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Abstract
We study the effect of different school choice mechanisms on schools’ incentives

for quality improvement. To do so, we introduce the following criterion: A mecha-
nism respects improvements of school quality if each school becomes weakly better off
whenever that school improves and thereby becomes more preferred by students. We
first show that no stable mechanism, or mechanism that is Pareto efficient for students
(such as the Boston and top trading cycles mechanisms), respects improvements of
school quality. Nevertheless, for large school districts, we demonstrate that any stable
mechanism approximately respects improvements of school quality; by contrast, the
Boston and top trading cycles mechanisms fail to do so. Thus a stable mechanism may
provide better incentives for schools to improve themselves than the Boston and top
trading cycles mechanisms.
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If we...implement choice among public schools, we unlock the values of competi-

tion in the educational marketplace. Schools that compete for students...will by

virtue of their environment make those changes that allow them to succeed.

Time for Results,

1991 National Governors’ Association Report1

1 Introduction

School choice has grown rapidly in the United States and many other countries such as

Japan and the United Kingdom. In contrast to traditional neighborhood-based placement,

school districts with school choice programs allow children and their parents to express

preferences over public schools and use these preferences to determine student placement.

Many politicians, school reformers, and academics have embraced school choice as a policy

that will substantially improve educational outcomes; for instance, in their influential book

Politics, Markets, and America’s Schools, scholars John E. Chubb and Terry M. Moe (1990)

argue that school choice is “the most promising and innovative reform” available to improve

the quality of public schooling.

Motivated by this interest in school choice, a large body of research in the market design

literature now investigates how to assign school seats to students efficiently and fairly, recom-

mending specific school choice mechanisms. In particular, beginning with the seminal paper

by Abdulkadiroğlu and Sönmez (2003), it has been demonstrated that an extensively used

school choice mechanism called the “Boston mechanism” provides strong incentives for stu-

dents to misreport their preferences. Given this, two strategy-proof mechanisms have been

proposed: the “student-optimal stable mechanism” (or “deferred acceptance algorithm”)

and the “top trading cycles mechanism”. In fact, prompted by this research, the former

has been adopted in New York City and Boston, while the latter has been adopted in New

Orleans.2 Indeed, the successful implementation of school choice mechanisms in these cities

1The National Governors’ Association is a bipartisan public policy organization composed of the governors
of the U.S. states and territories.

2See Abdulkadiroğlu, Pathak, and Roth (2005, 2009) and Abdulkadiroğlu, Pathak, Roth, and Sönmez
(2005); Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006) for details of the implementation of these new
school choice procedures in New York and Boston, respectively. See http://www.nola.com/education/
index.ssf/2012/04/centralized_enrollment_in_reco.html for the new procedure in New Orleans. San
Francisco also announced plans to implement the top trading cycles mechanism (which the school district calls
“assignment with transfers”), although the details of the plan have not been disclosed and thus the authors
are unable to confirm whether it was actually implemented: Information can be found at http://www.sfusd.
edu/en/assets/sfusd-staff/enroll/files/board-of-eduation-student-assignment-policy.pdf.
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has prompted other cities, such as Denver and Chicago, to implement new school choice

mechanisms as well.

However, prior work on school choice in the market design literature has not analyzed

the effect of different school choice mechanisms on overall school quality, but rather has

always assumed that school quality is given and fixed. This is a serious omission, given that

the major impetus for the introduction of school choice has been the argument, advanced

by both academics and policymakers, that school choice will improve the quality of the

public educational system as a whole by introducing competition among schools. Indeed,

Hoxby (2003b) emphasizes that “advocates of school choice...rely...on the idea that school

productivity would increase”. For instance, Moe (2008) argues that school choice will induce

schools “to educate, to be responsive, to be efficient, and to innovate”. Similarly, the 1991

National Governors’ Association Report argues that the nation can “increase excellence by

increasing choice”, that is, school choice will induce schools to improve through competitive

pressures, as expressed in the epigraph. Nevertheless, formal analysis of the effects of different

public school choice mechanisms on schools’ incentives to improve has heretofore been absent.

This paper is the first to analyze this question, using the tools of market design. We study

how the design of a school choice mechanism affects the competitive pressure on schools to

improve. We start by introducing a criterion of whether a mechanism promotes school

competition: A mechanism respects improvements of school quality if the set of students

assigned to a school always becomes weakly better for that school whenever that school

becomes more preferred by students.3 If a school’s effort to improve its quality makes it

more attractive to students, then requiring that a school choice mechanism assign a (weakly)

better set of students to that school is a natural and mild condition in order for that school

choice mechanism to incentivize that school to improve.4

Despite the mildness of this criterion, our benchmark results demonstrate that no stable

mechanism (such as the student-optimal stable mechanism) or mechanism that is Pareto

efficient for students (such as the Boston and top trading cycles mechanisms) respects im-

provements of school quality.5 That is, for any such mechanism, there exist preference profiles

3As discussed below, this concept adapts the concept of respecting improvements of student quality in-
troduced by Balinski and Sönmez (1999).

4In practice, many school districts do in fact have schools with intrinsic preferences over students. For
instance, in New York City, many public schools, commonly referred to as “screened schools”, explicitly
rank students. Another example is the Turkish higher educational system where schools also have explicit
preferences over students: see footnote 14 for further discussion. Section 5.1 of the paper analyzes cases in
which schools do not have intrinsic preferences over students and are concerned only with its enrollment.

5We study Pareto efficiency for students as this criterion is used by policymakers and researchers alike as
a leading desideratum. (See, for example, Abdulkadiroğlu and Sönmez (2003) and references in footnote 2.)
In fact, many important mechanisms used in practice such as the Boston mechanism and the top trading
cycles mechanism are Pareto efficient for students. Hence, new mechanisms that appear in the future are
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for the schools and students such that the outcome for a school becomes strictly worse as

the school rises in the preference orderings of the students. Given this impossibility result,

we consider domain restrictions on school preference profiles to ensure that the school choice

mechanisms discussed above respect improvements of school quality. We show that the nec-

essary and sufficient condition is that school preferences are virtually homogeneous, that is,

all schools have essentially identical rankings over students; this result implies that no stan-

dard mechanism is guaranteed to respect improvements of school quality under reasonable

school preferences.6

Even though the above results show that none of the standard school choice mechanisms

respects improvements of school quality perfectly, it may be that instances where a school

benefits from discouraging student interest are rare for some mechanisms. If so, then those

mechanisms may provide schools with incentives to improve in practice. To investigate this

possibility, we consider “large market” environments, with many schools and students, where

we find clear differences in the incentives for quality improvement provided by different school

choice mechanisms. Our main results demonstrate that any stable mechanism (such as the

student-optimal stable mechanism) approximately respects improvements of school quality;

that is, for “almost all” preference profiles, a school is made weakly better off whenever

students rank that school more highly. By contrast, surprisingly, the Boston and the top

trading cycles mechanisms do not even approximately respect improvements in large markets.

Our results are the first to differentiate among school choice mechanisms based on their effects

on schools’ incentives to improve; they suggest that the student-optimal stable mechanism

is better for promoting school competition than other competing mechanisms, particularly

the Boston and the top trading cycles mechanisms. Hence, school choice programs under the

student-optimal stable mechanism may not only benefit students through its static efficiency

and fairness properties, but also promote competition among schools to improve quality in

the long run.

We also study how robust the above results are to changes in the criterion of promoting

school competition. It may be socially beneficial for different schools to cater to the needs

of different types of students. If so, it may be enough that a school has incentives to

improve for students it finds desirable. To formalize this concept, we say that a mechanism

respects improvements of school quality for desirable students if the outcome for a school

becomes weakly better whenever a set of students, each of whom that school prefers to one

likely to satisfy Pareto efficiency for students. For a more detailed discussion on this point, see the remarks
following Proposition 2.

6For stable mechanisms, the characterization holds under the presumption that at least one school has
a capacity strictly greater than one; when each school has a capacity of one, the school-optimal stable
mechanism respects improvements of school quality.
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of its current students, ranks that school more highly. While no stable mechanism always

satisfies this requirement, any stable mechanism satisfies this criterion approximately in large

markets; the Boston and top trading cycles mechanisms, however, do not satisfy this criterion

even approximately in large markets. Alternatively, each school may not have any intrinsic

preferences over individual students and may be concerned solely with its enrollment: A

mechanism respects improvements of school quality in terms of enrollment if the number of

students attending a school weakly increases whenever that school is ranked more highly by

students. Any stable mechanism, as well as the Boston mechanism, satisfies this criterion in

general markets, while the top trading cycles mechanism does not. These results suggest an

additional sense in which the student-optimal stable mechanism provides schools with better

incentives to improve quality than the competing top trading cycles mechanism.

Another natural question is whether the mechanisms discussed here respect improvements

of student quality, that is, whether a student is always weakly better off when schools rank

that student more highly. We show that not only the student-optimal stable mechanism,

but also the Boston and the top trading cycles mechanisms, satisfy this property.

Related Literature

Theoretical analyses such as Abdulkadiroğlu and Sönmez (2003) and Ergin and Sönmez

(2006) have argued for the student-optimal stable mechanism and the top trading cycles

mechanism based on their incentive, fairness, and efficiency properties. Their research has

led to several school choice reforms, which were organized and reported by Abdulkadiroğlu,

Pathak, and Roth (2005, 2009) and Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005); Ab-

dulkadiroğlu, Pathak, Roth, and Sönmez (2006). This line of studies is extensively surveyed

by Roth (2008), Sönmez and Ünver (2009), and Pathak (2011). As we have already empha-

sized, all of these papers focus on the evaluation of mechanisms in terms of the efficiency and

fairness of allocations, assuming (implicitly) that the quality of every school is fixed. While

drawing extensively on this literature, we offer a new perspective for distinguishing desir-

able school choice mechanisms from undesirable ones by analyzing their effect on schools’

incentives for improving their educational quality.

The closest work to ours is the pioneering study by Balinski and Sönmez (1999), who

introduce the concept of respecting improvements of student quality. Our definition is a nat-

ural adaptation of their notion to the case in which a school improves in students’ preference

rankings.7 However, the results of Balinski and Sönmez (1999) cannot be directly applied,

as the model of school choice is asymmetric between schools and students since schools

7Bäıou and Balinski (2000) analyze whether stable mechanisms respect improvements in the many-to-
many matching setting, but their results are incorrect (Hatfield, Kojima, and Narita, 2011).
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have multiple seats while each student can attend only one school. In fact, while Balinski

and Sönmez (1999) show that the student-optimal stable mechanism respects improvements

of student quality, we show that no stable mechanism, not even the school-optimal stable

mechanism, respects improvements of school quality.8

From the methodological point of view, the current paper uses two types of analytical

methods from the market design literature. First, our paper uses the large market approach

used by, among others, Roth and Peranson (1999), Immorlica and Mahdian (2005), and

Kojima and Pathak (2009).9 As these studies point out, large market analysis can often

provide a positive result in cases where more traditional approaches cannot. An additional

feature of our work is to use the large market approach to make a clear distinction between

good mechanisms and bad ones; in this paper, we use the large market approach to provide

clear policy recommendations regarding which school choice mechanisms will incentivize

schools to improve. Second, we show impossibility results on the compatibility of some

desirable properties and then find domain restrictions on the class of preferences such that

the desirable properties hold simultaneously. In the context of school choice, previous studies

such as Ergin (2002), Kesten (2006), and Haeringer and Klijn (2009) find domain restrictions

for the student-optimal stable mechanism and the top trading cycles mechanism to satisfy

several desirable properties. Similarly to these studies, we find new domain restrictions for

a stable or Pareto efficient mechanism to respect improvements.

Finally, this paper is part of the vast literature on school choice (in a broad sense), in-

cluding educational vouchers, charters, and pilot schools. A large number of papers analyze,

both theoretically and empirically, the competitive effects of school choice on educational

outcomes: see Belfield and Levin (2002), Hoxby (2003a) and Macleod and Urquiola (2011)

for recent overviews. However, the number of papers on the competitive effects of public

school choice, the focus of our paper, is relatively small: but see, e.g., Hastings, Kane, and

Staiger (2008), who analyze how public school choice provides different types of schools with

different incentives for improvements. Our paper poses several open questions, both empir-

ical and theoretical, to this literature on economics of school choice: see the conclusion for

details.

The remainder of this paper is organized as follows. In Section 2, we present our model

8Sönmez and Switzer (2011) build on the work of Balinski and Sönmez (1999), showing that the student-
optimal stable mechanism respects improvements of student quality in the more general setting of matching
with contracts (Hatfield and Milgrom, 2005).

