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Abstract. We extend an existing impossibility theorem to the environment where there are infinitely many
agents. When the number of agents is infinite, it is impossible to identify a dictator whose preference dictates
the outcome and it is proved that there is an “invisible” dictator (Fishburn (1970) and Kirman and Sondermann
(1972)). We extend the result of invisible dictators in a domain of weak preference profiles and formulate a
serial dictatorship by using a hierarchy of ultrafilters. An immediate consequence of this characterization is the
existence of an individual dictator in the case of a finite number of agents and it gives a concise proof of an
existing impossibility theorem with serial dictatorship. At the same time, the same characterization shows that
effectively serial dictatorship persists also in the infinite case.
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1 Introduction

In this paper, we establish a serial dictatorship with infinitely many voters and more than three alternatives.
When the number of agents is infinite, it is impossible to identify a dictator whose preference dictates the
outcome and it is proved that there is an “invisible” dictator (Fishburn (1970) and Kirman and Sondermann
(1972)). We extend the result of invisible dictators in a domain of weak preference profiles and formulate a
serial dictatorship by using a hierarchy of ultrafilters. An immediate consequence of this characterization is the
existence of an individual dictator in the case of a finite number of agents and it gives a concise proof of an
existing impossibility theorem with serial dictatorship. At the same time, the same characterization shows that
effectively serial dictatorship persists also in the infinite case.

Within the framework of social choice, recently Man and Takayama (2013) have proposed the independence
and stability axioms together with unanimity and showed that many well-known impossibility theorems follow
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their main theorem as corollaries when the number of voters is finite. We extend the analysis by allowing the
number of voters to be infinite, and on the other hand we extend the analysis in Kirman and Sondermann (1972)
by allowing voters to have weak preferences. Our main theorem shows that a social choice correspondence
satisfying the three axioms is characterized by a serial dictatorship.

This paper adds to the literature by showing a structure of serial dictatorship when the number of voters can
be infinite. Our analysis is not confined to the number of voters being infinite. Our theorem also includes the
case of finitely many voters. In this sense, we extend the previous research of dictatorship to a more general
environment. It combines two strands of Kirman and Sondermann (1972) and Man and Takayama (2013) in
social choice theory. The organization of the paper is as follows. Section 2 presents the model. Section 3
presents the main theorem. Section 4 proves the existence of invisible serial dictators.

2 The Model

Let X be the set of potential alternatives. We assume that |X | ≥ 3 and it is finite. Let N be the set of potential
agents. We assume that N is infinite. Let R be the entire space of weak preferences over X . Let %i∈ R be
agent i’s preference, and, for each N ⊂ N , let %∈ RN be a preference profile of all the agents in N . For each
x, y ∈ X , we say that x �i y if x is strictly preferred to y, i.e., x %i y but not y %i x, and say that x ∼i y if x
is indifferent to y, i.e., x %i y and y %i x.

An economy is a list of {X,N,%} ∈ 2X × 2N ×RN . Given population N , A solution φN is a correspon-
dence from economies to alternatives such that

φN : 2X \{∅} ×RN ⇒ X ,

s.t. φN (X,%) ⊂ X,

φN (X,%) 6= ∅.

We omit the subscript of a solution φ throughout the paper when we take the entire population N for φ. Next
we define three properties which we want solutions to satisfy.

Definition 2.1. Strong Unanimity (St. Unanimity, hereafter)
For each X ∈ 2X \{∅}, %∈ RN , and x ∈ X , if, for each i ∈ N and y ∈ X , x %i y, and there exists j ∈ N
s.t. x �j y, then φN (X,%) = {x}.

We say that % and %′∈ RN agree on X if % and %′ are the same on X . Then we say that % =X %′.

Definition 2.2. Independence of Irrelevant Alternatives (IA-Independence)
For each X ∈ 2X \{∅} and each %,%′∈ RN , if % =X %′, then φN (X,%) = φN (X,%′).

Definition 2.3. Stability with Losing Alternatives (LA-Stability)
For eachX,Y ∈ 2X \{∅} and each%∈ RN , ifX ⊂ Y and φN (Y,%)∩X 6= ∅, then φ(X,%) = φ(Y,%)∩X .
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3 Dictatorial ultrafilter

In this section, we show that dictatorship holds when solutions satisfy the three properties. However such
dictatorship is not necessarily governed by a single dictator, but sometimes by a “invisible” dictator (Kirman
and Sondermann (1972)). First we show that each solution φN can be represented as if they are chosen by a
social preference over X . For each R ∈ R, let Top(X,R) ≡ {x ∈ X | for each y ∈ X, x R y}.

Lemma 3.1. If a solution φN satisfies St. Unaminity, IA-Independence and LA-Stability, then, for each%∈ RN ,
there exists R ∈ R such that, for each X ⊂ X with |X| ≥ 2, φN (X,%) = Top(X,R).

Proof. Let %∈ RN . We define a binary relationship R on X so that x R y if x ∈ φN ({x, y},%). Then, since
φN ({x, y},%) 6= ∅, R is complete.

