example 2. Consider a 3-player common-value Tullock contest in which m = 2;

p1 = p2 = 1=2, v1 = 1 and v2 = 2: Player 1 has no information, i.e., his information

partition is �1 = f!1; !2g; and players 2 and 3 have complete information, i.e., their
information partitions are �2 = �3 = ff!1g; f!2gg: In the interior equilibrium of

this contest, which is readily calculated by solving the system of equations formed by

the players�reaction functions, the e¤ort of player 1 is X�
1 = 0:30899 while the e¤orts

of players 2 and 3 are X�
2 = X

�
3 = (0:20342; 0:46933). Note that

X�
1 = 0:30899 <

1

2
(0:20342 + 0:46933) = E(X�

2 ) = E(X
�
3 );

i.e., the e¤ort of player 1 is less than the expected e¤ort of players 2 and 3.

In Example 3 there is an informed player and a number of uninformed players. In

equilibrium, the ex-ante probability that the informed player wins the prize is above

that of the uninformed players. Thus, the natural extension of Proposition 2.2 to

contests with more than two players does not hold.
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Example 3. Consider an eight player common-value Tullock contest in whichm = 2;

p1 = p2 = 1=2, v1 = 1 and v2 = 2: Players 1 to 7 have no information, i.e., their

information partition is �i = f!1; !2g for i 2 f1; :::; 7g; and player 8 is completely
informed, i.e., his information partitions is �8 = ff!1g; f!2gg: This contest has a
(corner) equilibrium given by

X�
1 = ::: = X

�
7 = 0:15551; X

�
8 = (0; 0:38694) :

In equilibrium, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

���i =
1

2
(
1

7
+

0:155 51

7(0:155 51) + 0:386 94
) = 0:12413;

whereas the ex-ante probability that player 8 win the prize is

���8 = 1� 7(0:12413) = 0:13109:

Thus, the informed player wins the prize more frequently than an uninformed player.

5 Common-Value Tullock Contests and All-Pay Auc-

tions

Contests that arise in many economic and political applications are e¤ectively all-pay

auctions either by design (e.g., sports or political competition) or by the nature of

the problem (e.g., patent races). Here we study whether the players�expected total

e¤ort in all-pay auctions and Tullock contests can be ranked.

A common-value all-pay auction is a common-value contest in which the suc-

cess function is given for x 2 Rn+ by �APA(x) = 1=m(x) if xi = maxfxjgj2N ; and
�APA(x) = 0 otherwise, where m(x) = jk 2 N : xk = maxfxjgj2N j (thus, conditions
(i) and (ii) on the success function in generalized Tullock contests are not satis�ed).

Einy, Haimanko, Orzach and Sela (2013) show that in the unique equilibrium of a

two-player common-value all-pay auction in which v1 < ::: < vm and player 2 observes

the value while player 1 does not, the players�total expected e¤ort is

TEAPA = 2
mX
s=1

ps

 
s�1X
k=1

pkvk +
1

2
psvs

!
= 2

mX
s=1

ps

s�1X
k=1

pkvk +
mX
s=1

p2svs:
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Hence the di¤erence between total e¤orts in an all-pay auction and a Tullock contest

is

� := TEAPA � TE = 2
mX
s=1

ps

s�1X
k=1

pkvk +
mX
s=1

p2svs � 2A2k� :

For simplicity, consider the case studied in Example 1, in which m = 2. If the

equilibrium of the Tullock contest is interior, i.e., v < (1 + p)2 =p2, then

� = 2 (1� p) p+ (1� p)2 + p2v � 2A21
= 2(1� p)p+ 1

2

�
(1� p)� p

p
v
�2

> 0:

Hence an all-pay auction generates more e¤ort that a Tullock contest. However, if

the Tullock contest has a corner equilibrium, then

� = 2 (1� p) p+ (1� p)2 + p2v � 2A22

= 1� p2 �
�

2

(1 + p)2
� 1
�
p2v:

The sign of � may be either positive or negative depending on the distribution of the

players�common value. Assume that p = 1=4. Then

� =
15

16
� 7

400
v R 0, v S 375=7:

Hence the total e¤ort generated by all-pay auctions and Tullock contests cannot be

ranked in general.
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