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Abstract

We study whether the possibility of the chicken type in bargaining causes incompatible

demands and also investigate who benefits from such a possibility. The game starts with

two players making demands. If the demands are not compatible, the chicken type of a

player yields to the demand of the opponent immediately unless it gives her less than her

reservation utility. Neither when the initial demands are compatible nor when there is no

chicken type, the game moves to costly bargaining, in which the shares at the settlement is

(approximately) determined by the lower demand. Our analysis shows that the ordering at

the demand stage matters substantially. When the players make their demands sequentially

and only the second mover may be the chicken type, the modest possibility of the chicken

type does not affect the players’ strategies at the demand stage and they make just com-

patible demands. Either when they make their demands sequentially and the first mover

may be the chicken type or when they make their demands simultaneously, their demands

become incompatible. In those cases, the player whose opponent may be the chicken type

benefits from such possibility and if the player with the possibility of the chicken type turns

out not to be, even he may obtain more than what he receives in the case without the

possibility of the chicken type.
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1. Introduction

In the real bargaining, some people behave in a way which cannot be rationalized on the

basis of the materialistic objective. These players are often referred to as behavior types

and the previous analyses have shown that the possibility of them has a strong effect on

the bargaining outcome. For example, Myerson (1991), Abreu and Gul (2000) and Kambe

(1999) have shown that, when a player is considered to be a stubborn type with a higher

probability, she tends to obtains a higher payoff. In this paper, we study another behavior

type, who is prone to yield to the demand of the other at the early stage of the negotiation.

We call it the chicken type. This type is often observed in the reality and is thought as the

cause for high demands that some players make initially. This paper studies the effect of

the chicken type on bargaining and, in particular, investigates whether the possibility of the

chicken type causes incompatible demands and also who benefits from such a possibility.

The mere presence of the chicken type may not cause inefficiency. For example, if we

introduce the possibility of the chicken type into the alternating offer model by Rubinstein

(1982), the players may make high demands in the first two rounds in order to exploit the

chicken type but, afterward, the continuation equilibrium becomes exactly what is predicted

in the original model without such possibility. Namely, if the initial demands do not have

any lasting effect, the possibility of the chicken type does not cause meaningful inefficiency.

On the other hand, when the initial demand is irrevocable, introducing the possibility of

the chicken type may not affect the outcome unless its probability is considerably large.

Consider the demand game by Nash (1953) and suppose that one player, say player 2, is

the chicken type with the probability γ. (We assume that the other player, player 1, is known

not to be the chicken type.) Then, there are equilibria in which player 2 obtains a positive

share and, in any pure equilibrium of such kind, the players make compatible demands. In

any situation in which the incompatibility of initial demands causes the complete loss of

the joint surplus, the players will have a strong incentive to avoid it in equilibrium. Thus,

in order to study the inefficiency that is caused by the possibility of the chicken type, this

paper considers the situation in which initial demands have some effect on their payoffs

even in the later stage of the game and also its incompatibility does not cause the total loss

of payoffs.

Specifically, we consider the following model. The two players negotiate over the parti-

tion of one dollar. We assume that there are three types for each player: the rational type,
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the chicken type and the stubborn type. The rational type tries to maximize the discounted

value from the settlement while the other types behave according to their specific concerns.

The chicken type yields to the demand of the other as soon as she discovers the initial

demands are not compatible. (In the analysis, we assume that she has some reservation

utility and leaves the negotiation if the offer of the other falls short of it.) The stubborn

type never accepts the demand of the other when the negotiation comes to the bargaining

which is conducted as the war-of-attrition. We assume that a player learns her own type

just after she makes her demand and that, during the negotiation, she is never able to tell

the type of the other. The negotiation starts with the players making demands. We consider

two scenarios. In the sequential demand game, we suppose that player 1 makes her demand

first and then player 2 makes his demand. In the simultaneous demand game, we suppose

that two players announce their demands simultaneously. If the demands are compatible,

they split one dollar accordingly. If not, the chicken type immediately yields to the demand

of the other unless it gives her less than her reservation utility. If no player yields, then

the players pay some cost and initiate a formal bargaining. We study two situations with

respect to how the players negotiate there. In both Section 3 and Section 5, we suppose

that the more modest demand is used to determine the players’ shares at the settlement.

We call this way of partition the equitable rule. In Section 4, we suppose that the players

engage themselves in the so-called war-of-attrition, in which a player chooses the time to

accept the demand of the other.

We have two key findings from the analysis. First, whether the player with the possi-

bility of the chicken type makes the first demand or not is critical in causing incompatible

demands. In the sequential demand game, when player 1 does not have the possibility of

the chicken type but player 2 does, the players do not make incompatible demands as long

as the probability of the chicken type is not so large. This is because player 1 fears that a

high demand from her is going to be exploited by player 2 when player 2 turns out to be the

rational type. Because the probability of the chicken type is not so large, it deters player

1 from making a high demand. On the other hand, when player 1 has the possibility of

the chicken type, either if she makes her demand first or if the players make their demands

simultaneously, player 2 wants to exploit its possibility. In the sequential demand game,

player 2 makes the highest demand that the chicken type accepts. Knowing that he makes a

high demand, player 1 also demands a moderately high demand, which player 2 will accept
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if player 1 turns out not to be the chicken type. In the simultaneous demand game, in

addition to these considerations, the players have an incentive to underbid the other. Thus,

they randomize their demands between the highest demand that the chicken type accepts

and some lower demands. In both cases, the demands become incompatible. An interesting

point in those cases is that even the player whose opponent is known not to be the chicken

type also makes a high demand. Because of it, in the sequential demand game, both players

may gain by the possibility that one player may be the chicken type.

We describe the basic model in the second section. The following two sections both

assume that the demands are made sequentially but have different formulations for the

ensuing bargaining stage. In Section 3, we study the situation where the equitable rule is

used to determine the bargaining outcome once the bargaining stage is reached. Section 4

supposes that the players play the non-cooperative game at the bargaining stage in which

a player chooses the time to accept the demand of the other. In Section 5, we study the

situation where the demands are made simultaneously and the equitable rule is used to

determine the bargaining outcome once the bargaining stage is reached. All the proofs are

relegated to the appendix.

2. Basic Model

Two players, player i and player j (i, j ∈ {1, 2} and i 6= j), bargain over the partition

of one dollar. (To clarify the identities of players, a generic player, player 1, and player i

take the female identity while her opponent, player 2, and player j take the male identity.)

We assume that each player is one of three types: a rational type, a chicken type, and a

stubborn type. We explain the detail about the types shortly.

The negotiation is comprised of three stages. The demand stage occurs at the beginning.

In the following analysis, we study two different timings in terms of making demands. In the

sequential demand game, the two players sequentially announce their demands with player 1

as the first proposer. Both Section 3 and Section 4 suppose the sequential demand game. In

Section 5, we study the simultaneous demand game, where the two players simultaneously

announce their demands. Player i makes the demand xi, which indicates the offer of 1− xi
to player j. We say that the demands are compatible when x1 + x2 ≤ 1 and that they are
incompatible when x1 + x2 > 1. When x1 + x2 = 1, we say that the demands are just

compatible. We say that player 2 makes the just compatible demand when player 2 makes
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the demand of 1 − x1 given player 1’s demand x1. If the demands are compatible, the
game ends and the players split the difference in addition to their own demand, i.e., player i

receives xi+(1−x1−x2)/2 = (1+xi−xj)/2. When their demands are not compatible, the
yielding stage begins. At this stage, the players become aware of their own types. However,

a player never observes the type of the other player. We assume that player i becomes the

chicken type with the probability γi, the stubborn type with the probability ξi(1− γi) and
the rational type with the probability (1 − ξi)(1 − γi). (Note that, given that player i is

not the chicken type, the conditional probability that she is the stubborn type is equal to

ξi.) This probability is independent across the two players. We generally suppose that γi

is positive but small, and that, whenever ξi is positive, it is close to zero. This is based on

our casual empiricism that the players are quite likely to be rational. The chicken type has

the reservation utility 1− x̂(≥ 0) and, at the yielding stage, she yields to the demand of the
opponent and accepts his offer if and only if it gives her no less than her reservation utility.

As specified later in each section, we generally suppose that x̂ is high. (When it is either

equal to one or close to it, any of the conditions imposed later will be satisfied.) When the

demand of player i is higher than x̂, we suppose that the chicken type of player j leaves

the negotiation without settlement1. In contrast, the other types do nothing in the yielding

stage. When only one player, say player i, is the chicken type, she yields and obtains 1−xj ,
and player j obtains xj . When both players are the chicken type, they obtain what the

other offers and then split the remaining: player i obtains 1 − xj + (xi + xj − 1)/2. If no
settlement is made at the yielding stage, the game moves to the bargaining stage. After

the yielding stage but before the bargaining stage, we assume that each player incurs the

fixed cost d: 0 < d < 1. We call this the bargaining cost. It corresponds to the time and the

1 An alternative assumption is that, faced with a demand higher than x̂, the chicken
type does not yield to that demand and goes into the bargaining stage. The analyses in
Section 3 and Section 5 are unaffected because no player has an incentive to make a demand
higher than x̂ and the settlement at the bargaining stage is dictated by the equitable rule.
In Section 4, whether the chicken type can concede or not becomes an issue. If so (or not),
she behaves as if she were the rational type (or the stubborn type respectively) in the war
of attrition. With this modification, the qualitative nature of the results are unchanged.
In the current model, the players’ incentive to make a high demand originates from the
possibility that the chicken type may accept it. Hence, under either assumption, no player
demands more than x̂. In order to simplify the analysis, we make this particular assumption
Another interpretation is that the chicken type is extremely impatient and thus seeks an
immediate settlement either by yielding to the opponent’s demand or by taking the outside
option.
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efforts needed to initiate a formal negotiation. Because of this, the players as a group are

better off by concluding the negotiation before the bargaining stage is reached. The rest

of the specification of the bargaining stage including what either the rational type or the

stubborn type can do is given separately in the next three sections.

The rational type of each player wants to maximize her expected payoff. On the other

hand, the other two types are behavior types and do not maximize their expected payoffs.

For simplicity, we assume that these types have constant payoffs irrespective either of the

obtained amounts or of its timing. Thus, we assume that, at the demand stage, each player

tries to maximize the expected payoff of her own rational type. Because of this, when we

refer to (expected) payoffs in the following, we always refer to the (expected) payoffs of

the rational type. Our equilibrium concept is the perfect Bayesian equilibrium. Namely, a

player updates her belief by Bayes’ rule whenever possible and takes the best response to

it. (When the equitable rule is applied at the bargaining stage, the belief does not affect

the players’ strategies and thus the equilibrium concept there is equivalent to the subgame

perfection. This is because the players do not know their own types at the demand stage.)

3. The sequential demand game under the equitable rule

In this section, once the bargaining stage is reached, we suppose that the settlement is

imposed by the following simple rule: when xj > xi, player i obtains xi and player j

obtains 1− xi, and when xi = xj , both players obtain 1− xi(= 1− xj). Namely, the more
modest demand is used to determine the partition at the settlement. (If the demands are

same, the players receive what the other offers.) In the sense that the settlement gives a

more equal division out of two demands, we call this rule the equitable rule. One reason that

we use this particular rule is that it approximates the outcome for the symmetric case of

the non-cooperative bargaining game that we examine in the next section. By simplifying

the bargaining stage, we aim to illustrate the role of the chicken type in bargaining in the

sharpest way. Alternatively, this rule can be viewed as the one that a mediator may use in

the final offer arbitration because of its equitability. The analysis of this section applies to

both situations.

Given this formulation, the stubborn type plays no role and thus in this section, we

simply ignore its possibility and assume ξi = 0 for i ∈ {1, 2}. In order to focus on the
effect of the chicken type, we suppose that the bargaining cost is small compared to the
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highest demand that the chicken type accepts and assume that x̂ > (1 + d)/2. Note that

this inequality is satisfied when the reservation utility of the chicken type is zero (x̂ = 1)

because d < 1. Throughout the analysis of this section, we assume these two, which we call

Assumption A hereafter.

Assumption A

(i) ξi = 0 for i ∈ {1, 2}, and
(ii) x̂ > (1 + d)/2.

Because the equitable rule specified above is not continuous in the demands, a player

may want to make her demand lower than her opponent’s but as close to it as possible. In

other words, the best response is not necessarily well-defined. In reality, there is a minimum

unit of money and thus the highest offer among those lower than a certain value is easily

specified. Let xi be player i’s demand and let xi − ² be the highest feasible demand in the
monetary unit among those lower than xi. Then, we make the monetary unit smaller and

denote the limit of this demand by [xi]−. By abusing the notation, we sometimes regard it

as the best response of player j when he wants to set his demand to be lower than xi and

as close to it as possible. By the definition of the limit, given the demands (xi, [xi]−), the

payoff of player i converges to 1 − xi from the above and that of player j converges to xi

from the below. Throughout this section, when we refer to [xi]−, we use this convention in

the evaluation of payoffs.

Before studying the effect of the chicken type, let us characterize the equilibrium when

there is only the rational type. Because the bargaining stage costs d for each player, player 2

would accept the offer of player 1 if the alternative does not improve her payoff by more than

d. This creates the first mover advantage for player 1. On the other hand, the equitable rule

causes the race to the middle. When player 1 sets her demand too high, player 2 underbids

her (x2 < x1) and, under the equitable rule, is able to obtain what he demands. As the

consequence of these two effects, player 2 prefers underbidding player 1’s demand if and

only if x1 > (1 + d)/2. Because the underbidding by player 2 is detrimental to player 1, it

is optimal for her to demand (1 + d)/2. Then, player 2 responds to it by the compatible

demand (1− d)/2. The plus (or minus) term is the first mover advantage (or disadvantage

respectively). Except for these terms, their demands are located at the middle. They reach

the settlement at the demand stage.
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Proposition 0

Suppose that Assumption A is satisfied and also that γ1 = γ2 = 0. In the unique

equilibrium, player 1 demands (1 + d)/2 and player 2 demands (1 − d)/2. They reach the
settlement at the demand stage.

Next, consider the case that only player 2 has the possibility of the chicken type.

Because the chicken type yields to the demand of the other that gives him no lower than

his reservation utility, we may think that player 1 substantially increases her demand from

one half and takes advantage of it. As shown in the next proposition, this conjecture turns

out to be incorrect when only the second mover may be the chicken type and its probability

is less than one half.

Proposition 1

Suppose that Assumption A is satisfied and moreover that γ1 = 0 < γ2 < 1/2. In the

unique equilibrium, player 1 demands (1+d)/2 and player 2 demands (1−d)/2. They reach
the settlement at the demand stage.

This proposition shows that, when the player with the possibility of the chicken type

moves second and the one without it moves first, their demands are exactly equal to the

ones that they make when there is no possibility of the chicken type. Namely, in this

case, the possibility of the chicken type does not affect the bargaining outcome and, in

particular, does not cause incompatible demands. To understand this result, let us examine

the payoff of player 1 when she tries to exploit the chicken type of player 2. Specifically,

suppose that she makes a demand which is higher than (1 + d)/2 but not higher than

x̂. The chicken type of player 2 yields to this demand. Then, player 1 obtains x1. On

the other hand, because player 1 is known to be the rational type, the best response of

player 2 is to underbid this demand by the demand of [xi]−. Given this response, player 1

obtains a payoff close to 1−x1. Hence, player 1’s expected payoff is approximately given by
γ2x1+(1− γ2)(1− x1− d). Under the assumption that γ2 < 1/2, this is strictly decreasing
in x1 and is lower than (1 + d)/2. Namely, for player 1, the decrease of her payoff against

the rational type of player 2 outweighs the increase of it against the chicken type. Because

of this, player 1 makes the highest demand that does not cause player 2 to underbid it. In

other words, fearing the underbidding by the rational type of player 2, player 1 does not

try to take advantage of the chicken type.
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In contrast to the above case, if the first mover may be the chicken type, the possibility

of the chicken type does cause the other player to take advantage of it when the bargaining

cost is relatively small. In such a situation, the next proposition shows that the players

make incompatible demands. Define x∗1 ≡ (γ1x̂+ 1− γ1)/(2− γ1). We show that player 1

demands this amount when the bargaining cost is sufficiently small.

Proposition 2

Suppose that Assumption A is satisfied and moreover that γ2 = 0 < γ1 < 1. When

d < γ1(2x̂ − 1)/(2 − γ1), player 1 demands x
∗
1 and player 2 demands x̂ in the unique

equilibrium. It holds that 1/2 < x∗1 < x̂ and the demands become incompatible in this case.

When d > γ1(2x̂− 1)/(2− γ1), the players’ demands become compatible in equilibrium.

When the bargaining cost is sufficiently high, the proposition shows that the players

conclude the negotiation at the demand stage in order to avoid it. On the other hand,

when it is low, the players make incompatible demands (x∗1+ x̂ > 1). In such a case, player

1 makes the moderately high demand of x∗1. Because player 1’s demand is not so high,

player 2 finds it as profitable to exploit the possibility of the chicken type as to underbid it.

It necessarily involves the settlement at the bargaining stage via player 1’s demand if she

turns out to be the rational type. Knowing this, player 2 chooses his demand in order to

maximize his payoff against the chicken type. Namely, he makes the highest demand that

the chicken type yields to. The difference from the previous proposition is caused because, in

the current setting, the player who wants to exploit the possibility of the chicken type moves

second and does not have to fear the increased demand at the opponent’s underbidding in

response to her demand.

One interesting aspect of the predicted outcome is that, when the bargaining cost is

not so large, player 1 demand x∗1, which is more than one half but is less than x̂. This

demand is the threshold above which player 2 underbids player 1. Let us suppose that

d < γ1(2x̂−1)/(2−γ1) and explain how it is derived. In order to focus on the demands that
may be taken in equilibrium, let us consider player 1’s demands in (1/2, x̂). Given x1 in this

range, it can be shown that player 2’s best response is either x̂ or [xi]−. If player 2 demands

x̂, he obtains x̂ against the chicken type and obtains the share 1 − x1 against the rational
type at the bargaining stage. Hence, his expected payoff is given by γ1x̂+(1−γ1)(1−x1−d).
On the other hand, if player 2 demands [x1]−, in the limit, he obtains x1 against the chicken
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type and obtains the share x1 against the rational type at the bargaining stage. Hence, his

expected payoff is approximately given by γ1x1 + (1− γ1)(x1 − d). The comparison of the
payoffs shows that player 2 is better off by demanding x̂ when x1 ≤ x∗1, and by demanding
[x1]− when x1 > x∗1. Player 1’s share at the demand stage becomes lower than one half

when player 2 underbids her demand. Hence, player 1’s optimal strategy is to make the

highest demand that does not induce player 2 to underbid her, which is x∗1.