Next we show transitivity. Suppose that x, y, z ∈ X satisfy that x R y and y R z. Then x ∈ φN ({x, y},%)
and y ∈ φN ({y, z},%). If x /∈ φN ({x, z},%), then x /∈ φN ({x, y, z},%) by LA-Stability. It means that y /∈
φN ({x, y, z},%). Otherwise φN ({x, y},%) = {y} by LA-Stability. This leads to that φN ({x, y, z},%) = {z}.
But, by LA-Stability, this implies that y /∈ φN ({y, z},%). It is a contradiction. Therefore x ∈ φN ({x, z},%),
i.e., x R z. Now R is a complete transitive relationship, that is, a weak preference.

Finally we show that φN is the top set of R. Let X ⊂ X with |X| ≥ 2. First, suppose that there
exists x ∈ φN (X,%) but x /∈ Top(X,R). Then there exists y ∈ X such that y ∈ φN ({x, y},%) but
x /∈ φN ({x, y},%). However, since {x, y} ⊂ X , x ∈ φN ({x, z},%) by LA-Stability. It is a contradic-
tion. Thus φN (X,%) ⊂ Top(X,R). Next suppose that x ∈ Top(X,R). Then, for each y ∈ X , x R y. It
means that for each y ∈ X , x ∈ φN ({x, y},%). By LA-stability, it implies that x ∈ φN (X,%). As a result,
Top(X,R) ⊂ φN (X,%). �

Here, we define an ultrafilter F on population N .

Definition 3.2. A family of sets F is an ultrafilter of N ⊂ N if

(1) ∅ /∈ F .

(2) If S ∈ F , and S′ ⊃ S, then S′ ∈ F .

(3) If S, S′ ∈ F , then S ∩ S′ ∈ F .

(4) If S ∈ N, then either S ∈ F or N\S ∈ F .

For each % RN , we denote the weak preference established in Lemma 3.1 as RN (%). We say that
x PN (%) y if x is strictly preferred to y under RN (%), and say that x IN (%) y if x is indifferent to y.
Now RN (·) is a mapping fromRN toR, so we can consider RN (·) as a social welfare function. Therefore we
can apply Arrow’s impossibility theorem, especially the one extended to infinitely many agents by Kirman and
Sondermann (1972).

For each U ⊂ N and each x, y ∈ X , we denote x %U y if, for each i ∈ U , x %i y.
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Theorem 3.3. If a solution φN satisfies St.Unanimity, IA-Independence, and LA-Stability, then there exists an
ultrafilter U on N s.t., for each %∈ RN , if there exists U ∈ U such that, for each x, y ∈ X , x �U y, then
x PN (%) y.

This idea originally comes from Kirman and Sondermann (1972). However they assumed that preferences
are strict, so we have to extend their result so that we can incorporate weak preferences. We show this theorem
through the lemmas below. Before going to the proofs, we define some families of sets of agents. In the
following arguments, we assume that φN satisfies St.Unanimity, IA-Independence, and LA-Stability. And, for
each U ⊂ N , let U ′ ≡ N\U , and, for each Ũ ⊂ U ′, let U ′′ ≡ U ′\Ũ .

The first family is;

U ≡ {U ⊂ N | ∀x, y ∈ X , ∀ %∈ RN , x �U y ∧ y %U ′ x⇒ x PN (%) y.},

We can interpret each member of U as a “coalition of dictators”. Let the other two families of sets be:

U ′ ≡ {U ⊂ N | ∃x, y ∈ X with x 6= y,∀ %∈ RN , x �U y ∧ y %U ′ x⇒ x PN (%) y},
U ′′ ≡ {U ⊂ N | ∃x, y ∈ X with x 6= y,

∀Ũ ⊂ U ′, ∃ %∈ RN , x �U y ∧ y ∼Ũ x ∧ y �U ′′ x ∧ x PN (%) y
}
.

All we have to show is that U is an ultrafilter on N . For this purpose, we show that U = U ′′ and U ′′ is an
ultrafilter.

We show that these three families are the same. First note that U ⊂ U ′ ⊂ U ′′ by definition. We show the
inverse inclusion by the following two lemmas.

Lemma 3.4. U ′′ ⊂ U ′.

Proof. Let U ∈ U ′′ and U ′ ≡ N\U . Let %∈ RN . Suppose that x �U y and y %U ′ x. Now let
Ũ ≡ {i ∈ U ′ | x ∼i y}, and let U ′′ ≡ U ′\Ũ . Then, since U ∈ U ′′, there exists x, y ∈ X and %∗∈ RN such
that x �∗U y, y ∼∗

Ũ
x, y �∗U ′′ x, and xPN (%∗)y. It is clear that %∗ ={x,y} %. Thus, by IA-independence,

φN ({x, y},%) = φN ({x, y},%∗). Since x PN (%∗) y, φN ({x, y},%) = φN ({x, y},%∗) = {x}. It means that
x PN (%) y. Thus U ∈ U ′. �

Lemma 3.5. U ′ ⊂ U .

Proof. Let U ∈ U ′, and let U ′ ≡ N\U . Then there exists x, y ∈ X with x 6= y such that

∀ %∈ RN , x �U y ∧ y %U ′ x⇒ x PN (%) y.

