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1 Introduction

This paper considers dynamic trading in a model proposed by Glosten and Milgrom (1985) with a
long-lived informed trader. When the same individual can buy, and in the future sell, the same asset,
the trader may profit from this round-trip trade, which we refer to as price manipulation. To analyze
dynamic informed trading, we propose the concept of a “tame equilibrium” with desirable properties,
such as the continuity of the informed trader’s value functions in the market maker’s prior belief.
We then provide the conditions under which a unique tame equilibrium exists, and under which the
equilibrium involves price manipulation. Finally, we provide a method to compute the equilibrium.
The possibility then exists to extend our analysis to a continuous-time setting and thereby provide a
reference framework in a discrete-time setting with a unique equilibrium and manipulation.

In this paper, we adopt a sequential trade framework with the trading of a risky asset over finitely
many periods between the competitive market maker, two types of strategic informed traders, and
liquidity traders. At the beginning of the game, nature chooses the liquidation value of a risky asset
to be high or low and informs the informed trader, who then trades dynamically. In each period, there
is a random determination of whether the informed trader or a liquidity trader trades. To prove the
existence of an equilibrium and obtain the conditions for the uniqueness of this equilibrium, we use
the Markov equilibrium property and consider the equilibrium where the market maker’s belief and
the number of remaining trading rounds determine the equilibrium strategy. In this way, we truncate
a T -period serial problem into that of two-period decision making.

The key element in the analysis is the probability of informed trading. Our approach is to split
a unit time interval into subintervals, where the length of each subinterval is a function of the in-
formed trading probability, and to consider the situation where the probability of informed trading is
sufficiently small and the number of trading rounds is sufficiently large.

Our results show that when there are relatively few trading rounds, the equilibrium is unique,
whereas when there are many trading rounds, there are multiple equilibria. The intuition is simple.
As there are two types of informed trader, there are four possible regimes, depending on whether each
type manipulates. By a single crossing property of the payoff difference between buy and sell orders,
we can prove that there is one equilibrium strategy within each regime when only one type manipu-
lates. However, when there are too many chances to re-trade, both types simultaneously manipulate
and this gives more “freedom” for multiple regimes to coexist. This analysis explicitly derives bounds
for the number of trading rounds for which these different situations arise.

Our analysis indicates that a tame equilibrium uniquely exists in a very subtle situation, even when
the probability of informed trading is sufficiently small. We also demonstrate that when the informed
trading probability is sufficiently high, a tame equilibrium may fail to exist. The characterization of a
tame equilibrium is given by the following properties.
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• The value functions are continuous, piecewise differentiable and monotone with respect to the
market maker’s belief.

• There are two regions of the market maker’s belief, depending on whether the slopes of the
value functions are steeper than one. We show that when the informed trader manipulates in
equilibrium, the slope needs to be steeper than one, because today he loses one dollar believing
that the benefit that he can obtain on the future payoff (namely, the slope of the value function)
is more than one dollar. This property specifies a region where manipulation can possibly arise
in equilibrium.

• The value functions converge to linear functions when the probability of informed trading goes
to 0.

Finally, in order to see whether a particular equilibrium is unique and compute the manipula-
tion rate, we develop a computational method using linear interpolation. Our computer simulation
numerically demonstrates the intuition for the theoretical results.

1.1 Related Literature

There is a vast empirical literature on market manipulation. For instance, Aggarwal and Wu (2006)
suggest that stock market manipulation may have important impacts on market efficiency. For ex-
ample, according to the empirical findings in Aggarwal and Wu (2006), while manipulative activities
appear to have declined in the main security exchanges, they remain a serious issue in both developed
and emerging financial markets, especially in over-the-counter markets.1

The theoretical literature begins with market manipulation by uninformed traders. Allen and Gale
(1992) provide a model of strategic trading in which some equilibria involve manipulation. Further-
more, Allen and Gorton (1992) consider a model of pure trade-based uninformed manipulation in
which asymmetry in buys and sells by liquidity traders creates the possibility of manipulation.

The first paper to consider manipulation by an informed agent within the discrete-time Glosten–
Milgrom framework is Chakraborty and Yilmaz (2004). They show that when the market faces un-
certainty about the existence of informed traders, and when there are many trading periods, long-lived
informed traders will manipulate in every equilibrium. Takayama (2010) furthers this analysis by
providing a lower bound for the number of trading periods necessary for the existence of manipula-
tion in equilibrium and shows that if the number of trading periods exceeds this lower bound, every

1See Jordan and Jordan (1996) on the cornering of the Treasury note auction market by Solomon Brothers in May
1991, Felixson and Pelli (1999) on closing price manipulation in the Finnish stock market, Mahoney (1999) on stock
price manipulation leading up to the US Securities Exchange Act of 1934, Vitale (2000) on manipulation in the foreign
exchange market and Merrick et al. (2005) on manipulation involving a delivery squeeze on a London-traded bond futures
contract. For a useful survey, see Putniņš (2011).
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equilibrium involves manipulation. Our results add to this work by showing that there are three possi-
bilities. First, if the number of trading rounds is too small, the equilibrium is unique and manipulation
does not arise. Second, if the number of trading rounds is too large, there are multiple equilibria with
manipulation. Finally, we show that in the middle case, the equilibrium with manipulation is unique.

Although our main concern in this paper is the dynamic strategic informed trader, Calcagno and
Lovo (2006) consider the dynamic informed market maker. In their model, a single market maker
receives private information on the value of the asset and repeatedly competes with other uninformed
market makers and liquidity traders. Further, in their model, the identity of the informed dealer is
commonly known, and thus the uninformed market makers extract information on the value of the
asset by observing past quotes posted by the informed market maker. They then show that there is an
equilibrium where the informed market maker can possibly manipulate the market where the expected
payoff is positive. The literature has investigated conditions based on the relations between prices and
trades that rule out manipulation (Jarrow, 1992; Huberman and Stanzl, 2004). This paper also relates
to that issue: that is, we start with the simplest possible model and study these relations. We then
respond to the questions of when manipulation arises and when the equilibrium with manipulation is
unique.

While our model uses a discrete setting, our paper also adds some insights to the literature on
continuous-time models. Our analysis relates to two main strands of research. First, De Meyer (2010)
studies an n-times repeated zero-sum game of incomplete information and shows that the asymptotics
of the equilibrium price process converge to a Continuous Martingale of Maximal Variation (hereafter
CMMV). One fundamental problem in financial econometrics is to accurately identify the stock price
dynamics and analyze how a different market structure affects these dynamics. As De Meyer (2010)
points out, this CMMV class could provide natural dynamics that may be useful in financial econo-
metrics, although it remains an open question as to whether the equilibrium dynamics in a non-zero-
sum game still belong to the CMMV class. In our analysis, we consider a limit on the probability of
informed trading, which could ultimately correspond to the continuous-time setting.

Second, in addition to the Glosten–Milgrom framework, another reference framework is proposed
by Kyle (1985). Back (1992) extends the analysis in Kyle (1985) to a continuous-time version. While
the uniqueness of the optimal informed trader’s strategy either in the original Kyle model or Back
(1992) remains unknown, Boulatov et al. (2005) and Boulatov and Taub (2013) prove the uniqueness
under some technical assumptions. Back and Baruch (2004) study the equivalence of the Glosten–
Milgrom model and the Kyle model in a continuous-time setting, and show that the equilibrium in
the Glosten–Milgrom model is approximately the same as that in the Kyle model when the trade
size is small and uninformed trades occur frequently. Given these two closely related frameworks,
our analysis, as a proxy for a continuous-time model, shows the possibility of multiple equilibria
and provides insights concerning uniqueness within these frameworks. Finally, Back and Baruch
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(2004) conclude that the continuous-time Kyle model is more tractable than the Glosten–Milgrom
model, although most markets follow a sequential trade model. This paper is therefore useful for
opening the black box lying between these two alternative frameworks, and especially in considering
the uniqueness of the informed trader’s dynamic strategy and price manipulation in the presence of
bid–ask spreads.

Finally, many more studies address the relationship between prices and dynamic trading in a
continuous-time setting. For example, Brunnermeier and Pedersen (2005) consider the dynamic
strategic behaviour of large traders and show that “overshooting” occurs in equilibrium, while Back
and Baruch (2007) analyze different market systems by allowing the informed traders to trade contin-
uously within the Glosten–Milgrom framework. Lastly, within an extended Kyle framework, Collin-
Dufresne and Fos (2012) study insider trading where the liquidity provided by noise traders follows
a general stochastic process, and show that even though the level of noise trading volatility is observ-
able, in equilibrium the measured price impact is stochastic.

The remainder of the paper is organized as follows. Section 2 details the model and states the
main theorems. Section 3 provides the proofs of the theorems and characterizes the tame equilibrium.
Section 4 illustrates the results from the numerical simulations and the theoretical findings. The final
section concludes.

2 The Model

There is a single risky asset and a numeraire. The terminal value of the risky asset, denoted θ̃, is a
random variable that can take a low or high value, i.e., L or H , where L = 0 and H = 1. We assume
that Pr(θ̃ = H) = δ0 for some δ0 ∈ (0, 1). There is a single long-lived informed trader who learns θ̃
prior to the beginning of trading.

Trade occurs in finitely many periods t = 1, 2, . . . , T . In each period, a single trader comes to the
market, the market maker quotes bid and ask prices for the risky asset, and the trader either buys one
unit or sells one unit. The agent who goes to the market in period t is a random variable unobserved by
the market maker, such that with probability µ the informed trader is selected. If the informed trader is
not selected, the agent selected is a “noise” or “liquidity” trader who (regardless of the quoted prices)
buys with probability γ and sells with probability 1− γ. The identities of the selected traders, and the
values of the liquidity trader’s trades, in the various periods are independent random variables. Prior
to period t, there is no disclosure of information concerning the values of the random variables in that
period.

We focus on equilibria where the market maker’s belief and the number of remaining time periods
determine an equilibrium strategy. The set of possible actions for the informed trader is denoted
{B, S}, in which B is a buy order and S is a sell order. Here, the market maker’s belief b is the
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probability, from the market maker’s point of view, that the state is high, H , going into period t.
The market maker’s ask and bid prices are functions of the market maker’s belief and given by the
functions αt : [0, 1]→ [0, 1] and βt : [0, 1]→ [0, 1], respectively. For each type θ of informed trader,
a trading strategy σθt : [0, 1] → ∆({B, S}) for θ ∈ {H,L} specifies a probability distribution over
trades in period t with respect to the bid and ask prices posted in period t. In period t, the type-H
informed trader buys the security with probability σHt(b) and sells with probability 1 − σHt(b), and
the type-L trader buys and sells with probabilities 1− σLt(b) and σLt(b), respectively.

The market maker’s posterior belief after observing an order is updated using Bayes’ rule on the
posterior probability that θ̃ = H . Define the bid and ask functions A,B : [0, 1]3 → [0, 1] by the
formulas:

A(b, x, y) = [(1−µ)γ+µx]b
(1−µ)γ+µbx+µ(1−b)(1−y)

and B(b, x, y) = [(1−µ)(1−γ)+µ(1−x)]b
(1−µ)(1−γ)+µb(1−x)+µ(1−b)y .

Now, the market maker is really to be thought of as a competitive market of risk-neutral market
makers, for instance, a pair of market makers in Bertrand competition or a continuum of identical mar-
ket makers. The equilibrium condition for the market maker is zero expected profits, which amounts
to setting ask and bid prices equal to the posterior expected values of the asset.2

Now, we define the Markov equilibrium as follows.