9Although the specific modeling approaches differ, a number of works have used large market analysis
to study matching markets: see Ashlagi, Braverman, and Hassidim (2011), Azevedo and Budish (2011),
Azevedo and Leshno (2011), Che and Kojima (2010), Kojima and Manea (2010), Kojima, Pathak, and Roth
(2011), Lee (2011), and Manea (2009).
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and formally define the student-optimal stable mechanism, the Boston mechanism, and the

top trading cycles mechanism. In Section 3, we formally define respecting improvements of

school quality and present our benchmark impossibility results. In Section 4, we present our

large market results. Section 5 analyzes alternative criteria of promoting school competition,

and Section 6 discusses a number of related topics. We conclude in Section 7.

2 Model

There is a finite set S of students and a finite set C of schools. Each student s ∈ S has a strict

preference relation �s over C ∪ {∅}, where ∅ denotes the outside option of the student.10

The weak preference relation associated with �s is denoted by %s and so we write c %s c̄

(where c, c̄ ∈ C ∪{∅}) if either c �s c̄ or c = c̄. A preference profile of all students is denoted

�S≡ (�s)s∈S.

Each school c ∈ C has a strict preference relation �c over the set of subsets of S. We

assume that the preference relation of each school is responsive (Roth, 1985): The preferences

of school c are responsive with capacity qc if

(1) For any s, s̄ ∈ S, if {s} �c {s̄}, then for any S ′ ⊆ S r {s, s̄}, S ′ ∪ {s} �c S ′ ∪ {s̄}.

(2) For any s ∈ S, if {s} �c ∅, then for any S ′ ⊆ S such that |S ′| < qc, S
′ ∪ {s} �c S ′,

and

(3) ∅ �c S ′ for any S ′ ⊆ S with |S ′| > qc.

If a school’s preferences are responsive, then that school acts as if it has preferences over stu-

dents and a quantity constraint, and the school takes the highest-ranking students available

to that school up to that quantity constraint.11

In addition, we assume that every student is acceptable to every school as we are primarily

interested in problems such as the assignment of students to public schools.12 The preference

profile of all schools is denoted �C≡ (�c)c∈C . A preference profile of all agents is denoted

�≡ (�S,�C).

10We distinguish ∅ and ∅, where ∅ denotes an outside option while ∅ is the empty set in the set-theoretic
sense.

11Responsive preferences rule out the case where a school’s ranking of two students depends on the students
the school currently holds. However, responsive preferences do allow for certain forms of peer effects: For
instance, if a school values high-achieving students, and the presence of one high-achieving student makes
other high-achieving students more desirable, then the ordinal ranking of students would be unaffected by
the set of students the school currently holds, and hence the school’s preferences would be responsive.

12This assumption is needed only for our large market result for stable mechanisms (Theorem 1) and our
characterization results (Propositions 8 and 9). All of our other results hold even without this assumption.
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A matching is a vector µ = (µs)s∈S that assigns each student s a seat at a school (or the

outside option) µs ∈ C ∪ {∅}, and where each school c ∈ C is assigned at most qc students.

We denote by µc ≡ {s ∈ S : c = µs} the set of students who are assigned to school c.

A matching µ is Pareto efficient for students if there exists no matching µ′ such that

µ′s %s µs for all s ∈ S and µ′s �s µs for at least one s ∈ S.

A matching µ is individually rational if µs %s ∅ for every s ∈ S. A matching µ is

blocked by (s, c) ∈ S × C if c �s µs and there exists S ′ ⊆ µc ∪ s such that S ′ �c µc.13 A

matching µ is stable if it is individually rational and not blocked.

Two remarks are in order. First, in this model, schools are assumed to have preferences

over sets of students. Thus, our analysis can be utilized for other applications such as certain

entry-level labor markets (Roth, 1984) without any modification. Second, in some school

districts such as Boston, the preference orderings of schools over students are determined by

priorities given by law (Abdulkadiroğlu and Sönmez, 2003).14 In such cases, it may not be

reasonable to assume that the priorities set by law represent real preferences of schools. We

address this issue in Section 5.1.

2.1 Mechanisms

Given the set of students S and schools C, a mechanism is a function ϕ from the set

of preference profiles to the set of matchings. A mechanism ϕ is Pareto efficient for

students if ϕ(�) is a Pareto efficient matching for students for every preference profile �.

A mechanism ϕ is stable if ϕ(�) is a stable matching for every preference profile �. We

now define three mechanisms of particular interest for school choice problems.

2.1.1 The Student-Optimal Stable Mechanism

Given �, the (student-proposing) deferred acceptance (DA) algorithm of Gale and

Shapley (1962) is defined as follows.

13Throughout the paper, we denote singleton set {x} by x when there is no confusion.
14However, in many cases, schools do have such preferences. For instance, in New York City, there are

many schools, commonly referred to as “screened schools”, which explicitly rank students based on their
academic record, attendance, test scores, and other similar criteria (Abdulkadiroğlu, Pathak, and Roth,
2005). Another example where schools have explicit preferences is the Turkish higher educational system,
the motivating example of Balinski and Sönmez (1999). In this system, a student applies to particular
departments of universities. The ranking of a student is determined by a weighted sum of the students’
scores on different subject fields of a national exam; weighting formulas vary across different departments.
While the weight is determined by the central authority, departments have no other relevant information
on students, so it is believed that department preferences are consistent with the weighted score. We thank
Tayfun Sönmez for suggesting this example.
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• Step 1: Each student s ∈ S applies to her most preferred acceptable school (if any).

Each school tentatively keeps the highest-ranking students up to its capacity, and

rejects every other student.

In general, for any step t ≥ 2,

• Step t: Each student s who was not tentatively matched to any school in Step (t− 1)

applies to her most preferred acceptable school that has not rejected her (if any). Each

school tenatively keeps the highest-ranking students up to its capacity from the set of

students previously tenatively matched to this school and the students newly applying,

and rejects every other student.

The algorithm terminates at the first step at which no student applies to a school. Each

student tentatively kept by a school at that step is allocated a seat in that school, resulting

in a matching which we denote by ϕS(�). The student-optimal stable mechanism is a

mechanism ϕS that produces ϕS(�) for every preference profile �. It is well known that ϕS

is a stable mechanism (Gale and Shapley, 1962). Moreover, the outcome of this mechanism

is the student-optimal stable matching, that is, the matching that is weakly preferred to any

other stable matching by all students. (The name of the student-optimal stable mechanism

is due to this property.) In addition, ϕS is known to be strategy-proof for students, that is,

for each student it is a weakly dominant strategy to report her true preferences (Dubins and

Freedman, 1981; Roth, 1982).15 Due to these properties, the deferred acceptance algorithm

has been implemented in both New York City (Abdulkadiroğlu, Pathak, and Roth, 2005)

and Boston (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005).

Another canonical stable mechanism is the school-optimal stable mechanism. That

mechanism is based on the school-proposing version of the deferred acceptance algorithm, in

which schools make offers to students and students keep their most preferred offers at each

step. We denote the student-optimal stable mechanism by ϕS and the school-optimal stable

mechanism by ϕC ; ϕC is also the student-pessimal stable mechanism, i.e., it produces the

stable matching that every student weakly disprefers to every other stable matching (See

Theorem 2.13 of Roth and Sotomayor (1990)).

15In fact, the student-optimal stable mechanism is (weakly) group strategy-proof, in the sense that there
is no group deviation which makes all the members of the group strictly better off (Dubins and Freedman,
1981).
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2.1.2 The Boston Mechanism

Given �, the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003), denoted ϕB, is

defined through the following algorithm.16

• Step 1: Each student s ∈ S applies to her most preferred acceptable school (if any).

Each school accepts its most-preferred students up to its capacity and rejects every

other student.

In general, for any step t ≥ 2,

• Step t : Each student who has not been accepted by any school applies to her most

preferred acceptable school that has not rejected her (if any). Each school accepts its

most-preferred students up to its remaining capacity and rejects every other student.

The algorithm terminates at the first step in which no student applies to a school. Each

student accepted by a school during some step of the algorithm is allocated a seat in that

school. The Boston algorithm differs from the deferred acceptance algorithm in that when

a school accepts a student at a step, in the Boston algorithm, the student is guaranteed a

seat at that school, while in the deferred acceptance algorithm, that student may be later

displaced by another student whom the school likes better. Note that this mechanism is

Pareto efficient for students with respect to any reported preference profile. In Boston, the

Boston mechanism has been replaced by the student-optimal stable mechanism, but is still

in use in many school districts, such as Denver and Minneapolis (Miralles, 2009).

2.1.3 The Top Trading Cycles Mechanism

The top trading cycles (TTC) mechanism, denoted ϕTTC , is defined as follows: For any

t ≥ 1,

• Step t: Each student s ∈ S points to her most preferred school (if any); students who do

not point at any school are assigned to ∅. Each school c ∈ C points to its most preferred

student. As there are a finite number of schools and students, there exists at least one

cycle, i.e., a sequence of distinct schools and students (s1, c1, s2, c2, . . . , sK , cK) such

that student s1 points at school c1, school c1 points to student s2, student s2 points to

school c2, . . . , student sK points to school cK , and, finally, school cK points to student

s1. Every student sk (k = 1, . . . , K) is assigned to the school she is pointing at. Any

student who has been assigned a school seat or the outside option as well as any school

16Alcalde (1996) calls this rule the “now-or-never” mechanism for the special case in which the capacity
of each school is one.
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c ∈ C which has been assigned students such that the number of them is equal to its

capacity qc is removed. If no student remains, the algorithm terminates; otherwise, it

proceeds to the next step.

This algorithm terminates in a finite number of steps as at least one student is matched

with a school (or ∅) at each step and there are only a finite number of students. The TTC

mechanism is defined as a rule that, for any preference profile �, produces ϕTTC(�) through

the above algorithm.

The current version of the top trading cycles algorithm was introduced by Abdulkadiroğlu

and Sönmez (2003) for the school choice problem.17 While it does not necessarily produce

a stable matching, the mechanism has a number of desirable properties. First, it always

produces a Pareto efficient matching, unlike the student-optimal stable mechanism.18 Sec-

ond, it is group strategy-proof, that is, no coalition of students can jointly misreport their

preferences in such a way that every student in the coalition is made weakly better off with

at least one student strictly better off. Based on these advantages, the top trading cycles

mechanism has been implemented or considered for use in a number of school districts in

the United States, such as New Orleans.

3 Respecting Improvements of School Quality

The main goal of this paper is to analyze how the design of a school choice mechanism

affects the incentives of schools to improve themselves. To do this, we now define a criterion

for evaluating school choice mechanisms in terms of the incentives they provide for school

improvement. We first formally specify the notion of an improvement of school quality in

our model.

Definition 1. A preference relation �′s is an improvement for school c over the preference

relation �s if

(1) For all c̄ ∈ C ∪ {∅}, if c �s c̄, then c �′s c̄, and

(2) For all c̄, ĉ ∈ (C ∪ {∅}) r {c}, c̄ �′s ĉ if and only if c̄ �s ĉ.
17The original top trading cycles algorithm was defined in the context of the housing market and is

attributed to David Gale by Shapley and Scarf (1974).
18While the Boston mechanism is Pareto efficient with respect to the stated preferences, it is well-known

that in general it is neither a dominant strategy nor a Nash equilibrium for students to report their preferences
truthfully. In fact, the set of Nash equilibrium outcomes under the Boston mechanism is equivalent to the
set of stable matchings (Ergin and Sönmez, 2006) and so we would not, in general, expect that the Boston
mechanism would result in a Pareto efficient outcome.
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The student preference profile �′S is an improvement for school c over �S if for every student

s, �′s is an improvement for school c over �s.

We also say that �′s is a disimprovement for school c over �s if �s is an improvement

for school c over �′s and that �′S is a disimprovement over �S if �S is an improvement over

�′S.19

Put simply, a student preference profile �′S is an improvement for school c over the

preference profile �S when every student ranks c weakly higher under �′S while the ordering

of other schools is unchanged between the two preference profiles. When a school improves

its quality, it should become more attractive to every student without changing the relative

rankings of other schools, and the concept of school improvement is meant to capture this

intuition in the standard ordinal setting of the matching literature. With this concept in

hand, we now define the property by which we will evaluate school choice mechanisms in

this work.

Definition 2. A mechanism ϕ respects improvements of school quality at the school

preference profile �C if, for all c ∈ C and student preference profiles �S and �′S, if �′S is an

improvement for school c over �S, then ϕc(�′S,�C) %c ϕc(�S,�C).