Let z ∈ X\{x, y} and%∈ RN . Suppose that z �U y and y %U ′ z. Now we want to show that z PN (%) y.
Let %′∈ RN such that z �′U x �′U y, y %′U ′ z �′U ′ x, and, for each i ∈ U ′, %i={y,z}%′i. Then, by St.
Unanimity, φN ({x, z},%′) = {z}. It means that z PN (%′) x. Now x �′U y and y �′U ′ x. Since U ∈ U ′, we
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have x PN (%′) y. Since PN (%′) ∈ RN , we have z PN (%′) y by transitivity. Since %={y,z}%′, we have that
φN ({y, z},%) = φN ({y, z},%′). Therefore z PN (%) y.

Let w ∈ X\{x, y, z}. Now, for y, z, it holds that, for each %∈ RN , if z �U y and y %U ′ z, then
z PN (%) y. Thus, by applying the same argument as above, we have that, for each %∈ RN , if z �U w and
w %U ′ z, then z PN (%) w. It implies that U ∈ U . �

Corollary 3.6. U = U ′ = U ′′

Finally we show that U is an ultrafilter.

Proposition 3.7. U is an ultrafilter.

Proof. By Corollary 3.6, we have show that U ′′ is an ultrafilter. First, we show that ∅ /∈ U ′′. If not so, by
takeing U = ∅ and Ũ 6= N , there exist x, y ∈ X and %∈ RN such that y ∼Ũ x, y �N\Ũ x, and x PN (%) y.
It contradicts St. Unanimity.

Next we show that U ′′ is closed under finite intersection. Let W1,W2 ∈ U ′′. We separate N into four
disjoint subsets:

V1 ≡W1 ∩W2,

V2 ≡W1\V1,

V3 ≡W2\V1,

V4 ≡ N\(W1 ∪W2).

Let {a, b, c} ⊂ X and Ṽ1 ⊂ N\V1. Then we can find %∗∈ RN such that

c �∗V1 a �
∗
V1 b, a �

∗
V2 b %

∗
V2 c,

b %∗V3 c �
∗
V3 a, b %

∗
V4 a %

∗
V4 c,

b ∼∗
Ṽ1
c, and b �∗

N\(V ∪Ṽ1) c.

Note that a �∗W1
b, and b %∗N\W1

a. By Corollary 3.6, we have W1 ∈ U ′′ = U . Therefore a PN (%∗) b.
By the same way, W2 ∈ U , c �∗W2

a, and a %∗N\W2
c. It implies that c PN (%∗) a. By transitivity, we have

c PN (%∗) b. Now we also have that c �∗V1
b, b ∼∗

Ṽ1
c, and b �∗

N\(V ∪Ṽ1) c. Thus, by the definition of U ′′,
V1 = W1 ∩W2 ∈ U ′′.

Next we show that, for each V ⊂ N , V ∈ U ′′ or N\V ∈ U ′′. If V ∈ U ′′, then it is immediately satisfied.
So we suppose that V /∈ U ′′. Then, for each {a, b, c} ⊂ X , there exists Ṽ ⊂ N\V such that, for each %∈ RN ,
if b �V a, b ∼Ṽ a, and a �N\(V ∪Ṽ ) b, then a RN (%) b. Now let V̂ ⊂ V . Then we can find %̃ ∈ RN such
that

b �̃V̂ c ∼̃V̂ a, b �̃V \V̂ c �̃V \V̂ a,

a ∼̃Ṽ b �̃Ṽ c, and a �̃N\(V ∪Ṽ ) b �̃N\(V ∪Ṽ ) c.
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It is clear that, by St. Unanimity, b PN (%̃) c. Note that b �̃V a, a ∼̃Ṽ b, and a �̃N\(V ∪Ṽ ) b. By the hypothesis,
we have that a RN (%̃) b. Thus a PN (%̃) c. At the same time, we have that a �̃N\V b, c ∼̃V̂ a, and c �̃V \V̂ a.
Since V̂ can be an arbitrary subset of V , by the definition of U ′′, we have that N\V ∈ U ′′.

Finally we show that, for each U ∈ U ′′, if W ⊃ U , then W ∈ U ′′. Suppose not. Then there exist
W,U ⊂ N with W ⊃ U such that U ∈ U ′′ but W /∈ U ′′. Then, by the above argument, N\W ∈ U ′′. Since U ′′

is closed under intersection, we have that U ∩ (N\W ) ∈ U ′′. However U ∩ (N\W ) = ∅. It is a contradiction.
�

Given a population N , we denote the decisive ultrafilter above as UN .

4 Characterization with serially dictatorial coalitions

Based on the dictatorial ultrafilter, in this section, we show that φ is chosen as if groups of agents serially choose
their desirable alternatives. First we slightly extend our definition Top(X,%):

Definition 4.1. For each U ⊂ N , X ⊂ X , and %∈ RN , let

Top(U)(X,%) ≡ {x ∈ X | ∀i ∈ U, ∀y ∈ X, x %i y}.