Definition 1. A Markov equilibrium is a collection of functions {αt, βt, σHt, σLt}t=1,··· ,T with αt, βt :

[0, 1]→ [0, 1], σHt, σLt : [0, 1]→ ∆({B, S}) and Jt, Vt : [0, 1]→ IR such that for each t = 1, . . . , T

and b ∈ [0, 1],

(M1) αt(b) = A(b, σHt(b), σLt(b)) and βt(b) = B(b, σHt(b), σLt(b)).

(M2)

σHt(b) =





0, 1− αt(b) + Jt+1(αt(b)) < βt(b)− 1 + Jt+1(βt(b)),

1, 1− αt(b) + Jt+1(αt(b)) > βt(b)− 1 + Jt+1(βt(b)),

and

σLt(b) =





0, −αt(b) + Vt+1(αt(b)) > βt(b) + Vt+1(βt(b)),

1, −αt(b) + Vt+1(αt(b)) < βt(b) + Vt+1(βt(b)).

(M3)

Jt(b) = µ [σHt(b)(1− αt(b) + Jt+1(αt(b))) + (1− σHt(b))(βt(b)− 1 + Jt+1(βt(b)))]

2Biais et al. (2000) justify this assumption by showing that when there are infinitely many market makers, their
expected profit converges to zero. More recently, Calcagno and Lovo (2006) show that a market maker’s equilibrium
expected payoff is zero if he is uninformed.
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+(1− µ) [γJt+1(αt(b)) + (1− γ)Jt+1(βt(b))] ,

and

Vt(b) = µ [(1− σLt(b))(−αt(b) + Vt+1(αt(b))) + σLt(b)(βt(b) + Vt+1(βt(b)))]

+(1− µ) [γV (αt(b)) + (1− γ)V (βt(b))] .

We see that (M1) states that the ask and bid prices are Bayesian updatings of b conditional on
the type of order received; (M2) states that both types of informed seller optimize their order, taking
into account the effect on the expected profits from future trades; and (M3) specifies the recursive
computation of value functions. Implicitly we are assuming that the functions JT+1 and VT+1 are
identically zero.

Now, we define a tame equilibrium.

Definition 2. We say that a Markov equilibrium is tame if the value functions in every period t satisfy
the following conditions:

(C) Jt and Vt are continuous and piecewise differentiable;

(M) Jt is strictly decreasing and Vt is strictly increasing;

(SH) there is a bH such that for any b0, b1 < bH , Jt(b1)−Jt(b0)
b1−b0 < −1, and for any b0, b1 > bH ,

Jt(b1)−Jt(b0)
b1−b0 > −1;

(SL) there is a bL such that for any b0, b1 < bL, Vt(b1)−Vt(b0)
b1−b0 < 1, and for any b0, b1 > bL, Vt(b1)−Vt(b0)

b1−b0 >

1.

Properties (SH) and (SL) state that there are indeed two regions for the value functions, and the
slope equal to one can divide the entire region into two.

The following property requires that the limit of the value functions with respect to µ is a linear
function. To define this, let {αt,µ, βt,µ, σHt,µ, σLt,µ}µ denote a Markov tame equilibrium in period
t ∈ {1, · · · , T}, and {Jt,µ}µ and {Vt,µ}µ denote the family of the associated tame equilibrium value
functions such that for each t ∈ {1, · · · , T}, a sufficiently small ε, and each µ ∈ (0, ε), Jt,µ, Vt,µ :

[0, 1] → IR. (Similarly, in what follows, we denote a family of functions f by {fµ}µ∈(0,ε).) As the
value functions may include kinks, we define ∂+f(b) = limε→0+

f(b+ε)−f(b)
ε

.

Definition 3. We say that a family of tame Markov equilibria satisfies linearity at limit if the tame
equilibrium value functions in every period t satisfy the following condition:

(DH) for every δH , there exists an εHδ ∈ (0, ε) such that for each µ ∈ (0, εHδ ),

|∂+Jt,µ(b) + µ(T − t+ 1)| < δH ;
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(DL) for every δL, there exists an εLδ ∈ (0, ε) such that for each µ ∈ (0, εLδ ),

|∂+Vt,µ(b)− µ(T − t+ 1)| < δL.

Now, we state the main theorems in this paper. We consider T to be the number of trades that
the informed trader could possibly make, and we segment the time interval [0, 1] into time periods
of length ∆t. Let r > 0 and ∆t = µr. If µr is too small, we may obtain the situation where
both types of informed trader simultaneously manipulate at a particular value of the market maker’s
belief, and in this situation we obtain multiple equilibria. When µr is too large, manipulation may not
arise. The second theorem specifies the intervals of µr for which the unique equilibrium with market
manipulation or, instead, multiple equilibria arise.

Theorem 1. Let r ∈ (0,+∞). There exists a µ̄ such that for every µ < µ̄, if T ≤ b 1
µr
c, a tame

Markov equilibrium exists.

Theorem 2. The following holds:

(a) Let r ∈ (0, 1]. Then, there exists a µ0 such that for every µ < µ0, if T = b 1
µr
c, the tame

equilibrium is the unique equilibrium. Moreover, there is no manipulation in equilibrium.

(b) Let r ∈ (1, 2). Then, there exists a µ1 such that for every µ < µ1, if T = b 1
µr
c, the tame

equilibrium is the unique equilibrium. Moreover, in equilibrium, manipulation arises such that at
most one type of trader manipulates at some belief b in some period t.

(c) Let r ∈ (2,+∞). Then, there exists a µ2 such that for every µ < µ2, if T = b 1
µr
c, there are

multiple equilibria, including multiple tame equilibria. Moreover, in equilibrium, manipulation
arises such that both types of trader simultaneously manipulate at some belief b in some period t.

Our method3 of proving the existence of equilibrium contrasts with the method proposed in Duffie
et al. (1994). Duffie et al. (1994) develop an approach whereby the existence of an equilibrium for
a finite horizon version of a model implies that an “expectations correspondence” possesses certain
properties that, in turn, imply the desired existence. In our method, even if there are multiple equi-
libria, we select a desirable Markov equilibrium where the continuity and monotonicity of the value
functions are recursively established. In this way, we recursively show the existence of a tame Markov
equilibrium. As pointed out in Duffie et al. (1994), their method requires that the agents agree that
an irrelevant random variable will determine which of a number of equally valid equilibrium contin-
uations will be followed. Instead, our method finds a property that is needed to carry out backwards
induction and shows that there exists an equilibrium such that this property holds.

3Although we use continuous value functions in this proof, one can prove the existence of a history-dependent equilib-
rium by using the fact that bid and ask prices are continuous in belief and strategy. This proof without using the continuity
of the value functions is available upon request from the author.
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3 The Proofs of The Main Theorems and Characterization

3.1 Preliminary Results

Our aim in this section is to show the conditions under which the equilibrium strategy is unique and
manipulation arises in equilibrium. We start with defining a manipulative strategy. We say that a
strategy is manipulative if it involves the informed trader undertaking a trade in any period that yields
a strictly negative short-term profit.

Definition 4. For θ ∈ {H,L} we say that the type-θ trader manipulates at b in period t if σθt(b) < 1.4

Our mode of analysis is backwards induction: we assume certain properties of the value functions
Jt+1 and Vt+1, and from this assumption, derive various properties of the functions αt, βt, σHt, σLt, Jt
and Vt. For t = T the equilibrium conditions have a unique closed-form solution, because JT+1 and
VT+1 are identically zero. The next result is necessary to begin the process of backwards induction.
As a direct consequence of optimization, we can prove that there is no manipulation in the last period.
By using this, we obtain the following theorem.

Proposition 1. The last-period value functions JT and VT satisfy (C), (M), (SH), and (SL), and
their family satisfies (DH) and (DL).

The proofs are found in Appendix A unless presented immediately after each result. Next, fix
t < T and suppose that a family of continuous next-period value functions is given where each Jt+1

and Vt+1 satisfies the four properties and the family satisfies (DH) and (DL). For b ∈ [0, 1] let

E(b) = {(σHt(b), σLt(b)) : for the αt(b) and βt(b) given by (M1), (M2) holds}.

Fix b ∈ (0, 1) and σ = (σH , σL) ∈ E(b), and let α = A(b, σH , σL) and β = B(b, σH , σL) be the
pair of equilibrium ask and bid prices associated with b and σ in period t.

Lemma 1. α > b > β and σH + σL > 1. In particular, σH , σL > 0.

Proof. Suppose that α ≤ β. Bayes’ rule implies that 0 < α, β < 1, so 1 − α > β − 1 and −α < β,
and the monotonicity condition (M) gives

1− α + Jt+1(α) > β − 1 + Jt+1(β);

−α + Vt+1(α) < β + Vt+1(β).

Now optimisation implies that σH = 1 and σL = 1, and Bayes’ rule gives α > b > β, a contradiction.
In turn, by Bayes’ rule, α > b > β implies that σH + σL > 1.

4This is the same definition used by Chakraborty and Yilmaz (2004). Back and Baruch (2004) use the term “bluffing”
instead, while Huberman and Stanzl (2004) define price manipulation as a round-trip trade. For additional discussion on
how to define price manipulation, see Kyle and Viswanathan (2008).
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In equilibrium, the type-H trader does not sell with probability one and the type-L trader does
not buy with probability one. This means that the informed trader either trades on his information
or assigns a positive probability to both buy and sell orders. In the latter case, the informed trader
is indifferent between buy and sell orders. This motivates consideration of the slopes of the value
functions. By Lemma 1 the bid–ask spread α−β is strictly positive. If the type-H trader manipulates,
it must be the case that 1− α + Jt+1(α) = β − 1 + Jt+1(β), so we have:

Jt+1(α)− Jt+1(β)

α− β =
α + β − 2

α− β = −1− 2− 2α

α− β < −1. (1)

Similarly, if the type-L trader manipulates, we have:

Vt+1(α)− Vt+1(β)

α− β =
α + β

α− β = 1 +
2β

α− β > 1. (2)

Given β < b < α, and slopes of the value functions between the bid and ask prices larger than one,
(SH) and (SL) imply the following result.

Lemma 2. In equilibrium, the following hold.

H. If the type-H trader manipulates at b, then Jt+1(β0)−Jt+1(β1)
β0−β1 < −1 for any β0, β1 ≤ β.

L. If the type-L trader manipulates at b, then Vt+1(α0)−Vt+1(α1)
α0−α1

> 1 for any α0, α1 ≥ α.

Lemma 2 indicates that manipulation could arise only in a region where the value function is
steep. This is intuitive: the informed trader manipulates when the change in the future payoff from
manipulating is large.

We now classify equilibria according to the types of trader that sometimes trade against their
information. An equilibrium σ is in Regime ∅ if σ = (1, 1). It is in Regime L if σL < 1 and σH = 1;
it is in Regime H if σL = 1 and σH < 1; and it is in Regime HL if σL < 1 and σH < 1. We say that a
regime arises at a belief b if E(b) contains an equilibrium in that regime.