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and �′S such

that �′S is a disimprovement for school c over �S while ϕc(�′S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism is said to respect

improvements of student quality if whenever a student improves in colleges’ preference rank-

ings, that student is better off. Our definition is a natural adaptation of their notion to the

case in which a school improves in students’ preference rankings. The main difference be-

tween our concept and that of Balinski and Sönmez (1999) is that we consider improvements

of school quality rather than those of student quality. Because the school choice model is

asymmetric between schools and students in the sense that schools have multiple seats while

each student can attend only one school, the analysis by Balinski and Sönmez (1999) cannot

19We will also say that �′ is a (dis)improvement for school c over � if �′S is a (dis)improvement for school
c over �S and �′C=�C .
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be directly applied. In fact, as we will see in the next section, no stable mechanism respects

improvements of school quality, which is in sharp contrast to a result by Balinski and Sönmez

(1999), who show that the student-optimal stable mechanism is the unique stable mechanism

that respects improvements of student quality.20

3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements.21 The following example offers a negative answer to this question.22

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider the following preferences:

�s : c̄, c, ∅, �c : s, s̄,

�s̄ : c̄, c, ∅, �c̄ : s̄, s,

where the notational convention for students is that student s prefers c̄ most, c second,

and ∅ third, and so forth, and the notational convention for schools is that they have some

responsive preferences consistent with preferences over students as described above. (This

notation is used throughout.) The capacities of the schools are given by qc = 2 and qc̄ = 1.23

Note that at the first step of the student-proposing deferred acceptance algorithm under

the preference profile �≡ (�s,�s̄,�c,�c̄), both students s and s̄ apply to c̄. Since qc̄ = 1, c̄

rejects s. Then s applies to c, where she is accepted. The algorithm terminates at this step,

producing the student-optimal stable matching,

ϕS(�) =

(
c c̄

s s̄

)
,

where this matrix notation represents the matching where c is matched with s while c̄

is matched with s̄. (Again, this notation is used throughout.) At the first step of the

school-proposing deferred acceptance algorithm under preference profile �, school c proposes

to both s and s̄ while c̄ proposes to s̄. Student s̄ keeps c̄ and rejects c while student

20See our discussion in Section 6.2.
21For brevity, we will often write “respecting improvements” for the longer phrase “respecting improve-

ments of school quality”.
22A similar example is used by Sönmez (1997) to show that the school-optimal stable mechanism is not

immune to capacity manipulation.
23Note that, strictly speaking, the information on school preferences over individual students and the

capacity does not uniquely specify that school’s preference relation over groups of students. Whenever we
specify a school’s preferences over individual students and its capacity only, it should be understood to mean
an arbitrary responsive preference relation consistent with the given information.
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s keeps c. Since school c has proposed to all students, the algorithm terminates. Thus

the school-optimal stable matching ϕC(�) is equal to ϕS(�). Since it is well-known that

ϕSs (�) %s µs %s ϕ
C
s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).

Now, consider the preference relation �′s̄ such that

�′s̄: c, c̄, ∅.

Note that �′s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under the preference profile (�′s̄,�−s̄),24 student s

applies to c̄ while student s̄ applies to c. The algorithm terminates immediately at this step,

producing the student-optimal stable matching

ϕS(�′s̄,�−s̄) =

(
c c̄

s̄ s

)
.

On the other hand, at the first step of the school-proposing deferred acceptance algorithm

under preference profile (�′s̄,�−s̄), school c proposes to both s and s̄ while c̄ proposes to

s̄. Student s̄ rejects c̄. Rejected from its first choice s̄, c̄ proposes to s. Now student s

rejects c. Because school c has proposed to all students, the algorithm terminates. Thus the

school-optimal stable matching ϕC(�′s̄,�−s̄) is equal to ϕS(�′s̄,�−s̄). This implies that this

market has a unique stable matching, ϕS(�′s̄,�−s̄) = ϕC(�′s̄,�−s̄).
From the arguments above, we have that, for any stable mechanism ϕ,

ϕc(�) = s �c s̄ = ϕc(�′s̄,�−s̄),

even though �′s̄ is an improvement for c over �s; hence, ϕ does not respect improvements

of school quality at the school preference profile �C .

The finding from Example 1 can be summarized in the following statement.

Proposition 1. There exists no stable mechanism that respects improvements of school

quality at every school preference profile.

24Subscript −i indicates C ∪ S r {i}, that is, the set of all agents except for i. For instance, �−s̄ is the
profile of preferences of all students and schools except for student s̄.
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3.2 Pareto Efficient Mechanisms for Students

As in many other resource allocation problems, Pareto efficiency for students is a popular

desideratum in school choice because students are considered to be the beneficiaries of public

schooling. While the student-optimal stable mechanism is not Pareto efficient for students,

there are other mechanisms that are. The popular Boston mechanism (under truth-telling

by students) and the theoretically favored TTC mechanism are such examples. Thus it

would be of interest to investigate whether these mechanisms or any other Pareto efficient

mechanism respects improvements of school quality. As the following example shows, it turns

out that there exists no mechanism that is Pareto efficient for students and that respects

improvements of school quality.

Example 2. Suppose that there exists a mechanism ϕ that is Pareto efficient for students

and respects improvements of school quality. Let S = {s, s̄}, C = {c, c̄}, and the preferences

of the schools be given by

�c : s̄, s, ∅,

�c̄ : s, s̄, ∅,

with capacities of qc = qc̄ = 1. First, consider the following preference profile of students:

�s : c̄, ∅,

�s̄ : c, ∅.

Under �≡ (�s,�s̄,�c,�c̄), the unique Pareto efficient matching is

ϕ(�) =

(
c c̄

s̄ s

)
.

Thus, in the outcome of the mechanism under �, school c̄ is matched with student s.

Now consider the student preference profile �′S≡ (�s,�′s̄) where the preference of s̄ has

changed to

�′s̄ : c̄, c, ∅.

Note that �′s̄ is an improvement for school c̄ over �s̄; hence, c̄ must obtain at least as good

an outcome under �′≡ (�′S,�C) as under �, and so c̄ must be matched to s. By Pareto

efficiency, then, s̄ must be matched to c and so ϕ(�′) = ϕ(�).
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Finally, consider another student preference profile �′′S≡ (�′′s ,�′s̄) where

�′′s : c, c̄, ∅.

Note that �′′S is an improvement for school c over �′S. Under �′′≡ (�′′S,�C), the unique

Pareto efficient matching for students is

ϕ(�′′) =

(
c c̄

s s̄

)
,

which implies that c is matched with s in the outcome of the mechanism. However, note

that ϕc(�′) = s̄ �c s = ϕc(�′′), even though �′′S is an improvement for school c over �′S.

This means that this mechanism does not respect improvements of school quality, which is

a contradiction.

The finding from Example 2 can be summarized in the following statement.

Proposition 2. There exists no mechanism that is Pareto efficient for students and respects

improvements of school quality for every school preference profile. In particular, neither the

Boston mechanism nor the top trading cycles mechanism respects improvements.

Hence, Propositions 1 and 2 show that none of the standard school choice mechanisms

respects improvements of school quality. Given these uniformly negative benchmark results,

Section 4 will study how these mechanisms perform in large school districts.

Remark. We study Pareto efficiency for students (rather than for students and schools) for

two reasons. First, Pareto efficiency for students is used by policy makers and researchers

alike as one of the leading desiderata for school choice mechanisms; see the discussion in

footnote 5. In particular, many important mechanisms used in practice, such as the Boston

mechanism and the top trading cycles mechanism, are Pareto efficient for students. Thus,

mechanisms that appear in academic research or in practice are likely to satisfy Pareto effi-

ciency for students, so it will be useful to know if such mechanisms could respect improve-

ments. Second, Pareto efficiency for both students and schools is so weak a requirement

that few useful conclusions can be drawn. To see this point, consider a serial dictatorship

by schools, where each school receives its most preferred group of students from those still

available following an exogenously given order. It is easy to see that this mechanism is Pareto

efficient for students and schools; furthermore, this mechanism trivially respects improve-

ments because it does not use student preferences at all. However, such a mechanism seems
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to be unreasonable and unlikely to gain serious consideration as a school choice mechanism.25

Remark. The above conclusion of Proposition 2 for the Boston mechanism is with respect

to the students’ reported preferences, but it is well known that truthtelling is not a dominant

strategy under the Boston mechanism. On the other hand, when students behave strate-

gically, Proposition 1 in Section 3.1 sheds some light on the Boston mechanism. Although

the Boston mechanism is not stable (with respect to reported preferences), the set of Nash

equilibrium outcomes under that mechanism is equivalent to the set of stable matchings

(Ergin and Sönmez, 2006). Therefore, our Proposition 1 implies that the Boston mechanism

does not respect improvements under strategic play if students play a Nash equilibrium.

3.3 Conditions on Preferences for Respecting Improvements

Given that the above representative mechanisms do not respect improvements at every school

preference profile, a natural question is what conditions, if any, on the school preference pro-

file �C enable a stable or Pareto efficient mechanism to respects improvements. A school

preference profile is virtually homogeneous if the rankings of students are identical across

all schools except possibly for the “highest-ranked” students, i.e., students that every school

would accept, regardless of the other students available to that school; the precise definition

is given in Section 6.1. Clearly this condition is a very strong requirement on school pref-

erences and, in fact, many domain restrictions used in the literature are implied by virtual

homogeneity.26

We show that virtual homogeneity is the key condition on school preferences for a stable

or Pareto efficient mechanism to respect improvements of school quality. In particular,

Propositions 8 and 9 in Section 6.1 imply the following fact: When at least one school has

capacity larger than one, there exists a stable mechanism or a Pareto efficient mechanism

for students that respects improvements of school quality if and only if the school preference

profile is virtually homogeneous.

Since virtual homogeneity is an extremely strong requirement, this result suggests that

the concern that stable or Pareto efficient mechanisms may provide perverse incentives to

schools cannot be easily precluded by any mild preference domain restriction. All details

including the formal definition of virtual homogeneity and the statements of Propositions 8

and 9 are offered in Section 6.1. This negative result motivates our study in the next section

on the properties of mechanisms in large markets.

25Budish and Cantillon (2010) explore a number of senses in which the serial dictatorship is undesirable
in the presence of multi-unit demand, as in the case of schools that admit more than one student.

26We discuss the relationship between virtual homogeneity and existing domain restrictions in the literature
in Section 6.1.
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4 Respecting Improvements in Large Markets

While the results of Section 3 show that no standard school choice mechanism always respects

improvements of school quality, violations of this condition may be rare for some school choice

mechanisms. In this section, we investigate this possibility by considering large, random

environments which contain many students and schools; in that environment, we study the

probability that each mechanism respects improvements.

4.1 The Large Market Model

We now introduce the following large markets environment, which is (a slight generalization

of) the environment studied by Kojima and Pathak (2009). A random market is a tuple

Γ̃ = (C, S, k,D), where k is a positive integer and D is a pair (DC ,DS) of probability

distributions: Each random market induces a market by randomly generating preferences of

students and schools. First, DS = (pc)c∈C is a probability distribution on C. Preferences of

each student s are drawn as follows (Immorlica and Mahdian, 2005):

• Step 1: Select a school independently from distribution DS. List this school as the top

ranked school of student s.

In general,

• Step t ≤ k: Select a school independently from distribution DS until a school is drawn

that has not been drawn in any previous step. List this school as the tth most preferred

school of student s.

In other words, each student chooses k schools repeatedly from DS without replacement.

Student s finds these k schools acceptable, and all other schools unacceptable. For example,

if DS is the uniform distribution on C, then the preference list is drawn from the uniform

distribution over the set of all preference lists of length k.

For schools, preference profile �C is drawn from the given distribution DC over school

preference profiles. We do not impose any restriction on DC at this point. In particular,

we allow correlations in school preferences and even the possibility that DC is a degenerate

distribution, in which case school preferences are deterministic.

A sequence of random markets is denoted by (Γ̃1, Γ̃2, . . . ) = (Γ̃n)n∈N, where Γ̃n =

(Cn, Sn, kn,Dn) is a random market in which |Cn| = n is the number of schools.27 Consider

the following regularity conditions defined by Kojima and Pathak (2009).

27Unless specified otherwise, our convention is that superscripts are used for the number of schools present
in the market whereas subscripts are used for agents.

18



Definition 3. A sequence of random markets (Γ̃n)n∈N is regular if there exist positive

integers k, q̃ and q̂ such that

(1) kn ≤ k for all n,

(2) qc ≤ q̂ for all n and c ∈ Cn,

(3) |Sn| ≤ q̃n for all n, and

(4) for all n and c ∈ Cn, every s ∈ Sn is acceptable to c at any realization of preferences

for c at DCn .