Lemma 4.2. Let N ⊂ N . Suppose that φN satisfies St.Unanimity, IA-Independence, and LA-Stability. Then,
for each %∈ R, there exists U∗ ∈ UN such that (i) for each i, i′ ∈ U∗ and j ∈ N\U∗, it holds that %i=%i′
and %i 6=%j , and (ii) for each X ⊂ X with X 6= ∅, it holds that φN (X,%) ⊂ Top(U∗)(X,%).

Proof. Let N ⊂ N and %∈ R. Since |X | < ∞, we can separate N into finite numbers of equivalent
classes with respect to the agents’ preferences over X . Let {Uk}k∈{1,··· ,K} be such a partition, i.e., for each
k, l ∈ {1, · · · ,K}, i, i′ ∈ Uk, and j ∈ Ul, we have that%i=%i′ and%i 6=%j . Now UN is ultrafilter. Thus there
exists a unique k∗ ∈ {1, · · · ,K} such that Uk∗ ∈ UN . 1

Next we show that, for each X ⊂ X , φN (X,%) ⊂ Top(Uk∗ )(X,%). When |X| = 1, it is clear. So
we assume that |X| ≥ 2. Suppose that there exists X ⊂ X such that φN (X,%) 6⊂ Top(Uk∗ )(X,%). Then,
there exists x ∈ φN (X,%) such that x /∈ Top(Uk∗ )(X,%). Then there exists y ∈ Top(Uk∗ )(X,%) such that
y �Uk∗ x. It means that Uk∗ ⊂ {i ∈ N | y �i x}. Now Uk∗ ∈ UN . Thus, {i ∈ N | y �i x} ∈ UN . This
implies that y PN (%) x. However x ∈ φN (X,%), and so, by LA-Stability, we have that x ∈ φN ({x, y},%).
This implies that xR(%)y. It is a contradiction. Thus φN (X,%) ⊂ Top(Uk∗ )(X,%). �

Now the following two lemmas show that when a solution satisfies St.Unanimity, IA-Independence, and
LA-Stability, there exists a serially dictatorial groups of agents with some tie-breaking rule.

1For detailed arguments on mathematical properties of ultrafilters, see Aliprantis and Border (2006) etc.
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Let {Uk}k∈{1,··· ,K} be a finite partition on N . We define {T ∗k (X,%)}k∈{0,··· ,K} recursively;

T ∗0 (X,%) ≡ X,

T ∗1 (X,%) ≡ Top(U1)(X,%),

for ∀ k ∈ {2, · · · ,K}, T ∗k (X,%) ≡ Top(Uk)(T ∗k−1(X,%),%).

Lemma 4.3. For each X ⊂ X with X 6= ∅ and %∈ RN , there exists a finite partition P ≡ {Uk}k∈{1,··· ,K}
on N such that φ(X,%) ⊂ T ∗K(X,%).

Proof. Let X ⊂ X with X 6= ∅ and %∈ RN . Let P be a finite partition on N generated by the equivalent
classes regarding agents’ preferences over X . Let |P| ≡ K. As shown in the proof of Lemma 4.2, there exists
a unique U ∈ P such that U ∈ UN and φ(X,%) ⊂ Top(U)(X,%). Name this set U1 and this ultrafilter
U1. Now we define a new solution for smaller population N\U1. For each Y ⊂ X and %̃ ∈ RN\U1 , let
ψ1
N\U1

(Y, %̃) ≡ φ(Y, %̂), where, for each i ∈ N\U1, %̂i = %̃i, and, for each j ∈ U1, his preference is
indifferent for all the alternatives, i.e., for each x, y ∈ X , x∼̂jy. We show that ψ1

N\U1
satisfies St.Unanimity,

IA-Independence, and LA-Stability.
First, we show St.Unanimity. Let x ∈ X and %̃ ∈ RN\U1 . Suppose that, for each i ∈ N\U1 and y ∈ X ,

x%̃iy, and there exists j ∈ N\U1 such that x�̃iy. Then, by the construction of %̂, we also have that, for
each i ∈ N and y ∈ X , x%̂iy, and x�̂jy. Therefore, by St.Unanimity of φ, we have that ψ1

N\U1
(X, %̃) =

φ(X, %̂) = {x}. Second, we show that IA-Independence holds. Let Y ⊂ X , and %̃, %̃
′ ∈ RN\U1 be such

that %̃ =Y %̃
′
. Then, by construction, we also have that %̂ =Y %̂

′
. By IA-Independence of φ, we have

that φ(Y, %̂) = φ(Y, %̂
′
). It implies that ψ1

N\U1
(Y, %̃) = ψ1

N\U1
(Y, %̃′). Finally, we show that LA-Stability

holds. Let Y ⊂ X and %̃ ∈ RN\U1 . By LA-Stability of φ, if the intersection is non-empty, we have that
φ(Y, %̂) = φ(X, %̂) ∩ Y . This implies that, if the intersection is non-empty, we have that ψ1

N\U1
(Y, %̃) =

ψ1
N\U1

(X, %̃) ∩ Y .
Now ψ1

N\U1
satisfies St. Unanimity, IA-Independence, and LA-Stability. Let %̃ ∈ RN\U1 be such that,

for each i ∈ N\U1, %̃i =%i Then, by Lemma 4.2, there exists U∗ ⊂ N\U1 such that ψ1
N\U1

(Top(U1)(X,%
), %̃) ⊂ Top(U∗)(Top(U1)(X,%), %̃). As shown in the proof of 4.2, we have that U∗ ∈ UN\U1 and it is unique.
We name this set U2 and this ultrafilter U2.