Our first objective is to show that the equilibrium strategy is unique within Regime H and Regime
L. To do so, we first prove that the difference in payoffs between trading for and against the informa-
tion is monotone across the relevant region of prior beliefs. Define

DH(b, x, y) = −A(b, x, y) + Jt+1(A(b, x, y))−B(b, x, y)− Jt+1(B(b, x, y)) + 2;

DL(b, x, y) = B(b, x, y) + Vt+1(B(b, x, y)) + A(b, x, y)− Vt+1(A(b, x, y)).
(3)

ThenDθ(b, x, y) is the difference in payoffs between trading for and against the information given
prices A(b, x, y) and B(b, x, y) for each type θ ∈ {H,L}. Notice that for any σ ∈ [0, 1] and prior
b ∈ [0, 1], by Bayes’ rule, both the bid and ask prices are equal to b. Thus, we have

DL(b, σ, 1− σ) > 0 and DH(b, σ, 1− σ) > 0. (4)
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For each θ ∈ {H,L}, define xθ and yθ by:

xθ :=

{
min{x : Dθ(b, x, 1) = 0} if {x : Dθ(b, x, 1) = 0} 6= ∅;
1 otherwise,

and

yθ :=

{
min{y : Dθ(b, 1, y) = 0} if {y : Dθ(b, 1, y) = 0} 6= ∅;
1 otherwise.

The following lemma shows that when only one type manipulates, the payoff difference is mono-
tonically decreasing with respect to each type’s strategy in [xθ, 1] or [yθ, 1] for each θ ∈ {H,L}.

Lemma 3. For each θ ∈ {H,L},

• the payoff difference Dθ(b, x, 1) is monotonically decreasing as x increases for all x ≥ xθ;

• the payoff difference Dθ(b, 1, y) is monotonically decreasing as y increases for all y ≥ yθ.

Further, for each θ ∈ {H,L}, define ỹθ : [0, 1]→ [0, 1] by Dθ(b, x, ỹθ(x)) = 0 if Dθ(b, 1, 1) ≤ 0.
Then, we obtain the following result:

Lemma 4. For each θ ∈ {H,L}, ỹθ is continuous and is strictly decreasing in x.

By Lemma 3 and Lemma 4, we obtain the following result.

Proposition 2. The following holds:

(a) if Regime HL arises at b, then DL(b, 1, 1) < 0 and DH(b, 1, 1) < 0;

(b) if DL(b, 1, 1) ≥ 0 and DH(b, 1, 1) ≥ 0, then E(b) = {(1, 1)}, so that only regime ∅ arises at b;

(c) if DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, then E(b) is a singleton whose unique element is in
Regime L;

(d) if DH(b, 1, 1) < 0 and DL(b, 1, 1) ≥ 0, then E(b) is a singleton whose unique element is in
Regime H;

(e) if DH(b, 1, 1) < 0 and DL(b, 1, 1) < 0, then at most one element within Regime H is in E(b) and
at most one element within Regime L is in E(b).

It may be easy to see that the monotonicity of ỹθ by Lemma 4 yields a “single crossing property.”
By using this property, we obtain the following result.

Lemma 5. At prior belief b in period t,
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Case I. if xL < xH < 1 and 1 > yL > yH , then only Regime HL arises;

Case II. if 1 > xL > xH and yL < yH < 1, then Regime H , Regime L and Regime HL arise.

Proof. First, we show that Regime HL arises in both cases. By symmetry, assume

xL < xH < 1 and 1 > yL > yH . (5)

Lemma 3 and (5) indicate that DH(b, 1, 1) < 0 and DL(b, 1, 1) < 0. By Lemma 3, xH < 1. Because
ỹL(xL) = 1, xL < xH < 1 and ỹL(1) = yL, ỹL(xH) ∈ (yL, ỹL(xL)) by Lemma 4. Thus, we obtain
ỹL(xH) < 1 = ỹL(xL). Thus, by (5) we obtain that ỹL(xH) < ỹH(xH) = 1 and yL = ỹL(1) >

ỹH(1) = yH . By applying the intermediate value theorem to ỹH and ỹL, there exists an x ∈ (xH , 1)

to satisfy ỹH(x) = ỹL(x). Thus, by the definition of ỹH and ỹL, we obtain x and y = ỹH(x) to satisfy
both of the indifference conditions. Thus, Regime HL arises.

Now, if yL < yH and xL > xH , Regimes H , L and HL arise by Lemma 5, because Lemma 3
indicates that DH(b, 1, yL) > 0 and DL(b, xH , 1) > 0. We can prove Case II symmetrically.

Our second objective is to show the next proposition, which states that when µ converges to zero,
the speed of convergence in the bid–ask spread is faster than the evolution of a number of trading
rounds if r < 1.

Proposition 3. Take x ∈ (0, 1] and y ∈ (0, 1] and suppose that x > 1− y. For r < 1, as µ goes to 0,
Aµ(b,x,y)−Bµ(b,x,y)

µr
goes to 0. For r > 1, as µ goes to 0, Aµ(b,x,y)−Bµ(b,x,y)

µr
goes to +∞.

Proof of Proposition 3. For future reference, we compute that

Aµ(b, x, y)− b = µb(1−b)(x−1+y)
µ[bx+(1−b)(1−y)]+(1−µ)γ

;

b−Bµ(b, x, y) = µb(1−b)(x−1+y)
µ[b(1−x)+(1−b)y]+(1−µ)(1−γ)

.

As x > 1− y, for r < 1,

lim
µ→0

(Aµ(b,x,y)−Bµ(b,x,y))

µr
= lim

µ→0

(
b(1−b)(x−1+y)

µ[bx+(1−b)(1−y)]+(1−µ)γ
+ b(1−b)(x−1+y)

[µb(1−x)+(1−b)y]+(1−µ)(1−γ)

)
· µ1−r

= 0.

The second statement is obtained symmetrically.

Proposition 2 and Proposition 3 yield the following result.

Proposition 4. Let T = b 1
µr
c for some r > 0 and a sufficiently small µ. Then,

(a) if r ∈ (0, 1], Regime ∅ arises and manipulation does not arise at any belief in period t;

(b) if r ∈ (1,+∞), Regime H arises at some belief b that is sufficiently close to 1, and Regime L
arises at some belief b that is sufficiently close to 0 in period t;

12



(c) if r ∈ (1, 2), Regime HL never arises at any belief in period t;

(d) if r ∈ (2,+∞), Regime H , Regime L and Regime HL arise at some belief b in period t.

Proof. We first show that when r ≤ 1, Regime ∅ arises for a sufficiently small µ. Proposition 2’s (a)
indicates that if Regime ∅ does not arise, then an honest strategy is not optimal for at least one type.
For notational simplicity, we write

Ā := A(b, 1, 1) and B̄ := B(b, 1, 1).

Aiming to obtain a contradiction, by (DL) suppose that there exists an arbitrarily small εA and εB
for which the following holds:

(
µb 1

µr
c − µ(t− 1)

) (
Ā− B̄

)
+ εLAĀ− εLBB̄ >

(
Ā+ B̄

)
. (6)

As µb 1
µr
c − µ(t− 1) ≤ µb 1

µr
c,

µb 1
µr
c
(
Ā− B̄

)
+ εLAĀ− εLBB̄ >

(
Ā+ B̄

)
. (7)

When r ≤ 1, (7) does not hold as the left-hand side (LHS) is arbitrarily close to 0 by Proposition
3 and the right-hand side (RHS) is strictly greater than 0 for b ∈ (0, 1). This is a contradiction. By
symmetry, we can also prove that DH(b, 1, 1) ≥ 0, and (a) in Proposition 2 completes the first claim.

Second, let r ∈ (1, 2). Then, let b = µ. As µ is sufficiently small, similarly to (7), Regime L
arises if, for an arbitrarily small εĀ, εB̄, εLA and εLB,

µb 1

µr
c
(
Ā− B̄

)
+ εLAµ(1 + εĀ)− εLBµ(1 + εB̄) > µ · (2 + εĀ + εB̄) ,

which indicates
b 1

µr
c
(
Ā− B̄

)
> 2 + εĀ + εB̄ − εLA(1 + εĀ) + εLB(1 + εB̄). (8)

By Proposition 3, for r > 1, the LHS is sufficiently large and the RHS is sufficiently close to 2.
Therefore, the above holds. By the same argument, we can see that Regime H does not arise at b = µ

by (c) of Proposition 2 because Proposition 3 indicates that µb 1
µr
c
(
Ā− B̄

)
is sufficiently close to 0

for r > 1 and so

µb 1

µr
c
(
Ā− B̄

)
+ εHBµ(1 + εB̄)− εHAµ(1 + εĀ) < 2− µ · (2 + εĀ + εB̄) .

On the other hand, symmetrically we can prove that at b = 1 − µ, Regime H arises and Regime L
does not arise.
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Third, let r < 2. Seeking a contradiction, suppose that in period t, there exist ᾱ and β̄ satisfying the
two indifference conditions. Then, by substituting (DH) and (DL) into the indifference conditions,
for sufficiently small εL’s and εH’s,

(
µb 1

µr
c − µ(t− 1)

)
(ᾱ− β̄) + εᾱL − εβ̄L = ᾱ + β̄;

−
(
µb 1

µr
c − µ(t− 1)

)
(ᾱ− β̄) + εᾱH − εβ̄H = ᾱ + β̄ − 2.

(9)

Then, notice that we must have ᾱ + β̄ ≈ 1, because for a sufficiently small µ, combining the two
in (9) yields 0 ≈ 2(ᾱ + β̄)− 2. Thus, we obtain:

(
µb 1

µr
c − µ(t− 1)

)
(ᾱ− β̄) ≈ 1. (10)

Note that as t ∈ {1, · · · , b 1
µr
c − 1},

µb 1

µr
c(ᾱ− β̄) >

(
µb 1

µr
c − µ(t− 1)

)
(ᾱ− β̄) ≥ (ᾱ− β̄). (11)

By applying the squeeze theorem to (11) and Proposition 3, the LHS of (10) is sufficiently close
to 0, which contradicts (10).

Finally, it suffices to show that when r > 2, Regime H and Regime L simultaneously arise at
some belief b, because by Lemma 5, Regime HL also arises. First, we show that DH(b, 1, 1) < 0 and
DL(b, 1, 1) < 0 hold simultaneously at some belief b. Note that when Regime HL arises, ᾱ + β̄ ≈ 1

holds, as indicated in the proof of the previous claim, and thus Ā + B̄ ≈ 1 holds because for any x
and y, Aµ(b, x, y) and Bµ(b, x, y) both converge to b.

Property (DL) indicates that:

Vt+1(Ā)− Vt+1(B̄)

Ā− B̄ ≈ µb 1

µr
c − µ(t− 1). (12)

For a sufficiently small µ, as Ā+ B̄ ≈ 1,

Ā+ B̄

Ā− B̄ ≈
1

Ā− B̄ . (13)

Proposition 3 implies that µb 1
µr
c · (Ā − B̄) is sufficiently large and must be larger than 1. Thus,

comparing (12) and (13) yields:

Vt+1(Ā)− Vt+1(B̄)

Ā− B̄ >
Ā+ B̄

Ā− B̄ . (14)

Therefore, we can conclude that DL(b, 1, 1) < 0 holds, and by symmetry we can also prove that
DH(b, 1, 1) < 0 at the same time. Then, by (4) and Lemma 3 there exists a yL such thatDL(b, 1, yL) =
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0. Let ᾱ0 = A(b, 1, yL) and β̄0 = B(b, 1, yL). Then, we consider the type-H trader. As ᾱ0 and β̄0 are
sufficiently close to b, and (ᾱ0 − β̄0)µ(T − t+ 1) is sufficiently large due to Proposition 3,

β̄0 − 1 + β̄0µ(T − t+ 1) < 1− ᾱ0 + ᾱ0µ(T − t+ 1), (15)

and for any sufficiently small εH’s,

β̄0 − 1 + β̄0µ(T − t+ 1) + εβH < 1− ᾱ0 + ᾱ0µ(T − t+ 1) + εαH . (16)

Given that (16) and (DH) indicate thatDH(b, 1, yL) > 0, RegimeL arises. Symmetrically, we can
prove that Regime H arises. By Lemma 5, Regime HL also arises. Therefore, these three different
regimes coexist at belief b and time t. This completes the proof.