Condition (1) above assumes that the length of students’ preference lists is bounded

from above even when the market size grows. This assumption is motivated by the fact

that in practice reported preference lists observed in many school districts are quite short:

In New York City, about three quarters of students rank less than 12 schools even though

there were over 500 school programs (Abdulkadiroğlu, Pathak, and Roth, 2009). In Boston,

more than 90% of students rank 5 or fewer schools at the elementary school level out of

about 30 different schools in each zone (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2006).

Condition (2) requires that the number of seats in any school is bounded even in large school

districts. Condition (3) requires that the number of students does not grow much faster than

that of schools (it is allowed, on the contrary, that the number of students does not grow

as fast as the number of schools). Condition (4) requires that, at any realized preference

profile, each school finds any student acceptable, but preferences are otherwise arbitrary.28

Suggestive evidence on these conditions are provided in the context of labor markets by

Kojima, Pathak, and Roth (2011).29

Remark. As stated above, Condition (1) of regularity is motivated by real-life observations

as those in school districts in New York City and Boston. Still, it is worth mentioning that it

can be replaced by alternative assumptions. We say that the sequence of random markets has

an excess supply of school capacities if there exists λ > 0 such that
∑

c∈Cn qc−|Sn| ≥ λn

for all n.30 This condition requires, as is usually the case in the public school context, there

28As mentioned by Kojima and Pathak (2009), it is possible to weaken this condition such that many, but
not all, schools find all students to be acceptable.

29A careful reader may notice that our regularity conditions are more general than the ones presented in
the main text of Kojima and Pathak (2009). More specifically, the main text of Kojima and Pathak (2009)
assumes that kn = k (rather than kn ≤ k), q̂ = q̃, and that the distribution of school preference profiles is
degenerate (that is, school preferences are deterministic). However, as Kojima and Pathak (2009) point out,
all of their results hold under the set of assumptions introduced here.

30This condition is a slight modification of the “excess number of positions” condition assumed by Ashlagi,
Braverman, and Hassidim (2011) in the environment of matching with couples.
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are more than sufficient capacities in schools to accommodate all students in the district.

For instance, if the capacity of each school is q and |Sn| = (q − 1)n for all n, then this

sequence of random markets has an excess supply of school capacities. The conclusion of our

main result, Theorem 1, holds even without condition (1) of regularity—so students can find

any number of schools acceptable—under the conditions of excess supply of school capacities

and moderate similarity, defined below.31 See the remark at the end of Appendix A.1.1 for

details.

We introduce another concept defined by Kojima and Pathak (2009). Let

VT (n) ≡
{
c ∈ Cn :

maxc̄∈Cn{pnc̄ }
pnc

≤ T and |{s ∈ Sn : c �s ∅}| < qc

}
.

In words, VT (n) is a set of schools such that (i) each school c in this set is sufficiently popular

ex ante, i.e., the ratio of pnc̄ to pnc , where c̄ is the most popular school, does not grow without

bound as n grows large, while (ii) there are fewer students who find the school acceptable

than the capacity of the school ex post. Note that VT (n) is a random set because student

preferences are stochastic.

Definition 4. A sequence of random markets is sufficiently thick if there exists T ∈ R
such that E[|VT (n)|] approaches infinity as n goes to infinity.

This condition requires that the expected number of schools that are popular enough ex

ante, yet have fewer students ex post who find the school acceptable than their numbers of

seats, i.e., VT (n), grows infinitely large as the market becomes large. As we will see later, this

condition guarantees that the market is “thick enough” to absorb certain market disruptions.

To gain intuition, consider a change in the market in which an additional student needs to

be placed at a school. If the market is sufficiently thick, such a student is likely to find a seat

at a school in a stable matching without changing the assignment of many other students. In

other words, the sufficient thickness condition implies that a small disruption of the market

is likely to be absorbed by vacant seats.

While the condition itself is technically involved, many types of distributions satisfy

sufficient thickness (in fact, the concept is not really intended to offer an “intuitive” notion,

but rather to subsume as many practical cases as possible). For instance, if all student

preferences are drawn from the uniform distribution, the market will be sufficiently thick.

To describe another, more general, example, we say that a sequence of random markets

31In fact, the result can be shown even without excess supply of school capacities, if the number of schools
that are acceptable to each student grows without a bound (thus violating Condition (1) of regularity) but
sufficiently slowly. More specifically, our result holds as long as kn = o(log(n)), as our proof relies on a result
of Kojima and Pathak (2009) which holds under this condition. See their footnote 32 for detail.
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satisfies moderate similarity if there is a bound T such that pc̄

pc
≤ T for all c, c̄ ∈ Cn for all

n. Such a restriction has been employed in studies such as Manea (2009), Kojima, Pathak,

and Roth (2011), and Ashlagi, Braverman, and Hassidim (2011).32 Kojima and Pathak

(2009) show that moderate similarity implies sufficient thickness and offer other examples of

student preference distributions that satisfy the sufficient thickness condition.

4.2 Main Results

For any random market Γ̃, school c, and mechanism ϕ, let αc(Γ̃, ϕ) be the probability that the

realized preference profile � has the property that there exists a student preference profile

�′S such that �′S is a disimprovement over �S for c while ϕc(�′S,�C) �c ϕc(�). We say that

a mechanism ϕ approximately respects improvements of school quality in large

markets if, for any sequence of random markets (Γ̃n)n∈N that is regular and sufficiently

thick, max
c∈Cn

αc(Γ̃n, ϕ)→ 0 as n → ∞, i.e., for any ε > 0, there exists an integer m such

that, for any random market Γ̃n in the sequence with n > m and any c ∈ Cn, we have that

αc(Γ̃
n, ϕ) < ε. As the name suggests, a mechanism approximately respects improvements

in large markets if the probability that a school is made better off by being less preferred

by students converges to zero as the size of the markets approaches infinity; in this sense,

violations of the respecting improvements criterion are rare for mechanisms that satisfy this

condition. With this concept, we are ready to state our main results.

Theorem 1. Any stable mechanism approximately respects improvements of school quality

in large markets.

Proof. See Appendix A.1.1.

This theorem suggests that while no stable mechanism always respects improvements,

such a perverse outcome occurs only very rarely in large markets. More specifically, as the

number of participating schools approaches infinity (while the number of students can also

grow but does not have to), the probability of such an incident converges to zero.

We defer the formal proof of the theorem to the Appendix and offer an outline of the

argument here. For simplicity, we focus our attention on the student-optimal stable mecha-

nism. First, recall Example 1. In that example, school c is better off when student s̄ prefers

school c̄ to c than when student s̄ prefers school c to c̄. The reason for this is that when

student s̄ prefers school c̄ to c, the student s̄ displaces student s from school c̄ and then

student s applies to school c, which in turn makes school c better off. More generally, a

school can be made better off when a student demotes the school in her preference ranking

32The term “moderate similarity” follows Manea (2009).
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because it increases competition at a different school, thus creating a chain of new appli-

cations and resulting rejections (i.e., a “rejection chain”) in the algorithm that reaches the

original school.

Despite this fact, the above theorem says that the probability of such a perverse outcome

becomes small in large markets. The intuition behind this result is as follows. If there are a

large number of schools in the market, then it can be shown (under the sufficient thickness

assumption) that with high probability, there are also a large number of schools with vacant

seats. Hence, when the ranking of a school c falls for some student s, the probability that

a student involved in a rejection chain will apply to a school with vacant seats is much

higher than the probability that the student will apply to c, as there are a large number of

schools with vacant seats. Since every student is acceptable to any school by assumption 4

in Definition 3, if such an application happens, then the rejection chain terminates without

reaching c. Thus, the probability that the rejection chain reaches and benefits c is small.

The main technical contribution of the proof is to rigorously establish that the above

intuition goes through. To do so, we need to overcome at least two difficulties. First, in

spite of the plausibility of the above example, it is not clear whether the occurrence of such

a rejection chain is the only reason that a stable mechanism does not respect improvements.

Second, while the above intuition is directly applicable only to the student-optimal stable

mechanism, we must show that the conclusion of the theorem holds not only for the student-

optimal stable mechanism but also for an arbitrary stable mechanism. To address these

issues, our proof proceeds in three steps. The first step is to establish the following rela-

tionship between stable mechanisms that fail to respect improvements of school quality and

stable mechanisms that are subject to strategic preference manipulation by schools.

Lemma 1. Let ϕ be a stable mechanism.

(1) Suppose that the preference profile � and student preference profile �′S are such that

�′S is a disimprovement for some c ∈ C over �S and ϕc(�′S,�C) �c ϕc(�). Then there

exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c) �c ϕc(�).

(2) Suppose that the preference profile � and (reported) preference relation �′′c for some

c ∈ C are such that ϕc(�′′c ,�−c) �c ϕc(�). Then there exists a student preference profile

�′S such that �′S is a disimprovement for c over �S and ϕc(�′S,�C) �c ϕc(�).33

33Note that Part 2 of Lemma 1 is not needed for showing Theorem 1. Still, it is of independent interest
in that, for instance, Corollary 1 in Section 6.2 utilizes not only Part 1 but also Part 2 of Lemma 1.
Furthermore, our Proposition 1 is a corollary of Lemma 1, as an impossibility theorem of Roth (1984) shows
that there exists no stable mechanism that is strategy-proof for schools while our Lemma 1 shows that
strategy-proofness for schools is equivalent to respecting improvements of school quality within the class of
stable mechanisms.
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This lemma shows that for stable mechanisms, there is a certain equivalence between

the failure of respecting improvements of school quality and the vulnerability to strategic

manipulations by schools. In particular, Part 1 of the lemma shows that whenever there exists

a school preference profile such that ϕ does not respect improvements for a school at that

school preference profile, then there exists a reported preference for that school that makes

the school strictly better off than when that school truthfully reports its preferences. Thus,

to prove Theorem 1, it is sufficient to show that in any stable mechanism it is approximately

optimal for schools to report their true preferences in large markets.

The second step of the proof enables us to focus on the student-optimal stable mechanism.

To do so, we invoke the fact that whenever a stable mechanism can be profitably manipulated

by a school, the student-optimal stable mechanism can be profitably manipulated by the same

school at that preference profile (Pathak and Sönmez, 2011). By this result and the preceding

argument, the probability of a school preference profile such that a stable mechanism ϕ does

not respect improvements at that preference profile is bounded from above by the probability

that the student-optimal stable mechanism can be profitably manipulated by a school.

The last step of the proof is to bound the probability that the student-optimal stable

mechanism can be profitably manipulated by a school. Under our assumptions, Kojima and

Pathak (2009) show that this probability converges to zero as the market size approaches

infinity. This result and the arguments in the preceding paragraphs complete the proof.

Remark. In Theorem 1, the order of convergence is O( 1
E[VT (n)]

), which by the sufficient thick-

ness assumption converges to zero. For instance, if the sequence of random markets satisfies

moderate similarity (Section 4.1), then the order of convergence is O( 1
n
). See Appendix A.1.1

for details.

In contrast to stable mechanisms, neither the Boston mechanism nor the TTC mechanism

approximately respects improvements even in large markets. More precisely, the following

results show that, even for arbitrarily large markets, under these mechanisms, with a non-

negligible probability a school can be made better off if some students demote the school in

their preference rankings.34

Theorem 2. The Boston mechanism does not approximately respect improvements of school

quality in large markets.

Proof. See Appendix A.1.2.

34In fact, the proofs of these theorems show that the failure of respecting improvements occurs not only
for large markets, but for any market with the number of schools n ≥ 2. (Of course, both the Boston and
the TTC mechanisms respect improvements trivially for the case with n = 1.)
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Theorem 3. The top trading cycles mechanism does not approximately respect improvements

of school quality in large markets.

Proof. See Appendix A.1.3.

The negative results of Theorems 2 and 3 provide a sharp contrast to the positive re-

sult of Theorem 1. These results indicate that schools will not be incentivized to reduce

school quality for any student under the student-optimal stable mechanism, while they may

be incentivized to reduce school quality for some students under the Boston or the TTC

mechanisms.35

The intuition for Theorem 2 is as follows. Recall that in the Boston mechanism, every

acceptance is final in each step. Therefore, if a student applies to a school in an earlier step

than its more preferred student, the mechanism can match the former to the school at the

expense of the latter. Hence, if the less preferred student changes her preferences to like the

school better, it can lead to an inferior outcome for the school as it may induce that student

to apply earlier. This logic is relatively simple and does not depend on the size of the market:

Roughly speaking, a randomly chosen student is less preferred to another randomly chosen

student with a fixed probability, whether or not the market is large.36 The formal proof in

the Appendix makes this intuition precise, by presenting a random market in which a less

preferred student applies for a school earlier than a more preferred student.37

The intuition for Theorem 3 is slightly more complicated. In the TTC mechanism, even

an undesirable student with a low priority may be matched to a school if the student can

trade priorities with another student who has a high priority for that school. Such a trade

can crowd out a student whose priority is higher than the first student but lower than the

second. Thus if an undesirable student changes her preferences to like a school better, it

may lead to an inferior outcome for the school as such a crowding out may occur. As in the

Boston mechanism, this effect can remain even in large economies.38 The precise argument,

again, can be found in the Appendix.