For the incompatible demands to be made, the bargaining cost has to be sufficiently

small. To understand how we obtain the condition for the bargaining cost, suppose that

the bargaining cost is not so large that d ≤ γ1(2x̂− 1)/(2− γ1)(1− γ1). Note that the left
hand side is larger than the threshold for the bargaining cost in the proposition. (When the

bargaining cost is larger than this amount, we can show that demanding x̂ never constitutes

the best response for player 2 and the settlement through the just compatible demands

becomes even more attractive to player 1.) Given that the equitable rule is used in the

bargaining stage, player 2’s best response is one of the following three, the compatible

demand (1 − x1), the highest demand to which the chicken type yields to (x̂), and the
underbidding ([x1]−). In the above, we have shown that the threshold between the latter

two with respect to player 1’s demand is given by x∗1. Now consider the threshold between

the first two. When player 2 makes the compatible demand, he obtains 1− x1. Comparing
this with the payoff from x̂, we can show that player 2 prefers 1 − x1 when x1 < x̃ ≡
(γ1(1 − x̂) + (1 − γ1)d)/γ1, and he prefers x̂ when x1 > x̃. Namely, player 1’s highest

demand that induces player 2 to make the compatible demand is given by x̃. With this

demand2, player 1 obtains the same amount as her payoff. On the other hand, when she

demands x∗1, her expected payoff is given by γ1x
∗
1+(1−γ1)(x∗1−d). Note that the former is

increasing in the bargaining cost while the latter is decreasing in it. Observe that the latter

becomes bigger than the former when the bargaining cost d is close to zero. Combining

these, we can show that the condition for the latter to be bigger (or smaller) than the former

is given by the one described in Proposition 2.

We now study the property of the equilibria described in Proposition 2 when the

bargaining cost is small (d < γ1(2x̂ − 1)/(2 − γ1)) and the players make incompatible

demands.

2 Under the supposed condition for the bargaining cost, we can show that x̃ < x∗1.
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First, let us compute the magnitude of inefficiency. The incompatible demands pre-

dicted in this proposition causes each player to pay the bargaining cost when player 1 turns

out not to be the chicken type. Thus, the expected total cost is given by 2(1 − γ1)d. The

supposition in the proposition shows that the players make incompatible demands when

d < γ1(2x̂ − 1)/(2 − γ1) but they make compatible demands when the inequality holds

in reverse. Hence, the total cost needs to be lower than 2γ1(1 − γ1)(2x̂ − 1)/(2 − γ1) =

(2x̂−1)γ1
³
1− γ1

2−γ1

´
. It implies that the total cost is less than (2x̂−1)γ1. Moreover, when

x̂ is close to one and when γ1 is small, it implies that the upper bound for the expected

total cost is close to γ1. Namely, the players choose incompatible demands even when doing

so reduces the joint surplus by the level close to the probability of the chicken type.

Next, we compute the payoffs of the players in equilibrium. Player 2 obtains x̂ when

the opponent turns out to be the chicken type and otherwise obtains (1 − x∗1 − d). Thus,
her expected payoff at the beginning is given by γ1x̂+(1− γ1)(1−x∗1− d). By substituting
the formula into x∗1, we can show that:

γ1x̂+ (1− γ1)(1− x∗1 − d)−
1− d
2

= γ1x̂+ (1− d)2(1− γ1)− 1
2

− (1− γ1)γ1x̂+ 1− γ1
2− γ1

= γ1x̂+
1− 2γ1
2

− (1− 2γ1)d
2

− (1− γ1)γ1x̂+ 1− γ1
2− γ1 > 0.

It implies that player 2 obtains more than (1 − d)/2. Namely, player 2 benefits from the

possibility of the chicken type. On the other hand, player 1 obtains x∗1−d because player 1’s
demand is lower than that of player 2. Recall that player 1 obtains (1 + d)/2 when there is

no possibility of the chicken type. The simple computation shows that x∗1− d− (1+ d)/2 =¡
γ1(2x̂− 1)− 3(2− γ1)d

¢
/
¡
2(2− γ1)

¢
. Hence, when the bargaining cost is sufficiently small

so that d < γ1(2x̂ − 1)/
¡
3(2 − γ1)

¢
, the rational type of player 1 also benefits from the

possibility of her own chicken type. Observe that x∗1 is constructed as the threshold when

player 2’s payoff from x̂ is equal to that from [x1]−. Hence, his expected payoffs from the

two demands are identical:

γ1x̂+ (1− γ1)(1− x∗1 − d) = γ1x
∗
1 + (1− γ1)(x∗1 − d) = x∗1 − (1− γ1)d.

This shows that player 2’s payoff is higher than that of player 1 by γ1d. Namely, player 2

benefits from being the second mover and able to exploit the possibility of the chicken type.

11



This makes the contrast with the situation in which there is no possibility of the chicken

type and there is the first mover advantage.

Third, as explained above, the demand of x∗1 is the upper bound of the demands that

cause player 2 to demand x̂. The more likely player 1 is to be the chicken type, the less

willing player 2 is to abandon the demand of x̂. This is also the case when the reservation

utility of the chicken type is lower. Hence, when γ1 is higher and/or when x̂ is higher,

player 1 can make a higher demand without causing player 2 to underbid her demand. In

particular, it holds that that x∗1 = 1/2 when γ1 = 0 and that x
∗
1 = x̂ when γ1 = 1.

The next corollary summarizes these observations.

Corollary 1

Suppose that Assumption A is satisfied and moreover that γ2 = 0 < γ1 < 1. In

addition, suppose that d < γ1(2x̂− 1)/(2− γ1).
(1) The upper bound for the expected total cost is given by 2γ1(1− γ1)(2x̂− 1)/(2− γ1).
(2) Player 2 obtains a higher payoff with the possibility of the chicken type than without it.

When d < γ1(2x̂ − 1)/3(2 − γ1), the same is true for the rational type of player 1. Player

2’s payoff is higher than that of player 1 by γ1d.

(3) As long as the supposed condition for the bargaining cost holds, the demand of player

1, x∗1, strictly increases from 1/2 to x̂ when γ1 increases from zero to one. Moreover, it is

also strictly increasing in x̂.

Finally, we study the case that both players may be the chicken type. The next

proposition shows that the equilibrium outcome is exactly same as the one described in

Proposition 2 for a sufficiently small bargaining cost.

Proposition 3

Suppose that Assumption A is satisfied and moreover that 0 < γ1 < 1 and 0 < γ2 < 1/2.

When d < γ1(2x̂− 1)/
¡
(1− γ1γ2)(2− γ1)

¢
, player 1 demands x∗1 and player 2 demands x̂ in

the unique equilibrium. It holds that 1/2 < x∗1 < x̂ and the demands become incompatible

in this case. When d > γ1(2x̂ − 1)/
¡
(1 − γ1γ2)(2 − γ1)

¢
, the players’ demands become

compatible in equilibrium.

When both players can be the chicken type and the bargaining cost is sufficiently small,

their demands become incompatible. It is not caused by the desire of the first mover to
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take advantage of the opponent’s possibility of the chicken type. Because γ2 < 1/2, the

same logic as in Proposition 1 causes player 1 to avoid the increased demand at player

2’s underbidding in response to her demand. Her demand is the highest one that causes

player 2 to demand x̂. Proposition 2 shows that it is given by x∗1. Namely, player 1’s

demand is identical to the one that she would demand when where were no chance that the

opponent is the chicken type. As in the situation studied in Proposition 2, the cause of the

incompatibility is the desire of the second mover to take advantage of the possibility that

the first mover is the chicken type.

The only difference between Proposition 2 and Proposition 3 is the condition for the

bargaining cost. When γ2 > 0, player 1 may obtain x
∗
1 without the bargaining cost because

of the chicken type. Hence, player 1’s expected payoff from the demand of x∗1 is given by

x∗1 − (1 − γ2)d. This is higher than the expected payoff from x∗1 when γ2 = 0. Hence,

player 1 has a higher incentive to make this demand when γ2 > 0. On the other hand,

the highest payoff from the demand that causes player 2 to make the compatible demand

is unaffected by γ2 because it is determined by the best response of the rational type for

player 2. Consequently, for the incompatible demands to occur, the condition for the size

of the bargaining cost is less stringent when γ2 > 0.

Summarizing the propositions in this section, we can say that, given a low bargaining

cost and a modest chance of the chicken type, the necessary and sufficient condition for

incompatible demands in the sequential demand game under the equitable rule is that the

first mover has the possibility of the chicken type.

4. The sequential demand game and the war of attrition

This section studies the situation in which the players play the non-cooperative bargaining

game at the bargaining stage. For the model at the bargaining stage, we use a formulation

similar to the one in Abreu and Gul (2000). In particular, it is supposed that player i

(i = 1, 2) becomes stubborn with the positive probability ξi(1 − γi)(> 0) and a war of

attrition occurs at the bargaining stage. Note that only the rational type and the stubborn

type participate in the war of attrition as the chicken type either yields to the demand of

the opponent or leaves the negotiation at the yielding stage. As in the previous section,

at the demand stage, the players take both the possibility of the chicken type and their

payoffs at the bargaining stage into consideration. Thus, two different kinds of behavior

13



types affect the strategic decisions in different ways and this section studies how they affect

the bargaining outcome.

In this section only, we assume that the bargaining stage proceeds in continuous time3:

t ∈ T = [0,∞). During the bargaining stage, the rational type of a player chooses when
she accepts the opponent’s offer4. On the other hand, the stubborn type of a player is

assumed to commit herself to her own demand and thus to wait for the acceptance by

the opponent. We maintain our assumption that the types are private information also

during the bargaining stage; both players update their beliefs about their opponent’s type

by using Bayes’ rule. Note that player j believes that player i is the stubborn type with

the conditional probability ξi at the beginning of the bargaining stage as by this stage the

players know that their opponent is either the rational type or the stubborn type. When

player i accepts player j’s demand xj , the negotiation is over and the players divide the

dollar according to the accepted demand: player i receives 1 − xj and player j receives
xj . When both players simultaneously accept the opponent’s demand, they obtain what

the other offers and then split the remaining: player i obtains (xi − xj + 1)/2. When the
rational type of player i receives the share xi at time t of the bargaining stage, her payoff is

given by xie
−rit − d, where ri(> 0) is the discount rate of player i. (When the settlement

occurs prior to the bargaining stage, her payoff is equal to her share.) If no player accepts

her opponent’s offer, the players simply lose the bargaining cost and thus their payoffs are

given by −d. Each player tries to maximize the expected value of the discounted payoff
that her rational type obtains. (Recall that the shares received by a player matters only

when she is the rational type by assumption.)

3 We regard the continuous time model as an approximation of the discrete time model.
As shown in Abreu and Gul (2000), the equilibrium play in the latter converges to that of
the former as the interval between periods goes to zero. This convergence holds no matter
how the players’ moves are specified as long as both players get sufficiently frequent chances
of concession.

4 Assuming that the stubborn type not only refuses to accept the opponent’s offer but
also avoids changing her demands, Abreu and Gul (2000) consider a model in which the
rational type of a player can modify their demands during the bargaining. They show that,
whenever a rational type of a player changes her demands and thus reveals her type, she
immediately accepts her opponent’s offer when she is not sure of the opponent’s type. As
we suppose that the stubborn type commits herself to her initial demand, without loss of
generality, we limit the strategy of the rationally types at the bargaining stage to the choice
between waiting and accepting, omitting the possibility that the rational types change their
demands.
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4.1. The bargaining stage: the war of attrition

This subsection studies the war of attrition that occurs at the bargaining stage. To simplify

the exposition, when we refer to the probabilities in this subsection, we mean the ones

conditional on the event that no player is the chicken type. Namely, in this subsection,

the probability that player i is the stubborn type is given by ξi(> 0) at the start of the

bargaining stage and then (weakly) increases as the time goes by. As shown in Abreu and

Gul (2000), when each player is stubborn with a positive probability, the players initiate the

war of attrition at the bargaining stage and the unique continuation equilibrium proceeds

as follows. At time 0, one and only one player may accept the opponent’s offer with a

positive probability. We call it mass acceptance. As in the standard war of attrition, the

mass acceptance may occur only at its beginning. If the mass acceptance does not happen,

the rational type of player i starts accepting the opponent’s offer with the instantaneous

rate ρi =
rj(1−xi)
x1+x2−1 , which makes the rational type of the opponent feel indifferent between

waiting and accepting her offer. Because the stubborn type never accepts, the cumulative

probability of acceptance by the rational type reaches one within a finite time. Because the

war of attrition is sustained by the possibility of the opponent’s acceptance, that time is

common between the two players. Let T be such a time. Then, because only the stubborn

type remains at time T , the probability that player i does not accept by time t is given

by ξie
ρi(T−t). Now, for specificity, we suppose that, if a player does the mass acceptance,

player j is the one who does so. Because player i does not do the mass acceptance, this

probability is one at time 0. On the other hand, for player j, the corresponding probability

may be less than one and the difference is the probability of the mass acceptance. Denote

it by Pmaj : Pmaj = 1− ξjeρjT . This argument also shows that the condition for player i not
to do the mass acceptance is given by ξie

ρiT = 1 ≥ ξje
ρjT . Solving the equality part on

the left with respect to T , substituting it into the inequality part and then rearranging the

terms, we obtain ρi/ρj ≥ log ξi/ log ξj from this condition. Substituting the formulas into

both ρi and ρj , we can rewrite it as follows:

1− xi
1− xj ≥

ri log ξi

rj log ξj
. (1)

By deriving T from the above condition and then substituting it into the probability of the

mass acceptance, we obtain:

Pmaj = 1− exp
½
log ξj

µ
1− (1− xj)ri log ξi

(1− xi)rj log ξj

¶¾
. (2)
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Note that, when the in equality (1) holds strictly (or with the equality), this probability

becomes positive (or zero respectively).

Given the demands x = (x1, x2), we denote the continuation payoff of player i that is

evaluated at the start of the bargaining stage by πwi (x). For its computation, we exclude the

bargaining cost. As in the standard war of attrition, in its midst (t > 0), the continuation

payoff of a player is equal to what the other player offers. The next lemma, which is

originally proven by Abreu and Gul (2000), summarizes the above argument and describes

the players’ continuation payoffs at the start of the bargaining stage.

Lemma 1 (Abreu and Gul, 2000)

Suppose that ξ1, ξ2 > 0 and that x1+x2 > 1 and the inequality (1) holds. Then, in the

unique continuation equilibrium, πwj (x) = 1− xi and πwi (x) = Pmaj xi + (1− Pmaj )(1− xj),
where Pmaj is given by the formula (2).

Define the just compatible demands xc = (xc1, x
c
2) such that they satisfy the equality

version of the inequality (1). It holds that:

1− xci =
ri log ξi

ri log ξi + rj log ξj
.

Using this newly defined term, we can rewrite the inequality (1). Namely, the condition for

player i not to do the mass acceptance can be written as

1− xi
1− xj ≥

1− xci
1− xcj

. (10)

This shows that the player with the more generous offer relative to the ones given by xc

causes the other to do the mass acceptance. Because the mass acceptance is the only source

of the extra payoff over what the other offers, there is an incentive for player i to lower a

demand toward xci . This situation is similar to what we have under the equitable rule. Note

that, when player j demands no more than xcj , it is not possible to cause him to do the

mass acceptance. When xj < xcj , any incompatible demands imply that xi > xci because

xci + x
c
j = 1. Then, player i becomes the one who does the mass acceptance. As shown

in a similar model by Kambe (1999), when there is no possibility of the chicken type and

when the probabilities of the stubborn type are small, the players’ demands in equilibrium

become close to xc. (For the current model, we prove this claim as a part of Proposition
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4.) In this sense, we can interpret these demands (xc1, x
c
2) as the just compatible demands

that reflect their inborn bargaining strength. It is sometimes convenient when we express

the probability of the mass acceptance by using xc. The formula (2) can be expressed as

follows:

Pmaj = 1− exp
(
log ξj

Ã
1− 1− x

c
i

1− xcj
1− xj
1− xi

!)
. (20)

Given xj , let us define the demand of player i that causes the inequality (1’) to hold

with the equality and call it Xi(xj). Namely, we have Xi(xj) = 1 − 1−xci
1−xc

j

(1 − xj). This
function gives a positive value and is strictly increasing in xj when xj ≥ xcj . The condition
for player j to do the mass acceptance is that player i makes a demand which is higher than

1− xj but is lower than Xi(xj), given that player j demands more than x
c
j .

To consider small ξi’s, we parameterize ξi’s by ξi = ξαi , where ξ(> 0) is a small number

and αi(> 0) are kept constant (i ∈ {1, 2}). Note that, when we change only ξ, xc remains
same. Suppose that the probabilities of the stubborn type are small, i.e., ξ is small and

that the inequality (1’) holds strictly. Then, as observed in Kambe (1999), the formula (2’)

indicates that the probability of the mass acceptance for any given incompatible demands

becomes close to one. Thus, if player j’s demand is higher than xcj , player i expects to

obtain what she demands with a probability close to one when she demands some amount

between 1 − xj and Xi(xj). From Lemma 1 and the definition of Xi(xj), we know that

player i’s payoff is 1− xj when xi > Xi(xj). Hence, when xj > x
c
j and the probabilities of

the stubborn type are small, the highest payoff for player i is close to Xi(xj) and is attained

by demanding slightly less than Xi(xj). The next lemma proves this claim formally.

Lemma 2

Suppose that xj > x
c
j +4 for some 4 > 0. For any δ > 0, there exists ξ such that, for

any ξ < ξ and any xj ,

(i) Xi(xj)− δ < argmaxxi πwi (x) < Xi(xj), and

(ii) Xi(xj)− δ < maxxi πwi (x) < Xi(xj).

In light of the equation (1’), the lemma implies that, when ξ ≈ 0, the payoff of a player
in the bargaining stage is determined by the offer that is more generous relative to xc in

the sense of the equation (1’). Note that, when the players are symmetric (ξ1 = ξ2 and
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r1 = r2), we have Xi(xj) = xj . Hence, in the symmetric-player case, the limit result is

equivalent to the equitable rule. In this sense, the following analysis can be interpreted

as the extension of the equitable rule to a more general version with the non-cooperative

game-theoretic foundation.

4.2. The optimal demands

Now that we know the continuation payoffs at the bargaining stage, we study the optimal

demands in this subsection.

In the similar way as assumed in Section 3, we assume that x̂ is sufficiently high. In

particular, we suppose that the demand that the chicken type yields to is more attractive

to the just compatible demand that reflects one’s inborn bargaining power.

Assumption B

x̂ > max{xc1, xc2}.

We first show that, when γ1 = 0, it does not matter whether player 2 has a positive

probability of the chicken type or not as long as it is small. This is similar to what we find

in Proposition 1. As in Proposition 1, the players make the just compatible demands and

the first mover has some advantage due to the bargaining cost.

Specifically, the next proposition shows that, when player 1 is never the chicken type,

the players’ demands are close to (xc1, x
c
2), the just compatible demands that reflect their

inborn bargaining strength, and the first-mover advantage is a fraction of the bargaining

cost and is equal to xc2d.

Proposition 4

Suppose that Assumption B is satisfied and that γ1 = 0 ≤ γ2 < x
c
1.