Now we know that φ(X,%) ⊂ Top(U1)(X,%). By LA-Stability, we have that

φ(Top(U1)(X,%),%) = φ(X,%) ∩ Top(U1)(X,%)

= φ(X,%).

On the other hand, we also have that ψ1
N\U1

(Top(U1)(X,%), %̃) = φ(Top(U1)(X,%), %̂). Note that, for each

i ∈ U1 and x, y ∈ Top(U1)(X,%) , x ∼i y. Thus, by construction of %̂, % =Top(U1)(X,%) %̂. By IA-
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Independence of φ, φ(Top(U1)(X,%), %̂) = φ(Top(U1)(X,%),%). Therefore

φ(X,%) = φ(Top(U1)(X,%),%)

= φ(Top(U1)(X,%), %̂)

= ψ1
N\U1

(Top(U1)(X,%), %̃)

⊂ Top(U2)(Top(U1)(X,%), %̃)

= Top(U2)(Top(U1)(X,%),%).

We can repeat this process until we number all the elements in P . �

We say that the partition {Uk}k∈{1,··· ,K} above is the ordered preference partition onN w.r.t. %∈ RN , and
{Uk}k∈{1,··· ,K} is the ordered preference hierarchy of ultrafilters w.r.t. %∈ RN .

Next we show the existence of a tie-breaking rule;

Lemma 4.4. There exists ρ ∈ R, such that for each X ⊂ X with X 6= ∅ and %∈ RN , φ(X,%) =
Top(T ∗K(X,%), ρ).

Proof. Let ρ be a relationship on X such that, for each x, y ∈ X , x ρ y iff there exist %∈ RN such that
{x, y} ⊂ T ∗K(X ,%) and x ∈ φ(X ,%). First we show that ρ is a weak preference.

Let x, y ∈ X . Then we can find %̃ ∈ RN be such that, for each i ∈ N and z ∈ X\{x, y}, x∼̃iy and
x�̃iz. Then T ∗K(X , %̃) = {x, y}. Since φ(X , %̃) ⊂ T ∗K(X , %̃) and φ(X , %̃) 6= ∅, we have x ∈ φ(X , %̃) or
y ∈ φ(X , %̃). That is, x ρ y or y ρ x. This means that ρ is complete.

Next we show transitivity. Let x, y, z ∈ X be such that x ρ y and y ρ z. Then there exists %∈ RN

such that {x, y} ⊂ T ∗K(X ,%) and x ∈ φ(X ,%). By the same way, there also exists %′∈ RN such that
{y, z} ⊂ T ∗K(X ,%′) and y ∈ φ(X ,%′). Then, by LA-Stability, x ∈ φ({x, y},%) and y ∈ φ({y, z},%′).
Now let %∗∈ RN be such that, for each i ∈ N and w ∈ X\{x, y, z}, x ∼∗ y ∼∗i z and z �∗i w. Then
T ∗K(X ,%∗) = {x, y, z}. Therefore all we have to show is that x ∈ φ(X ,%∗). Suppose not. Note that
%∗ ={y,z} %′. Thus y ∈ φ({y, z},%′) = φ({y, z},%∗). By LA-Stability, y ∈ φ({x, y, z},%∗). By-LA-
Stability again, we have that φ({x, y},%∗) = φ({x, y, z},%∗) ∩ {x, y} = {y}. However, since %∗ ={x,y} %,
we have that φ({x, y},%) = φ({x, y},%∗). Therefore x ∈ φ({x, y},%) = φ({x, y},%∗). It is a contradiction.
Thus ρ is a weak preference over X .

Finally we show that, for each X ⊂ X with X 6= ∅ and %∈ RN , φ(X,%) = Top(T ∗K(X,%), ρ). First
suppose that there existX ⊂ X withX 6= ∅ and%∈ RN such that φ(X,%) * Top(T ∗K(X,%), ρ). Then there
exists x ∈ φ(X,%) such that x /∈ Top(T ∗K(X,%), ρ). Let y ∈ Top(T ∗K(X,%), ρ). Then {x, y} ⊂ T ∗K(X,%)
and x ∈ φ({x, y},%). Now let %′∈ RN be such that, for each i ∈ N and z ∈ X\{x, y}, x ∼′i y and
x �′i y. Then % ={x,y} %′. It implies that φ({x, y},%) = φ({x, y},%′). Therefore x ∈ φ({x, y},%′).
Now, since TK(X ,%′) = {x, y}, we have x ∈ φ({x, y},%′) = φ(X ,%′). This implies that x ρ y. Since
y ∈ Top(T ∗K(X,%), ρ), we have x ∈ Top(T ∗K(X,%), ρ). It contradicts the hypothesis.