35Whether there exists any Pareto efficient mechanism that approximately respects improvements of school
quality in large markets is an open question. We do not pursue this line of analysis in this paper because
our primary objective is to compare representative mechanisms in practice, but answering this question may
be useful for further understanding the relationship between Pareto efficiency and respecting improvements.

36Of course, one needs to consider the conditional probability that one student is more preferred than
another given what happens in the mechanism. This issue is considered in the formal proof in the Appendix.

37Note that Theorem 2 does not depend on choosing a particular sequence of school preference profiles as
the number of schools grows large. In particular, the proof of Theorem 2 shows that the Boston mechanism
does not respect improvements in large markets even when schools’ preferences over students are uniformly
distributed over all possible rankings of students.

38As in the case of Theorem 2 (see footnote 37), Theorem 3 does not depend on choosing a particular
sequence of school preference profiles as the number of schools grows large. In particular, the proof of
Theorem 3 shows that the TTC mechanism does not respect improvements in large markets even when
schools’ preferences over students are uniformly distributed over all possible rankings of students.
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The intuition of the proofs of Theorems 1 to 3 also illustrates the likely strategic behavior

of schools under different school choice mechanisms. When the student-optimal stable mech-

anism is used, it only behooves a school to discourage a student if that student will begin a

rejection chain which ends with another student, whom the school likes better, applying to

that school; these students are very hard to identify in practice, and so such strategies by

schools will be rare. By contrast, when either the Boston or the TTC mechanism is used, the

proofs of the theorems show that a school could benefit by ensuring that students the school

finds undesirable do not wish to attend the school; these students are likely easy for the

school to identify. These “undesirable” students are often members of the most vulnerable

parts of society, and the Boston or TTC mechanisms may induce schools to intentionally

make themselves less hospitable for these students.39

5 Alternative Criteria

5.1 Respecting Improvements of School Quality in Terms of En-

rollment

In the preceding discussion on respecting improvements of school quality, whether a mecha-

nism respects improvements is judged in terms of schools’ preferences. This means that we

implicitly assume that school preferences in the model are the preferences by which schools

evaluate matchings. However, in several real-life school choice systems, school preferences do

not necessarily reflect schools’ true preferences. Rather, they are often priorities set by law,

as is the case for schools in Boston. In such cases, a primary objective of schools is likely

to be to enroll as many students as possible. Reasons for this include that school budgets

are often determined based on enrollments and that schools attended by too few students

are often closed.40 If schools desire to increase enrollment as much as possible, the following

variant of our criterion, respecting improvements of school quality in terms of enrollment,

would be a natural requirement for a mechanism to promote school competition.

Definition 5. A mechanism ϕ respects improvements of school quality in terms of

39However, note that we obtain similar results to Theorems 1 to 3 using the more restrictive criterion of
respecting improvements of school quality for desirable students, i.e., those students whom the
school prefers to some current student: see Section 5.2. Hence, the Boston and the TTC mechanisms may
induce schools to make themselves less hospitable for some “desirable” students as well.

40For example, the Chicago Public Schools’ School Closing Guidelines, http://www.cps.edu/About_CPS/
Policies_and_guidelines/Documents/CPSSchoolActionGuidelines.pdf, cites under-enrollment as a cri-
terion of school closing. In fact, under-enrollment is often used as a criterion for closing. See, for instance,
the recent controversy over the closing of the once-venerable Jamaica High School in New York City partly
due to declining enrollment (Daily News, 2011).

25

http://www.cps.edu/About_CPS/Policies_and_guidelines/Documents/CPSSchoolActionGuidelines.pdf
http://www.cps.edu/About_CPS/Policies_and_guidelines/Documents/CPSSchoolActionGuidelines.pdf


enrollment at the school preference profile �C if, for all c ∈ C and student preference

profiles �S and �′S, if �S is an improvement for school c over �′S, then |ϕc(�S,�C)| ≥
|ϕc(�′S,�C)|.

In other words, a mechanism respects improvements of school quality in terms of en-

rollment if the enrollment of a school weakly increases whenever that school becomes more

preferred by students. Note that respecting improvements in terms of enrollment and the

original definition of respecting improvements of school quality are logically independent.

As in the case with the original notion of respecting improvements, we first consider

whether stable mechanisms, particularly the student-optimal stable mechanism, respect im-

provements in terms of enrollment. As shown by the following result, in contrast to Proposi-

tion 1, it turns out that any stable mechanism respects improvements in terms of enrollment.

Proposition 3. Any stable mechanism respects improvements of school quality in terms of

enrollment at every school preference profile.

Proof. See Appendix A.1.4.

In addition, the next result demonstrates that the Boston mechanism also respects im-

provements in terms of enrollment.

Proposition 4. The Boston mechanism respects improvements of school quality in terms of

enrollment at every school preference profile.41

Proof. See Appendix A.1.5.

Given that all stable mechanisms and the Boston mechanism, a Pareto efficient mecha-

nism for students, respect improvements in terms of enrollment, some readers may suspect

that the TTC mechanism, which is also Pareto efficient as well as strategy-proof for students,

would satisfy the criterion as well. However, as demonstrated by the following result, the

TTC mechanism does not necessarily respect improvements of school quality in terms of

enrollment.

Proposition 5. The top trading cycles mechanism does not respect improvements of school

quality in terms of enrollment at all school preference profiles.

41In Proposition 4, we implicitly assume that students report true preferences. The Boston mechanism is
not strategy-proof, so it is of interest to analyze whether the result holds even when students are strategic.
As mentioned in the Remark in Section 3.2, Ergin and Sönmez (2006) show that the set of Nash equilib-
rium outcomes under the Boston mechanism coincides with the set of stable matchings. By this fact and
Proposition 3, it follows that the Boston mechanism also respects improvements of school quality in terms
of enrollment when students play Nash equilibria.
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Proof. Consider the following environment. There are schools c1, c2, c3, and c4, and students

s1, s2, s3, and s4. School c1 has a capacity of 2 seats while each of the other schools has a

capacity of 1 seat. The preference profile � of students and schools is given by:

�s1 : c3, c1, ∅, �c1 : s1, s2, s3, s4, ∅,

�s2 : c2, c1, ∅, �c2 : s1, s2, . . . , ∅

�s3 : c3, c1, ∅, �c3 : s4, s3, s2, s1, ∅

�s4 : c2, c4, ∅, �c4 : s4, . . . , ∅.

Under this preference profile, the TTC outcome is(
c1 c2 c3 c4

{s2, s3} s4 s1 ∅

)
,

where two positions of c1 are filled.

Now consider an alternative preference relation of student s1, �′s1 : c1, c3, ∅. Note that this

is an improvement for school c1 over �s1 . However, the TTC outcome under the preference

profile (�′s1 ,�−s1) is (
c1 c2 c3 c4

s1 s2 s3 s4

)
,

and so c1 obtains strictly fewer students.

The results on respecting improvements in large markets suggest a sense in which stable

mechanisms provide better incentives for schools to improve than the TTC mechanism. In ad-

dition to that, the results in this section provide another, similar case for stable mechanisms,

particularly the student-optimal stable mechanism, in contrast to the TTC mechanism.

5.2 Respecting Improvements of School Quality for Desirable Stu-

dents

Respecting improvements of school quality requires that a mechanism respects all possible

improvements. However, it may be socially beneficial for schools to differentiate and offer

different educational experiences to different students; for instance, a school may focus on

either math and science, music, or vocational training. If so, then it may be sufficient that a

school obtains a (weakly) more preferred set of students when a “desirable” student, i.e., a

27



student with a characteristic that school values, ranks that school more highly.42 One possible

definition of a desirable student in this context is simply a student that the school prefers

to one of its current students. Hence, we formalize the notion of respecting improvements of

school quality for desirable students with the following definition.

Definition 6. A mechanism ϕ respects improvements of school quality for desirable

students at the school preference profile �C if the following condition is satisfied: Consider

any c ∈ C and student preference profiles �S and �′S such that

(1) �′S is an improvement for school c over �S, and

(2) if |ϕc(�S,�C)| = qc, for any s such that s̄ �c s for every s̄ ∈ ϕc(�S,�C), �′s is the

same as �s.

Then, ϕc(�′S,�C) %c ϕc(�S,�C) holds.

In the above definition, we consider a change of student preferences where a school im-

proves in the ranking of students, each of whom is preferred to a current student, while

remaining unchanged in other students’ rankings. We say that a mechanism respects im-

provements of school quality for desirable students if the school always obtains a weakly

better set of students as a result of such a change.43 Clearly, if a mechanism respects im-

provements of school quality, then it also respects improvements for desirable students. In

this sense, respecting improvements for desirable students is a weaker notion than respecting

improvements.

Even if we adopt this alternative criterion, the impossibility result for the compatibility

of stability and respecting improvements in general markets continues to hold: In Example

1, add another student ŝ with �ŝ: c, ∅ and change school preferences to �c: s, s̄, ŝ, ∅ and

�c̄: s̄, s, ŝ, ∅. This modified example shows the desired impossibility.

Furthermore, neither the Boston nor the TTC mechanisms respects improvements for

desirable students in general markets. For the Boston mechanism, consider the following

example:

Example 3. Let S = {s1, s2, s3, s4}, C = {c1, c2}. The capacity of school c1 is 2 while the

42Here we assume that school preferences truly reflect their intrinsic preferences, as opposed to being
priorities set by law.

43For schools with unfilled capacity, every student is considered to be a desirable student.
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capacity of school c2 is 1. Preferences of students and schools are as follows:

�s1 : c2, c1, ∅, �c1 : s1, s2, s3, s4, ∅,

�s2 : ∅, c1, c2, �c2 : s4, s1, s2, s3, ∅,

�s3 : c1, ∅, c2,

�s4 : c2, ∅, c1.

Under this preference profile �, the Boston mechanism ϕB produces the following matching:

ϕB(�) =

(
c1 c2 ∅

{s1, s3} s4 s2

)
.

Now consider an alternative preference relation for student s2, �′s2 : c1, ∅, c2. Note that this

is an improvement for school c1 over �s2 and s2 �c1 s3 ∈ ϕB(�). However, the Boston

mechanism outcome under preference profile (�′s2 ,�−s2) is

ϕB(�′s2 ,�−s2) =

(
c1 c2 ∅

{s2, s3} s4 s1

)
,

which is strictly worse for c1 than ϕB(�). Hence, the Boston mechanism does not respect

improvements for desirable students.

In order to show that the TTC mechanism does not respect improvements for desir-

able students, consider the counterexample in the proof of Proposition 5 and suppose that

{s2, s3} �c1 {s1}. (Note that this does not contradict the assumption that the preferences

of c1 are responsive.) This modfied counterexample provides a school preference profile at

which the TTC mechanism does not respect improvements for desirable students.

Given these negative results, a natural question is, as in the case of the original concept

of respecting improvements, whether these mechanisms respect improvements for desirable

students in large markets. First of all, it is clear that the result for stable mechanisms in

large markets remains true since respecting improvements (for all students) implies respecting

improvements for desirable students. For the Boston and the TTC mechanisms, as in the

case with our original criterion of respecting improvements of school quality, we show that

neither of them respects improvements for desirable students even in large markets. Let

α̂c(Γ̃, ϕ) be the probability that the realized preference profile � has the property that there

exists a student preference profile �′S such that �′S is a disimprovement for c over �S with

the properties (1) and (2) in Definition 6, and ϕc(�′S,�C) �c ϕc(�S,�C). We say that a

mechanism ϕ approximately respects improvements of school quality for desirable
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students in large markets if, for any sequence of random markets (Γ̃n)n∈N that is regular

and sufficiently thick, max
c∈Cn

α̂c(Γ̃n, ϕ)→ 0 as n → ∞, i.e., for any ε > 0, there exists an

integer m such that, for any random market Γ̃n in the sequence with n > m and any c ∈ Cn,

we have that α̂c(Γ̃
n, ϕ) < ε.

Proposition 6. The Boston mechanism does not approximately respect improvements of

school quality for desirable students in large markets.