(i) There exists ξ such that for any ξ < ξ, player 2 makes the just compatible demand in

equilibrium.

(ii) For any δ > 0, there exists ξ such that for any ξ < ξ, we have x1 ∈ (xc1+xc2d, xc1+xc2d+δ).

As shown by Lemma 2, player 2 has an incentive to make his demand more modest

in the sense of the inequality (1’) when player 1 makes a high demand. This makes player

1’s payoff lower when player 2 turns out not to be the chicken type. As in Proposition 1,

when the probability that player 2 is the chicken type is small, this prevents player 1 from
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exploiting the possibility of the chicken type. Note that the condition for the probability

of the chicken type is different from the one specified in Proposition 1. Because of the

asymmetry, player 2 does not simply underbid player 1 when he wants to cause the mass

acceptance by player 1. When xc1 is higher, player 2 tends to increase his demand by a

larger multiplier given incompatible demands. Then, the loss that player 1 expects against

the rational type is higher, which discourages her from making a higher demand. This is

why we need γ2 < x
c
1 for this proposition.

The lower bound of the first mover advantage in the above proposition is determined

by the equation 1 − x1 = X2(x1) − d. The left hand side is the payoff that player 2

obtains when he responds to player 1’s demand by the just compatible demand. The right

hand side is the supremum of player 2’s payoff when he responds to it by an incompatible

demand and causes player 1 to do the mass acceptance. (The supremum is obtained when

the probabilities of the stubborn type go to zero.) Lemma 2 has shown that it is given

by X2(x1)− d. Note that the left hand side is decreasing in x1 and the right hand side is
increasing in it. Hence, in the limit, only when x1 is no higher than the one specified by this

equation, player 2 will respond to it by the just compatible demand. When the probabilities

of the stubborn type is positive and the probabilities of the mass acceptance is less than

one, player 2’s payoff from any incompatible demand becomes less than X2(x1) − d and
thus the threshold computed above gives the lower bound for the first mover advantage.

Next, we show that, when the first mover may be the chicken type, the players do make

incompatible demands. This is similar to what we find in Proposition 2. The counterpart

of x∗ is given by the following definition: x∗∗1 ≡ xc1−(1−xc1)γ1(1−x̂)
1−γ1+γ1xc1

. In case of the symmetric

players (xc1 = xc2 = 1/2), we naturally have that x∗1 = x∗∗1 . When the probability of the

stubborn type is small, player 1’s demand is close to it and player 2 responds to it by

demanding x̂. As in Proposition 2, player 1 wants to increase his demand as long as player

2 does not respond to it by lowering his demand from x̂ and causing player 1 to do the mass

acceptance. On the other hand, player 2 makes the highest demand that the chicken type

yields to.

Proposition 5

Suppose that Assumption B is satisfied and that that γ2 = 0 < γ1. We assume that

d < γ1(x̂+ x
c
1 − 1)/(1− γ1 + γ1x

c
1).
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(i) There exists ξ such that for any ξ < ξ, we have x2 = x̂ and x1+x2 > 1 in equilibrium.

(ii) For any δ > 0, there exists ξ such that for any ξ < ξ, we have x1 ∈ (x∗∗1 − δ, x∗∗1 + δ).

The supposition that d < γ1(x̂ + x
c
1 − 1)/(1 − γ1 + γ1x

c
1) is the requirement that the

bargaining cost is sufficiently low so that player 2 is willing to exploit the possibility of

the chicken type. This is similar to what we suppose in Section 3 for the demands to be

incompatible.

The next proposition is the counterpart of the first part of Proposition 3. Namely, when

both players have the possibility of the chicken type and the bargaining cost is sufficiently

small, the equilibrium demands are same as the ones made when only the first mover has

that possibility.

Proposition 6

Suppose that Assumption B is satisfied and that 0 < γi for i ∈ {1, 2} and moreover
γ2 < x

c
1. We assume that x

∗∗
1 < x̂ and that d < γ1(x̂ + x

c
1 − 1)/(1 − γ1 + γ1x

c
1), and that

γ2 < (x
∗∗
1 + x̂− 1)/(2x̂− 1).

(i) There exists ξ such that for any ξ < ξ, we have x2 = x̂ and x1+x2 > 1 in equilibrium.

(ii) For any δ > 0, there exists ξ such that for any ξ < ξ, we have x1 ∈ (x∗∗1 − δ, x∗∗1 + δ).

The proposition holds under several conditions. The condition that γ2 < x
c
1 is same as

assumed in Proposition 4. It requires that the possibility that player 2 is the chicken type

is not so high that player 1 fears the underbidding by player more than wants to exploit

the possibility that player 2 is the chicken type. In the setting of Proposition 5, we show

that player 1 demands x∗∗1 such that x∗∗1 < X
−1
2 (x̂). In the symmetric case, it implies

that x∗∗1 < x̂. If this inequality is not satisfied, the chicken type of player 2 walks away

from the negotiation given x∗∗1 . In order to avoid the complexity that it causes, we assume

that x∗∗1 < x̂. The condition that d < γ1(x̂ + x
c
1 − 1)/(1 − γ1 + γ1x

c
1) is similar to the

one in Proposition 5. As in the relationship between Proposition 2 and Proposition 3, the

condition is relaxed due to the possibility that player 2 is the chicken type. Finally, the

condition that γ2 < (x
∗∗
1 + x̂− 1)/(2x̂− 1) is required.

Let us review the relationship between the effect of the chicken type on the bargaining

outcome and that of the stubborn type. When the first mover has no possibility to be the

chicken type, (i.e., the situation studied in Proposition 4), the chicken type does not matter
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but the stubborn type does. On the other hand, when the first mover has the possibility

to be the chicken type, (i.e., the situation studied either in Proposition 5 or in Proposition

6), the chicken type as well as the stubborn type matters. Specifically, the demand of the

second mover is affected only by the parameter specific to the chicken type while that of

the first mover is affected by the properties of both types. The latter result is contrary5 to

what is found in Kambe (1999).

5. The simultaneous demand game under the equitable rule

In this section, we study the simultaneous demand game and suppose that the equitable

rule is used to determine the term of settlement at the bargaining stage.

Before conducting the analysis, we introduce a set of notations and add some further

structure to the basic model described in Section 2 in order to deal with the complexity

caused by the simultaneous move.

Because a player may want to underbid the opponent’s demand which is made to

underbid her demand in the simultaneous demand game, we need to consider the demands

that are smaller than a demand by several monetary units. Let ² be the monetary unit as

before. Let N be the set of natural numbers and let N+ be the set of non-negative integers:

N ≡ {1, 2, . . .} and N+ ≡ {0} ∪N . For n ∈ N+, we consider x− n² as the demand that is
lower than x by n monetary units. We denote [x]n− as the limit when the monetary unit

goes to zero. Note that [x]0− ≡ x and we denote [x]1− by [x]− to maintain the previous
notation. By the construction, when n < m, [x]n− is bigger than [x]m− and, when both

demands [x]n−, their demands are regarded as identical. Given this ordering, we apply the

equitable rule with the interpretation that the payoff determined by [x]n− is the limit as

² goes to zero. We assume6 that, for any x, each player demands [x]n− with a positive

5 Suppose that the probability of the chicken type is small. Then, the supposition in the
proposition requires that the bargaining cost needs to be small. Moreover, the demand of
player 1 is close to what she would demand when there were no possibility of the chicken
type. Considering that the probability of the mass acceptance by player 2 is close to one
for a small probability of the stubborn type, the payoffs of the players are close to those
without the possibility of the chicken type. Namely, despite the discontinuous change in
the demand of player 2, the payoffs change continuously with respect to the probability of
the chicken type.

6 We make this assumption in order to capture the notion of underbidding by a small
margin. When the players underbid their demands recursively around a particular amount,
this assumption is violated. However, I think that the latter situation should be formulated
as the randomization of demands over some interval.
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probability for at most one n ∈ N+; when Prob(xi = [x]n−) > 0 for some n ∈ N+, it holds

that Prob(xi = [x]m−) = 0 for any m > n. Moreover, we assume that the players prefer

a higher demand as long as the ordering against the opponent’s demand is same; when

Prob(xi = [x]n−) > 0 for n ≥ 1, it has to hold that Prob(xj = [x](n−1)−) > 0. Because of
these assumption, on the equilibrium path, at most [x]− is made in addition to x itself with

a positive probability. Even when we consider deviations, we need to include up to [x]2−

and in the subsequent analyses we never use [x]n− for n > 2. (In the equilibrium derived

later, no player makes [x]n− with a positive probability for any n ∈ N .)
Denote the probability that player i demands x ∈ [0, 1]∞ by Pi(x). (We have the

infinite dimension because of the possibility of the complex underbidding introduced above.)

Define the set of the demands that are made with a positive probability by player i to be

Ωi: Ωi ≡ {x ∈ [0, 1]∞ |Pi(x) > 0}. Denote the density of player i’s demand by fi(x) for
x ∈ [0, 1]. It holds that Z 1

0

fi(x)dx+
X
x∈Ωi

Pi(x) = 1.

As a convention, we say that a player makes a demand (in equilibrium) either when it

is made with a positive probability or any interval including this demand has a positive

probability.

We make a slightly stronger assumption than Assumption A in this section.

Assumption A’

(i) ξi = 0 for i ∈ {1, 2}, and
(ii) x̂ > 1/2 + 2d.

As a reference point, we first study the case without the possibility of the chicken type.

In such a case, the players have an incentive to underbid the other as long as their demands

are not compatible. Because of this, in any pure-strategy equilibrium, the players’ demands

come close to one half and they become compatible.

Proposition 7

Suppose that Assumption A’ is satisfied and also that γ1 = γ2 = 0.

In any pure-strategy equilibrium, the players make the just compatible demands and

the game ends immediately. Player i’s demand xi is supported in a pure-strategy equilibrium

if and only if xi ∈ [(1− d)/2, (1 + d)/2].
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The logic of this proposition is similar to that of Proposition 0. Due to the incentive to

underbid a higher demand of the other, the equilibrium demands come down to the middle.

On the other hand, because of the bargaining cost, when the other does not demand more

than one half plus half of the bargaining cost (1+d)/2, the underbidding does not improves

the payoff of the player who does it. In the sequential demand game, this leads to the first

mover advantage. In the simultaneous demand game, it leads to the range of equilibria in

which the payoffs are located around (1/2, 1/2) with the width of d.

Next, let us introduce the possibility of the chicken type. Due to the simultaneity, the

player who wants to exploit the possibility of the chicken type can do so without fearing the

increased demand by the opponent in response to her demand. In this sense, the situation is

similar to the sequential demand game in which the player who can be the chicken type move

first. This generally causes the player whose opponent may be the chicken type to make

a high demand. The divergence from the prediction of the sequential demand game arises

because, knowing such possibility, the other player wants to underbid it by a slightly lower

demand. This in turn creates an incentive for the player to underbid it by a small margin.

This logic shows that the players randomize their demands in the simultaneous demand

game when there is the possibility of the chicken type. It also implies that the players make

incompatible demands in contrast with the above case without the possibility of the chicken

type. The next proposition characterizes the unique equilibrium, which involves the mixed

strategies at the demand stage.

Proposition 8

Suppose that Assumption A’ is satisfied, that γmax ≡ max{γ1, γ2} > 0, and that

d < γ3max(2x̂− 1)/
¡
2(5− 3γmax)

¢
. Then, the unique equilibrium takes the following form.

There exists m(> 1/2 + 2d) such that both players randomize their demands over the

interval (m, x̂). When γi ≤ γmax, player i demands x̂ with the probability
γmax−γi
1−γi . Except

for this, there is no demand which is made with a positive probability. The lower end of

the interval is given by m =
1+γ2max(2x̂−1)

2
. Player k randomizes his demand according to

Fk(x) =
1

1−γk

³
1− γmax

√
2x̂−1√

2x−1

´
.

As shown in the proposition, even the player whose opponent is known not to be the

chicken type demands more than one half and the demands always become incompatible

as both in Proposition 2 and in Proposition 3. The difference from the results obtained
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in those proposition is that, in the simultaneous demand game, the players’ demands have

non-degenerate distributions. This is because the players try to underbid high demands of

the other without knowing the exact demand that the other makes. Each player has an

incentive to underbid the demand of the other and thus the equilibrium cannot involve pure

strategies.

To understand how the randomization occurs, the remainder of this section explains

how we derive the equilibrium strategies of the players.

When the bargaining cost d is sufficiently small, the appendix proves that both players

randomize their demands in the same interval between (m, x̂) where m > 1/2 without any

gap and that making a demand with a positive probability occurs only at x̂ for at most

one player. Let us briefly explain how these properties hold. First, let us explain why the

distribution should have the same support (m, x̂). The upper bound is given by the highest

demand that the chicken type yields to because the driving force behind higher demands

is the desire to exploit the chicken type. Moreover, the support should be same for both

players because the randomization is caused by the desire to underbid the demand of the

other and thus any player does not want to make too low a demand. Next, we argue that

there should be no gap in distribution. To understand this, suppose that player i does

not make demands in (a, b) even though she makes demands both lower than a and higher

than b. Her opponent does not make demands in this range because demanding either b or

[b]− improves his payoff against the player i’s demands higher than b and does not affect

it otherwise. However, given that both players do not make demands in (a, b), the similar

logic as above implies that a player wants to switch her demands from a− ² to b (or [b]−)
for sufficiently small ²(> 0). It implies that a gap in distribution cannot be sustained in

equilibrium. Finally, we explain why there should not be any demand that is lower than x̂

and is made with a positive probability. If player i would demand x < x̂ with a positive

probability, player j would not make demands in [x, x+ ²0) for sufficiently small ² > 0 and

instead would demand [x]− in order to underbid x. This would create a gap in distribution,

which should not occur in equilibrium as argued above.

Now that we know the basic properties of the distribution functions, we derive the

concrete forms of the players’ equilibrium strategies. Let fi(x) be the density function of

player i’s demand. Because making a demand with a positive probability may occur only at

the upper end of the interval, we incorporate it in the cumulative distribution of demands.
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Namely, we define Fi(x) ≡
R x
m
f(y)dy for any x < x̂ and define Fi(x̂) ≡ 1. In this definition,

the probability of demanding x̂ is given by 1 − F ([x̂]−). For any x ∈ (m, x̂), the expected
payoff of player i is given by:

EΠi(xi) ≡ γjxi + (1− γj)
½
(xi − d)

¡
1− Fj(xi)

¢
+

Z xi

m

(1− y − d)fj(y)dy
¾
.

Because there is no gap, it implies that the expected payoff is constant in the interval (m.x̂).

The above expected payoff is differentiable with respect to xi. Hence, we need to have the

derivative with respect to xi being equal to zero for any x ∈ (m, x̂):

dEΠi(x)

dxi
= 1− (1− γj)Fj(x) + (1− γj)(1− 2x)fj(x) = 0.

Rearranging the terms of the second equality, we have:

(1− γj)fj(x)
1− (1− γj)Fj(x) =

1

2x− 1 .

This can be viewed as a differential equation and the next equation provides its solution

with Aj > 0 as the parameter:

Fj(x) =
1

1− γj

µ
1− Aj√

2x− 1

¶
.

The value of the parameter is determines by who demands x̂ with a positive probability.

Because of the possibility of underbidding, at most one player does so. Suppose that player

j does not do so. Then, the above formula implies that:

1 = Fj(x̂) = Fj([x̂]−) =
1

1− γj

µ
1− Aj√

2x̂− 1

¶
.

Solving this with respect to Aj , we have:

Aj = γj
√
2x̂− 1.

Note that γj > 0 has to hold. Otherwise, it would hold that Aj = 0 and the path would

not be well defined. (By the same argument, we can conclude that, if γj = 0, it has to hold

that Fj([x̂]−) < 1, i.e., the player without the possibility of the chicken type has to demand

x̂ with a positive probability.) If player j does not demand x̂ with a positive probability,

in order for player i to have an incentive to make high demands close to x̂ which can be
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underbidden with high probabilities, it is necessary that player j has a positive probability

to be the chicken type. Namely, player i’s high demands are rewarded by the possibility of

yielding. Supposing that γj > 0 and Aj = γj
√
2x̂− 1, we now look at the condition for the

lower end of the distribution. Because Fj(m) = 0, it holds that:

0 = Fj(m) =
1

1− γj

µ
1− γj

√
2x̂− 1√
2m− 1

¶
.

Solving this, we can show that the lower end of the distribution is given by:

m =
1 + γ2j (2x̂− 1)

2
.

Now look at the distribution of player i’s demands. Because Fi(m) = 0, we have:

0 = Fi(m) =
1

1− γi

µ
1− Ai√

2m− 1

¶
.

By solving this equation and substituting the formula derived above into this, we have:

Ai =
√
2m− 1 = γj

√
2x̂− 1.

Observe that:

Fi([x̂]−) =
1

1− γi

µ
1− Ai√

2x̂− 1

¶
=
1− γj
1− γi .

Because Fi([x̂]−) ≤ 1, this is well defined only when γj ≥ γi. Namely, if player j does not

demand x̂ with a positive probability, player j’s probability to be the chicken type has to

be no lower than player i’s: γi ≤ γj = γmax. Player i demands x̂ with the probability

1− Fi([x̂]−) = γj−γi
1−γi .

This derivation shows that the incentive to demand x̂ is caused by the desire to exploit

the chicken type. Moreover, for any demand that is made in equilibrium and is lower than x̂,

the incentive to underbid is exactly offset by the incentive to maintain a higher demand to

obtain a higher share against the chicken type as well as the rational type with even higher

demands. The gain of the share by the underbidding decreases as the demand becomes

lower. In order to keep the balance between these competing incentives, the probability of

successful underbidding needs to increase. Hence, the probability density becomes higher

as the demands become lower.

Using the characterization above, let us investigate the property of the equilibrium that

occurs in the simultaneous demand game under the equitable rule. Denote the expected
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payoff that the rational type of player i obtains by EΠi. Because the expected payoffs from

the demands that she makes in equilibrium should be identical, they are identical to the

one from the demand of m:

EΠi = EΠi(m) = γjm+ (1− γj)(m− d) = m− (1− γj)d,

where m =
1+γ2max(2x̂−1)

2
. Because m > 1/2+2d, it implies that player i obtains more than

one half as her payoff. Note that both players benefit from the possibility that one player

is the chicken type, which is similar to the result that we obtain in Proposition 2 (and its

corollary).

The above implies that the expected payoff of a player increases in the maximum

probability of the chicken type. To understand the effect of the maximum probability of

the chicken type, we look both at the case that it is very low and at the case that it is very

high. First, consider the case that it is close to zero. Then, both γi and γj are close to zero.

The bargaining cost also needs to be close to zero in order to satisfy the required condition.