One implication of Proposition 4 is straightforward. When the number of trading periods grows
more rapidly than the informed trading probability, Regime HL arises. On the other hand, if there are
not enough trading periods, manipulation itself does not arise.

Proposition 4 also indicates that when the value functions are close to a linear function, Regime L
arises around b = µ, which is sufficiently small. Proposition D4 in Appendix D computes the slopes
of the value functions at b = 0 and b = 1, which also shows how the slopes at the edges grow over
time. Manipulation arises when the market maker is almost correct or very wrong. For a sufficiently
small µ, Proposition 4 implies that manipulation arises when the market maker is almost correct. The
important factor is Ā + B̄ or 2 − (Ā + B̄). This can be thought of as the difference of costs that
the type-L or the type-H trader has to incur in order to manipulate. When the value functions are
almost linear, the effect of manipulation, which can be measured by the slopes of the value functions,
is almost constant everywhere in the region. When this constant effect is not so large, the informed
trader would only manipulate when the cost of manipulating is small. As such, Regime HL does not
arise as the two regions where the cost of manipulation is small for each type do not overlap.

3.2 The Proof of Theorem 1

Proof of Theorem 1. Proposition 2 implies that even when there are multiple regimes, the equilibrium
strategy is unique within Regime H or L. Therefore, when there are multiple equilibria, we select an
equilibrium in Regime H (or L). We provide a series of lemmas to prove each property in Appendix
A. Here, we explain how we establish each property. Continuity and piecewise differentiability are
consequences of the fact that Bayes’ rule and the next-period value function also hold these properties,
and the implicit function theorem yields the result (see Lemma A2). Then, we show that a family of
value functions satisfies (DH) and (DL) if all the constituent functions satisfy (C). Note that when
µ converges to 0, both bid and ask prices converge to each belief and these functions become linear.
As the summation of these functions, we also obtain linearity at the limit for the current-period value
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functions (see Lemma A3). We obtain (SH) and (SL) from (DH) and (DL) (see Lemma A4).
To obtain monotonicity of the current-period value functions, we require the monotonicity of the
bid and ask prices. This is easy to show in Regime ∅ using Bayes’ rule. In Regime H or L, the
indifference condition and Lemma 2 give us the results (see Lemma A6). By mathematical induction
and Proposition 1, we conclude that the equilibrium is unique for a sufficiently small µ. Finally, take
a supremum of such a µ and call it µ̄. This completes the proof.

3.3 The Proof of Theorem 2

To prove the second theorem, we use Proposition 2 recursively by applying backwards induction. An
intuition behind the second theorem is that when r ≤ 1, the equilibrium is still unique but there is no
manipulation as there are too few trading rounds for manipulation to arise in equilibrium. Conversely,
when r > 2, there would be too many chances to trade and Regime HL may arise. Indeed, µr for
r ∈ (1, 2) is the interval of trading periods for which the equilibrium is unique and Regime HL does
not arise.

Proof of Theorem 2. To prove (a), by Proposition 4, in equilibrium manipulation does not arise when
r ≤ 1 for a sufficiently small µ. Take a supremum of such a µ and call it µ0. Similarly, we can prove
(b) and (c).

One may wonder if the result holds for r = 2. When r = 2, as µ goes to 0, following the proof of
Proposition 3, we obtain:

lim
µ→0

(αt,µ(b)− βt,µ(b))

µr−1
= b(1− b)(σH,µ − 1 + σL,µ)

(
1

γ
+

1

1− γ

)
.

By substituting the above into (11), we can see that whether a pair of bid and ask prices to satisfy
(10) exists depends on γ. Still, the following result holds.

Proposition 5. Let r = 2, γ = 1
2
. Then, there exists a µ′ such that for every µ < µ′, if T = b 1

µr
c, the

unique equilibrium is tame. Moreover, in equilibrium, at most one type of trader manipulates at some
belief b in period t.

Proof of Proposition 5. When r = 2 and γ = 1
2
, as µ goes to 0, following the proof of Proposition 3,

we obtain:
lim
µ→0

(αt,µ(b)− βt,µ(b))

µr−1
= b(1− b)(σH,µ − 1 + σL,µ) · 4.

When µ is sufficiently small, Ā ≈ b and B̄ ≈ b. Applying a similar idea in (9) of the proof of
Proposition 4, we show that the indifference conditions would not hold simultaneously for both types.
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Proposition 2’s (a) indicates that if Regime HL arises, both of the following hold:

lim
µ→0

(αt,µ(b)−βt,µ(b))

µr−1 = b(1− b)(σH,µ − 1 + σL,µ) · 4 > 2b

−lim
µ→0

(αt,µ(b)−βt,µ(b))

µr−1 = −b(1− b)(σH,µ − 1 + σL,µ) · 4 < −2(1− b).

Adding these together, we obtain 4(σH,µ− 1 +σL,µ) > 4, which is impossible. Thus, Regime HL
does not arise. By Proposition 4, manipulation arises in equilibrium as r ∈ (1,+∞). This completes
the proof.

3.4 Characterization of a Tame Markov Equilibrium

Here we start with an illustration of a possible complication in the period preceding that in which
Regime HL arises through backwards induction. When Regime HL arises, even when there is only
one equilibrium strategy that satisfies the indifference conditions, there could be one pair of bid and
ask prices to satisfy these conditions. Thus, it may be the case that in some interval of prior beliefs,
bid and ask prices become constant in this equilibrium. Then, a current-period value function would
become constant for this interval, and hence the value functions may not satisfy (M). Indeed, when
µ is sufficiently high, this situation may arise.

Consider the case where µ is sufficiently close to one (instead of zero). We can see that in the
region of beliefs sufficiently close to 0 or 1, the value functions would have a spike, because if the
market maker was very wrong the informed trader would earn non-negligible profits, whereas in the
rest of the region, as the bid–ask spread is quite large, the informed trader’s profit would be very close
to zero. This intuition is clearly observed later in Figure 2 of Section 4. The value functions do not
converge to a linear function as described in (DH) and (DL). Even if we replace (DH) and (DL)

with the property that the value functions have a spike, one can prove that Lemma 5 indicates that
Case I occurs and thus only Regime HL arises at some belief.5

By (c) in Theorem 2 and Proposition 2, for a sufficiently small µ, even when there are multiple
equilibria, Regime H and Regime L also arise with Regime HL. By selecting either Regime H or L
in period t, we can move on in backwards induction, and all the five properties are held, as proved in
Section 3.3. Therefore, we can obtain the following theorem by Theorem 2.

Theorem 3. Let r ∈ (0,+∞). Then, for every µ < µ̄, if T = b 1
µr
c, in a tame Markov equilibrium,

• ask and bid prices αt and βt are continuous and monotonically increasing with respect to the
market maker’s belief in every period t;

• manipulation arises if and only if Dθ(b, 1, 1) < 0 for at least one θ ∈ {H,L};
5A more rigorous analysis is available upon request.
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• only one type manipulates even when manipulation arises.

Proof. When we restrict our attention to an equilibrium such that whenever Regime HL arises to-
gether with Regime H or Regime L, we select Regime H or Regime L, then (b) of Lemma A2 and
(b) of Lemma A6 prove the second statement. Third, suppose that Regime H arises. Then,

DH(b, xH , 1) = 0 and DL(b, xH , 1) ≥ 0.

By Lemma 3, we obtain DH(b, 1, 1) < 0. Similarly, if Regime L arises, DL(b, 1, 1) < 0. As we only
consider the equilibrium where Regime ∅, H or L arises and HL does not, this completes the proof
for the “if” part of the first statement. The “only if” part is proved by Proposition 2.

4 Calibration of Equilibrium

This section explains our calibration results for the equilibrium. A detailed procedure is available in
the Appendix C that contrasts our method from that used in Back and Baruch (2004). The Glosten–
Milgrom framework in Back and Baruch (2004) is a continuous-time stationary case and their program
attempts to find the value functions as a fixed point. To do this, they use an extrapolation method that
requires calculating the slopes of the value functions. Because of this problem, Back and Baruch
(2004) wrote that even though all the equilibrium conditions hold with a high degree of accuracy, the
strategies were not estimated very accurately when manipulation arises. To avoid this problem, we
use a linear interpolation method.

We approximate a continuous value function by linear segments and then solve the equilibrium.
Given that no type of trader manipulates in the last period of the game, we can calculate the value
functions in the last period along with the bid and ask prices. We then split the whole interval [0, 1]

into n segments and linearly interpolate the value function for each type of trader in each interval. We
then attempt to find whether a pair of ask and bid prices exists such that that each type of informed
trader becomes indifferent between buy and sell orders in each interval of the market maker’s belief.
Using the bid and ask prices we obtain using this procedure, we calculate the current-period value
functions and repeat the procedure in the following periods. Finally, we consider the last case, where
both types manipulate.

Characteristics of Equilibrium

We first consider γ = 1
2
, so that the equilibrium is symmetric6. Figure 1 exhibits the equilibrium bid

and ask prices with respect to the market maker’s prior belief for the periods from 201 to 400. The
solid curves that present the highest and lowest points represent the ask and bid prices for the case

6The proof of a symmetric equilibrium is in Appendix B.
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where there is no manipulation. In the bid and ask price figures, there is a region of beliefs in which
the bid or ask prices differ between the periods. It is in this region of beliefs that manipulation arises
in equilibrium. As the informed trader’s strategy differs between periods because the manipulation
rate is time dependent, the bid and ask prices also differ between periods. The thick curves in the
middle are indeed a stack of 200 lines, and as manipulation arises, these curves do not coincide with
the single line for the no-manipulation case. Although it is obvious from Bayes’ rule, from this figure
we can also see that manipulation indeed decreases the bid–ask spread in a given interval of prior
beliefs.
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Figure 1: Bid and Ask Prices when µ = 0.5, γ = 0.5, t ∈ {201, 400}

As shown in Calcagno and Lovo (2006), along with some empirical and experimental evidence
(see Koski and Michaely (2000), Krinsky and Lee (1996) and Venkatesh and Chiang (1986)), our
simulation also shows that the bid–ask spread is largest in the last period. In our analysis, this is a
direct consequence of the fact that there is no manipulation in the last period. In the Calcagno and
Lovo (2006) analysis, we observe this because the winner’s curse increases when the terminal period
comes near. Although our mechanisms differ, we observe a similar result here as well.

Manipulation

The results of the simulation also show that the type-H trader manipulates in a region of beliefs close
to 0 and the type-L trader manipulates in a region of beliefs close to 1. This result is somewhat
counterintuitive because, for example, if the type-H trader manipulates in a region of beliefs close
to 0, the bid price will be very low and the trader can only obtain a little money. However, to affect
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the future payoffs through the updating of the market maker’s beliefs, they will manipulate when the
bid–ask spread is small and the slope of the next-period value function is steep. This is consistent
with our result in Theorem 3.

To take a more careful look at a manipulative strategy, Figure 3 shows the equilibrium strategy for
the type-H and the type-L trader in the [0, 1] interval of prior beliefs. Interestingly, we can see that
when the prior belief is close to 1, the type-H trader also manipulates; similarly, the type-L trader
manipulates when the belief is close to 0. Indeed, this result is consistent with our calculation in
Proposition D4 of Appendix D. When the belief is very close to 0 or 1, the market maker almost knows
the value of the asset. As shown in Proposition D4, the slopes of the value functions geometrically
increase. As a result, the type-H or the type-L trader starts to manipulate as the number of remaining
trading periods increases.