Proof. See Appendix A.1.6.

Proposition 7. The top trading cycles mechanism does not approximately respect improve-

ments of school quality for desirable students in large markets.

Proof. See Appendix A.1.7.

Hence, even if we adopt the alternative, weaker criterion of respecting improvements

for desirable students, the implications obtained by using our original criterion, respecting

improvements of school quality (for all students), are unchanged.44

6 Discussion

6.1 Conditions on Preferences for Respecting Improvements

As mentioned in Section 3.3, given that the mechanisms we consider do not respect improve-

ments at every school preference profile, a natural question is under what conditions on the

school preference profile �C does a stable or Pareto efficient mechanism respect improve-

ments. Let r`(�c) be the student who is `-th ranked in �c.

Definition 7. A school preference profile �C is virtually homogeneous if r`(�c) = r`(�c̄)
for all c, c̄ ∈ C and ` > min{qĉ : ĉ ∈ C}.

This condition requires that the same student should be the `-th preferred student for

all schools for every ` that is larger than the minimum of school capacities. As the name

suggests, virtual homogeneity allows for almost no variation in preferences over individual

students among different schools. To illustrate this condition, consider a special case in

which each school has only one seat, that is, qĉ = 1 for all ĉ ∈ C. Then r`(�c) = r`(�c̄) for

44Similarly to Theorems 2 and 3, the proofs for Propositions 6 and 7 show that the failure of respecting
improvements for desirable students occurs not only for large markets, but for any market with the number
of schools n ≥ 2. Furthermore, as in the case of Theorems 2 and 3 (see footnotes 37 and 38), Propositions 6
and 7 do not depend on choosing a particular sequence of school preference profiles as the number of schools
grows large.
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all c, c̄ ∈ C and ` ≥ 2 and hence for ` = 1 as well. This means that preferences over students

are exactly identical between any pair of schools.

When school capacities are larger than one, virtual homogeneity allows for slight varia-

tions in school preferences. Still, any allowed variation involves only the top min{qĉ : ĉ ∈ C}
students. Such a student is admitted to any school whenever she applies to it in any stable

mechanism, so how highly she is ordered within those top students does not affect the alloca-

tion as long as a stable mechanism is employed. In other words, the apparent heterogeneity

in school preferences involving only the top min{qĉ : ĉ ∈ C} students is irrelevant for the

purpose of choosing an allocation from the set of stable allocations.45 We now characterize

the set of school preference profiles under which there exists a stable mechanism that respects

improvements of school quality.

Proposition 8. There exists a stable mechanism that respects improvements of school quality

at �C if and only if one of the following conditions is satisfied:

(1) The school preference profile �C is virtually homogeneous.

(2) For every school c ∈ C, the capacity qc (associated with �c) is one.

Proof. See Appendix A.1.8.

While the proposition provides a complete characterization of when a stable mechanism

respects improvements of school quality, the main significance of this result is the necessity

direction: Virtually homogenous preferences are necessary for a stable mechanism to respect

improvements of school quality (when at least one school has a capacity greater than one).

Given that virtual homogeneity is an extremely restrictive condition which is rarely satisfied

in practice, this result suggests that school preferences in practice are unlikely to exclude

the possibility that stable mechanisms may provide perverse incentives for schools to lower

their qualities and divert some students’ demand for those schools.

The proof of Proposition 8 is quite involved, but the intuition is straightforward: If

preferences are not virtually homogenous and at least one school has a capacity greater than

one, then with some work one can construct a preference profile of the students such as

that in Example 1. On the other hand, when preferences are virtually homogenous, any

stable mechanism is equivalent to a serial dictatorship where students choose school seats in

the order that they are preferred by the schools. Such a serial dictatorship clearly respects

improvements of school quality. Finally, if the capacity is one for every school, then the

45On the other hand, however, the variation in school preferences over students may affect school prefer-
ences over allocations even when preferences are virtually homogeneous.
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school-optimal stable mechanism is the unique stable mechanism that respects improvements

of school quality by Theorem 5 in Balinski and Sönmez (1999).

We now show that the set of preference profiles for which a Pareto efficient mechanism

respects improvements of school quality is very similar to the set of preference profiles for

which a stable mechanism respects improvements of school quality, which is specified in

Proposition 8.

Proposition 9. There exists a mechanism that is Pareto efficient for students and respects

improvement of school quality at �C if and only if �C is virtually homogeneous.

Proof. See Appendix A.1.9.

As virtual homogeneity is a very strong restriction on school preferences, the significant

part of Proposition 9 is that virtually homogenous preferences are required for a Pareto

efficient mechanism to respect improvements of school quality. This conclusion implies that,

as in the case of stable mechanisms, school preferences in practice are unlikely to exclude

the possibility that Pareto efficient mechanisms may provide perverse incentives for schools

to lower their qualities and divert some students’ demand for those schools.

The proof of Proposition 9 is similar to that of Proposition 8 in spirit, though the technical

details differ substantially: if preferences are not virtually homogenous, then it is possible to

construct a preference profile for the students such as that in Example 2. On the other hand,

when preferences are virtually homogenous, the serial dictatorship where students choose

in the order that they are preferred by the schools is both Pareto efficient and respects

improvements of school quality.

Remark. When the virtual homogeneity condition in Proposition 9 is satisfied, the TTC

mechanism is an example of a mechanism that is Pareto efficient for students and respects

improvements of school quality. If a school preference profile is virtually homogeneous, the

TTC mechanism coincides with a serial dictatorship using an arbitrary school’s preference

profile as the priority order. As explained above, such a serial dictatorship respects im-

provements of school quality. On the other hand, the Boston mechanism does not respect

improvements even when �C is virtually homogeneous.46 An implication of these results is

that the student-optimal stable mechanism respects improvements for a wider class of school

preference profiles than the TTC mechanism, and the TTC mechanism respects improve-

ments for a wider class of school preference profiles than the Boston mechanism.

Remark. Virtual homogeneity is stronger than acyclicity by Ergin (2002) and all of its

variants proposed in the literature: (strong) x-acyclicity by Haeringer and Klijn (2009), the

46For an example showing this point, see Appendix A.2.
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stronger notions of acyclicity by Kesten (2006), and essential homogeneity by Kojima (2011).

Note that even these acyclicity-like conditions have been considered to be so restrictive that

it seems difficult to find any real-life cases where the conditions are satisfied. This fact

demonstrates how restrictive virtual homogeneity is. For a more detailed explanation on the

relationship between virtual homogeneity and (the variants of) acyclicity, see Appendix A.3.

6.2 Respecting Improvements of Student Quality

While we have considered competitive pressures on schools to improve, it is also important

that a student not have incentives to make schools rank her lower in order to obtain a more

preferred school. In addition, it would be natural to suspect that there is a tradeoff between

providing incentives for schools to improve and doing so for students. In this section, we

consider whether the school choice mechanisms considered in this work respect improvements

of student quality.

Definition 8. A mechanism ϕ respects improvements of student quality at the student

preference profile �S if, for all s ∈ S and school preference profiles �C and �′C , if �′C is an

improvement for student s over �C , then ϕs(�S,�′C) %s ϕs(�S,�C).47

This definition is analogous to that for respecting improvements of school quality. A

mechanism respects improvements of student quality if whenever a student’s ranking im-

proves in schools’ preferences, that student obtains a weakly better placement. We now

show that the student optimal stable mechanism, the Boston mechanism, and the TTC

mechanism all respect improvements of student quality.

In addition to being a building block for Theorem 1, Lemma 1 allows us to easily prove

the following corollary, which was first shown by Balinski and Sönmez (1999).

Corollary 1. The unique stable mechanism that respects improvements of student quality at

every student preference profile is the student-optimal stable mechanism.

Proof. By Lemma 1, a stable mechanism respects improvements of student quality if and

only if it is strategy-proof for students. This fact, and the result by Alcalde and Barberà

(1994) that the student-optimal stable mechanism is the only stable mechanism that is

strategy-proof for students, complete the proof.

47Analogously to the definition of an improvement for a school, a preference profile �C is an improvement
for student s over preference profile �′C if, for all c ∈ C,

(1) For all s̄ ∈ S, if {s} �c {s̄}, then {s} �′c {s̄}, and

(2) For all s̄, ŝ ∈ S r {s}, {s̄} �′c {ŝ} if and only if {s̄} �′c {ŝ},

and the capacity associated with �′c is equal to that with �c.
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The Boston mechanism also respects improvements of student quality. Intuitively, when

a student improves his ranking, at each step of the algorithm in the Boston mechanism, the

student is more likely to be kept by the school. Hence the outcome for the student must

become weakly better when the student’s ranking improves.

Proposition 10. The Boston mechanism respects improvements of student quality at every

student preference profile.

Proof. See Appendix A.1.10.

The TTC mechanism also respects improvements of student quality. At each step of

the algorithm in the TTC mechanism, a school is more likely to point at a student if that

student is ranked higher. Hence, at each step of the algorithm, a higher-ranked student will

have more schools pointing (directly or indirectly) at her, and so she will have a greater set

of schools to choose from, and therefore obtain a weakly better outcome.

Proposition 11. The top trading cycles mechanism respects improvements of student quality

at every student preference profile.

Proof. See Appendix A.1.11.

7 Conclusion

School choice has become a widespread and successful education policy in recent years. In

this work, we considered how the design of a school choice mechanism affects the incentives

of schools to improve their educational quality. We first defined the concept of respecting

improvements of school quality, which requires that the outcome of a mechanism becomes

weakly better for a school whenever that school becomes more preferred by students.48 No

stable mechanism (such as the student-optimal stable mechanism) or mechanism that is

Pareto efficient for students (such as the Boston and the TTC mechanisms) respect im-

provements of school quality. However, as the size of the school district grows, any stable

mechanism approximately respects improvements; by contrast, the Boston and the TTC

mechanisms do not even approximately respect improvements in large markets. Similar con-

clusions were obtained with respect to other criteria: Respecting improvements in terms

of enrollment and for desirable students. The main results are summarized in Table 1 (an

48Of course, one could also reward schools directly based on students’ submitted preferences, such as by
providing a monetary reward to a school based on the number of students who rank it first. However, we do
not analyze this issue and instead focus on criteria based on the actual student placement. Even were school
districts to implement such a direct incentive scheme, our analysis remains applicable as schools would still
have preferences over students.
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SOSM Boston TTC
RI in General Markets × × ×

RI by Desirable Students in General Markets × × ×
RI in Large Markets X × ×

RI for Desirable Students in Large Markets X × ×
RI in Terms of Enrollment X X ×

Table 1: Summary of the Main Results. RI stands for respect improvements.

exhaustive list of our results is in Table 2 in Appendix A.4). These results suggest that

the student-optimal stable mechanism may be a better school choice mechanism compared

to the Boston and the TTC mechanisms if the goal of public school choice is to “increase

excellence by increasing choice” (National Governors’ Association, 1991).

We regard this paper as one of the first attempts to use the analytical tools of market

design to study the effects of different school choice mechanisms on improving the quality

of public schooling. As such, there are a number of promising avenues of future research,

both theoretical and empirical. First, by modeling quality investment explicitly, one could

study the magnitude of the effects brought to light by our work. As discussed in Section 3,

we have not modeled quality explicitly and instead have defined improvements by changes

of student preferences; this modeling decision allows us to consider a very general class of

improvements. However, see the recent work by Azevedo and Leshno (2011), who, building on

our work here, explicitly model investment for improvements using a uni-dimensional quality

measure in order to quantify the marginal effects of investment. Their study has not obtained

any asymptotic comparison result among different mechanisms49, but their framework may

provide a promising approach to study issues of school quality more generally.

Second, if data on submitted preferences in real school choice systems is available, it

would be possible to analyze how often schools in practice are better off when less preferred

by certain students, i.e., how often schools have incentives to discourage student interest.

Finally, and more ambitiously, empirical work could quantify the effect of different school

choice mechanisms on the quality of a public school system and its rate of improvement.

We would further suggest that empirical work in this area also study how different school

choice mechanisms affect different types of students: As discussed at the end of Section 4,

the Boston and the TTC mechanisms provide incentives for schools to make themselves

49Note that Azevedo and Leshno (2011) focus on stable matchings, providing no framework in which to
study unstable mechanisms such as the Boston and TTC mechanisms. Also, they define a large matching
market, but it is quite different from the large market in our sense. In their model, the number of students
is large (in fact a continuum), but the number of schools remain fixed and finite. Thus it is unclear whether
their model can be used to obtain asymptotic comparisons of different school choice mechanisms.
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less attractive to “less desirable” students. As these “less desirable” students are likely to

be students who are already low-achieving, members of a disadvantaged minority group, or

have special needs, the use of the Boston and the TTC mechanisms may further disadvantage

these students.