Given those, the distribution of demands is concentrated near one half and the payoff of any

player becomes close to 1/2. Namely, when the probabilities of the chicken type is small

and also when the bargaining cost is small, the outcome are on average similar to the one

without such possibility. As the other extreme case, consider the case that the maximum

probability of the chicken type is close to one. The lower end of the distribution,m, becomes

close to x̂. (The distribution of demands is concentrated near x̂.) When player j has the

higher probability to be the chicken type, his expected payoff is close to x̂− (1− γi)d. On

the other hand, the expected payoff of player i is close to x̂ as γj is close to one. In the

sense that the higher demands tend to be made with a higher chance of the chicken type,

this is similar to what we have in Proposition 2 (and also in Proposition 3).

The next corollary summarizes these observations.

Corollary 2

Suppose that Assumption A’ is satisfied, that γmax > 0, and that d < γ3max(2x̂ −
1)/
¡
2(5− 3γmax)

¢
.

(1) It holds that EΠi =
1+γ2max(2x̂−1)

2
− (1− γj)d > 1/2 for i ∈ {1, 2}.

(2) For i ∈ {1, 2}, EΠi increases in γmax and it holds that EΠi ≈ 1/2 when γmax ≈ 0.
When γi ≤ γj = γmax ≈ 1, it holds that EΠi ≈ x̂ EΠj ≈ x̂− (1− γi)d.
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6. Concluding remarks

We have shown that the possibility of the chicken type may cause incompatible demands

and may affect the players’ payoffs in bargaining. In particular, we have shown that its

effect is substantially affected by the ordering at the demand stage. On the other hand, our

result shows that the effect of the chicken type is limited by its probability. To understand

this point, we can note that the rational type of player i can secure herself the payoff of

1/2−d by demanding 1/2 under the equitable rule and a payoff close to xci−d by demanding
a little lower than xci in the game with the war of attrition. Hence, the sum of the payoffs

that the rational type of the two players secure themselves is close to one. Thus, in the

sense that the gain from exploiting the chicken type is the driving force for the strategic

behaviors, the effect of the chicken type is proportional to the magnitude of its possibility.

This makes a contrast with the case of the stubborn type. In the war of attrition, its effect

does not decrease even when the probabilities of the stubborn type becomes small for both

players (as long as their ratio between the players does not change as shown in Kambe,

1999). The difference is caused because the rational type wants to mimic the stubborn type

but not the chicken type.

One of the non-trivial assumptions is the choice of timing for the learning of private

information. We have assumed that the players learn their types only after they make their

demands. Because of this assumption, the players’ demands do not have the signalling effect.

In order to examine the importance of this assumption, for the moment, let us suppose that

the players know their types at the beginning of the game. First, either when the first

mover has no possibility of the chicken type in the sequential demand game or when the

players make their demands simultaneously, the chicken type yields right after she makes her

demand. Hence, it is reasonable to assume that she makes a non-consequential demand such

as x̂ at the demand stage. With this assumption, our results hold as they are. Next, consider

the sequential demand game in which the first mover has the possibility of the chicken type.

The question is whether the first mover wants to signal her types or not. The chicken type

has no incentive to signal her type as it never improves her payoff. On the other hand, the

analysis in Section 3 indicates that even the rational type of the first mover benefits from

the possibility of the chicken type when the bargaining cost is sufficiently small. In that

case, she has no incentive to signal her type. This informal discussion indicates that both

28



the chicken type and the rational type are likely to make the same demand in equilibrium

even with some refinement when the bargaining cost is sufficiently small.

We do not analyze the simultaneous demand game in which the bargaining is done

through the war of attrition. It is obvious that a pure strategy equilibrium does not exist

when the bargaining cost is sufficiently small. Beyond that, the analysis becomes too

complex. Though we conjecture that we can prove a counterpart of Proposition 8 in such

a situation, its formal analysis is left for the future research.
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Appendix: the proofs

We collect all the proofs in this appendix. Throughout the appendix, we denote the

expected payoff of player i at the beginning of the game by Πi(x1, x2). When the argument

of this function is obvious, we sometimes omit it.

A.1. The proof of Proposition 0

First, we derive the best response of player 2 at the demand stage given player 1’s demand

x1. For player 2, making a demand such that x2 ≥ x1 and x1 + x2 > 1 is dominated by

making the just compatible offer (x2 = 1−x1). By doing so, player 2 receives the same share
at the demand stage and avoids the bargaining cost. It is easy to see that a demand lower

than 1 − x1 is not optimal for player 2 as it is dominated by the just compatible demand
1 − x1. As the consequence of these, if x1 ≤ 1/2, it is best for player 2 to make the just
compatible demand. Consider the case that x1 > 1/2. If player 2 makes an incompatible

offer, it is best for him to make the demand [x1]−. By such a demand, player 2 obtains

x1 − d. On the other hand, if he makes the just compatible offer, he obtains 1 − x1. By
comparison, we can conclude that player 2 makes the just compatible offer if x1 ≤ (1+d)/2
and he makes the demand [x1]− if x1 > (1 + d)/2. This conclusion encompasses the case

that x ≤ 1/2. Note that, when x1 = (1 + d)/2, the payoff from the just compatible offer

becomes equal to that from [x1]− in the limit. However, as the latter represent the value in

the limit and player 2’s payoff is lower than that value except in the limit, player 2 prefers

the just compatible offer when this equality holds.

Next, consider player 1’s strategy at the demand stage. When she makes the demand

higher than (1+d)/2, player 2 will underbid player 1 and thus player 1 will obtain 1−x1−d.
Because (1 + d)/2 > 1/2, this is strictly lower than one half. On the other hand, when her

demand is no bigger than (1+ d)/2, player 2 will make the just compatible demand. Then,

her payoff is x1. This is maximized when x1 = (1+d)/2. Because it is larger than one half,

this is the optimal demand for player 1.

Given x1 = (1 + d)/2, player 2’s best response is to make the just compatible offer

as shown above. Because the demands are compatible, they reach the settlement at the

demand stage.
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A.2. The proof of Proposition 1

Because player 1 is the rational type and because player 2 only cares about the payoff of

his rational type by assumption, player 2’s best response at the demand stage is identical

to the one derived in the proof of Proposition 0.

Now, consider player 1’s strategy at the demand stage. When she makes the demand

higher than x̂, the chicken type of player 2 leaves the negotiation without an agreement.

Moreover, for player 1’s demand in this range, the best response of player 2 makes player

1’s payoff decreasing in her demand. Hence, demanding more than x̂ is dominated by

demanding x̂. When she makes the demand higher than (1+d)/2 but no more than x̂, player

2 will underbid player 1 by demanding [x1]−. At the yielding stage, the chicken type of player

2 yields to player 1’s demand. Thus, player 1 obtains γ2x1 + (1− γ2)(1− x1 − d). Because
γ2 < 1/2, this is strictly decreasing in x1. Hence, it holds that sup(1+d)/2<x1≤x̂ γ2x1 +

(1 − γ2)(1 − x1 − d) ≤ γ2
1+d
2
+ (1 − γ2)

¡
1− 1+d

2
− d¢ < 1+d

2
. On the other hand, when

her demand is no bigger than (1 + d)/2, player 2 will make the just compatible demand.

Then, player 1’s payoff is x1. This is maximized when x1 = (1 + d)/2. By comparing these

demands, we can conclude that demanding (1 + d)/2 is the optimal strategy for player 1.

Given x1 = (1 + d)/2, player 2’s best response is to make the just compatible offer

as shown above. Because the demands are compatible, they reach the settlement at the

demand stage.

A.3. The proof of Proposition 2

First, we derive the best response of player 2 at the demand stage given player 1’s demand

x1. It is easy to see that a demand lower than 1 − x1 is not optimal for player 2 as it is
dominated by the just compatible demand 1−x1. In the following, we restrict our attention
to player 2’s demands no lower than 1−x1. We study several cases depending on the value
of x1 in turn.

(i) x1 ≤ 1− x̂
When x2 > 1− x1, it holds that x2 > x̂. Hence, any demand higher than 1− x1 gives

zero payoff to player 2 when the other player is the chicken type. Because x̂ > 1/2 by

assumption and thus x2 > x1, the payoffs at the bargaining stage are determined by player

1’s demand. Hence, the expected payoff of player 2 is (1− γ1)(1− x1 − d). It is lower than
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1 − x1, which player 2 can obtain by making the just compatible demand. Therefore, for
player 1’s demand in this range, making the just compatible demand is the best response

for player 2.

(ii) 1− x̂ < x1 ≤ x̂
If player 2 makes an incompatible demand and moreover demands no less than player

1 does (x1 + x2 > 1 and x2 ≥ x1), it is best for him to demand x̂. It is because it attains

the highest payoff against the chicken type and keeps the same payoff against the rational

type.

If player 2 makes an incompatible demand and moreover demands less than player 1

does (x1 + x2 > 1 and x2 < x1 ≤ x̂), it is best for him to demand [x1]−. It is because it

attains the highest payoff against both types among those demands satisfying the stated

condition. Note that this situation arises only when x1 > 1/2.

These arguments show that the candidates for player 2’s best response are making the

just compatible demand, demanding x̂ and demanding [x1]−. We now compare player 2’s

payoffs when he makes his demand among these.

When x2 = x̂, the demands are incompatible and x1 ≤ x2. By the equitable rule,

player 2 obtains 1−x1 at the bargaining stage. On the other hand, if player 1 is the chicken
type, he obtains x̂ at the yielding stage. Hence, his expected payoff at the beginning is

Π2(x1, x̂) = γ1x̂+(1−γ1)(1−x1−d). Using this, we compute the difference between player
2’s payoff from the just compatible demand and that from x̂:

Π2(x1, 1− x1)−Π2(x1, x̂) = 1− x1 − γ1x̂− (1− γ1)(1− x1 − d)

= γ1(1− x̂) + (1− γ1)d− γ1x1.

When x1 = 1 − x̂, the difference is equal to (1 − γ1)d, which is positive. The difference

is decreasing in x1. Hence, when x1 < (>)(γ1(1 − x̂) + (1 − γ1)d)/γ1, making the just

compatible demand is better (worse respectively) for player 2 than making the demand of

x̂. (He is indifferent between these when the equality holds.) Let us denote the threshold

by x̃1:

x̃1 ≡ γ1(1− x̂) + (1− γ1)d
γ1

.

When x1 > 1/2 and x2 = [x1]−, the demands are incompatible. By the equitable

rule, player 2 obtains x1 at the bargaining stage. (Strictly speaking, this payoff is an
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approximation because the payoff from [x1]− is evaluated in the limit. Following the

convention stated in the main text, we often omit the explicitly reference to this type

of qualification in the following proofs.) Hence, his expected payoff at the beginning is

Π2(x1, [x1]−) = γ1x1 + (1 − γ1)(x1 − d). Using this, we compute the difference between
player 2’s payoff from x̂ and that from [x1]−:

Π2(x1, x̂)−Π2(x1, [x1]−) = γ1x̂+ (1− γ1)(1− x1 − d)− γ1x1 − (1− γ1)(x1 − d)

= γ1x̂+ 1− γ1 − (2− γ1)x1.

When x1 = 1/2, the difference is equal to γ1x̂ − γ1/2, which is positive. When x1 = x̂,

the difference is equal to 2(γ1 − 1)x̂+ 1− γ1 = (1− γ1)(1− 2x̂), which is negative. Hence,
the difference becomes equal to zero between 1/2 and x̂. Specifically, it is equal to zero at

x1 = x∗1 ≡ (γ1x̂ + 1 − γ1)/(2 − γ1). By construction, it holds that 1/2 < x∗ < x̂. When

x1 < x
∗
1, the difference is positive and thus the demand of x̂ is better for player 2. On the

other hand, when x1 > x
∗
1, the difference is negative and thus the demand of [x1]− is better

for player 2. When the difference is equal to zero, it means that the payoffs from these two

strategies are identical in the limit. Hence, except in the limit, the demand of x̂ is better

for player 2.

As the remaining combination, suppose that x1 > 1/2 and compare player 2’s payoff

from the just compatible demand with that from [x1]−. The above argument shows that

the difference between these is given by the following:

Π2(x1, 1− x1)−Π2(x1, [x1]−) = 1− x1 − γ1x1 − (1− γ1)(x1 − d) = 1− 2x1 + (1− γ1)d.

When x1 = 1/2, the difference is equal to (1 − γ1)d, which is positive. When x1 = x̂, the

difference is equal to 1−2x̂+(1−γ1)d < 2((1+d)/2− x̂), which is negative by Assumption
A. Hence, the difference becomes equal to zero between 1/2 and x̂. Specifically, it is equal

to zero at x1 = (1 + (1 − γ1)d)/2. When x1 < (1 + (1 − γ1)d)/2, the difference is positive

and thus making the just compatible demand is better for player 2. On the other hand,

when x1 > (1 + (1− γ1)d)/2, the difference is negative and thus demanding [x1]− is better
for player 2. When the difference is equal to zero, it means that the payoffs from these two

strategies are identical in the limit. Hence, except in the limit, making the just compatible

demand is better for player 2.
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We compare the three thresholds derived above for player 2’s best response: x̃1, x
∗
1,

and (1 + (1− γ1)d)/2. First, compare the first two:

x∗1 − x̃1 =
γ1x̂+ 1− γ1
2− γ1 − γ1(1− x̂) + (1− γ1)d

γ1

=
γ1(2x̂− 1)− (2− γ1)(1− γ1)d

(2− γ1)γ1 .

If d ≤ γ1(2x̂ − 1)/(2 − γ1)(1 − γ1), it is non-negative. Then, it holds that x̃1 ≤ x∗1. In

that case, the above argument implies that x2 = 1 − x1 is optimal when x1 ≤ x̃1, x2 = x̂
is optimal when x̃1 ≤ x1 ≤ x∗1, x2 = [x1]− is optimal when x∗1 < x1 ≤ x̂. (Note that,

when d = γ1(2x̂ − 1)/(2 − γ1)(1 − γ1), we have that x̃1 = x∗1. Then, the interval [x̃1, x
∗
1]

becomes degenerate. There, both x1 and x̂ are optimal.) If d > γ1(2x̂− 1)/(2−γ1)(1−γ1),
it holds that x̃1 > x∗1. When x1 < x̃1, making the just compatible demand is better for

player 2 than making the demand of x̂. When x1 > x̃1, demanding [x1]− is better for player

2 than demanding x̂. They imply that demanding x̂ is a dominated strategy. Hence, if

d > γ1(2x̂− 1)/(2− γ1)(1− γ1), we can conclude that, if x1 > (1 + (1− γ1)d)/2, player 2’s
best response is to demand [x1]− and otherwise it is to make the just compatible demand.

(iii) x̂ < x1

When player 2 demands x̂, it holds that x2 = x̂ < x1. Hence, at the bargaining stage,

he obtains x̂ according to the equitable rule. Compare his payoff from making x̂ with that

from the just compatible demand. Because x̂ < x1, we have:

Π2(x1, x̂)−Π2(x1, 1− x1) = γ1x̂+ (1− γ1)(x̂− d)− (1− x1)

> x̂− (1− γ1)d− 1 + x̂

= 2x̂− 1− (1− γ1)d > 0.

(The last inequality comes from the assumption that x̂ > (1+d)/2.) It shows that, for player

2, making the just compatible demand is dominated by making the demand of x̂. If player

2 makes an incompatible demand and sets it higher than x̂, the demand of [x1]− is best

because it attains the highest payoff against the rational type according to the equitable

rule and the chicken type always leaves the negotiation given player 1’s demand in this

range. If player 2 makes an incompatible demand and sets it no higher than x̂, the demand

of x̂ is best because it attains the highest payoff against both types. Hence, the candidates
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for the optimal strategy is narrowed to the pair of demands, x̂ and [x1]−. By subtracting

the payoff from the latter from that from the former, we have:

Π2(x1, x̂)−Π2(x1, [x1]−) = γ1x̂+ (1− γ1)(x̂− d)− (1− γ1)(x1 − d)

= x̂− (1− γ1)x1.

When x1 < x̂/(1 − γ1), the difference is positive and thus the demand of x̂ is optimal for

player 2. On the other hand, when x1 > x̂/(1− γ1), the difference is negative and thus the
demand of [x1]− is optimal for player 2. Note that, because x̂/(1 − γ1) > x̂, the former

inequality can be satisfied for some x1 but the latter may not be because x̂/(1 − γ1) can

be larger than one. When the difference is equal to zero, it means that the payoffs from

these two strategies are identical in the limit. Hence, except in the limit, the demand of x̂

is optimal for player 2.

Next, given the best responses of player 2 derived above, we derive the optimal demand

for player 1. For each case of player 2’s best response, we compute the highest attainable

payoff of player 1. Note that player 1 only cares about the payoff of her rational type by

assumption. Depending on the size of the bargaining cost, we study two cases.

(A) d ≤ γ1(2x̂− 1)/(2− γ1)(1− γ1)
First, let us study the case in which the bargaining cost is relatively small so that the

above inequality holds.

(a) x1 ≤ x̃1
Player 2 will respond to x1 by the just compatible demand. Hence, player 1’s payoff is

given by x1. The maximum payoff is attained by x1 = x̃1 at the same amount, Π1(x̃1, 1−
x̃1) = x̃1.

(b) x̃1 ≤ x1 ≤ x∗1
Player 2 will respond to x1 by a higher price x̂ and thus player 1 expects to obtain

x1 − d. The maximum payoff is attained by x1 = x∗1 at the payoff Π1(x
∗
1, x̂) = x∗1 − d.

Because x∗1 > 1/2, it is more than 1/2− d.

(c) x∗1 < x1 ≤ x̂
Player 2 will underbid player 1 by demanding [x1]−. Thus, player 1 expects to obtain

1− x1 − d. Because x1 > x∗1 > 1/2, it is lower than 1/2− d.
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(d) x̂ < x1 ≤ x̂/(1− γ1)
Player 2 will underbid player 1 by demanding x̂. Thus, player 1 expects to obtain

1− x̂− d. Because x̂ > 1/2, it is lower than 1/2− d.

(e) x1 > x̂/(1− γ1)
Player 2 will underbid player 1 by demanding [x1]−. Thus, player 1 expects to obtain

1− x1 − d. Because x1 > x̂/(1− γ1) > x̂ > 1/2, it is lower than 1/2− d.

Because player 1 obtains more than 1/2−d by demanding x∗1, the demands in the cases
(c), (d) and (e) are dominated. We now compare player 1’s payoffs from the best demands

in the first two cases. The difference between these is given by:

Π1(x̃1, 1− x̃1)−Π1(x∗1, x̂) = x̃1 − (x∗1 − d)

=
γ1(1− x̂) + (1− γ1)d

γ1
− γ1x̂+ 1− γ1

2− γ1 + d

=
γ1(1− 2x̂) + (2− γ1)d

γ1(2− γ1) .

When d < γ1(2x̂−1)/(2−γ1), the above implies that demanding x∗1 is optimal for player 1.
When the inequality holds in reverse, player 1’s optimal demand induces player 2 to make

the just compatible demand.

(B) d > γ1(2x̂− 1)/(2− γ1)(1− γ1)
Next, let us study the case in which the bargaining cost is relatively large so that the

above inequality holds.