Next we suppose that there exists X ⊂ X with X 6= ∅ and %∈ RN such that φ(X,%) + Top(T ∗K(X,%
), ρ). Then there exists x ∈ Top(T ∗K(X,%), ρ) such that x /∈ φ(X,%). Let y ∈ φ(X,%). Then, LA-Stability,
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φ({x, y},%) = {y}. Note that x ρ y. Therefore there exists %′∈ RN such that {x, y} ⊂ T ∗K(X ,%′) and
x ∈ φ(X ,%′). Since {x, y} ⊂ T ∗K(X,%), we have that % ={x,y} %′. Therefore φ({x, y},%′) = φ({x, y},%
) = {y}. However, we also have that x ∈ φ(X ,%′) = φ({x, y},%′). It is a contradiction. �

The series of “dictatorial coalitions” shown in the above lemmas varies across the agents’ preferences.
However we show that there is some order coherent across dictatorial coalitions.

Definition 4.5. A family U is a hierarchical family of ultrafilters over N if U is minimal in terms of set
inclusion among the families of subsets of 2N satisfying that

(1) There exists U ∈ U s.t. U is an ultrafilter over N ,

(2) For each U ∈ U s.t. U is an ultrafilter over N ⊂ N , and for each U ∈ U ,

if N\U 6= ∅, there exists Ũ ∈ U s.t. Ũ is an ultrafilter over N\U.

Definition 4.6. A finite subfamily {Uk}Kk=1 ⊂ U is a K-th order hierarchical series of ultrafilters in U if (i)
for each k ∈ {1, · · · ,K}, there exists Nk ⊂ N s.t. Uk is an ultrafilter over Nk, (ii) N1 = N and, for each
k ≥ 2, there exists Uk−1 ∈ Uk−1 s.t. Nk = Nk−1\Uk−1, and (iii) |UK | = 1.

We say that such a series of sets {Ul}K−1
k=1 above is a series of coalitions. Note that each hierarchical family

of ultrafilters U over N consists of the hierarchical series of ultrafilters originated from a unique ultraliter U1

over N as in Figure 4 below.

Hereafter we consider each hierarchical family of ultrafilters as the set of hierarchical series of ultrafilters
with the same initial ultrafilter. We say that U is a K-th order hierarchical family of ultrafilters if the largest
order of the hierarchical series of ultrafilters in U isK. And, for each {Uk}k∈{1,··· ,K} ∈ U , let {Uk}k∈{1,··· ,K}
be the series of coalitions associated with {Uk}k∈{1,··· ,K}.

Next we define an “order” of a hierarchical family of ultrafilters;

Definition 4.7. A K-th order hierarchical family of ultrafilters U over N satisfies order preservation if, for
each {Uk}k∈{1,··· ,K} and {U ′l}l∈{1,··· ,L} ∈ U , the associated series of coalitions {Uk}Kk=1 and {U ′l}Ll=1 satisfy
that

For each n,m ∈ N with 1 ≤ n < m ≤ K,

(1) if there exists ln ∈ N s.t. Un ∩ U ′ln ∈ Un and Un ∩ U ′ln /∈ U
′
ln ,

then there exists n′ < n s.t. Un′ ∩ U ′ln ∈ U
′
ln ,

and (2) if there exist ln, lm ∈ N with lm < ln s.t. Um ∩ U ′lm ∈ Um and Un ∩ U ′ln ∈ Un,

then Um ∩ U ′lm /∈ U ′lm .

The intuition is depicted in Figure 2;

Figure 2: Order preservation
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Figure 1: Illustration for A Hierarchical Family of Ultrafilters
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Definition 4.8. (Generalized serial dictatorship): A solution φ satisfies generalized serial dictatorship if there
exists a tie-breaking rule ρ ∈ R and a hierarchical family of ultrafilters U , such that (1) U satisfies order
preservation, for each X ⊂ X with X 6= ∅ and%∈ RN , (2) the ordered preference partition, {UK}l∈{1,··· ,K},
is a series of coalition in U , and (3) φ(X,%) = Top(T ∗K(X,%), ρ).

From Lemma 4.3 and 4.4, we show that the next theorem.

Theorem 4.9. If φ satisfies St.Unanimity, IA-Independence, and LA-Stability, then φ satisfies generalized serial
dictatorship.

Proof. Suppose that φ satisfy St.Unanimity, IA-Independence, and LA-Stability. Then, as shown in Lemma
4.3 and 4.4, there exists a tie breaking rule ρ ∈ R, and, for each %∈ RN , the ordered preference partition
{Uk}k∈{1,··· ,K} and its associated hierarchy of {Uk}k∈{1,··· ,K} satisfy that, for each X ⊂ X with X 6= ∅,
φ(X,%) = Top(T ∗K(X,%), ρ).

Let U φ be as follows;

U φ ≡ {{Uk}k∈{1,··· ,K} | ∃ %∈ RN , {Uk}k∈{1,··· ,K} is an ordered preference partition w.r.t %}.