Another important research direction would be to relate the current study, which focuses

on public school choice, with other forms of school choice, such as vouchers and charter school

systems.50 Potentially fruitful questions include the following ones: Which system provides

the best incentives for schools to improve? How does the form of school competition affect

the quality of the educational experience for different types of students? What sort of

mechanisms should be used to allocate students to charter schools and/or schools accepting

vouchers? Answering these questions will require a much more stylized model than the

current general matching-theoretic one, but we believe that answering these questions is

crucial to the continuing debate over public education.
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A Appendix: Not for Publication

A.1 Proofs

A.1.1 Proof of Theorem 1

We begin by proving Lemma 1, which we restate here for convenience. This lemma shows

that a school would benefit when some students like it less if and only if that school has a

profitable misreporting of preferences.

Lemma 1. Let ϕ be a stable mechanism.

(1) Suppose that the preference profile � and student preference profile �′S are such that

�′S is a disimprovement for some c ∈ C over �S and ϕc(�′S,�C) �c ϕc(�). Then there

exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c) �c ϕc(�).

(2) Suppose that the preference profile � and (reported) preference relation �′′c for some

c ∈ C are such that ϕc(�′′c ,�−c) �c ϕc(�). Then there exists a student preference

profile �′S such that �′S is a disimprovement for c over �S and ϕc(�′S,�C) �c ϕc(�).

Proof. We prove each part in the order they are listed:

(1) Suppose ϕc(�′S,�C) �c ϕc(�). Consider a preference relation �′′c of school c ∈ C such

that s �′′c ∅ if and only if s ∈ ϕc(�′S,�C). Then

Claim 1. ϕ(�′S,�C) is stable under (�′′c ,�−c).

Proof. It is obvious that ϕ(�′S,�C) is individually rational at (�′c,�−c). To show that

there is no blocking pair of ϕ(�′S,�C) at (�′′c ,�−c), consider the following cases.

(a) There are no blocking pairs of the form (s, c), that is, blocking pairs involving

school c, because ∅ �′′c s for any s /∈ ϕc(�′S,�C) by construction of preference

relation �′′c .

(b) Suppose that there is a blocking pair (s, c̄) at (�′′c ,�−c) with c̄ 6= c and s ∈ ϕc(�′S
,�C). Then c̄ �s c and, since (�′S,�C) is a disimprovement for school c over �,

it follows that c̄ �′s c. This and the fact that (s, c̄) is a blocking pair of ϕ(�′S,�C)

at (�′′c ,�−c) implies that (s, c̄) is a blocking pair of ϕ(�′S,�C) at (�′S,�C), which

is a contradiction to the assumption that ϕ is a stable mechanism.

(c) Suppose that there is a blocking pair (s, c̄) at (�′′c ,�−c) with c̄ 6= c and s /∈ ϕc(�′S
,�C). Then, c̄ �s ϕs(�′S,�C) if and only if c̄ �′s ϕs(�′S,�C) by definition of
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a disimprovement, c̄ 6= c, and ϕs(�′S,�C) 6= c. Also, the preferences of c̄ are

identical under (�′S,�C) and (�′c,�−c). Therefore (s, c̄) is a blocking pair of

ϕ(�′S,�C) at (�′S,�C), which is a contradiction to the assumption that ϕ is a

stable mechanism.

This completes the proof of Claim 1.

Now note that by a version of the rural hospital theorem (McVitie and Wilson, 1970;

Roth, 1984, 1986; Gale and Sotomayor, 1985a,b) and Claim 1, we have that

|ϕc(�′′c ,�−c)| = |ϕc(�′S,�C)|.

But since s �′′c ∅ if and only if s ∈ ϕc(�′S,�C) by construction of �′c, this equality

implies that

ϕc(�′′c ,�−c) = ϕc(�′S,�C).

This relation and the hypothesis that ϕc(�′S,�C) �c ϕc(�) completes the proof of

Part 1 of Lemma 1.

(2) Suppose ϕc(�′′c ,�−c) �c ϕc(�). Consider a student preference profile �′S such that

preferences of students outside ϕc(�′′c ,�−c) drop school c from their list but preferences

of all other students are unchanged: Formally, define �′S by

(a) For any s ∈ S r ϕc(�′′c ,�−c), (i) ∅ �′s c and (ii) c̄ �′s ĉ ⇐⇒ c̄ �s ĉ for any

c̄, ĉ ∈ C ∪ {∅}r {c}.

(b) �′s=�s for any s ∈ ϕc(�′′c ,�−c).

Claim 2. ϕ(�′′c ,�−c) is stable under (�′S,�C).

Proof. It is obvious that ϕ(�′′c ,�−c) is individually rational at (�′S,�C). To show that

there is no blocking pair of ϕ(�′′c ,�−c) at (�′S,�C), consider the following cases.

(a) There are no blocking pairs of the form (s, c), that is, blocking pairs involving

school c, because ∅ �′s c for any s ∈ S r ϕc(�′′c ,�−c) by construction of the

preference relation (�′S,�C).

(b) Suppose that there is a blocking pair (s, c̄) at (�′S,�C) with c̄ 6= c and s ∈
ϕc(�′′c ,�−c). Then c̄ �s c and, since �′s is identical to �s by construction, we

obtain c̄ �′s c. This and the fact that (s, c̄) is a blocking pair of ϕ(�′′c ,�−c) at

(�′S,�C) implies that (s, c̄) is a blocking pair of ϕ(�′′c ,�−c) at (�′′c ,�−c), which

is a contradiction to the assumption that ϕ is a stable mechanism.
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(c) Suppose that there is a blocking pair (s, c̄) at (�′S,�C) with c̄ 6= c and s /∈ ϕc(�′′c
,�−c). Then, c̄ �s ϕs(�′′c ,�−c) if and only if c̄ �′s ϕs(�′′c ,�−c) by definition of

a disimprovement, c̄ 6= c, and ϕs(�′′c ,�−c) 6= c. Also, the preferences of c̄ are

identical under (�′S,�C) and (�′′c ,�−c). Therefore (s, c̄) is a blocking pair of

ϕc(�′′c ,�−c) at (�′′c ,�−c), which is a contradiction to the assumption that ϕ is a

stable mechanism.

This completes the proof of Claim 2.

Now note that by a version of the rural hospital theorem (McVitie and Wilson, 1970;

Roth, 1984, 1986; Gale and Sotomayor, 1985a,b) and Claim 2, we have

|ϕc(�′S,�C)| = |ϕc(�′′c ,�−c)|.

But since c �′s ∅ if and only if s ∈ ϕc(�′′c ,�−c) by construction of (�′S,�C), this

equality implies that

ϕc(�′S,�C) = ϕc(�′′c ,�−c).

This relation and the hypothesis that ϕc(�′′c ,�−c) �c ϕc(�) completes the proof of

Part 2 of Lemma 1.

We now prove Theorem 1; to do so, we now show that, when some stable mechanism

does not respect improvements for a certain preference profile, the student-optimal stable

mechanism does not respect improvements for that preference profile.

Claim 3. Let ϕ be a stable mechanism and suppose that the preference profile � has

the property that there exists another preference profile (�′S,�C) such that (�′S,�C) is a

disimprovement over � for c while ϕc(�′S,�C) �c ϕc(�). Then there exists a preference

relation �∗c of c such that ϕSc (�∗c ,�−c) �c ϕSc (�).

Proof. By Lemma 1, there exists �′′c such that ϕc(�′′c ,�−c) �c ϕc(�). Pathak and Sönmez

(2011) show that, if a stable mechanism ϕ is manipulable by a school at a given preference

profile of students and schools, then the student-optimal stable mechanism ϕS is manipulable

by the same school at the same preference profile. Thus, there exists �∗c (which may be

different from �′′c ) such that ϕSc (�∗c ,�−c) �c ϕSc (�).

To prove the theorem, suppose that the preference profile �, realized from random market

Γ̃n, has the property that there exists another preference profile (�′S,�C) such that (�′S,�C)
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is a disimprovement over � for c while ϕc(�′S,�C) �c ϕc(�). Then by Claim 3, there exists

a preference relation �∗c of c such that ϕSc (�∗c ,�−c) �c ϕSc (�).

Under the assumptions of regularity and sufficient thickness, Lemmata 1, 3, and 10 of

Kojima and Pathak (2009) imply that there exists a constant γ and T such that the following

property holds: There exists n0 such that, for any Γ̃n with any n > n0 and any c ∈ Cn, the

probability that, under the realized preference profile �, there exists a reported preference

relation �∗c such that ϕSc (�∗c ,�−c) �c ϕSc (�) is at most γ
E[VT (n)]

. By the sufficient thickness

assumption, E[VT (n)]→∞ for any sufficiently large T .51 This fact and the conclusion from

the last paragraph complete the proof.

Remark. From the last part of the proof, it is clear that the order of convergence in the

theorem is O( 1
E[VT (n)]

). For instance, if the sequence of random markets satisfies moderate

similarity as defined in Section 4.1, then the order of convergence is O( 1
n
) because E[VT (n)] =

O(n) by Proposition 1 of Kojima and Pathak (2009).52

Remark. As mentioned in Section 4.1, the conclusion of the theorem holds even without

condition (1) of regularity—so students can find any number of schools acceptable—if the

conditions of excess supply of school capacities and moderate similarity are satisfied. To

see this point, note first that the proof of Lemma 5 of Kojima and Pathak (2009) shows

that, given VT (n), the conditional probability that a school can profitably manipulate ϕS is

O( 1
VT (n)

). Under the conditions of excess supply of school capacities and moderate similarity,

it is clear that VT (n) = O(n) (for any sufficiently large T ) for any realization of preferences

because there are at least λn vacant school seats, and hence at least (λ
q̂
)n schools with at

least one vacant seat, in any matching. Thus the (unconditional) probability that a school

can profitably manipulate ϕS is O( 1
n
). This and the arguments of the above proof establish

the conclusion of the theorem.

A.1.2 Proof of Theorem 2

Theorem 2 follows from Proposition 6 as the latter implies the former. However, we present

a separate proof, which is simpler than the proof of Proposition 6, for expositional clarity.

Consider a sequence of random markets where there are n schools and 2n students, and

the capacity of every school is 1. Assume that preferences of all students are generated

51Note that condition (i) in the definition of regularity of a sequence of random markets is weaker than
that used by Kojima and Pathak (2009) in that they require that kn = k for all n. It is easy to extend their
result to our more general setting, as claimed in footnote 3 in Kojima and Pathak (2009).

52Kojima and Pathak (2009) show E[VT (n)] = O(n) for a slightly more general class of distributions,
which they call “nonvanishing proportion of popular colleges” in their Appendix A.3. Moderate similarity
corresponds to the special case with a = 1 in their class of distributions.
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according to the procedure described in Section 4.1 associated with the uniform distribution

over all schools and k = 2. Moreover assume that school preferences over individual students

are drawn identically and independently from the uniform distribution over all preferences

for students such that all students are acceptable. These assumptions guarantee that the

regularity and sufficient thickness conditions are satisfied.

Given n, fix an arbitrary school c and let Event 1 be the event that there is exactly one

student who prefers that school c most. The probability of Event 1 is(
2n

1

)
× 1

n
×
(

1− 1

n

)2n−1

= 2n× 1

n
×
(

1− 1

n

)2n−1

.

This expression converges to 2
e2

as n approaches infinity, where e is the basis of the natural

logarithm.53 Therefore, for any sufficiently large n, the probability of Event 1 is at least,

say, 1
e2

. Denote by s the unique student who prefers c most.

Since there are 2n students and n school seats, there are at least n students who are not

matched in the first step of the algorithm of the Boston mechanism. Since k = 2, that is,

each student finds two schools to be acceptable, each of these students applies to a school

in the second step of the algorithm. Therefore, the conditional probability of the event (call

this event Event 2) that there is at least one student who lists c as her second choice and

hence applies to it in the second step of the mechanism is at least

1−
(

1− 1

n− 1

)n
.

As n approaches infinity, this expression converges to 1 − 1
e
, so for any sufficiently large n,

the conditional probability of Event 2 given Event 1 is at least, say, 1− 2
e
.