Table 1 describes how manipulation starts to arise. As discussed in Proposition 4, manipulation
starts to arise when the market maker is almost correct or very wrong. In a sense, there are two
types of manipulation. In Proposition 4, manipulation for r ∈ (1, 2) corresponds to that which arises
when the market maker is almost correct. Our simulation shows that as the slope becomes steeper,
manipulation arises only when the market maker is very wrong. In other words, the other type of
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Figure 2: Bid and Ask Prices when µ = 0.5, γ = 0.5, t ∈ {201, 400}
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manipulation disappears and the remaining type of manipulation expands. This conveys the intuition
that the slopes of the value functions are indeed an incentive for the informed trader, and as they
increase, manipulation begins to take place over a wider range.

b = 0.01 b = 0.02 · · · b = 0.98 b = 0.99

t = 11 L ∅ · · · ∅ H

t = 12 L H · · · L H

t = 13 H H · · · L L

Table 1: Regimes and Beliefs for t = 11, 12, 13

In this way, Regime HL starts to arise in our simulation as each region that each type of trader
manipulates overlaps with the other. In our simulation, in period t = 52, Regime HL starts to arise
at belief 0.5, and it similarly starts to arise at beliefs b = 0.01 or 0.99 in period t = 271.7 As the
market maker is completely wrong at b = 0 or 1, the informed trader does not manipulate because
the prices are favourable for the type-H (b = 0) or the type-L (b = 1) trader. On the other hand, in
the region close to b = 0 or 1, as the value function is steep, the type-H trader manipulates around
b = 0 or the type-L trader manipulates around b = 1. Therefore, there is a spike in the rate of
informed trading near the edges. As we can see from Figure 3, there appears to be a discontinuity in
the informed strategy when the market maker is very wrong. The important idea in our theory of a
tame equilibrium is to make manipulation arise near the other edge (that is, when the market maker is
almost correct) and not near this edge (when the market maker is very wrong).

As we can see in Figure 2, the value functions are not globally convex. Near b = 0 or 1, some
parts appear to be concave. Thus, manipulation arises as the slope near b = 0 or 1 becomes suffi-
ciently steep. As shown in the proof of (b) in Theorem 2, this manipulation remains in the unique
equilibrium when µ becomes sufficiently small and T is sufficiently large. In other words, when the
value functions become sufficiently “linear,” the moment when the market maker begins to make a
mistake is the only opportunity to manipulate. Theorem 2’s (b) presents this intuition.

Effects of an Asymmetric Liquidity Distribution

To this point, we have considered the symmetric case in the sense that the liquidity for a buy is equally
likely as the liquidity for a sell. Here we consider how an asymmetric liquidity distribution affects bid
and ask prices and who manipulates in equilibrium. The following four figures in Figure 4 and Figure

7From Figure 1, it may be difficult to see that at b = 0.5, the bid and ask prices in Regime ∅ differ from the simulated
prices for t = 201, · · · , 400, because the manipulation rates at b = 0.5 are quite small. Indeed, the bid price without
manipulation is 0.25 and the ask price without manipulation is 0.75, while the simulated equilibrium bid prices for these
periods range from 0.2511 to 0.2528 and the ask prices for these periods range from 0.7489 to 0.7472.
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Figure 3: Manipulation Rates σHt and σLt when µ = 0.5, γ = 0.5, t ∈ {201, 400}

5 show the bid and ask prices, as well as value functions, when γ = 0.2 and γ = 0.8. Comparing
Figure 4 and 5, we can see that the type-H trader at belief b is a mirror image of the type-L trader
at belief 1 − b. This result is consistent with Proposition B1 in Appendix A. We also observe that
Theorem 3 continues to hold in the sense that the informed trader manipulates when the slope is steep.
As we can predict from Bayes’ rule, as γ decreases, the type-H trader’s value functions are positioned
closer to 0. As such, the region where its value functions are steep becomes smaller and the region in
which the type-H trader manipulates become more restricted. The reverse holds for the type-L trader.
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Figure 4: Bid and Ask Prices and Value Functions when µ = 0.5, γ = 0.2, t ∈ {1, 20}
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Figure 5: Bid and Ask Prices and Value Functions when µ = 0.5, γ = 0.8, t ∈ {1, 20}

5 Concluding Remarks

In this paper, we developed a model of dynamic informed trading from a canonical framework in the
market microstructure literature. We make a fundamental contribution to the literature by showing
the existence of multiple equilibria involving price manipulation. We provided a theorem describ-
ing conditions under which multiple equilibria or a unique equilibrium arises. We also provided a
computational method to approximate the equilibrium. We can readily extend our findings in the
discrete-time setting to a continuous-time setting, and in this sense, this paper provides a different
approach to proving the uniqueness of an equilibrium in the continuous-time model.

From our analysis, several important research questions arise. First, as discussed in the introduc-
tion, given the association with De Meyer (2010), our paper provides a fundamental framework for
a non-zero-sum trading game. Adding a time discount factor to the informed trader’s profit to bring
our analysis into a continuous-time setting is an obvious extension. Second, the existence of a unique
equilibrium in the Kyle model remains an open question in the literature. As shown in Back and
Baruch (2004), the equilibrium in the Glosten–Milgrom model converges to that in the Kyle model.
We show that there is a possibility of multiple equilibria; however, when µ is sufficiently small and T
satisfies a certain condition, there exists a unique equilibrium in the dynamic Glosten–Milgrom set-
ting. Conceptually the model with a very small µ is analogous to a continuous-time setting, because
the possibility of informed trading is very small in the infinitesimal time intervals of continuous-time
models. In this sense, we could use our analysis to understand how a unique equilibrium in the
dynamic Glosten–Milgrom model converges to the equilibrium in the Kyle model.

Third, one may question whether the market maker’s belief concerning the risky asset’s payoff
converges to the truth as the number of trading periods tends to infinity. Recently, there has been
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renewed interest in private information and learning. Examples include Golosov et al. (2009) and
Loertscher and McLennan (2013). Although their settings are quite different from ours, both ques-
tion whether uninformed agents learn private information. In the market microstructure literature,
Glosten and Milgrom (1985) originally show that such convergence is obtained almost surely if the
only available trade size is the unit trade size and an informed trader can trade only once. Ozsoylev
and Takayama (2010) show a similar result where the informed trader can trade only once but in
multiple sizes. We expect that this result will also hold in our framework, as an intuition similar to
the Martingale convergence theorem holds when the equilibrium is unique. However, as there is a
possibility that multiple equilibria will arise, and especially that both types of trader will manipulate
at the same time, it would be interesting to see how this type of manipulation affects the market’s
learning.
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A Lemmas and Proofs

Proof of Proposition 1. Note that in the last period, Regime ∅ arises in the whole interval [0, 1] as
there is no chance to re-trade. That σHT and σLT are identically one is an immediate consequence of
optimization, and the equations are derived by substituting and simplifying.

In any Markov equilibrium, σHT and σLT are identically one, and:

αT (b) = b(µ+(1−µ)γ)
µb+(1−µ)γ

;

βT (b) = b(1−µ)(1−γ)
µ(1−b)+(1−µ)(1−γ)

;

JT (b) = µ(1− αt(b)) = µ(1−b)(1−µ)γ
µb+(1−µ)γ

;

VT (b) = µβt(b) = µb(1−µ)(1−γ)
µ(1−b)+(1−µ)(1−γ)

.

Property (C). In Regime ∅, bid and ask prices are continuous by Bayes’ rule. Therefore, JT (b) =

µ(1 − αT (b)) and VT (b) = µβT (b) are both continuous in b for any µ. Moreover, notice that the
last-period value functions JT and VT are continuously differentiable on [0, 1] by Bayes’ rule.
Property (M). By Bayes’ rule, bid and ask prices are monotonically increasing in prior belief. There-
fore, JT (b) = µ(1 − αT (b)) is monotonically decreasing and VT (b) = µβT (b) is monotonically
increasing in b for any µ.
Property (SH) and (SL). The last-period ask price, αT (b), is strictly concave in b, and the last-period
bid price, βT (b), is strictly convex in b. Therefore, the result follows.
Property (DH) and (DL). Done by Bayes’ rule.

Proposition A1. The set-valued mapping E has a closed graph.

Proof of Proposition A1. The result follows by the continuity of the next-period value functions and
Bayes’ rule.

Proposition A2. If Jt+1 and Vt+1 are continuous, then E(b) is nonempty for each b ∈ [0, 1].

Proof of Proposition A2. For (σH , σL) ∈ [0, 1]2 let B(σH , σL) be the pair of posterior beliefs given
by (M1). Evidently B : [0, 1]2 → [0, 1]2 is a continuous function. For (α, β) ∈ [0, 1]2 let BRb(α, β)

be the set of pairs (σH , σL) satisfying (M2). Given that Jt+1 and Vt+1 are continuous, BRb is an upper
semicontinuous correspondence. Its value is always a Cartesian product of two elements of the set
{{0}, [0, 1], {1}}, so it is convex valued. The composition BRb ◦ B is thus an upper semicontinuous
convex-valued correspondence, so Kakutani’s fixed point theorem implies that it has a fixed point.

Lemma A1. If 0 < x̄, ȳ ≤ 1, x̄+ ȳ > 1, θ ∈ {H,L} and Dθ(b, x̄, ȳ) = 0, then

• the payoff difference Dθ(b, x, ȳ) is strictly decreasing as x increases for all x ≥ x̄;

• the payoff difference Dθ(b, x̄, y) is strictly decreasing as y increases for all y ≥ ȳ.
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Proof of Lemma A1. By symmetry it suffices to prove that DL(b, x, ȳ) and DH(b, x, ȳ) are decreasing
in x. First, consider DL(b, x, ȳ). Now,

Vt+1(A(b, x̄, ȳ))− Vt+1(B(b, x̄, ȳ)) = A(b, x̄, ȳ) +B(b, x̄, ȳ). (17)

By Bayes’ rule, A(b, x̄, ȳ) > B(b, x̄, ȳ). Dividing (17) by A(b, x̄, ȳ)−B(b, x̄, ȳ) gives

Vt+1(A(b, x̄, ȳ))− Vt+1(B(b, x̄, ȳ))

A(b, x̄, ȳ)−B(b, x̄, ȳ)
=
A(b, x̄, ȳ) +B(b, x̄, ȳ)

A(b, x̄, ȳ)−B(b, x̄, ȳ)
> 1.

This shows that A(b, x̄, ȳ) > bL. By Bayes’ rule, A(b, x, ȳ) is monotonically increasing in x, so for
any x ≥ x̄ and ∆ > 0 we have A(b, x, ȳ), A(b, x+ ∆, ȳ) > bL and consequently

(
Vt+1(A(b, x+ ∆, ȳ))− A(b, x+ ∆, ȳ)

)
−
(
Vt+1(A(b, x, ȳ))− A(b, x, ȳ)

)

= (A(b, x+ ∆, ȳ)− A(b, x, ȳ))

(
Vt+1(A(b, x+ ∆, ȳ)− Vt+1(A(b, x, ȳ))

A(b, x+ ∆, ȳ))− A(b, x, ȳ)
− 1

)
> 0.