Then U φ is a hierarchical family of ultrafilters. We have to show that U φ satisfies order preservation.
Let %,%′∈ R, and {Uk}Kk=1 and {U ′l}Ll=1 be their ordered preference partitions respectively. Let {Uk}Kk=1

and {U ′l}Ll=1 be their associated hierarchical series of ultrafilters. Suppose that U φ does not satisfy order
preservation. Without loss of generality, we suppose that the condition is violated for {Uk}Kk=1 at k = m. Let
lm ∈ {1, · · · , L} be such that Um ∩ U ′lm ∈ Um. Note that such lm is unique. By the hypothesis, we have that
(1) Um ∩U ′lm /∈ U ′lm and there exists n > m such that Un ∩U ′lm ∈ U

′
lm

, or (2)Um ∩U ′lm ∈ U
′
lm

and there exists
ñ < m and lñ > lm such that Uñ ∩ U ′lñ ∈ Uñ.

First, suppose that (1) holds. Let Vm ≡ Um∩U ′lm and V ′lm ≡ Un∩U
′
lm

. By construction, Vm is a dictatorial
coalition for population N\

⋃m−1
k=1 Uk. On the other hand, Vm ∩

⋃lm−1
l=1 U ′l = ∅. By the same reason as Vm,

V ′lm is a dictatorial coalition for population N\
⋃lm−1
l=1 Ul. We also have that V ′lm ∩

⋃n−1
k=1 Uk = ∅. Now let

N∗ ≡ N\{(
⋃lm−1
l=1 U ′l ) ∪ (

⋃n−1
k=1 Ul)}, and U∗ be the dictatorial ultrafilter. Then, it must be the case that both

Vm ∈ U∗ and V ′lm ∈ U
∗, and so Vm ∩ V ′lm 6= ∅. However, since V ′lm ⊂ Un and Vm ⊂ Um, we have that

V ′lm ∩ Vm = ∅. It is a contradiction.

Next, suppose that (2) holds. Let Vñ ≡ Uñ ∩ U ′lñ . Then, by the same argument as above, Vñ is a dicta-
torial coalition for population N\

⋃ñ−1
k=1 Uk and Vñ ∩

⋃lñ−1
l=1 U ′l = ∅. On the other hand, Vm is a dictatorial

coalition for population N\
⋃lm−1
l=1 U ′l and Vm ∩

⋃ñ
l=1 Uk = ∅. Let Ũ be the dictatorial ultrafilter for a popu-

lation Ñ ≡ N\{(
⋃ñ−1
k=1 Uk) ∪ (

⋃lñ−1
l=1 U ′l )}. Then, it must be the case that both Vm ∈ Ũ and Vñ ∈ Ũ , and so

Vm ∩Vñ 6= ∅. However, since Vm ⊂ Um and Vñ ⊂ Uñ, Vm ∩Vñ = ∅. It is a contradiction. Thus U φ satisfies
order preservation. �

Finally we show that St.Unanimity, IA-Independence, and LA-Stability are the necessary condition for the
generalized serial dictatorship;
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Theorem 4.10. If a solution φ satisfies the generalized serial dictatorship, then φ satisfies St.Unanimity, IA-
Independence, and LA-Stability.

The proof is done through the following three lemmas:

Lemma 4.11. If a solution φ satisfies the generalized serial dictatorship, φ satisfies St.Unanimity.

Proof. Let X ⊂ X , x ∈ X and %∈ RN . Suppose that, for each i ∈ N and y ∈ X , x %i y, and there
exists j ∈ N such that x �j y. Let {Uk}Kk=1 be the ordered preference partition for %. Then, for each
k ∈ {1, · · · ,K}, x ∈ T ∗k (X,%). On the other hand, for each y ∈ X with y 6= x, there exists ky ∈ {1, · · · ,K}
such that x �Uky y, therefore y /∈ T ∗ky(X,%). It implies that T ∗K(X,%) = {x} and φ(N , X,%) = {x}. �

Lemma 4.12. If a solution φ satisfies the generalized serial dictatorship, φ satisfies IA-Independence.

Proof. Let U be the hierarchical family of ultrafilters governing φ. LetX ⊂ X and%,%′∈ RN with%=X %′.
Let {Uk}k∈K and {U ′l}l∈L be their ordered preference partitions respectively, and {Uk}Kk=1 and {U ′l}Ll=1 be the
associated hierarchical series of ultrafilters. Note that U1 = U ′1 by construction. Now we can construct a
subsequence of {Uk}k∈K , say, {Uπ(n)}K̃n=1, such that (1) π(n) = 1, and, (2) for each n ∈ {2, · · · , K̃}, π(n) is
the first number after π(n − 1) such that %Uπ(n) 6=X %Uπ(n−1) . A family of sets {T ∗π(n)(X,%)}K̃n=1 is defined
as before;

T ∗π(0)(X,%) ≡ X,

T ∗π(1)(X,%) ≡ Top(Uπ(1))(X,%),

for ∀ n ∈ {2, · · · , K̃}, T ∗π(n)(X,%) ≡ Top(Uπ(n−1))(T ∗π(n−1)(X,%),%).

By construction,
⋂
k∈{1,··· ,K} T

∗
k (X,%) =

⋂
n∈{1,··· ,K̃} T

∗
π(n)(X,%). Similarly we can also define a subse-

quence {U ′π′(m)}
L̃
m=1, so that

⋂
l∈{1,··· ,L} T̃

∗
l (X,%′) =

⋂
m∈{1,··· ,L̃} T̃

∗
π′(m)(X,%

′). Here {T̃ ∗π′(m)(X,%
′)}L̃m=1

is defined as {T ∗π(n)(X,%)}K̃n=1.