(a’) x1 ≤ (1 + (1− γ1)d)/2
Player 2 will respond to x1 by the just compatible demand. Hence, player 1’s payoff

is given by x1. The maximum payoff is attained by x1 = (1 + (1 − γ1)d)/2(> 1/2) at the

same amount.

(c’) (1 + (1− γ1)d)/2 < x1 ≤ x̂
Player 2 will underbid player 1 by demanding [x1]−. Thus, player 1 expects to obtain

1− x1 − d. Because x1 > (1+ (1− γ1)d)/2 > 1/2, it is lower than 1/2. Hence, any demand
in this range is not optimal.

The above analysis has shown that, when x̂ < x1, player 1’s payoff is lower than 1/2−d.
Hence, demanding (1 + (1− γ1)d)/2 is optimal.
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The combination of the above parts (A) and (B) establishes the statement in the

proposition.

A.4. The proof of Proposition 3

Because player 2 only cares about the payoff of his rational type by assumption, his best

response at the demand stage is identical to the one derived in the proof of Proposition

2. In the similar way, we derive the optimal demand for player 1. In the following, all the

cases refer to the same ones in the proof of Proposition 2. As in the proof of Proposition 2,

we study two cases depending on the size of the bargaining cost.

(A) d ≤ γ1(2x̂− 1)/(2− γ1)(1− γ1)
First, let us study the case in which the bargaining cost is relatively small so that the

above inequality holds.

When x1 ≤ x̃1 (case a), player 2 will respond to x1 by the just compatible demand.
Hence, her payoff is given by x1. The maximum payoff is attained by x1 = x̃1 at the same

amount.

When x̃1 ≤ x1 ≤ x∗1 (case b), player 2 will respond to x1 by a higher price x̂ and thus
player 1 expects to obtain γ2x1 + (1− γ2)(x1 − d) = x1 − (1− γ2)d. The maximum payoff

is attained by x1 = (γ1x̂ + 1 − γ1)/(2 − γ1) = x
∗
1 at the payoff x

∗
1 − (1 − γ2)d. Note that

this is more than 1/2− (1− γ2)d.
When x∗1 < x1 ≤ x̂ (case c), player 2 will underbid player 1 by demanding [x1]−. Thus

player 1 expects to obtain γ2x1+(1− γ2)(1−x1− d). Because γ2 < 1/2 by the supposition
of the proposition, it is strictly decreasing in x1. Hence, the supremum of the payoff in this

case is attained when x1 = x
∗
1. Compared to the highest payoff in the above case (b), it is

lower because player 1 is underbid here and x∗1 > 1/2. Hence, the demand in this case is

never optimal.

When x̂ < x1 ≤ x̂/(1 − γ1) (case d), player 2 will underbid player 1 by demanding

x̂. Because the chicken type of player 2 leaves the negotiation, player 1 expects to obtain

(1− γ2)(1− x̂− d). It is lower than 1/2− (1− γ2)d and is never optimal.
When x1 > x̂/(1 − γ1) (case e), player 2 will underbid player 1 by demanding [x1]−.

Because the chicken type of player 2 leaves the negotiation, player 1 expects to obtain

(1− γ2)(1− x1 − d). Because x1 > x̂/(1− γ1), it is lower than 1/2− (1− γ2)d and is never
optimal.
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This shows that the candidates for player 1’s best demand are narrowed to the first

two cases. We compare the payoffs from these two cases. The difference between these is

given by:

Π1(x̃1, 1− x̃1)−Π1(x∗1, x̂) = x̃1 − (x∗1 − (1− γ2)d)

=
γ1(1− x̂) + (1− γ1)d

γ1
− γ1x̂+ 1− γ1

2− γ1 + (1− γ2)d

=
γ1(1− 2x̂) + (1− γ1γ2)(2− γ1)d

γ1(2− γ1) .

It implies that demanding x∗1 is optimal when d > γ1(2x̂−1)/
¡
(1−γ1γ2)(2−γ1)

¢
, and that

making the demand that causes player 2 to make the compatible demand is optimal when

the inequality holds in reverse.

(B) d > γ1(2x̂− 1)/(2− γ1)(1− γ1)
Next, let us study the case in which the bargaining cost is relatively large so that the

above inequality holds.

(a’) x1 ≤ (1 + (1− γ1)d)/2
Player 2 will respond to x1 by the just compatible demand. Hence, player 1’s payoff

is given by x1. The maximum payoff is attained by x1 = (1 + (1 − γ1)d)/2(> 1/2) at the

same amount.

(c’) (1 + (1− γ1)d)/2 < x1 ≤ x̂
Player 2 will underbid player 1 by demanding [x1]−. Thus, player 1 expects to obtain

γ2x1 + (1 − γ2)(1 − x1 − d) = (2γ2 − 1)x1 + (1 − γ2)(1 − d). Because 2γ2 − 1 < 0,

it is lower than γ2((1 + (1 − γ1)d)/2) + (1 − γ2)(1 − ((1 + (1 − γ1)d)/2) − d). Because
1 − ((1 + (1 − γ1)d)/2) − d < (1 + (1 − γ1)d)/2, it is lower than the payoff that player 1

obtains by demanding (1 + (1 − γ1)d)/2. Hence, making a demand in this range is never

optimal.

The above analysis has shown that, when x1 > x̂, player 1’s payoff is lower than 1/2.

Hence, demanding (1 + (1− γ1)d)/2 is optimal.

The combination of the above parts (A) and (B) establishes the statement in the

proposition.
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A.5. The proof of Lemma 2

Lemma 1 has shown that player i attains a payoff higher than 1− xj when and only when
her demand causes player j to do the mass acceptance, i.e., when it is between 1− xj and
Xi(xj). Observe that, because xj > x

c
j +4,

Xi(xj)− (1− xj) = 1− 1

1− xcj
(1− xj) > 1− 1

1− xcj
(1− xcj −4) > 0.

Hence, this interval is well-defined and thus player i’s maximum payoff is in fact bigger than

1− xj . In the following, we focus on player i’s demand in [1− xj ,Xi(xj)].

To prove the claim, we compute the first-order derivative of player i’s continuation

payoff at the bargaining stage with respect to her own demand as well as the second order

one:

dπwi (x)

dxi
= 1− eαj log ξ

³
1− 1−xc

i
1−xc

j

1−xj
1−xi

´ Ã
1− αj log ξ 1− x

c
i

1− xcj
1− xj
(1− xi)2

!
, and

d2πwi (x)

dx2i
= 2

Pmaj

dxi
+ (xi + xj − 1)

d2Pmaj

dx2i
< 0.

Because the second order derivative is negative, πwi (x) is concave in xi. Note that

dπwi (x)

dxi

¯̄̄̄
xi=Xi(xj)

= αj log ξ
1− xci
1− xcj

1− xj
(1− xi)2 < 0.

It implies that the maximizer is located to the left of Xi(xj). We now evaluate the first-

order derivative at the demand a little lower than Xi(xj),
dπwi (x)

dxi

¯̄̄
xi=Xi(xj)−δ

. (When

Xi(xj) − δ ≤ 1 − xj , the above argument implies that the statement in the proposition
holds obviously. Hence, in the following, we consider the case that δ is sufficiently small so

that Xi(xj)− δ > 1− xj .) Observe that:

dπwi (x)

dxi

¯̄̄̄
xi=Xi(xj)−δ

= 1− eαj log ξ
³
1− 1−xc

i
1−xc

j

1−xj
1−Xi(xj)+δ

´ Ã
1− αj log ξ 1− x

c
i

1− xcj
1− xj

(1−Xi(xj) + δ)2

!
.

For any xj > xcj + 4, if ξ is sufficiently small, this is positive uniformly with respect to
xj because

1−xci
1−xc

j

1−xj
1−Xi(xj)+δ

<
³
1 +

1−xcj
1−xc

i

1
1−xc

j
−4δ

´−1
< 1. It implies that the maximizer

is between Xi(xj) − δ and Xi(xj), namely Xi(xj) − δ < argmaxxiπ
w
i (x) < Xi(xj). This

proves the first part of the statement.
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Note that, when xi = Xi(xj)− δ,

Pmaj = 1− exp
(
αj log ξ

Ã
1− 1− x

c
i

1− xcj
1− xj
1− xi

!)
→ 1

uniformly with respect to xj as ξ → 0. Because πwi (x) = P
ma
j xi+(1−Pmaj )(1−xj), player

i’s payoff is no smaller than Xi(xj)− δ in the limit. By choosing δ appropriately, we obtain
the second statement.

A.6. The proof of Proposition 4

(i) We prove the first claim by looking at three cases of player 1’s demand.

First, consider the case that x1 ≤ xc1+xc2d. If player 2 demands no lower than X2(x1),

player 1 does not do the mass acceptance and player 2 obtains 1 − x1 − d, which is lower
than the payoff that he obtains by making the just compatible demand. When x2 < X2(x1)

and the demands become incompatible, player 2’s payoff is lower than X2(x1)−d. Because
x1 ≤ xc1 + x

c
2d, we can show that 1 − x1 ≥ X2(x1) − d. Namely, the just compatible

demand gives a higher payoff to player 2 and thus he has no incentive to make this demand.

Obviously, making demand less than 1− x1 is not optimal for player 2. This implies that,
when player 1 demands no more than xc1 + x

c
2d, player 2 surely makes the corresponding

just compatible demand.

Next, consider the case that xc1 + x
c
2d < x1 ≤ x̂. Suppose, to the contrary, that

player 2 does not make the just compatible demand. Because xc1 + x
c
2d < x1, we can

apply7 Lemma 2. It shows that, in such a situation, the player 2’s best response satisfies

X2(x1) − δ < x2 < X2(x1). Given this response, consider the expected payoff of player

1. As before, we denote the expected payoff of player i at the beginning of the game by

Πi(x1, x2). When δ is sufficiently small so that δ < d, we have:

Π1(x1, x2) = γ2x1 + (1− γ2)(1− x2 − d)

≤ γ2x1 + (1− γ2)(1−X2(x1) + δ − d)

= γ2x1 + (1− γ2)1− x
c
2

1− xc1
(1− x1)− (1− γ2)(d− δ)

< γ2x1 + (1− γ2)1− x
c
2

1− xc1
(1− x1).

7 Note that the following argument depends on the uniformity of the statement of Lemma
2 with respected to x1.
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Because γ2 < x
c
1, γ2−(1−γ2)(1−xc2)/(1−xc1) = γ2{1+((1−xc2)/(1−xc1))}−(1−xc2)/(1−xc1) <

xc1/(1−xc1)−(1−xc2)/(1−xc1) = 0, the last expression is maximized when x1 is the smallest.
Namely, it is lower than γ2(x

c
1 + x

c
2d) + (1− γ2) 1−x

c
2

1−xc
1

(1− xc1 − xc2d). This is no higher than
xc1 + x

c
2d, which player 1 can obtain for sure as shown above. This is a contradiction and

therefore the supposed plays cannot occur in equilibrium.

Finally, consider the case that x̂ < x1. Suppose, to the contrary, that player 2 does not

make the just compatible demand. The response of the rational type of player 2 is same as

the above and, due to the departure of the chicken type, the payoff of player 1 is no higher

than the one derived there. This is a contradiction and thus the supposed play cannot occur

in equilibrium.

The combination of the above implies that any equilibrium has to entail the just com-

patible demands.

(ii) From the above argument, we know that any demand no higher than xc1+ x
c
2d is surely

accepted by player 2. It indicates that any demand lower than this amount cannot be

optimal for player 1.

Now consider the case that x1 > x
c
1 + x

c
2d. When player 2 makes the just compatible

demand, he obtains 1 − x1. On the other hand, when he makes an incompatible demand,
Lemma 2 shows that the highest payoff for player 2 is attained when he makes the demand

x2 such that X2(x1) − δ < x2 < X2(x1) and then he obtains more than X2(x1) − δ − d.
When 1 − x1 ≤ X2(x1) − δ − d or x1 ≥ xc1 + xc2(δ + d), player 2 chooses an incompatible
demand. The above argument in (i) shows that, when player 2 makes an incompatible

demand, it gives less than xc1 + x
c
2d to player 1. Hence, player 1’s demand cannot be larger

than xc1 + x
c
2(δ + d).

By appropriately choosing δ, we obtain the desired statement.

A.7. The proof of Proposition 5

The proof proceeds in the similar way as in the proof of Proposition 2. In the following

proof, we take ξi (i = 1, 2) sufficiently small so that the statement of Lemma 2 holds.

First, we derive the best response of player 2 at the demand stage given player 1’s

demand x1. It is easy to see that a demand lower than 1 − x1 is not optimal for player 2
as it is dominated by the just compatible demand 1− x1. In the following, we restrict our
attention to the demand no lower than 1− x1.
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(i) x1 ≤ 1− x̂
Note that x1 ≤ 1 − x̂ < 1 − xc2 = xc1. Hence, when x2 > 1 − x1 and the demands are

incompatible, the continuation payoff of player 2 in the war of attrition is given by 1− x1.
By the same logic as in the part (i) at the proof of Proposition 2, we can show that making

the just compatible demand is the best response in this case.

(ii) 1− x̂ < x1 ≤ X−12 (x̂)

Note that, by the condition of this case, X2(x1) ≤ x̂. It implies that any demand

causing player 1 to do the mass acceptance is lower than x̂ and the chicken type of player 1

yields to it at the yielding stage. Moreover, when player 2 makes the demand of x̂, Lemma

1 shows that, if some player does the mass acceptance, it is player 2 who does so. Hence,

we can apply the same logic as in the part (ii) at the proof of Proposition 2, and can

show that the candidates for player 2’s best response are making the corresponding just

compatible demand, demanding the highest one that the chicken type yields to and making

an incompatible demand which causes player 1 to do the mass acceptance: 1 − x1, x̂, and
a demand lower than X2(x1).

First, compare the just compatible demand with the demand of x̂ as player 2’s strategy.

Given the latter demand, Lemma 1 shows that player 2 obtains Π2(x1, x̂) = γ1x̂+(1−γ1)(1−
x1−d). Thus, the difference between the payoff from the just compatible demand and that

from x̂ is given by the same formula derived in the proof of Proposition 2:

Π2(x1, 1−x1)−Π2(x1, x̂) = 1−x1−γ1x̂−(1−γ1)(1−x1−d) = γ1(1− x̂)+(1−γ1)d−γ1x1.

When x1 = 1 − x̂, the difference is equal to (1 − γ1)d, which is positive. The difference is

decreasing in x1. Hence, when x1 < (>)x̃1, making the just compatible demand is better

(worse respectively) than making the demand of x̂. (Player 2 is indifferent between these

when the equality holds.)

Next, compare the demand of x̂ with an incompatible demand that causes player 1

to do the mass acceptance as player 2’s strategy. For player 1 to do the mass acceptance,

Lemma 1 shows that x1 > x
c
1. For the moment, we focus on player 1’s demand such that

x1 > xc1 + 4 for 4 > 0. (We later justify this restriction.) Lemma 2 shows that the

highest payoff from the latter strategy is slightly lower than X2(x1) and its maximizer is

also slightly lower than X2(x1). Specifically, let the former be given by X2(x1)− ² and the

42



latter by X2(x1) − ²0, where 0 < ², ²0 < δ. Then, his expected payoff at the beginning is

Π2(x1, X2(x1)− ²0) = γ1(X2(x1)− ²0) + (1− γ1)(X2(x1)− ²− d). Using this, we compute
the difference between the payoff from x̂ and that from X2(x1)− ²0:

Π2(x1, x̂)−Π2(x1,X2(x1)− ²0)

= γ1x̂+ (1− γ1)(1− x1 − d)− γ1(X2(x1)− ²0)− (1− γ1)(X2(x1)− ²− d)

= γ1x̂+ (1− γ1)(1− x1)−X2(x1) + (γ1²
0 + (1− γ1)²)

= γ1x̂+ (1− γ1)(1− x1)− 1 + 1− x
c
2

1− xc1
(1− x1) + (γ1²0 + (1− γ1)²)

= −1− γ1 + γ1x
c
1

1− xc1
x1 + γ1x̂− γ1 + xc1

1− xc1
+ (γ1²

0 + (1− γ1)²)

Observe that, when ²0 = ² = 0, the payoff from the demand X2(x1) gives the upper bound

for the payoff that player 2 can obtain when his demand causes player 1 to do the mass

acceptance. Thus, the solution to the following equation gives the lower bound for the

threshold which determines whether demanding x̂ is better or not:

−1− γ1 + γ1x
c
1

1− xc1
x1 + γ1x̂− γ1 + xc1

1− xc1
= 0.

Solving this equation and calling its solution x∗∗1 , we have:

x∗∗1 ≡
xc1 − (1− xc1)γ1(1− x̂)

1− γ1 + γ1x
c
1

.

Because X2(x
c
1) = xc2 = 1 − xc1 < x̂, the left-hand side of the above equation is positive

at x1 = xc1. On the other hand, because 1 − X
−1
2 (xc1) = xc1 and X

−1
2 (x1) is increasing in

x1, we have 1 − X−12 (x̂) < x̂. Thus, the left-hand side of the above equation is negative

at x1 = X
−1
2 (x̂). Combining these, we can conclude that xc1 < x∗∗1 < X

−1
2 (x̂). (Because

X
−1
2 (x1) is increasing in x1 and x

c
2 < x̂, it holds that x

c
1 < X

−1
2 (x̂).) This argument shows

that the threshold for demanding x̂ to be better is higher than xc1 by some positive margin.

(Note that, because we deal with the limit here, we can choose an arbitrary 4 when we

apply Lemma 2. Thus, this argument is valid.) We return to the comparison of the payoff

from x̂ and that from X2(x1) − ²0 this time for x1 such that x1 > x∗∗1 . This justifies the

supposition that x1 > xc +4. The simple computations shows that the best responses of
player 2 change at:

x1 =
(1− xc1)(γ1x̂− γ1 + γ1²

0 + (1− γ1)²) + xc1
1− γ1 + γ1x

c
1

= x∗∗1 +
(1− xc1)(γ1²0 + (1− γ1)²)

1− γ1 + γ1x
c
1

.
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(Note that both ² and ²0 depend on x1. What we are deriving here is not the exact threshold

but the range in which a strategy is known to be the best response.) Lemma 2 shows that

0 < ², ² < δ for any xj . Thus, there is some δ
0 which is of the same order as δ and satisfies

(1−xc1)(γ1²0+(1−γ1)²)
1−γ1+γ1xc1

< δ0. Therefore, if x1 ≤ x∗∗1 , demanding x̂ is better and, if x1 ≥ x∗∗1 +δ0,
demanding X2(x1) is better. (When x

∗∗
1 < x1 < x

∗∗
1 + δ0, which is better depends on the

demand x1.)