That is, Vt+1(A(b, x, ȳ)) − A(b, x, ȳ) is an increasing function of x. On the other hand, Bayes’ rule
and the monotonicity condition (M) imply that B(b, x, ȳ) + Vt+1(B(b, x, ȳ)) is a decreasing function
of x. As

DL(b, x, ȳ) = B(b, x, ȳ) + Vt+1(B(b, x, ȳ)) + A(b, x, ȳ)− Vt+1(A(b, x, ȳ)),

the result follows. Second, consider DH(b, x, ȳ). Suppose that we have:

Jt+1(A(b, x̄, ȳ))− Jt+1(B(b, x̄, ȳ)) = A(b, x̄, ȳ) +B(b, x̄, ȳ)− 2. (18)

Similarly, dividing (18) by A(b, x̄, ȳ)−B(b, x̄, ȳ) gives

Jt+1(A(b, x̄, ȳ))− Jt+1(B(b, x̄, ȳ))

A(b, x̄, ȳ)−B(b, x̄, ȳ)
=
A(b, x̄, ȳ) +B(b, x̄, ȳ)− 2

A(b, x̄, ȳ)−B(b, x̄, ȳ)
< −1.

This shows that B(b, x̄, ȳ) < bH . Therefore, (SH) implies that for any ∆ > 0 and x ≤ x̄,

Jt+1(B(b, x+ ∆, ȳ))− Jt+1(B(b, x, ȳ)) +B(b, x+ ∆, ȳ)−B(b, x, ȳ)

= (B(b, x+ ∆, ȳ)−B(b, x, ȳ))

(
Jt+1(B(b, x+ ∆, ȳ))− Jt+1(B(b, x, ȳ))

B(b, x+ ∆, ȳ)−B(b, x, ȳ)
+ 1

)
< 0,

as by Bayes’ rule, B(b, x + ∆, ȳ) < B(b, x, ȳ) < bH . That is, Jt+1(B(b, x, ȳ)) − B(b, x, ȳ) is a
decreasing function of x. On the other hand, Bayes’ rule and (M) imply that Jt+1(A(b, x, ȳ)) −
A(b, x, ȳ) is an increasing function of x. As

DH(b, x, ȳ) =
(
1− A(b, x, ȳ) + Jt+1(A(b, x, ȳ))

)
−
(
B(b, x, ȳ)− 1 + Jt+1(B(b, x, ȳ))

)
,

the result follows.
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Proof of Lemma 3. Let x̄ = 1 and ȳ = 1. Then, the results follow from Lemma A1.

Proof of Lemma 4. Suppose that ỹθ is well defined. Continuity of Dθ indicates that ỹθ is also contin-
uous for each θ ∈ {H,L}. Suppose that x1 > x2 and ỹL(x1) ≥ ỹL(x2). By Lemma A1,

0 = DL(b, x1, ỹL(x1)) < DL(b, x2, ỹL(x1)) ≤ DL(b, x2, ỹL(x2)),

which is a contradiction to 0 = DL(b, x2, ỹL(x2)). By symmetry, the same holds for ỹH .

Proof of Proposition 2. We give a proof of each statement below.
Proof of (a). Suppose that Regime HL arises at b. Then, there must exist (x̄, ȳ) ∈ E(b) with x̄ < 1

and ȳ < 1, such that DH(b, x̄, ȳ) = 0 and DL(b, x̄, ȳ) = 0. By Lemma A1 and Lemma 3, we have:

0 = DL(b, x̄, ȳ) > DL(b, x̄, 1) > DL(b, 1, 1). (19)

By symmetry, we can also prove 0 > DL(b, 1, 1). �

Proof of (b). By (a) of this proposition, RegimeHL does not arise. Aiming at a contradiction, suppose
that Regime H arises. Then there exists an x̄ < 1 to satisfy DH(b, x̄, 1) = 0. Then, by Lemma 3,
we must have DH(b, 1, 1) < 0, which contradicts our assumption. By symmetry, we can prove that
Regime L does not arise. �
Proof of (c). First, as DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, Regime ∅ does not arise because taking
an honest strategy is not optimal for the low type. Also, by (a) of this proposition, Regime HL does
not arise. Now suppose that Regime H arises. Then there exists an x̄ < 1 to satisfy DH(b, x̄, 1) = 0.

Then, by Lemma 3, we must have DH(b, 1, 1) < 0, which contradicts our assumption.
Lemma 4 indicates that there is no y < 1 to satisfy DH(b, 1, y) = 0. As DH is continuous in y,

DH(b, 1, y) ≥ 0 must hold for all y ∈ [0, 1]. Now, as DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, (4) and
Lemma 4 imply that there exists a ȳ < 1 to satisfy

DL(b, 1, ȳ) = 0 and DH(b, 1, ȳ) ≥ 0.

Therefore, we can see that Regime L arises. In addition, by Lemma 3, there is only one ȳ to satisfy
DL(b, 1, ȳ) = 0. �
Proof of (d). Done symmetrically with (c) of this proposition. �
Proof of (e). Suppose that there is one element in E(b) that belongs to Regime H . Then, by Lemma
3, there is no other element in E(b) that also belongs to Regime H . Symmetrically the same holds for
Regime L. �

Lemma A2. The following results hold:

(a) a period-t strategy σt is continuous and piecewise differentiable in b on (0, 1);
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(b) ask and bid prices αt and βt are continuous and piecewise differentiable in b for all b ∈ [0, 1];

(c) the current-period value functions Jt and Vt satisfy (C).

Proof of Lemma A2. First, we prove the continuity of the equilibrium strategies, the bid and ask prices
and the value functions. Proposition 2 and Proposition 4 ensure that the equilibrium strategy is unique
within each regime in period t. Now, E is a function of prior belief b. By the proof of Proposition
A2, the equilibrium correspondence E is upper semicontinuous. Therefore, we conclude that it is
continuous within each regime. Now take a sequence {bk} that converges to b. Suppose that for a
sufficiently small ε, Regime L arises at bk − ε and Regime ∅ arises at b. Take a sequence of the
equilibrium strategy at each bk in Regime L, which we denote by {σ̂k}. We assert that σ̂k converges
to the equilibrium strategy in Regime ∅ as bk goes to b. Suppose not, and then there is a distinct
strategy σ̂ with σ̂L 6= 1 and σ̂H = 1 at b. Then,

DL(b, σ̂L, 1) = 0 and DL(b, 1, 1) ≥ 0.

This is a contradiction, given Lemma 3, as σ̂L < 1. By symmetry, we can prove that at the bound-
ary belief where Regime H shifts to Regime ∅ as b changes, the equilibrium strategy is continuous.
Therefore, by Bayes’ rule, the bid and ask prices are also continuous. As such, both of the value
functions are a sum of the continuous functions in b; that is, the bid and ask prices, next-period value
functions and current-period value functions are continuous.

To prove that piecewise differentiability for the equilibrium strategies, the bid and ask prices and
the value functions holds, note that by continuity, each function σHt or σLt does not have a jump. So,
for some interval, if they are not equal to one, the period-t equilibrium strategy σH or σL solves each
of the following equations:

1− b×[µσH+(1−µ) γ]
µ [b×σH ]+(1−µ) γ

+ Jt+1( b×[µσH+(1−µ) γ]
µ b×σH+(1−µ) γ

)

= b×[(1−µ) (1−γ)+µ(1−σH)]
µ [b×(1−σH)+(1−b)]+(1−µ) (1−γ)

− 1 + Jt+1( b×[µ (1−σH)+(1−µ) (1−γ)]
µ [b×(1−σH)+(1−b)]+(1−µ) (1−γ)

); or

− b×[µ+(1−µ) γ]
µ [b+(1−b)×σL]+(1−µ) γ

+ Vt+1( b×[µ+(1−µ) γ]
µ [b+(1−b)×σL]+(1−µ) γ

)

= b×+(1−µ) (1−γ)
µ (1−b)×(1−σL)+(1−µ) (1−γ)

+ Vt+1( b×(1−µ) (1−γ)
µ (1−b)×(1−σL)+(1−µ) (1−γ)

).

(20)

Obviously, if they are constant at one, they are differentiable. By the implicit function theorem,
σH or σL are piecewise differentiable in terms of b. Bid and ask prices are continuous and piecewise
differentiable in terms of b or σH or σL. Therefore, we conclude that the bid and ask prices are
piecewise differentiable. For the same reason with the proof for the continuity in (c), the result
follows.

Lemma A3. The following results hold:

(a) αt,µ(b) and βt,µ(b) converge to b as µ goes to zero for all b ∈ [0, 1];
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(b) ∂+αt,µ(b) and ∂+βt,µ(b) converge to 1 as µ goes to zero for all b ∈ [0, 1];

(c) a family of tame equilibrium value functions {Jt,µ, Vt,µ} satisfies (DH) and (DL).

Proof of Lemma A3. The first statement (a) is proved by substituting µ = 0 into Bayes’ rule. Second,
by selection, there is at most one equilibrium strategy for each b. We write ∂+σH or ∂+σL to denote
the right limit of σH and σL with respect to b. By (a) of Lemma A2, they are well defined. Notice that

∂+αt,µ(b) = [(1−µ)γ+µσH+µ∂+σH ]
(1−µ)γ+µbσH+µ(1−b)(1−σL)

− µb[(1−µ)γ+µσH ][σH+σL−1+b∂+σH−(1−b)∂+σL]
[(1−µ)γ+µbσH+µ(1−b)(1−σL)]2

;

∂+βt,µ(b) = [(1−µ)(1−γ)+µ(1−σH−∂+σH)]
(1−µ)(1−γ)+µb(1−σH)+µ(1−b)σL

− µb[(1−µ)(1−γ)+µ(1−σH)][1−σH−σL−b∂+σH−b∂+σL]
[(1−µ)(1−γ)+µb(1−σH)+µ(1−b)σL]2

.

Substituting µ = 0 into the above equations, we obtain the second result (b). To complete the
proof, note that

∂+Vt,µ(b) = µ∂+βt,µ(b) + (1− µ) (γ∂+αt,µ(b)∂+Vt+1,µ(αt,µ(b)) + (1− γ)∂+βt,µ(b)∂+Vt+1,µ(βt,µ(b))) ,

and our induction hypothesis (DL), together with (a) and (b) of this lemma, completes the proof for
∂+Vt,µ(b). By symmetry, we can also prove the statement for ∂+Jt,µ(b).

Lemma A4. When µ is sufficiently small, the current-period value functions Jt and Vt satisfy (SH)

and (SL).

Proof of Lemma A4. We only prove that Vt satisfies (SL); the rest follows by symmetry. If µ(b 1
µr
c −

t + 1) < 1 or µ(b 1
µr
c − t + 1) > 1, for a sufficiently small µ, (c) of Lemma A3 completes the proof.

Consequently, we focus on the case of µ0(b 1
µr0
c − t+ 1) = 1 for some sufficiently small µ0. Suppose

that (DL) does not hold when µ = µ0. Take µ1 sufficiently close to µ0 with b 1
µr1
c = b 1

µr0
c so that

µ1(b 1
µr1
c − t+ 1) 6= 1.

As Vt is continuous and piecewise differentiable by Lemma A2, there must be b0, b1, b2 with
b0 < b1 < b2 such that V ′t,µ0(b0) < 1, V ′t,µ0(b1) > 1 and V ′t,µ0(b2) < 1. Then, together with (DL), we
can find b′ ∈ (b0, b1), b′′ ∈ (b1, b2) and d̄ > 0 such that

V ′t,µ0(b
′) > 1 + 2d̄ and V ′t,µ0(b

′′) < 1− 2d̄;

and also ∣∣V ′t,µ0(b′)− V ′t,µ1(b′)
∣∣ ≤ d̄ and

∣∣V ′t,µ0(b′′)− V ′t,µ1(b′′)
∣∣ ≤ d̄.