Next we show that, for each 1 ≤ n ≤ min{K̃, L̃}, %Uπ(n)=X %′U ′
π′(n)

using mathematical induction. First,

we have that Uπ(1) = U1 and U ′π′(1) = U ′1. Since both U1, U ′1 ∈ U1, we have Uπ(1) ∩ U ′π′(1) 6= ∅. Therefore
%Uπ(1)=X %′U ′

π′(1)
. Next, let n > 1. Suppose that, for each ñ ≤ n, %Uπ(ñ) =X %′U ′

π′(ñ)
. Then there exists an

unique l∗ ∈ {1, · · · , L} such that Uπ(n+1) ∩ U ′l∗ ∈ Uπ(n+1). Then %Uπ(n+1) =X %′U ′
l∗

. Now, we have that, for
each k < π(n+ 1), %Uk 6=X %Uπ(n+1) . Therefore, for each k < π(n+ 1), %Uk 6=X %U ′

l∗
. It implies that, for

each k < π(n+ 1), Uk ∩ U ′l∗ = ∅. By order preservation, Uπ(n+1) ∩ U ′l∗ ∈ U ′l∗.
Next we want to show that%′l∗ =X %′π′(n+1). Since, for each ñ ≤ n, %Uπ(ñ) =X %′U ′

π′(ñ)
, we also have that,

for each ñ ≤ n, %′U ′
π′(ñ)
6=X %′U ′

l∗
. Suppose that%′l∗ 6=X %′π′(n+1). Then there exists l′ ∈ {π′(n)+1, · · · , l∗−

1} such that%′U ′
π′(n)
6=X %′U ′

l′
6=X %′U ′

l∗
. Therefore, for each k ≤ π(n+ 1), Uk ∩U ′l′ = ∅. It implies that there

exists k′ > π(n+ 1), Uk′ ∩ U ′l′ ∈ U ′l′ . It contradicts order preservation. Thus, %′l∗ =X %′π′(n+1). This implies
that %π(n+1) =X %′π′(n+1).
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From the above result, we have that K̃ = L̃, and T ∗
π(K̃) = T ∗

π′(L̃). Thus φ(X,%) = φ(X,%′). �

Lemma 4.13. If a solution φ satisfies the generalized serial dictatorship, φ satisfies LA-Stability.

Proof. Suppose solution φ satisfies the generalized serial dictatorship with a hierarchical family of ultrafilters
U and a tie-braking rule ρ. Let Y ⊂ X ⊂ X and %∈ RN . Let {Uk}Kk=1 be the ordered preference partition
for %. Suppose that φ(N , X,%) ∩ Y 6= ∅. Then, for each k ∈ {1, · · · ,K}, T ∗k (X,%) ∩ Y 6= ∅. Therefore,
by construction, T ∗k (Y,%) = T ∗k (X,%) ∩ Y . So we have that

φ(N , X,%) ∩ Y = Top(T ∗K(X,%), ρ) ∩ Y

= Top(T ∗K(X,%) ∩ Y, ρ)

= Top(T ∗K(Y,%), ρ)

= φ(N , Y,%).

Thus LA-Stability is satisfied. �

5 Free and Fixed Ultrafilters

Theorem 5.1. For each N ⊂ N and X ⊂ X with 3 ≤ |X| < ∞, the decisive ultrafilter UNX resulting from
φ(N,X, ·) is free if and only if there exists an finitely additive measure µ on 2N such that (1) for each E ⊂ N ,
µ(E) = 0 or 1, and, for each singleton {i} ⊂ N , µ({i}) = 0, and (2) the social order P (·) corresponding to
φ(N,X, ·) satisfies that, for each x, y ∈ X and each %∈ R, xP (%)y if µ({i ∈ N | x �i y}) = 1.

Proof. (⇐) Let Ũ ≡ {E ⊂ N | µ(E) = 1}. We show that Ũ = UNX . Let E ∈ Ũ . By definition, for each
x, y ∈ X and each %∈ R, if x �E y, then xP (%)y. It implies that E ∈ UNX , so Ũ ⊂ UNX . Next, let F ∈ UNX .
Then, for each x, y ∈ X and each%∈ R, if x �F y and y %N\F x, then xP (%)y. This means that, for%∗∈ R
with {i ∈ N | x �∗i y} = F , xP (%∗)y. Therefore µ(F ) = 1, i.e., F ∈ Ũ . We have UNX ⊂ Ũ . By definition,
there exists no i ∈ N such that {i} ∈ Ũ . Thus Ũ = UNX is free.

(⇒) Let a set function µ : 2N → {0, 1} be such that µ(E) = 1 iff E ∈ UNX . Then, it is well known that
µ is a finitely additive measure on 2N .2 Since UNX is free, for each i ∈ N , µ({i}) = 0. By definition, it is
obvious that, for each x, y ∈ X and each %∈ RN , if µ({i ∈ N |x �i y}) = 1, i.e., {i ∈ N |x �i y} ∈ UNX ,
then xP (%)y. �
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