We compare the two thresholds derived above: x̃1 and x
∗∗
1 . Note that:

x∗∗1 − x̃1 =
xc1 − (1− xc1)γ1(1− x̂)

1− γ1 + γ1x
c
1

− γ1(1− x̂) + (1− γ1)d
γ1

=
γ1(x̂+ x

c
1 − 1)− (1− γ1)(1− γ1 + γ1x

c
1)d

γ1(1− γ1 + γ1x
c
1)

.

Under the supposition of the proposition, it is positive because d < γ1(x̂+x
c
1−1)/(1−γ1+

γ1x
c
1) < γ1(x̂ + x

c
1 − 1)/(1 − γ1)(1 − γ1 + γ1x

c
1). Thus, it holds that x̃1 < x

∗∗
1 . Under this

inequality, the above argument implies that x2 = 1−x1 is optimal when x1 ≤ x̃1, x2 = x̂ is
optimal when x̃1 ≤ x1 ≤ x∗∗1 , some demand that causes player 1 to do the mass acceptance
is optimal when x1 ≥ x∗∗1 + δ0. When x∗∗1 < x1 < x

∗∗
1 + δ0, either of the last two strategies

above is optimal.

(iii) x1 > X
−1
2 (x̂)

We compare player 2’s payoff from making the demand of x̂ with that from making the

just compatible demand. The above analysis has shown that, at x1 = X
−1
2 (x̂), the former is

higher than the latter. Namely, it holds that γ1x̂+(1− γ1)(1−X−12 (x̂)− d) > 1−X−12 (x̂).

When x1 > X
−1
2 (x̂) and player 2 demands x̂, player 1 does the mass acceptance. Then, the

difference between the payoff of player 2 from demanding x̂ and that from making the just

compatible demand is given by:

Π2(x1, x̂)−Π2(x1, 1− x1)
= γ1x̂+ (1− γ1)(1− x1 + Pma2 (x1 + x̂− 1)− d)− (1− x1)

=
©
γ1x̂+ (1− γ1)(1− x1 − d)− (1− x1)

ª
+ (1− γ1)Pma2 (x1 + x̂− 1).

The term in the first bracket is increasing in x1. Moreover, it holds that

dPmaj

dxj
= −elog ξj

³
1− 1−xc

i
1−xc

j

1−xj
1−xi

´ Ã
log ξj

1− xci
1− xcj

1

1− xi

!
> 0.
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It implies that the second term is also increasing in x1. Hence, the above inequality implies

that the difference is positive. This shows that, for player 2, making the just compatible

demand is dominated by demanding x̂ and thus is never the optimal strategy for him when

x1 > X
−1
2 (x̂).

The similar argument made in the corresponding part in the proof of Proposition 2 can

show that, for player 2, either the demand of x̂ or some demand that causes player 1 to do

the mass acceptance is optimal. Note that, because x1 > X
−1
2 (x̂), player 1 does the mass

acceptance when x2 = x̂. Therefore, no matter what is the optimal strategy, player 1 does

the mass acceptance when player 2 plays the best response in this case.

Given player 2’s best responses derived above, we derive the optimal demand for player

1.

Consider the demand of x∗∗1 . The above analysis shows that player 2 responds to it

by demanding x̂. Because x∗∗1 < X
−1
2 (x̂) from the above derivation, Pma2 converges to one

given (x∗∗1 , x̂) when ξ goes to zero. For sufficiently small ξ, player 1 obtains a payoff no

lower than x∗∗1 − d− δ. Note that, because x∗∗1 > xc1 as shown above, for sufficiently small

δ, player 1’s payoff from this strategy is higher than xc1 − d.
First, we argue that this achieves a higher payoff for player 1 than any demand that

leads to the just compatible demand by player 2. By the above analysis, the just compatible

demand is not made when x1 > x̃1 and player 1’s maximum payoff from this possibility is

given by x̃1. Taking the difference between player 1’s payoff from x∗∗1 and this payoff, we

obtain:
Π1(x

∗∗
1 , x̂)−Π1(x̃1, 1− x̃1)

≥ x∗∗1 − d− δ −
γ1(1− x̂) + (1− γ1)d

γ1

=
xc1 − (1− xc1)γ1(1− x̂)

1− γ1 + γ1x
c
1

− γ1d+ γ1(1− x̂) + (1− γ1)d
γ1

− δ

=
γ1(x̂+ x

c
1 − 1)− γ1(1− γ1 + γ1x

c
1)δ − (1− γ1 + γ1x

c
1)d

γ1(1− γ1 + γ1x
c
1)

.

By the supposition in proposition, we have that d < γ1(x̂+ x
c
1 − 1)/(1− γ1 + γ1x

c
1) or that

γ1(x̂+x
c
1−1)− (1−γ1+γ1xc1)d > 0. Hence, when we choose sufficiently small δ, the above

expression is positive. It implies that demanding x∗∗1 gives a higher payoff to player 1 than

any demand that induces player 2 to make the just compatible demand.
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Second, we argue that the demand of x∗∗ achieves a higher payoff for player 1 than any

demand that leads to player 1’s mass acceptance given the best response of player 2. The

above analysis has shown that player 1 does the mass acceptance only when x1 > x∗∗. In

such a situation, Lemma 1 implies that player 1’s payoff is given by 1−x2−d. By the above
analysis, we know that the best response of player 2 is either a demand which is higher than

X2(x1)− δ or x̂. The above analysis also shows that x∗∗1 > xc1. Because X2(x1) is strictly

increasing in x1, we have X2(x1) > X2(x
∗∗
1 ) > X2(x

c
1) = xc2. By choosing a δ(> 0) such

that δ < X2(x
∗∗
1 ) − X2(x

c
1), we then have X2(x1) − δ > X2(x

∗∗
1 ) − δ > xc2. Hence, when

player 2 responds by X2(x1)−δ, player 1’s payoff is lower than 1−xc2−d = xc1−d. Because
x̂ > xc2, we have x

c
1 = 1−xc2 > 1− x̂. Hence, when player 2 responds by x̂, player 1’s payoff

is lower than xc1 − d. This implies that either response gives a payoff lower than xc1 − d to
player 1.

The above argument shows that the optimal demand for player 1 has to induce player

2 to demand x̂. As shown in the above analysis of the case (ii), player 2 will choose to

demand x̂ when x1 ≤ x∗∗1 but will not do so when x1 ≥ x∗∗1 + δ. Because the probability of

player 2’s mass acceptance becomes close to one for a small ξ, player 1’s demand should not

be lower than x∗∗1 by any large margin. The combination of these proves both statements

of the proposition.

A.8. The proof of Proposition 6

The best response of player 2 at the demand stage is identical to the one derived in the

proof of Proposition 5. We examine various strategies of player 1 at the demand stage in

turn.

The argument in proof of Proposition 5 shows that, under the supposition of the

proposition, demanding x∗∗1 achieves the payoff which is higher for player 1 than any demand

that induces player 2 to make the just compatible demand even when only the former entails

the bargaining cost. In the current setting, because the demand of x∗∗(< x̂) is accepted

by the chicken type, the former achieves a higher payoff than in the setting of Proposition

5. Thus, demanding x∗∗1 dominates any demand which induces player 2 to make the just

compatible demand also in the current setting.

We now show that demanding more than x̂ is not optimal for player 1, either. We

derive a contradiction by supposing that she does so. When player 2 turns out not to
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be the chicken type, the analysis in the proof of Proposition 5 shows that making some

demand in (x∗∗1 − δ, x∗∗1 + δ) is optimal for sufficiently small ξ. When player 2 turns out

to be the chicken type, player 1 is better off by making some demand in (x∗∗1 − δ, x∗∗1 + δ)

than by demanding x̂ because the chicken type accepts the former but walks away from the

latter demand. (Because x∗∗1 < x̂ by the supposition, for sufficiently small δ, it holds that

x∗∗1 + δ ≤ x̂.) Hence, no matter whether player 2 is the chicken type or not, some demand
in (x∗∗1 − δ, x∗∗1 + δ) is better for player 1 than demanding more than x̂.

We next argue that any demand that is no higher than x̂ and causes player 2 to make

a demand which is lower than X2(x1) is not optimal for player 1. Suppose not. When

player 2 makes a demand less than X2(x1), the analysis of player 2’s best response in the

proof of Proposition 5 shows that either x2 > X2(x1)− δ for sufficiently small ξ or x2 = x̂.
Because player 1 does the mass acceptance, Lemma 1 shows that player 1’s payoff is given

by γ2x1+(1− γ2)(1−x2− d). We first examine the case that x2 > X2(x1)− δ. Given such
a demand, player 1’s payoff is at most:

γ2x1 + (1− γ2)(1−X2(x1) + δ − d)

= γ2x1 + (1− γ2)
µ
1− xc2
1− xc1

(1− x1) + δ − d
¶

=

µ
γ2 − (1− γ2)1− x

c
2

1− xc1

¶
x1 + (1− γ2)

µ
1− xc2
1− xc1

+ δ − d
¶
.

Because γ2 < xc1, γ2 − (1 − γ2)
1−xc2
1−xc

1

< xc1 − (1 − xc1)1−x
c
2

1−xc
1

= xc1 − (1 − xc2) = 0. Hence,

the coefficient of x1 is negative. Thus, the payoff from this case is no higher than the one

evaluated at x1 = x∗∗1 . Compare this payoff with the payoff from demanding x∗∗1 . When

player 2 turns out to be the chicken type, the payoffs from these two coincide. On the other

hand, the last part of the proof of Proposition 5 shows that demanding x∗∗1 is better for

player 1 than demanding a larger sum and causing player 2 to demand less than X2(x1).

Hence, in terms of the expectation, making the demand that causes player 2 to demand

less than X2(x1) is not optimal. We then examine the case that x2 = x̂ < X2(x1). In this

case, player 1’s payoff is given by γ2x1 + (1 − γ2)(1 − x̂ − d) < γ2x̂ + (1 − γ2)(1 − x̂ − d).
On the other hand, when player 1 makes the demand of x∗∗1 , her payoff becomes close to

x∗∗1 − (1−γ2)d when ξ is sufficiently small. By the supposition, γ2 < (x∗∗1 + x̂−1)/(2x̂−1).
It implies that γ2x̂+(1− γ2)(1− x̂) < x∗∗1 . Namely, the former is smaller than the latter in
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the limit and thus demanding x1 that causes player 2 to make the demand x̂ is not optimal

for player 1.

The above argument implies that the optimal strategy for player 1 has to be no higher

than x̂ and it induces player 2 to demand x̂. The proof in Proposition 5 shows that, for

any δ, such is the case only when x̃1 ≤ x1 < x∗∗1 + δ for sufficiently small ξ. Observe

that player 1’s payoff is given by γ2x1 + (1 − γ2)(1 − x̂ − d + Pma2 (x1 + x̂ − 1)). Because
x∗∗1 < X

−1
2 (x̂) by the supposition, Pma2 converges to one given (x1, x̂) when x1 < x

∗∗
1 + δ

and δ is sufficiently small. This implies that the optimal demand converges to x∗∗1 as ξ goes

to zero. This concludes the proof.

A.9. The proof of Proposition 7

Denote the equilibrium demands by (x1, x2).

If they are incompatible and xi ≥ xj , player i is better off by demanding 1 − xj and
saving the bargaining cost. Hence, any pure strategy equilibrium has to involve the just

compatible demands.

If they are compatible and xi > (1 + d)/2, player j would deviate to the demand [xi]−

and then obtain the payoff xi − d > (1− d)/2 in the limit. Because 1 − xi < (1− d)/2, it
would increase his payoff. Hence, any equilibrium demand has to satisfy xi ≤ (1 + d)/2.

Finally, we show that, when xi ∈ [(1−d)/2, (1+d)/2], it is supported in the equilibrium
where player j demands 1 − xi. Given such a demand, player i would obtain at most
(1 + d)/2 − d by deviating to a higher demand. This is never strictly profitable as she
expects to obtain at least that much in equilibrium. Deviating to a lower demand reduces

her payoff. Hence, she has no incentive to deviate. By symmetry, player j has no incentive

to deviate, either.

A.10. The proof of Proposition 8

We prove Proposition 8 by a series of lemmas.

Denote the supremum (or the infimum) of player i’s demands by Mi (or mi respec-

tively):

Mi = max
©
sup{x ∈ Ωi}, sup{x ∈ [0, 1] | fi(x) > 0}

ª
, and

mi = min
©
inf{x ∈ Ωi}, inf{x ∈ [0, 1] | fi(x) > 0}

ª
.
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The first lemma claims that, if a player demands x(> 1/2) with a positive probability,

the other player does not demand [x]n− for any n ∈ N+. Due to the possibility of the

underbidding, any demand including the ones that are equivalent in the limit is made with

a positive probability by at most one player.

Lemma A.1

If Pi(x) > 0 for some x > 1/2, it holds that Pj([x]n−) = 0 for any n ∈ N+. Moreover,

it holds that, for any k ∈ {1, 2}, Pk([x]n−) = 0 for any n ≥ 1.
(proof)

Suppose that Pj([x]n−) > 0 for some n ∈ N+. By the assumption, Pi([x]n−) = 0 for

any n ≥ 1. Because x > 1/2, underbidding improves player j’s payoff and thus what he

should demand is [x]−. Given this, it is better for player i to switch her demands from x

to [x]2−. This contradicts the supposition that Pi(x) > 0.

The second statement naturally follows from the first statement. Q.E.D.

We show that the players’ demands cannot be too small as demanding one half always

gives them at least one half minus the bargaining cost.

Lemma A.2

For i ∈ {1, 2}, it holds that mi ≥ 1/2− 2d.
(proof)

Suppose not. Then, there exists xi < 1/2 − 2d such that player i demands it in
equilibrium.

We consider her deviation to demanding one half and evaluate player i’s expected

payoff. Depending on the demand of player j, we study three cases in turn.

(i) xj > 1− xi
Because 1 − xi > 1/2 + 2d > 1/2, the demands are incompatible either before the

deviation or after it. Moreover, in either case, player i’s demand is lower than that of player

j. Hence, the payoff of player i is increased by the deviation.

(ii) xj ≤ 1/2
In this case, the demands are compatible either before the deviation or after it. Hence,

under the equitable rule, player i improves her payoff by the deviation.

(iii) 1/2 < xj ≤ 1− xi
When player i demands xi, the demands are compatible. Accordingly to the equitable

rule, she obtains Πi(xi, xj) =
1+xi−xj

2
. When player i switches to the demand of 1/2, the

demands become incompatible. With the probability γj , she is faced with the chicken type
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and obtains 1/2. With the probability 1 − γj , she is faced with the rational type and,

because her demand is lower, she obtains 1/2 − d. Thus, from the demand of 1/2, she

obtains Πi(1/2, xj) = γj(1/2) + (1− γj)(1/2− d) = 1/2− (1− γj)d. We compare the two

expected payoffs by subtracting the former from the latter:

1

2
− (1− γj)d− 1 + xi − xj

2
=
xj − xi
2

− (1− γj)d
≥ xj − xi

2
− d

>
xj − 1/2 + 2d

2
− d

=
xj − 1/2

2
> 0.

The second inequality comes from the supposition that xi < 1/2− 2d. The third inequality
comes from the condition for this case. This shows that the deviation increases player i’s

payoff.

Hence, for any xj , player i obtains a higher payoff from the deviation. This is a

contradiction and thus it has to hold that mi ≥ 1/2− 2d. Q.E.D.

When the bargaining cost is sufficiently small, the player whose opponent may be the

chicken type wants to make a high demand to exploit its possibility. Hence, her maximum

demand becomes higher than one half by some margin. Given the possibility that the player

makes a demand higher than one half, the other player also makes a demand higher than

one half by some margin to slightly underbid such demand. Define the maximum of the

probabilities of the stubborn type between the two players by γmax: γmax ≡ max{γ1, γ2}.
From the next lemma on, we suppose that at least one player has the possibility of the

chicken type: γmax > 0.

Lemma A.3

Suppose that Assumption A’ is satisfied and also that γmax > 0.

When d < (γmax(x̂− 1/2))/(5− 3γmax), it holds that Mi > 1/2 + 2d for i ∈ {1, 2}.
(proof)

We prove this lemma in two steps. Without loss of generality, suppose that γi = γmax.

(i) γi > 0

We want to show that Mi > 1/2 + 2d when γi > 0 and d < (γi(x̂ − 1/2))/(5 − 3γi).
Suppose not. Then, we have that Mi ≤ 1/2 + 2d. Namely, player i’s demand is no more
than 1/2 + 2d. Let xi be a demand that is made by player i.
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Given this demand of player i, we show that the best response of player j is to demand

x̂ by evaluating his payoffs for various demands.

When xj ≤ 1 − xi, the demands become compatible. By Lemma A.2, we know that
mi ≥ 1/2− 2d. Hence, xj ≤ 1/2 + 2d and moreover Πj(xi, xj) = 1+xj−xi

2
≤ 1/2 + 2d.

When xj ≥ xi and also xj > 1−xi, player j obtains 1−xi−d against the rational type
and thus should demand x̂ as it maximizes his payoff against the chicken type. (Because

x̂ > 1/2+2d, this is feasible.) Then, his payoff is given byΠj(xi, x̂) = γj x̂+(1−γj)(1−xi−d).
Because xi ≤Mi ≤ 1/2 + 2d, we have Πj(xi, x̂) ≥ γix̂+ (1− γi)(1/2− 3d).

When 1 − xi < xj < xi, player j’s expected payoff is given by Πj(xi, xj) = xj − (1 −
γj)d < 1/2 + 2d. The last inequality comes from the inequality xj < xi ≤Mi ≤ 1/2 + 2d.

We compare γix̂+ (1− γi)(1/2− 3d) with 1/2 + 2d:

γix̂+ (1− γi)(1/2− 3d)− (1/2 + 2d) = γi(x̂− 1/2)− (5− 3γi)d > 0.

The inequality comes from the supposition in the statement. It implies that, for any xi,

demanding x̂ is the unique best response of player j. However, given this response, player

i’s best response is [x̂]−, which is greater than 1/2 + 2d. This is a contradiction.

Now that we know that Mi > 1/2 + 2d, the following proves that Mj > 1/2 + 2d in

two steps.

(ii) γj > 0

To prove it, we suppose the contrary: Mj ≤ 1/2+2d. Because Mi > 1/2+2d, player i

makes a demand higher than 1/2+2d. Such demand is incompatible because mj ≥ 1/2−2d
as shown in Lemma A.2 and is always underbidden because Mj ≤ 1/2 + 2d. Hence, player
i should demand x̂ to take the best advantage of the chicken type when she demands more

than 1/2 + 2d. Now consider player j’s strategy. When xj ≤ 1/2 + 2d as supposed, his
highest expected payoff is no greater than 1/2 + 2d because mi ≥ 1/2 − 2d. On the other
hand, when he demands [x̂]−, he expects to obtain at least γix̂+(1− γi)(1/2− 3d). This is
because he obtains at least 1/2− 2d minus the bargaining cost when player i is the rational
type and demands no more than 1/2 + 2d. (When player i demands x̂ and turns out to be

the rational type, his payoff is even higher.) From the first part, we know that the latter

gives the higher payoff. This is a contradiction. Therefore, if γj > 0, the statement in the

lemma has to hold.