Case 1: 1 < µ1(b 1
µr1
c − t+ 1). As

∣∣V ′t,µ0(b′′)− V ′t,µ1(b′′)
∣∣ ≤ d̄,

∣∣∣µ1(b 1
µr1
c − t+ 1)− V ′t,µ1(b′′)

∣∣∣
=

∣∣∣µ1(b 1
µr1
c − t+ 1)− 1 + 1− V ′t,µ0(b′′) + V ′t,µ0(b

′′)− V ′t,µ1(b′′)
∣∣∣

> d̄.
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Thus, we obtain a contradiction to (c) of Lemma A3 in this case.
Case 2: 1 > µ1(b 1

µr
c − t+ 1). Similarly to the first case, as

∣∣V ′t,µ0(b′)− V ′t,µ1(b′)
∣∣ ≤ d̄, we obtain a

contradiction because
∣∣∣µ1(b 1

µr1
c − t+ 1)− V ′t,µ1(b′)

∣∣∣
=

∣∣∣µ1(b 1
µr1
c − t+ 1)− 1 + 1− V ′t,µ0(b′) + V ′t,µ0(b

′)− V ′t,µ1(b′)
∣∣∣

> d̄.

For a sufficiently small µ, (SL) is satisfied.

Lemma A5. Suppose that DH(b, x, y) = 0 and DL(b, x, y) = 0 do not intersect. Then either Regime
H or Regime L arises, uniquely. Moreover, if xL > xH , then (σH , σL) = (xH , 1), and if xL < xH ,
then (σH , σL) = (1, yL).

Proof. Suppose that the two curves do not intersect. By symmetry and continuity, we can assume that

xL > xH and yL > yH . (21)

Then, by Lemma 3, we obtain:

DL(b, xH , 1) > 0 and DH(b, xH , 1) = 0

DL(b, 1, yL) = 0 and DH(b, 1, yL) < 0.
(22)

Therefore, we conclude that Regime H arises. Notice that Regime L does not arise because of the
second line of (22), and Regime does not arise as the honest strategy is not optimal. Moreover, by
Lemma 3, there is no other x except for xH to satisfy DH(b, x, 1) = 0. This completes the proof and
we can prove the result for the second case symmetrically.

Lemma A6. When µ is sufficiently small, for r ∈ (0, 2), the following hold:

(a) Ask and bid prices αt(b) and βt(b) are increasing in b for all b ∈ [0, 1];

(b) The current-period value functions Jt and Vt satisfy (M).

Proof of Lemma A6. We provide the proof for each statement below.
Proof of (a). When nobody manipulates, by Bayes’ rule we can show the result and so it suffices to
show that the result holds in Regime H and L. As the argument is symmetric, we only prove the
result for Regime L. Suppose that Regime L arises at b. As a strategy is continuous by Lemma A2,
we can take b+ ε for an arbitrarily small ε at which Regime L also arises. Then, by the type-L trader’s
indifference condition, we obtain:

∂+αt(b)(−1 + ∂+Vt+1(αt(b))) = ∂+βt(b)(1 + ∂+Vt+1(βt(b))). (23)
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By Lemma 2 and (M), (23) indicates that ∂+αt(b) > 0 if and only if ∂+βt(b) > 0. Let FL(b) =

σLt(b)− ∂+σLt(b)b(1− b). Then, we have:

∂+αt(b) =
((1− µ)γ + µ) · FL(b)

(1− µ)γ + µb+ µ(1− b)(1− σLt(b))
and ∂+βt(b) =

(1− µ)(1− γ) · (1− FL(b))

(1− µ)(1− γ) + µ(1− b)σLt(b)
.

Thus, if ∂+αt(b) ≤ 0, we must have 1 − FL(b) > 1, which implies ∂+βt(b) > 0. We obtain a
contradiction. �
Proof of (b). As the argument is symmetric, we only prove the case of the low type. Note that the
next-period value function and bid and ask prices are all monotonically increasing, starting at the
origin. Thus, the summation of these functions is also monotonic. The case for Jt is proved similarly.
�

B Existence of a Symmetric Equilibrium

Let b̃ = 1 − b and γ̃ = 1 − γ. Consider the same situation as our original economy, except that now
the liquidity trader buys with probability γ̃ and the market maker’s belief is set as b̃. We refer to this
economy as the “mirror economy.” In what follows, ˜ stands for variables associated with the mirror
economy.

Proposition B1. Fix time t and prior belief b.

(a) Let σ ∈ E(b) and σ̃L = 1− σH , σ̃H = 1− σL. Then we have: σ̃ ∈ Ẽ(b̃).

(b) Let (α, β) denote the equilibrium prices associated with σ in the original economy and let (α̃, β̃)

be the equilibrium prices associated with σ̃ in the mirror economy. Then, we have: α = 1 − β̃,
β = 1− α̃.

(c) Vt(b) = J̃t(b̃) and Jt(b) = Ṽt(b̃).

Proof of Proposition B1. By definition, the period-t value of the game for each type in the mirror
economy is expressed as for b̃ = 1− b, and in response to prices (α̃, β̃)

J̃t(b̃) = max
σ̃H∈[0,1]

(
µσ̃H(1− α̃ + J̃t+1(α̃)) (24)

+µ(1− σ̃H)(β̃ − 1 + J̃t+1(β̃)) + (1− µ)×
[
γ̃J̃t+1(α̃) + (1− γ̃)J̃t+1(β̃)

])
,

and

Ṽt(b̃) = max
σ̃L∈[0,1]

(
µσ̃L(−α̃ + Ṽt+1(α̃)) + µ(1− σ̃L)(β̃ + Ṽt+1(β̃))

)
(25)

+(1− µ)×
(
γ̃Ṽt+1(α̃) + (1− γ̃)Ṽt+1(β̃)

))
.
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In addition, Bayes’ rule dictates:

α̃ =
µσ̃H + (1− µ)γ̃

(1− µ)γ̃ + µσ̃L(1− b̃) + µσ̃H b̃
· b̃; (26)

and
β̃ =

µ(1− σ̃H) + (1− µ)(1− γ̃)

(1− µ)(1− γ̃) + µ(1− σ̃L) · (1− b̃) + µ(1− σ̃H) · b̃
· b̃. (27)

Having the description of the equilibrium in the mirror economy, we now consider the relationship
between the two equilibria in the original economy and the mirror economy recursively. When t = T ,
we have σ̃L = (1− σH) = 1 and 1− σ̃H = σL = 0 because they do not manipulate in the last period,
and so (a) is proved. Then by Bayes’ rule, (26) and (27), we have α = 1− β̃, β = 1− α̃, which proves
(b), and as there is no more opportunity to trade, the equalities of those prices and the comparison of
the value functions in the original economy stated in (M3) and (25) and (24) give us: VT (b) = J̃T (b̃)

and JT (b) = ṼT (b̃). This gives us (c) and completes the proof for this case. �
When t 6= T , suppose that σ ∈ E(b) and (α, β) are the equilibrium prices associated with σ in the

original economy. Moreover, suppose that the next-period value functions satisfy the property that (c)
describes. Let σ̃LB = (1− σH), σ̃HS = σL. Then we have (b) because:

α = 1− β̃ and β = 1− α̃. (28)

By substituting (b) into (25) and Ṽt+1, and applying (c) to Ṽt+1, we obtain:

(25) = max
σH∈[0,1]

(µσH(1− αt + Jt+1(αt)) (29)

+µ(1− σH)(βt − 1 + Jt+1(βt)) + (1− µ)× [γJt+1(αt) + (1− γ)Jt+1(βt)]) = Jt(b),

and similarly, by substituting (b) into (24) and J̃t+1, and applying (c) to J̃t+1, we obtain:

(24) = max
σL∈[0,1]

(µσL(−αt + Vt+1(αt)) + µ(1− σL)(βt + Vt+1(βt))) (30)

+(1− µ)× (γVt+1(αt) + (1− γ)Vt+1(βt))) = Vt(b).

This shows that the current-period value functions also satisfy (c), and it remains to show that (a)
is satisfied. If σ̃ 6∈ Ẽ(b̃), then there must be a different strategy profile σ ∈ Ẽ(b̃), which indicates that
there is a different strategy profile σ ∈ E(b). This is a contradiction to our assumption. �

As the results hold for the last period T , by mathematical induction we conclude that the results
hold for all of the periods.

C The Calibration Method

As we make use of an approximation, we set out a different notation for the purpose of calibration.
Bold-faced letters denote approximated variables in our simulation. For example, in the calibration,
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we denote the probability that the type-H trader buys in the high state at period t by ht and the
probability that the type-L trader sells in the low state by lt. Moreover, let

Ht = (1− µ)γ + µht and Lt = (1− µ)(1− γ) + µlt.

Then, Ht is the probability that a buy occurs in the high state in period t and Lt is the probability
that a sell occurs in the low state. We can write:

αt =
Htb

Htb+ (1− Lt)(1− b)
and βt =

(1−Ht)b

(1−Ht)b+ Lt(1− b)
. (31)

When the type-L trader manipulates, we write the bid price as a function of the ask price and the
probability that a buy will occur in the high state. Then, we obtain:

βt =
αtb(1−Ht)

(αt − bHt)
. (32)

In the computer program, we inspect each interval of b to check whether there is a pair of ask and
bid prices that satisfies the following indifference condition for the low type:

−αt + Vt+1(αt) = βt + Vt+1(βt), (33)

where βt satisfies (32). In our procedure, the new function Vt+1 is constructed through a linear
interpolation from Vt+1, which is: for αt ∈ [bk, bk+1],

Vt+1(αt) = (αt − bk)
Vt+1(bk+1)− Vt+1(bk)

(bk+1 − bk)
+ Vt+1(bk), (34)

and for βt ∈ [bj, bj+1],

Vt+1(β) = (βt − bj)
Vt+1(bj+1)− Vt+1(bj)

(bj+1 − bj)
+ Vt+1(bj). (35)

Similarly, when the type-H trader manipulates, we write the ask price as a function of the bid price
and the probability that a buy will occur in the low state. First, we solve Ht as a function of the ask
price αt. Then we have:

Ht =
αt(1− b)(1− Lt)

(1−αt)b
. (36)

Then, we substitute H into the bid price. Then, we obtain:

βt =
(b−αt) + αtLt(1− b)
(b−αt) + Lt(1− b)

. (37)

We inspect each interval of b to check whether there is a pair of ask and bid prices that satisfies
the following indifference condition for the high type:

1−αt + Jt+1(αt) = βt − 1 + Jt+1(βt). (38)
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mθ
k :=

F θt+1(bk+1)−F θt+1(bk)

bk+1−bk

mθ
j :=

F θt+1(bj+1)−F θt+1(bj)

(bj+1−bj)

Aθk := mθ
k − 1

Bθ
j := mθ

j + 1

CL := (bjm
L
j −Vt+1(bj))− (bkm

L
k −Vt+1(bk))

CH := (bjm
H
j − Jt+1(bj))− (bkm

H
k − Jt+1(bk)) + 2

K(θ) := −Aθk +Bθ
j − Cθ

G(θ,Lt, b) := Bθ
j [(1− Lt)(1− b)− b]− Aθk [(1− Lt)(1− b)− 1] + Cθ [1− 2(1− Lt)(1− b)]

N(θ,Lt, b) := Bθ
j b− Cθ [1− (1− Lt)(1− b)]

Tθ := Htb
(
Bθ
j − Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)

Mθ := Htb
(
−bBθ

j + Aθk + Cθ
)

Table 2: Summary of Abbreviated Notations
* Each θ belongs to {H,L} and for each F θ, FH = J and FL = V.