(iii) γj = 0

To prove it, we suppose the contrary: Mj ≤ 1/2 + 2d. In the following, we look at
player i’s demand χ such that χ > 1/2+2d. Because Mi > 1/2+2d, player i makes such a

demand in equilibrium. We compare the payoff from that demand with the one from some

other demand. Because mj ≥ 1/2− 2d, the demands are incompatible given χ. Moreover,
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because Mj ≤ 1/2 + 2d, player j makes a lower demand than χ. Hence, player i obtains
the payoff of 1− xj − d from the demand of χ because γj = 0.

(iii-a) 1−mj > Mj

When 1−mj > Mj , we consider player i’s switch of demands to max{Mj , 1−mj − d}.
Because mj ≥ 1/2 − 2d by Lemma A.2 and Mj ≤ 1/2 + 2d by supposition, it holds that
max{Mj , 1−mj − d} ≤ 1/2+2d. We consider two cases depending on whether Mj is lower

than 1−mj − d or not.
First, suppose that Mj ≥ 1 −mj − d and consider player i’s switch to the demand of

Mj . For any xj such that 1 −Mj < xj ≤ Mj , the demands are incompatible and player j

makes either a lower or an identical demand. Hence, the payoff of player i is unchanged.

For any xj such that mj ≤ xj ≤ 1 −Mj , the demands become compatible given xi = Mj .

Then, player i obtains (1 +Mj − xj)/2. Compare this with the one from the demand χ:

1 +Mj − xj
2

− (1− xj − d) = −1 +Mj + xj + 2d

2
≥ −1 +Mj +mj + 2d

2
≥ d
2
> 0.

By definition, xj ≥ mj and thus we have the first inequality above. The second inequality

comes from the current supposition. Because 1 −mj > Mj , the latter contingency has a

positive probability. Hence, the expected payoff of player i increases by switching from χ

to 1−mj − d. This is a contradiction as player i is supposed to demand χ in equilibrium.
Next, suppose that Mj < 1 − mj − d and consider player i’s switch to the demand

of 1 − mj − d. When mj + d < xj ≤ Mj , the payoff of player i does not change by the

switch as the demands are incompatible and player j makes a lower demand. On the other

hand, when mj ≤ xj ≤ mj +d, the demands become compatible given player i’s demand of

1−mj − d. Then, player i obtains (1+ 1−mj − d−xj)/2 = (2−mj − d−xj)/2. Compare
this with the one from the demand χ:

2−mj − d− xj
2

− (1− xj − d) = −mj + d+ xj

2
≥ d
2
> 0.

By definition, xj ≥ mj and thus we have the first inequality above. By the definition of

mj , the latter contingency has a positive probability. Hence, the expected payoff of player i

increases by switching from χ to 1−mj − d. This is a contradiction as player i is supposed
to demand χ in equilibrium.

(iii-b) 1−mj ≤Mj

Because 1−mj ≤Mj and mj ≤Mj , we have 2Mj ≥Mj +mj ≥ 1 or Mj ≥ 1/2.
If Mj = 1/2, the above inequality implies that mj = 1/2 and thus player j demands

1/2 with the probability one. Given this demand, the unique best response of player i is

to demand 1/2 because it saves the bargaining cost without affecting the share that he

receives. This contradicts the inequality Mi > 1/2 + 2d.
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Now suppose that Mj > 1/2. We consider the switch of demands by player i from χ

to Mj − δ such that δ < d and Mj − δ > 1/2. We study three cases depending on the size

of player j’s demand.

First, suppose that xj > Mj − δ. Then, the payoff of player i from Mj − δ is given

by Mj − δ − d because xj > Mj − δ > 1/2. Because xj > Mj − δ > 1/2, we have

1 − xj − d < 1/2 − d < Mj − δ − d. Namely, player i is better off by demanding Mj − δ

instead of χ. Note that this contingency occurs with a positive probability because of the

definition of Mj .

Second, suppose that 1 − (Mj − δ) < xj ≤ Mj − δ. Then, the switch to Mj − δ does

not change player i’s payoff because the demands are still incompatible and player j makes

either a lower or an identical demand.

Finally, suppose that xj ≤ 1 − (Mj − δ). Given the demand of Mj − δ, the demands

become compatible and player i obtains (1+Mj − δ− xj)/2. Compare this with that from
χ:

1 +Mj − δ − xj
2

− (1− xj − d) = −1 +Mj − δ + xj
2

+ d

≥ −1 +Mj − δ +mj

2
+ d

≥ −δ
2
+ d > 0.

By definition, we have that xj ≥ mj , which causes the first inequality. The second inequality

comes from the current supposition that 1 − mj ≤ Mj . The last equality holds because

δ < d by construction. Hence, player i obtains a higher payoff from Mj − δ than from χ.

Combining these arguments, we can conclude that the expected payoff of player i is

higher from the demand Mj − δ than from the demand χ. This contradicts with the fact

that χ needs to be made by player i in equilibrium.

The above shows that, ifMj ≤ 1/2+2d, the inequalityMi > 1/2+2d is never satisfied.

Therefore, it also has to hold that Mj > 1/2 + 2d when γj = 0. Q.E.D.

The essential part of the above proof is to show that, when player i may be the chicken

type and her maximum demand is no more than 1/2+2d, the other player, player j, would

want to exploit the possibility of the chicken type by demanding x̂. By demanding x̂, player

j obtains at least γix̂+(1−γi)(1/2−3d) because he obtains at least 1−(1/2+2d)−d against
the rational type. On the other hand, because mi ≥ 1/2− 2d by lemma A.2, he obtains at
most 1/2 + 2d by trying to underbid some of player i’s demands and demanding less than

1/2 + 2d. The former is decreasing in d and the latter is increasing in d and moreover the

former is larger than the latter at d = 0. The condition that the former is bigger than the

latter is the one specified in the lemma. In any equilibrium, one player cannot demand x̂
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with the probability of one as it leads to the underbidding by the other. It implies that

the supposed demands of player i is too low and, in equilibrium, player i needs to demand

more than 1/2 + 2d with a positive probability.

Note that, combined with Lemma A.2, this lemma implies that the players’ demands

become incompatible with a positive probability.

The underlying cause of high demands is the desire of the player who wants to exploit

the chicken type. Hence, the maximum demand cannot be higher than x̂.

Lemma A.4

Suppose that Assumption A’ is satisfied and also that γmax > 0. Then, Mi ≤ x̂ for
i ∈ {1, 2}.
(proof)

Without loss generality, let us assume that Mi ≥Mj . By assuming Mi > x̂, we derive

a contradiction. We consider the switch of the demands from the one above x̂ to the one

below it. It improves the payoff of the player against the chicken type because he leaves the

negotiation after the former and yields in the latter. In the following, we show that there

is such a switch that improves the payoff against the rational type as well.

First, suppose that Mi > Mj . Consider player i’s switch of demands from Mi or a

little lower than it to 1/2 + 2d. Because Mj > 1/2 + 2d, player i creates the chance of

underbidding. Namely, when xj > 1/2 + 2d, the switch improves her expected payoff. On

the other hand, when player j makes the demand no more than 1/2 + 2d, player i’s payoff

is unchanged. This is a contradiction.

Second, suppose that Mi =Mj and one player demands it with a positive probability.

Without loss of generality, we suppose that it is player i who does so. (By Lemma A.1,

there exists at most one player who does so.) Then, switching from x̂ to 1/2+ 2d improves

player i’s expected payoff by the same reason as above. Thus, this case also leads to a

contradiction.

Finally, suppose that Mi = Mj and no player demands it with a positive probability.

Consider that player i switches her demands fromMi−δ to 1/2+2d. When player j demands
more than Mi− δ, player i decreases her payoff by this switch because she underbids player
j in either case. On the other hand, when player j demands no more than Mi − δ, player i
improves her payoff because only her altered demand underbids player j’s. When we take

sufficiently small δ, we can lower the probability of the former because player j does not

demand Mj with a positive probability. Hence, there exists some δ given which the above

switch improves player i’s expected payoff. Then, by the continuity of the distribution, we

can conclude that player i improves her payoff by switching to the demand of 1/2 + 2d
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whenever she is supposed to demand no lower than Mi − δ. By definition, the event

xi ∈ (Mi − δ,Mi) occurs with a positive probability. It implies that player i wants to

deviate with a positive probability.

In any of the three cases above, we have had a contradiction. Therefore, it has to hold

that Mi ≤ x̂. Q.E.D.

Lemma A.4 shows that the supremum of player i’s demands cannot be higher than x̂.

The next lemma shows that, when the bargaining cost is sufficiently small, it is actually

equal to x̂. Without loss of generality, suppose that the highest demand of player i is

no lower than that of player j. When the bargaining cost is sufficiently small, Lemma

A.3 shows that player i’s demand Mi always leads to the incompatibility. Moreover, by

supposition it is always underbidden. The reason that she makes such a demand should be

to take advantage of the chicken type. Then, it is best for player i to set Mi = x̂ to take

the maximum advantage. Given this possibility, the desire to underbid causes player j to

make demands up to x̂.

Lemma A.5

Suppose that Assumption A’ is satisfied, that γmax > 0, and that d < (γmax(x̂ −
1/2))/(5− 3γmax). Then, it holds that M1 =M2 = x̂.

(proof)

We prove the statement in two steps.

(i) γ1 > 0 and γ2 > 0.

We show that, if both γ1 > 0 and γ2 > 0, it holds that M1 = M2 = x̂. Suppose not.

Because Lemma A.4 shows thatMi ≤ x̂, it holds thatMk < x̂ for some k ∈ {1, 2}. Without
loss of generality, suppose that Mi ≥Mj .

First, consider the case that Mj < Mi < x̂. Given this inequality, player i is better

off by demanding x̂ than by making a demand in (Mj ,Mi] because both give the same

payoff against the rational type and the former improves her payoff against the chicken

type. Hence, this case does not happen.

Second, consider the case that Mj < Mi = x̂. By the same reason as above, player i is

better off by demanding x̂ than by making a demand in (Mj ,Mi). Hence, player i does not

make any demand in (Mj ,Mi). We study two cases depending on whether player i demands

Mj with a positive probability or not. We start with the case that she does. Lemma A.1

shows that at most one player makes a given demand with a positive probability. Hence,

we have that Pi(Mj) > 0 = Pj([Mj ]n−) for any n ≥ 0. Because player j always demands
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less than Mj , player i is better off by demanding x̂ than by demanding Mj due to the

possibility of the chicken type. Therefore, this case does not occur. Next, suppose that

Pi([Mj ]n−) = 0 for any n ≥ 0. We compare player j’s strategy of demanding Mj − ² with
that of demanding [x̂]−. When player i is the rational type and demands no more than

Mj − ², these two strategies give the same payoff to player j. When player i is the rational
type and demands more than Mj − ² and less than Mj , player j is worse off. In particular,

the former gives Mj − ² and the latter gives at least 1 −Mj . Either when player i is the

rational type and demands x̂ or when player i is the chicken type, player j is better off as

the former gives Mj − ² and the latter gives x̂. When we subtract the expected payoff given
the demand of Mj − ² from that given the demand of x̂, the difference is at least as large

as γi(x̂−Mj + ²)− (1− γi)Prob(Mj − ² < xi < Mj)(2Mj − ²− 1). Because Pi([Mj ]n−) = 0

for any n ≥ 0, it holds that Prob(Mj − ² < xi < Mj) ↓ 0 as ² ↓ 0. Hence, there exists some
²0(> 0) such that this becomes positive for any ² < ²0. This is a contradiction. Therefore,

this case does not occur, either.

Finally, consider the case that Mi = Mj < x̂. Either when Pi(Mi) > 0 or when

Pi(Mi) = 0, the similar argument as in the above paragraph shows that some player (player

i in the former or player j in the latter) wants to deviate. Namely, the contradictions will

occur given this supposition. Hence, this case does not occur.

(ii) γj = 0 < γi.

We now want to show that, even if one player has no possibility of the chicken type, it

holds that M1 = M2 = x̂. Suppose not. There are four possible cases, which we consider

in turn.

First, consider the case that Mi < Mj < x̂. Given this inequality, player j is better

off by demanding x̂ than by making a demand in (Mi,Mj ] because both give the same

payoff against the rational type and the former improves her payoff against the chicken

type. Hence, this case does not happen.

Second, consider the case that Mi < Mj = x̂. Player j has no incentive to make

a demand in (Mi,Mj) because the demand of x̂ is better for him due to the possibility

of the chicken type. Player j does not demand Mi with a positive probability. If he

would do so, Lemma A.1 shows that player i would not do so and then, by the same

reason as above, player j would be better off by demanding x̂. Now consider player i’s

switch of demands from Mi − ² to [x̂]−. When player j demands no more than Mi − ²,
these two demands give the same payoff to player i. When player j demands more than

Mi − ² and less than Mi, player i is worse off. In particular, the former gives Mi − ²
and the latter gives at least 1 −Mi. When player j demands x̂, player i is better off as

the former gives Mi − ² and the latter gives x̂. When we subtract the expected payoff
given the demand of Mi − ² from that given the demand of x̂, the difference is at least
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as large as Prob(xj = x̂)(x̂ −Mi + ²) − Prob(Mi − ² < xj < Mi)(2Mi − ² − 1). Because
Prob(Mi − ² < xj < Mi) ↓ 0 as ² ↓ 0, there exists some ²0(> 0) such that this becomes

positive for any ² < ²0. This is a contradiction. Therefore, this case does not occur, either.

Third, consider the case that Mi = Mj < x̂. We want to claim that neither player

demands Mi(= Mj) with a positive probability. From Lemma A.1, we know that at most

one player demands it with a positive probability. Suppose that Pi(Mi) = 0. Because player

i always demands less than Mj , player j is better off by demanding x̂ than by demanding

Mj due to the possibility of the chicken type. Hence, player j does not demand Mj with

a positive probability. Suppose that Pj(Mj) = 0. Because Mi = Mj , player i’s demand of

Mi is always underbidden. Since Mj > 1/2 + 2d and player j is known to be the rational

type, it is better for him to demand 1/2. Therefore, neither player demands Mi(= Mj)

with a positive probability. We compare player j’s strategy of demanding Mj − ² with that
of demanding x̂. By the similar argument as in the above part (i), we can show that the

former is better for player j when ² is sufficiently small. This is a contradiction. Therefore,

this case does not occur.

Finally, consider the case that Mj < Mi ≤ x̂. Given this inequality, player i is better
off by demanding 1/2 than by making a demand in (Mj ,Mi] because player j is known to

be the rational type and the latter demand is always underbidden by him. (From Lemma

A.3, we know thatMj > 1/2+2d under the supposition.) Hence, this case does not happen.

Because all four cases have led to a contradiction, we can conclude that M1 =M2 = x̂.

Q.E.D.

We now focus on the players’ demands bigger than 1/2 + 2d and no bigger than x̂:

1/2 + 2d < xk ≤ x̂ for any k ∈ {1, 2}. Given these demands, lemma A.2 implies that
the demands become incompatible. The reason to randomize the demands that lead to

incompatibility is the balance between the desire to make a higher demand and the fear of

being underbidden. When a player does not make a demand in a certain interval, the other

player does not have to fear the underbidding in that interval. Hence, instead of making a

demand in that interval, he prefers making the demand at the highest end of that interval.

It implies that, if a player does not make a demand in some interval above 1/2+2d, then the

other will not, either. However, if both players do not make demands in a certain interval,

due to the lack of the underbidding, at least a player would want to make the demand at

the highest end of that interval instead of making demands just below the lowest end of

that interval. This leads to a contradiction and there should be no gap in the distribution

of demands above 1/2 + 2d.
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Lemma A.6

Suppose that Assumption A’ is satisfied, that γmax > 0, and that d < (γmax(x̂ −
1/2))/(5− 3γmax).
(1) If there ism such that 1/2+2d < m < x̂ and

Rm
1/2+2d

fj(x)dx+
P

x∈(1/2+2d,m) Pj(x) = 0,

it holds that
Rm
1/2+2d

fi(x)dx+
P

x∈(1/2+2d,m) Pi(x) = 0.

(2) There existsm∗ such that, for some j ∈ {1, 2}, 1/2+2d < m∗ < x̂ and Rm∗+δ
m∗ fj(x)dx+P

x∈[m∗,m∗+δ) Pj(x) > 0 for any δ > 0. Given such m
∗, it holds that, for any a and b

such that m∗ ≤ a < b ≤ x̂, R b
a
fk(x)dx+

P
x∈(a,b) Pk(x) > 0 for k = 1, 2.

(proof)

We prove the lemma in several steps.

(i) Take a and b such that 1/2+2d < a < b ≤ x̂. Suppose that R b
a
fj(x)dx+

P
x∈(a,b) Pj(x) =

0, and that
R b+δ
b

fj(x)dx +
P

x∈[b,b+δ) Pj(x) > 0 for some δ ≥ 0. Then, we claim thatR b
a
fi(x)dx+

P
x∈(a,b) Pi(x) = 0.

Take any x ∈ (a, b) and compare player i’s strategy of demanding it with that of
demanding [b]n− for some n. Specifically, as the latter strategy, suppose that player i

demands b when player j does not demand b with a positive probability, and that she

demands [b]− when he does. (By Lemma A.1, player j never demands [b]n− for any n ≥ 1.)
By abusing the notation, we call this demanding [b]n−.

By Lemma A.2, we know that player j’s demand is no smaller than 1/2− 2d. Hence,
any demand in (a, b) by player i will lead to the incompatibility due to the supposition that

a > 1/2 + 2d. Demanding [b]n− by player i also leads to the incompatibility. Hence, given

either of the strategies, the players’ demands become incompatible.

When player j demands no more than a, player i’s strategy of making a demand in (a, b)

gives her the same payoff as her strategy of demanding [b]n− because player j underbids

player i. When player i demands no less than b, both player i’s demand in (a, b) and her

demand of [b]n− means that player i underbids player j. By supposition, the probability of

this underbidding is positive. Hence, under the equitable rule, the latter strategy gives the

higher expected payoff to player i. Therefore, player i never makes a demand in (a, b).

(ii) We now prove the first statement of the lemma.

Because Mj = x̂, we have either Pj(x̂) > 0 or
R x̂
x̂−δ fj(x)dx +

P
x∈(x̂−δ,x̂) Pj(x) > 0

for any δ > 0. Hence, for any m such that 1/2 + 2d < m < x̂, it holds that
R x̂
m
fj(x)dx +P

x∈[m,x̂] Pj(x) > 0. Then, the direct application of the above claim gives us the first

statement of the lemma.

(iii) We want to show that there exists m∗ such that, for some j ∈ {1, 2}, 1/2+2d < m∗ < x̂
and

Rm∗+δ
m∗ fj(x)dx+

P
x∈[m∗,m∗+δ) Pj(x) > 0 for any δ > 0.
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From Lemma A.5, we know that Mi = Mj = x̂. Lemma A.1 shows that at most

one player demands x̂ with a positive probability. Without loss of generality, suppose

that player j does not demand x̂ with a positive probability. Then, the equation Mj = x̂

implies that
R x̂
x̂−δ fj(x)dx +

P
x∈(x̂−δ,x̂) Pi(x) > 0 for any δ > 0. Let us take δ such that

x̂ − δ > 1/2 + 2d. If Pi(x) > 0 for some x ∈ (x̂ − δ, x̂), then such x will satisfy the

condition for m∗. If Pi(x) = 0 for any x ∈ (x̂− δ, x̂), it holds that
R x̂
x̂−δ fj(x)dx > 0. Define

m∗ ≡ inf{x |x ≥ x̂ − δ and fj(y) > 0 for x < ∀y < x̂}. The above inequality implies that
m∗ < x̂ and it satisfies the stated condition.

(iv) We now want to show that, when
Rm∗+δ
m∗ fk(x)dx +

P
x∈[m∗,m∗+δ) Pk(x) > 0 for any

δ > 0 holds for k = j, it also holds for k = i.

Suppose not. Then, there exists δ0 > 0 such that
Rm∗+δ0
m∗ fi(x)dx+

P
x∈[m∗,m∗+δ0) Pi(x)

= 0. (We take δ0 such that m∗ + δ0 < x̂.) Because Mi = x̂, it has to hold thatR x̂
m∗+δ0 fi(x)dx+

P
x∈[m∗+δ0,x̂] Pi(x) > 0. Because m

∗ > 1/2+2d, any demand in [m∗,m∗+

δ0) leads to the incompatibility. Then, for player j, it is better to demand [m∗+ δ0]− under

the equitable rule by the same logic used in the first step above. This is a contradiction.

Hence, the statement has to hold for k = i as well.

(v) Take m∗ that satisfies the second statement of the lemma and take a and b such that

m∗ < a, b < x̂. We claim that there is no gap in distribution either at (m∗, b) or at

(a, x̂). Namely, We claim that, for any k ∈ {1, 2}, R b
m∗ fk(x)dx+

P
x∈(m∗,b) Pk(x) > 0 andR x̂

a
fk(x)dx+

P
x∈(a,x̂) Pk(x) > 0 for any a and b such that m

∗ < a, b < x̂.

First, let us prove the first inequality. Suppose not. Without loss of generality, suppose

that
R b
m∗ fj(x)dx +

P
x∈(m∗,b) Pj(x) = 0 for some b > m∗. Because Mj = x̂, it has to

hold that b < x̂ and
R x̂
b
fj(x)dx +

P
x∈(b,x̂) Pj(x) > 0. The claim at the first step shows

that
R b
m∗ fi(x)dx +

P
x∈(m∗,b) Pi(x) = 0. On the other hand, the forth step shows thatRm∗+δ

m∗ fk(x)dx +
P

x∈[m∗,m∗+δ) Pk(x) > 0 for any k and any δ. Given this, the above

inequality implies that Pj(m
∗) > 0. Then, from Lemma A.1, it has to hold that Pi(m

∗) =

0. Because
Rm∗+δ
m∗ fi(x)dx +

P
x∈[m∗,m∗+δ) Pi(x) > 0 for any δ > 0, it has to hold thatR b

m∗ fi(x)dx+
P

x∈(m∗,b) Pi(x) > 0. However, this contradicts the prediction proven above.

Second, let us prove the second inequality. Suppose not. Without loss of generality,

suppose that
R x̂
a
fj(x)dx +

P
x∈(a,x̂) Pj(x) = 0 for some a < x̂. Because Mj = x̂, it

has to hold that Pj(x̂) > 0. Then, the claim at the first step shows that
R x̂
a
fi(x)dx +P

x∈(a,x̂) Pi(x) = 0 Because Pj(x̂) > 0, Lemma A.1 shows that Pi(x̂) = 0. Because Mi = x̂,

it implies that
R x̂
a
fi(x)dx+

P
x∈(a,x̂) Pi(x) > 0. This is a contradiction.

(vi) We argue that, if there is a gap in distribution for a player, the distribution of the other

player’s demands has a gap at the same place. Namely, take m∗ that satisfies the second

statement of the lemma and take a and b such that m∗ < a < b < x̂. We claim that, if for
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any δ > 0, (1)
R a
a−δ fk(x)dx +

P
x∈(a−δ,a] Pk(x) > 0, (2)

R b
a
fk(x)dx +

P
x∈(a,b) Pk(x) = 0,

and (3)
R b+δ
b

fk(x)dx+
P

x∈[b,b+δ) Pk(x) > 0 hold for k = j, they also hold for k = i.

Suppose not. The claim proven at the first step shows that
R b
a
fi(x)dx+

P
x∈(a,b) Pi(x)

= 0. Hence, either (1’)
R a
a−δ fi(x)dx+

P
x∈(a−δ,a] Pi(x) = 0 or

(3’)
R b+δ
b

fi(x)dx+
P

x∈[b,b+δ) Pi(x) = 0 holds for for some δ > 0.

First, consider the case that the condition (3’) holds. Because Mi = x̂, we haveR x̂
b+δ

fi(x)dx+
P

x∈[b+δ,x̂] Pi(x) > 0. Then, applying the claim at the first step of this proof,

we can conclude that
R b+δ
a

fj(x)dx +
P

x∈(a,b+δ) Pj(x) = 0. This contradicts the above

condition (3).

Next, consider the case that the condition (1’) holds. Then, it holds that
R b
a−δ fi(x)dx+P

x∈(a−δ,b) Pi(x) = 0. From the preceding paragraph, we know that the condition (3) holds

also for player i:
R b+δ
b

fi(x)dx +
P

x∈[b,b+δ) Pi(x) > 0 for any δ. Then, applying the claim

at the first step of this proof, we can conclude that
R a
a−δ fj(x)dx +

P
x∈(a−δ,b) Pj(x) = 0.

This contradicts the above condition (1).

Therefore, the statement of this step has to hold.

(vii) There should be no gap in distribution.

Take m∗ that satisfies the second statement of the lemma and take a and b such that

m∗ ≤ a < b ≤ x̂. We claim that, for any such a and b,
R b
a
fk(x)dx+

P
x∈(a,b) Pk(x) > 0 for

any k.

Suppose not. From the claim at the fifth step, we know that, if there is a gap, it should

occur at the interval (a, b) such that m∗ < a < b < x̂. Without loss of generality, suppose

that there is a gap in distribution for player j. Because Mj = x̂, it holds that
R x̂
b
fj(x)dx+P

x∈[b,]x̂ Pj(x) > 0. By the construction of m
∗,
Rm∗+δ
m∗ fj(x)dx +

P
x∈[m∗,m∗+δ) Pj(x) > 0

for any δ > 0. Hence, if there is a gap in distribution, we can choose a and b so that the

following conditions are satisfied: (1)
R a
a−δ fj(x)dx+

P
x∈(a−δ,a] Pj(x) > 0, (2)

R b
a
fj(x)dx+P

x∈(a,b) Pj(x) = 0, and (3)
R b+δ
b

fj(x)dx +
P

x∈[b,b+δ) Pj(x) > 0. Then, the sixth step

above shows that the same conditions hold for player i.

We consider two cases.

(vii-1) Pk(a) > 0 for some k ∈ {1, 2}.
Lemma A.1 shows that, for any demand, at most one player makes it with a positive

probability. When player k switches his demand from a to [b]n−, the same logic as in the

first step above shows that he can improve his payoff. (We use the same convention for

[b]n− as in the proof of the first step.) Hence, this case does not occur.

(vii-2) Pk(a) = 0 for any k ∈ {1, 2}.
By supposition, we have that

R a
a−δ fj(x)dx+

P
x∈[a−δ,a) Pj(x) > 0 for any δ > 0. Take

² > 0 and evaluate the change in the payoffs of player i from demanding a− ² to that from
demanding [b]n−. When player j demands no more than a−², player i’s payoff is same given
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either demand. When player j demands between a− ² and a, the switch of demands leads
to the decrease of player i’s payoff by at most a− ²− (1− a) < 2a− 1. Because Pj(a) = 0,
it occurs with the probability that

R a
a−² fj(x)dx +

P
x∈(a−²,a) Pj(x). Hence, the expected

loss of player i from this switch is at most (2a− 1)
hR a
a−² fj(x)dx+

P
x∈(a−²,a) Pj(x)

i
. On

the other hand, when player j demands no less than b, the switch of demands leads to

the increase of the payoff by at least (b − a)
hR 1
b
fi(x)dx+

P
x∈[b,1) Pi(x)

i
(> 0). Observe

that the former converges to zero as ² → 0. Hence, there exists some ²0(>) such that the

expected payoff of player i increases by the switch if ² < ²0. This means that player i does

not make a demand in (a− ²0, b). This is a contradiction.
Therefore, the statement in the lemma has to hold. Q.E.D.

When the players randomize their demands, they do not make any demand with a

positive probability except for x̂. To understand this property, suppose not. For example,

suppose that player i demands a(< x̂) with a positive probability. Then, player j wants to

switch any of his demands a little higher than a to [a]−. By doing so, he will lose a little

when he underbids player i but will increase the chance of underbidding substantially. This

will create a gap above a, which should not occur as shown in the above lemma. Note that

this logic does not apply at the upper end of the distribution. The next lemma formally

proves this property.

Lemma A.7

Suppose that Assumption A’ is satisfied, that γmax > 0, and that d < (γmax(x̂ −
1/2))/(5− 3γmax).

Take m∗ such that 1/2 + 2d < m∗ < x̂ and
Rm∗+δ
m∗ fj(x)dx +

P
x∈[m∗,m∗+δ) Pj(x) > 0

for any δ > 0 for some j ∈ {1, 2}. Then, it holds that Pi(a) = 0 for any a ∈ [m∗, x̂) and
any i ∈ {1, 2}.
(proof)

Suppose not. Without loss of generality, suppose that Pi(a) > 0 for some a ∈ [m∗, x̂).
Lemma A.6 implies that

R a+δ
a

fj(x)dx+
P

x∈(a,a+δ) Pj(x) > 0 for any δ > 0.

We now compare the payoff of player j from demanding [a]− with that from demanding

a + ² (0 < ² < δ). When player i demands less than a, the two demands give the same

payoffs to player j. Thus, for the comparison, we can restrict our attention to the case that

xi ≥ a. In such a case, the demand of [a]− approximately gives a to player j. On the other
hand, by demanding a + ², player j obtains 1 − xi if xi ∈ [a, a + ²] and obtains a + ² if
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xi > a + ². When xi ∈ [a, a + ²], the former is bigger than the latter because 1 − xi ≤
1− a < 1/2− 2d and a > 1/2 + 2d. The difference is no smaller than a− (1− a) = 2a− 1.
When xi > a + ², the former is smaller than the latter by ². Thus, when we subtract the

expected payoff of the latter from that of the former, the difference is at least as large as

(2a− 1)Pi(a ≤ xi < a + ²)− ²Prob(xi > a+ ²) > (2a − 1)Pi(a) − ²Prob(xi > a). Because
2a > 1, there exists some ²0 > 0 such that, for any ² < ²0, the above expression becomes

positive. It implies that player j does not make a demand in the interval (a, a + ²0). This

contradicts the property of no gap as is proven in Lemma A.6. Therefore, it has to hold

that Pi(a) = 0. Q.E.D.

The above lemmas have shown that the players make demands in an interval (m, x̂]

where m > 1/2 + 2d (although they have not precluded the possibility that they make

demands less than 1/2 + 2d). Due to the possible gain from the chicken type as well as

that from underbidding, making demands in this interval is better than making demands

near one half when the bargaining cost is sufficiently small. Hence, the players do not make

demands less than 1/2+2d and they randomize their demands only over the interval (m, x̂]

where m > 1/2+2d. Summarizing this argument, the next lemma shows that the lower end

of the distribution is bigger than 1/2+2d and lower than x̂ for either player: 1/2+2d < mk

for k ∈ {1, 2}.

Lemma A.8

Suppose that Assumption A’ is satisfied, that γmax > 0, and that d <
γ3max(2x̂−1)
2(5−3γmax)

.

It holds that 1/2 + 2d < mk < x̂ for any k ∈ {1, 2}.
(proof)

We prove that mk < x̂ by supposing the contrary. Without loss of generality, suppose

that mi = Mi = x̂. Lemma A.1 shows that at most one player makes a demand with a

positive probability and thus this implies that player i demands x̂ with the probability one.

Under Assumption A’, the unique best response of player j is to demand [x̂]−. However,

given this response, the best response of player i is to demand [x̂]2−, which is a contradiction.

In the following, we prove 1/2 + 2d < mk in three steps.

As the first step, we show that neither player makes a demand in (1/2+2d,m) for some

m > 1/2 + 2d when the bargaining cost is small in the sense specified in the proposition.

Note that (γmax(x̂ − 1/2))/(5 − 3γmax) > γ3max(2x̂ − 1)/(2(5 − 3γmax)). Thus, from the

lemmas A.5, A.6, and A.7, we know that the players randomize their demands over the
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same interval (m, x̂) where m ≥ 1/2 + 2d and they do not make a demand in the interval
with a positive probability. (We take the limit of the preceding arguments when we consider

the case that m = 1/2+ 2d.) Moreover, Lemma A.2 shows that mj ≥ 1/2− 2d. Hence, the
expected payoff of player i from a demand xi ∈ (m, x̂) is given by the following formula:

EΠi(xi) ≡γjxi + (1− γj)
(
(xi − d)

¡
1− Fj(xi)

¢
+

Z xi

m

(1− y − d)fj(y)dy

+

Z 1/2+2d

1/2−2d
(1− y − d)fj(y)dy +

X
y∈[1/2−2d,1/2+2d]

(1− y − d)Pj(y)
)
.

(Note that, as in the main text, Pj(x̂) = 1− Fj([x̂]−).) For the randomization to occur, it
needs to be constant in (m, x̂). By the analysis in the main text, we know that it is so only

when the distribution function takes the following form for x ∈ (m, x̂) with some Aj :

Fj(x) =
1

1− γj

µ
1− Aj√

2x− 1

¶
.

Because Fj(x̂) ≤ 1, it has to hold that Aj ≥ γj
√
2x̂− 1. Because Fj(x) ≥ 0, it has to hold

that
√
2x− 1 ≥ Aj . By taking the square of both sides, rearranging the terms, and then

substituting the above inequality, we obtain x ≥ (A2j + 1)/2 ≥ (γ2j (2x̂− 1) + 1)/2. Because
the randomization occurs over the same interval, we have that m ≥ (γ2max(2x̂− 1) + 1)/2.
By the supposition of the lemma, the right hand side is higher than 1/2 + 2d. This proves

that neither player makes a demand in (1/2 + 2d,m) for some m > 1/2 + 2d.

Without loss of generality, let us suppose that γmax = γi > 0. As the second step,

we claim that player j does not make a demand in [1/2 − 2d, 1/2 + 2d]. Define qk to be
the probability that player k (k = 1, 2) makes a demand in [1/2 − 2d, 1/2 + 2d]: qk =
Prob(1/2 − 2d ≤ xk ≤ 1/2 + 2d). When he demands m, he obtains m against the chicken

type, obtains at least (1/2 − 2d) − d against the rational type who makes the demand in
[1/2 − 2d, 1/2 + 2d], and obtains m − d against the rational type who demands no less
than m. (The following argument applies to the degenerate case m = x̂ by appropriately

choosing the demand of player j in place of m. Specifically, when player i demands x̂ with

a positive probability and thus qi < 1, we suppose that player j demands [x̂]−. Given this

modification, the evaluation of the expected payoffs in the following becomes valid even for

the degenerate case.) Hence, his expected payoff from m, EΠj(m), satisfies the following

inequality:

EΠj(m) ≥ γim+ (1− γi)qi
µ
1

2
− 3d

¶
+ (1− γi)(1− qi)(m− d).

On the other hand, when he makes a demand in [1/2 − 2d, 1/2 + 2d], he obtains at most
1/2 + 2d against the chicken type, obtains at most 1/2 + 2d against the rational type who

makes the demand in [1/2 − 2d, 1/2 + 2d], and obtains (1/2 + 2d)− d against the rational
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type who demands no less than m. (Note that m > 1/2 + 2d.) Hence, his expected payoff

from a demand xj ∈ [1/2− 2d, 1/2 + 2d], EΠj(xj), satisfies the following inequality:

EΠj(xj) ≤ γi

µ
1

2
+ 2d

¶
+ (1− γi)qi

µ
1

2
+ 2d

¶
+ (1− γi)(1− qi)

µ
1

2
+ d

¶
.

We now compare these two strategies:

EΠj(m)− EΠj(xj)
≥ γim+ (1− γi)qi

µ
1

2
− 3d

¶
+ (1− γi)(1− qi)(m− d)

−
∙
γi

µ
1

2
+ 2d

¶
+ (1− γi)qi

µ
1

2
+ 2d

¶
+ (1− γi)(1− qi)

µ
1

2
+ d

¶¸
≥ γi

µ
m− 1

2

¶
− (5− 3γi)d.

Because m ≥ (γ2max(2x̂− 1) + 1)/2, the last expression is positive by the supposition of the
lemma. It implies that player j is better off by demanding m than by making any demand

in [1/2− 2d, 1/2 + 2d].
As the third and final step, we show that player i does not want to make a demand

in [1/2 − 2d, 1/2 + 2d], either. Such a demand causes the incompatibility and moreover
it underbids player j’s demand because the above argument shows that player j demands

more than 1/2 + 2d. For player i, it is, however, dominated by the demand of m because

the latter is larger than 1/2 + 2d and still underbids any of player j’s demand. It implies

that player i does not make a demand in [1/2− 2d, 1/2 + 2d]. Q.E.D.

The combination of the preceding lemmas and the derivation following Proposition

8 shows that, if there is an equilibrium, it is unique and the equilibrium distributions of

demands are given by the formula derived in the main text. To conclude the proof of

Proposition 8, we show that the derived distribution functions form an equilibrium.

First, note that the players’ payoffs are constant over the interval [m, x̂] by construction.

Thus, there is no incentive to deviate to a demand in [m, x̂],

Second, by using the argument in the proof of Lemma A.2, we can show that any

demand less than 1/2− 2d is dominated by the demand of 1/2.
Third, any deviation to a demand less than m but no less than 1/2 + 2d leads to the

incompatibility because m > 1/2 + 2d. Thus, such demand is dominated by the demand of

m because either will underbid the demand of the other with the probability of one and,

under the equitable rule, the latter attains a higher payoff.
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Finally, consider the deviation to a demand higher than x̂. Given such deviation,

the chicken type of the other player will leave the negotiation. Moreover, it causes the

incompatibility and is always underbidden by the other player. Hence, it is dominated

by a demand in (m, x̂) because the chicken type yields to it and it creates the chance of

underbidding.

Therefore, there is no profitable deviation and thus the derived distribution functions

give the unique equilibrium strategies.
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