By applying the method of linear interpolation, we construct a function Jt+1 that approximates
Jt+1 such that for αt ∈ [bk, bk+1],

Jt+1(α) = (αt − bk)
Jt+1(bk+1)− Jt+1(bk)

(bk+1 − bk)
+ Jt+1(bk), (39)

and for β ∈ [bj, bj+1],

Jt+1(β) = (βt − bj)
Jt+1(bj+1)− Jt+1(bj)

(bj+1 − bj)
+ Jt+1(bj). (40)

Finally, we obtain the following propositions. To keep the notation simple, we use some abbrevi-
ations; these are summarised in Table 2.

Proposition C1. When the type-L trader manipulates, an equilibrium ask price αt solves:

α2
tA

L
k + αt

(
−bHtA

L
k + b(Ht − 1)BL

j + CL
)
− CLbHt = 0,

subject to Ht = (1− µ)γ + µ and

Lt =
αt(1− b)− b(1−αt)Ht

αt(1− b)
≤ (1− µ)(1− γ) + µ.

Proof of Proposition C1. From (33),

−αt + (αt − bk)mL
k + Vt+1(bk) =

αtb(−1 + Ht)

(−αt + bHt)
+ (

αtb(−1 + Ht)

(−αt + bHt)
− bj)mL

j + Vt+1(bj).

Reorganizing terms, we can obtain the desired equation.
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Proposition C2. When the type-H trader manipulates, then an equilibrium ask price αt solves

α2
tA

H
k +Xαt + Y = 0,

where

X = 1 + b+ 2Lt(1− b)− [bk + b+ Lt(1− b)]mH
k + [bj − 1 + Lt(1− b)]mH

j +

+Jt+1(bk)− Jt+1(bj);

Y = −L(1− b) + [b+ Lt(1− b)]
[
bkm

H
k − 1 + Jt+1(bj)− Jt+1(bk)

]
+

+ [b(1− bj)− bjLt(1− b)]mH
j ,

subject to Lt = (1− µ)(1− γ) + µ and

Ht =
αt(1− Lt)(1− b)

b(1−αt)
≤ (1− µ)γ + µ.

Proof of Proposition C2. From (38),

1−αt + (αt − bk)mH
k + Jt+1(bk) =

= (b−αt)+αtLt(1−b)
(b−αt)+Lt(1−b) − 1 + ( (b−αt)+αtLt(1−b)

(b−αt)+Lt(1−b) − bj)m
H
j + Jt+1(bj).

Similarly to Proposition C1, we can obtain the desired equation by calculation.

Lastly, we consider the case where both types manipulate. To compute the equilibrium in this
case, we simultaneously solve the two equations (33) and (38). Then, (33) and (38) can be re-written
as: for each θ ∈ {H,L}, Let xH = Htb and xL = (1 − Lt)(1 − b). Then, for each θ ∈ {H,L}, the
indifference conditions can be rewritten as:

[
−Aθk +Bθ

j − Cθ
]
x2
H + xH

(
−bBθ

j + Aθk + Cθ
)

+

+xL
[
xH
(
Bθ
j − Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)]
− Cθx2

L = 0.
(41)

Proposition C3. When both types manipulate, xH = Htb and xL = (1 − Lt)(1 − b) satisfy (41) for
each θ ∈ {H,L}. Moreover, Ht and Lt must satisfy:

(1− µ)γ < Ht < (1− µ)γ + µγ and (1− µ)(1− γ) < Lt < (1− µ)(1− γ) + µ. (42)

Simultaneously solving for Ht and Lt is somehow tricky as the procedure has to find a two-
dimensional fixed point. First, we identify a pair of strategies that derives bid and ask prices so as
to make both types indifferent for each belief. Given Ht, we can find an interval for Lt that (38)
holds and given Lt, (33) holds. By using this point as an initial point, we use the Newton–Raphson
method to obtain the solution to the above equations. We denote the LHS of (41) by fθ(xH ,xL).
Then, keeping all of the coefficients fixed, we obtain:

dfθ
xH

=
[
−Aθk +Bθ

j − Cθ
]

2xH +
(
−bBθ

j + Aθk + Cθ
)

+ xL
(
Bθ
j − Aθk − 2Cθ

)
dfθ
xL

=
[
xH
(
Bθ
j − Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)]
− 2CθxL.
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Let x =

(
xH

xL

)
, f(x) =

(
fH(x)

fL(x)

)
and J =

(
dfH
dxH

dfH
dxL

dfL
dxH

dfL
dxL

)
. By the Newton–Raphson

method,
f(x + δx) = f(x) + J δx.

Assuming f(x + δx) ≈ 0 yields:

δx = −J −1f(x). (43)

We obtain a convergent point x∗ by using (43).

Proof of Proposition C3. Let Htb+ (1− Lt)(1− b) = P. Then, from (33),

(mL
k − 1)(1−P)Htb− bkP(1−P)mL

k + P(1−P)Vt+1(bk)

= (mL
j + 1)P(1−Ht)b−P(1−P)bjm

L
j + P(1−P)Vt+1(bj).

Then, (
ALkH−BL

j P
)
b−PHtb(A

L
k −BL

j ) + P(1−P)CL = 0.

Reorganizing terms, resubstituting P = [Htb+ (1− Lt)(1− b)], and again reorganizing terms,
we obtain:

[
−ALk +BL

j − CL
]
H2
t b

2

+Htb
[
BL
j [(1− Lt)(1− b)− b]−ALk [(1− Lt)(1− b)− 1] + CL [1− 2(1− Lt)(1− b)]

]

−(1− Lt)(1− b)
[
BL
j b− CL [1− (1− Lt)(1− b)]

]
= 0.

(44)

By symmetry, we obtain:
[
−AHk +BH

j − CH
]
H2
t b

2

+Htb
[
BH
j [(1− Lt)(1− b)− b]−AHk [(1− Lt)(1− b)− 1] + CH [1− 2(1− Lt)(1− b)]

]

−(1− Lt)(1− b)
[
BH
j b− CH [1− (1− Lt)(1− b)]

]
= 0.

(45)

D The Slopes of the Value Functions at 0 and 1

Proposition D4. Let

Z1(µ) = −µ[µ+(1−µ)γ]
(1−µ)γ

;

Z2(µ) = [ (µ+(1−µ)γ)2

(1−µ)γ
+ [(1−µ)(1−γ)]2

µ+(1−µ)(1−γ)
];

Z3(µ) = µ[µ+(1−µ)(1−γ)]
(1−µ)(1−γ)

;

Z4(µ) = µ[µ+(1−µ)(1−γ)]
(1−µ)(1−γ)

+ (1−µ)2γ2

µ+(1−µ)γ
+ µ+ (1− µ)(1− γ).
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Then, for all t ≤ T ,
J ′t(0) = Z1(µ) ·∑T−t

r=0 Z
r
2(µ);

V ′t (0) = (T−t+1)µ(1−µ)(1−γ)
µ+(1−µ)(1−γ)

;

V ′t (1) = Z3(µ) ·∑T−t
r=0 Z

r
4(µ);

J ′t(1) = −(T−t+1)µ(1−µ)γ
µ+(1−µ)γ

.

Proof. When b is equal to zero there will be no manipulation. Consequently, Bayes’ rule gives

αt(b) =
b(µ+ (1− µ)γ)

bµ+ (1− µ)γ
and βt(b) =

b(1− µ)(1− γ)

µ(1− b) + (1− µ)(1− γ)
.

The derivatives of these functions at zero are

α′t(0) =
µ+ (1− µ)γ

(1− µ)γ
and β′t(0) =

(1− µ)(1− γ)

µ+ (1− µ)(1− γ)
.

We compute that

V ′t (0) = µ(β′t(0) + V ′t+1(0)β′t(0)) + (1− µ)(γV ′t+1(0)α′t(0) + (1− γ)V ′t+1(0)β′(0))

= µβ′(0) + V ′t+1(0)[(1− µ)γα′(0) + ((1− µ)(1− γ) + µ)β′(0)]

= µ (1−µ)(1−γ)
µ+(1−µ)(1−γ)

+ V ′t+1(0)[(µ+ (1− µ)γ) + (1− µ)(1− γ)]

= µ(1−µ)(1−γ)
µ+(1−µ)(1−γ)

+ V ′t+1(0) = (T−t+1)µ(1−µ)(1−γ)
µ+(1−µ)(1−γ)

,

(46)

where the last equality is by induction. Similarly, we compute that

J ′t(0) = µ(−α′t(0) + J ′t+1(0)α′t(0)) + (1− µ)(γJ ′t+1(0)α′t(0) + (1− γ)J ′t+1(0)β′(0))

= −µα′(0) + J ′t+1(0)[((1− µ)γ + µ)α′(0) + (1− µ)(1− γ)β′(0)]

= −µµ+(1−µ)γ
(1−µ)γ

+ J ′t+1(0)[ (µ+(1−µ)γ)2

(1−µ)γ
+ [(1−µ)(1−γ)]2

µ+(1−µ)(1−γ)
].

(47)

Then, we can rewrite (47) as

J ′t(0)− Z1(µ)

1− b(µ)
= Z2(J ′t+1(0)− Z1(µ)

1− Z2(µ)
). (48)

By induction, as J ′T (0) = Z1(µ), we obtain

J ′t(0) = Z2(µ)T−t(J ′T (0)− Z1(µ)
1−Z2(µ)

) + Z1(µ)
1−Z2(µ)

= Z2(µ)T−t · Z1(µ) + Z1(µ)
1−Z2(µ)

(1− bT−t)
= Z1(µ)1−Z2(µ)T−t+1

1−Z2(µ)
= Z1(µ) ·∑T−t

r=0 Z
r
2(µ).

(49)

Similarly, when b is very close to one, there will be no manipulation. Therefore, Bayes’ rule gives

αt(b) =
b(µ+ (1− µ)γ)

bµ+ (1− µ)γ
and βt(b) =

b(1− µ)(1− γ)

µ(1− b) + (1− µ)(1− γ)
.
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The derivatives of these functions at zero are

α′t(1) =
(1− µ)γ

µ+ (1− µ)γ
and β′t(1) =

µ+ (1− µ)(1− γ)

(1− µ)(1− γ)
.

We compute that

V ′t (1) = µ(β′t(1) + V ′t+1(1)β′t(1)) + (1− µ)(γV ′t+1(1)α′t(1) + (1− γ)V ′t+1(1)β′(1))

= µ[µ+(1−µ)(1−γ)]
(1−µ)(1−γ)

+ V ′t+1(1)
(
µ[µ+(1−µ)(1−γ)]

(1−µ)(1−γ)
+ (1−µ)2γ2

µ+(1−µ)γ
+ µ+ (1− µ)(1− γ)

)

J ′t(1) = µ(−α′t(1) + J ′t+1(1)α′t(1)) + (1− µ)(γJ ′t+1(1)α′t(1) + (1− γ)J ′t+1(1)β′(1))

= −µ(1−µ)γ
µ+(1−µ)γ

+ J ′t+1(1) ((1− µ)γ + µ+ (1− µ)(1− γ)) .

(50)

By using (50) recursively, we obtain our desired result.
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