Finally, conditional on Events 1 and 2, the probability that at least one of the applicants to

school c in the second step of the algorithm is preferred to s by school c (call this event Event

3) is at least one half: To see this point, observe that conditioning on Events 1 and 2 places

no restriction on how students are ranked by school c, so for any student s̄, the conditional

probability that s̄ is more preferred to s by c is exactly one half, which provides a lower bound

for the conditional probability of Event 3 given Events 1 and 2. Thus the unconditional joint

53 The computation of this limit is as follows:

2n× 1
n
×
(

1− 1
n

)2n−1

= 2×
((

1− 1
n

)n)2

×
(

1− 1
n

)−1

→ 2× (e−1)2 × 1 = 2/e2,

as n → ∞, where we have used a well-known formula limn→∞

(
1− 1

n

)n
= e−1. This formula is used in

similar calculations of limits in this paper.
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probability that Events 1, 2, and 3 happen is at least 1
e2
× (1 − 2

e
) × 1

2
= (1 − 2

e
) 1

2e2
, which

is independent of n and bounded away from below by zero.

Assume that the realization of preferences is such that Events 1, 2, and 3 hold. Then,

under this preference profile, school c is matched with student s. Consider the following

disimprovement for c: student s declares c to be unacceptable while keeping the relative

rankings of all other schools unchanged, and preferences of all other students are unchanged.

Under this preference profile, there is no applicant to c in the first step given Event 1, and

there is at least one applicant to c in the second step of the algorithm given Event 2. Thus c

is matched with the most preferred student among those who apply in the second step. By

Event 3, that student is preferred to s by c.

The above arguments imply that there exists n0 such that the joint probability of Events

1, 2, and 3 is at least (1− 2
e
) 1

2e2
for any n ≥ n0. Thus, denoting by pn the probability that

Events 1, 2, and 3 occur in the market with n schools, the probability that Events 1, 2, and

3 occur in the market with any n ≥ 2 is at least min{p2, p3, . . . , pn0−1, (1− 2
e
) 1

2e2
}, which is

bounded away from below by zero, completing the proof.

A.1.3 Proof of Theorem 3

Theorem 3 follows from Proposition 7 as the latter implies the former. However, we present

a separate proof, which is simpler than the proof of Proposition 7, for expositional clarity.

Consider a case where there are n schools and n students, and qc = 1 for every school

c. Assume that the preferences of all students are generated according to the uniform

distribution over all schools with k = 1. Moreover, assume that school preferences are drawn

identically and independently from the uniform distribution over all preferences over students

such that all students are acceptable. These assumptions guarantee that the regularity and

sufficient thickness conditions are satisfied.

Let n ≥ 4. Take an arbitrary school c and let Event 1 be the event that there are exactly

two students who prefer c best. The probability of Event 1 is(
n

2

)
× 1

n2 ×
(

1− 1

n

)n−2

=
n(n− 1)

2
× 1

n2 ×
(

1− 1

n

)n−2

.

As n approaches infinity, this expression converges to 1
2e

, so for any sufficiently large n, the

probability of Event 1 is at least, say, 1
3e

.

Under Event 1, there are exactly two students who prefer c best. Call these students

h and l.54 Given Event 1, consider the conditional probability of the event (call this event

54Later in the proof, we will impose the assumption that h is ranked higher than l by c.
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Event 2) that except school c, there is exactly 1 school whthat ranks h first and exactly 1

school that ranks l first. The conditional probability of this event is given by

(n− 1)(n− 2)× 1

n2 ×
(

1− 2

n

)n−3

.

As n approaches infinity, this expression converges to 1
e2 , so for any sufficiently large n, the

conditional probability of Event 2 given Event 1 is at least, say, 1
2e2 .

Denote the schools identified under Event 2 by ch and cl, respectively. Given Events 1

and 2, consider the conditional probability of the event (call this event Event 3) that except

h and l, there is exactly 1 student who ranks ch first and exactly one student who ranks cl

first. The conditional probability is given by

(n− 2)(n− 3)× 1

(n− 1)2 ×
(

1− 2

n− 1

)n−4

.

As n approaches infinity, this expression converges to 1
e2 , so for any sufficiently large n, the

conditional probability of Event 3 given Events 1 and 2 is at least, say, 1
2e2 .

Denote the students identified in Event 3 by sh and sl, respectively. Given Events 1, 2,

and 3, the conditional probability of the event (call this event Event 4) that either of sh and

sl has a higher ranking than both h and l in school c’s preference relation is 1
2
. (Note that

Events 1, 2, and 3 do not impose any restriction on the rankings of h, l, sh, and sl in c’s

preference relation, and hence c is equally likely to rank any of these four students first.)

Given the above calculations, the joint probability of Events 1, 2, 3, and 4 is bounded from

below by zero (at least 1
24e5

) for any sufficiently large n.

Given Event 1, school c is matched with h or l with conditional probability 1 by the

assumption that k = 1. In addition, given Events 1, 2, 3, and 4, the following event occurs

with conditional probability 1: c is matched with h or l while being contained in a cycle

involving another agent than c, h, and l. Since the above events are symmetric for h and l,

this means that c is matched with l with conditional probability 1
2
. Therefore, c is matched

with l at least with unconditional probability 1
48e5

, and thus, c is matched with h with a

probability that is bounded away from above by 1.

Now additionally assume that h has a higher ranking than l in c’s preference relation.

(Given the above argument, the joint probability of this event and Events 1-4 is at least 1
96e5

for any sufficiently large n.) Then consider the following disimprovement for c in l’s preference

relation: l declares c (and hence all schools) unacceptable. This change of preferences leads

to the situation where h is the only student who ranks c as an acceptable school, and h ranks
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c as her most preferred school, which in turn implies that after the disimprovement for c in

l’s preference relation, c has to be matched with h with probability 1. Note that c is matched

with h only with a probability bounded from above by 1 before the disimprovement.

For n with 2 ≤ n < 4, consider the following random market with n schools and n +

1 students. Each school has one position and school preferences are independently and

identically distributed over all preferences over students such that all students are acceptable.

Each student’s preference relation is uniformly distributed over all preferences over schools

with k = 1. Then, for each n ≥ 2, it is a positive probability event that there are two schools

c1 and c2 and three students s1, s2, and s3 such that

�s1 :c2, ∅, �c1 :s1, s2, s3, . . . , ∅,

�s2 :c1, ∅, �c2 :s3, s2, s1, . . . , ∅,

�s3 :c1, ∅.

Under this preference profile �, clearly c1 is matched with s3. Meanwhile, for (�′s3 ,�−s3)

such that �′s3 prefers ∅ best, c1 is matched to s2.

To finish the proof, let the probability that the respecting improvements criterion is

violated be denoted by pn. Recall that we have already seen that there is an n0 such that

pn ≥ 1
96e5

for any n ≥ n0. The preceding arguments has shown that, for any n ≥ 2, pn is at

least {p2, . . . , pn0−1,
1

96e5
}, which is bounded away from below by zero. This completes the

proof.

A.1.4 Proof of Proposition 3

Suppose that �′ is an improvement over � for c. Assume by way of contradiction that

|ϕc(�)| > |ϕc(�′)| for some stable mechanism ϕ. Without loss of generality assume that

there exists one student s ∈ S and a school c̄ ∈ Cr{c} such that the only difference between

� and �′ is that under �, c̄ is preferred by s to c, while under �′, c is preferrey by s to c̄.

Formally, assume that c̄ �s c, c �′s c̄, c �s ĉ if and only if c �′s ĉ for any ĉ ∈ Cr {c, c̄}∪{∅},
c̄ �s ĉ if and only if c̄ �′s ĉ for any ĉ ∈ C r {c, c̄} ∪ {∅}, and �′−s=�−s.55

Since |ϕc(�)| > |ϕc(�′)| by assumption, by the rural hospital theorem it follows that

ϕ(�′) is not stable under preference profile �. Thus there is a blocking pair of ϕ(�′) under

�. First, note that s is part of the blocking pair because she is the only agent whose

preferences are different between � and �′. Moreover, it should be the case that s ∈ ϕc(�′)
55This assumption is without loss of generality because, for any � and �′ such that �′ is an improvement

for c over �, there exists a finite sequence of preference profiles (�1,�2, . . . ,�T ) such that �1=�, �T=�′,
and for any t = 1, . . . , T − 1, the only difference between �t and �t+1 is that the ranking between c and
some other c̄ next to it is exchanged for one student s.
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and the only blocking pair is (s, c̄) because the only change from �′s to �s is that c̄ is more

preferred to c at �s while c is more preferred to c̄ at �′s. Now satisfy this blocking pair

to obtain a new matching. If |ϕc̄(�′)| < qc̄, then the resulting matching is stable at �.

If |ϕc̄(�′)| = qc̄, then reject the least preferred student by c̄ in ϕc̄(�′), and let him block

with his most preferred school that can form a blocking pair with him, and so on.56 This

procedure terminates in a finite number of steps, leading to a matching µ that is stable under

�. Moreover, if c is part of the blocking pair in this algorithm, then the algorithm stops

at that step, because no student is rejected by c as there is a vacancy. But the resulting

matching µ has the property that |µc| ≤ |ϕc(�′)| < |ϕc(�)| (note that s ∈ ϕc(�′) by the

above discussion), which is a contradiction to the rural hospital theorem. This completes

the proof.

A.1.5 Proof of Proposition 4

Let c ∈ C, � be a preference profile, and �′s be an improvement over �s for c. Recall

that ϕB denotes the Boston mechanism. We will show that |ϕBc (�′s,�−s)| ≥ |ϕBc (�)|. If

|ϕBc (�′s,�−s)| = qc, then the conclusion trivially holds. Thus we assume |ϕBc (�′s,�−s)| < qc.

This assumption implies that unless

ϕBs (�′s,�−s) = c, ϕBs (�) 6= c, (1)

by definition of ϕB it follows that ϕB(�′s,�−s) = ϕB(�), so there is nothing to prove.57

Thus we assume relation (1) in the rest of the proof.

Since ϕBs (�′s,�−s) = c and |ϕBc (�′s,�−s)| < qc, we have that

ϕBs̄ (�∅s,�−s) = ϕBs̄ (�′s,�−s), (2)

for every s̄ 6= s, where �∅s is a preference relation of s that ranks ∅ as the most preferred

outcome.

Now we compare ϕB(�) and ϕB(�∅s,�−s). It is clear by the definition of the algorithm

that ϕBs̄ (�∅s,�−s) %s̄ ϕ
B
s̄ (�) for every s̄ 6= s. This fact and the property that the matching

56This procedure is a variant of the “vacancy chain dynamics” studied by Blum, Roth, and Rothblum
(1997).

57The reason is as follows. If ϕBs (�) 6= c, then because |ϕBc (�′s,�−s)| < qc, it follows from the definition
of the Boston mechanism that ϕBs (�′s,�−s) �s c. Since �′s is an improvement for c over �s, this implies
that the algorithm for the Boston mechanism terminates without using any part of �′s or �s at or below c
in either of the preference profiles, thus the algorithm proceeds in an exactly identical manner under both
preference profiles, resulting in the same outcome. If ϕBs (�) = c, then ϕB(�′s,�−s) = ϕB(�) by inspection
of the steps of the algorithm.
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under the Boston mechanism is individually rational imply that

|{s̄ ∈ S r {s} : ϕBs̄ (�∅s,�−s) ∈ C}| ≥ |{s̄ ∈ S r {s} : ϕBs̄ (�) ∈ C}|.

Since

|{s̄ ∈ S : ϕBs̄ (�∅s,�−s) ∈ C}| = |{s̄ ∈ S r {s} : ϕBs̄ (�∅s,�−s) ∈ C}|

as s is clearly unmatched at ϕBs̄ (�∅s,�−s)), and clearly

|{s̄ ∈ S r {s} : ϕBs̄ (�) ∈ C}| ≥ |{s̄ ∈ S : ϕBs̄ (�) ∈ C}| − 1,

as s is the only feasible element of {s̄ ∈ S : ϕBs̄ (�) ∈ C} who is not also in {s̄ ∈ S r {s} :

ϕBs̄ (�) ∈ C}. Hence, we conclude that

|{s̄ ∈ S : ϕBs̄ (�∅s,�−s) ∈ C}| ≥ |{s̄ ∈ S : ϕBs̄ (�) ∈ C}| − 1. (3)

On the other hand, it is clear by definition of the Boston mechanism that |ϕBc̄ (�)| ≥
|ϕBc̄ (�∅s,�−s)| for all c̄ ∈ C. Because the matching is bilateral, i.e., µs̄ = c̄ ⇐⇒ s̄ ∈ µc̄ for

any matching µ, this and relation (3) imply that there is at most one school c̄ ∈ C such that

|ϕBc̄ (�)| > |ϕBc̄ (�∅s,�−s)|, and for such a school, |ϕBc̄ (�∅s,�−s)| ≥ |ϕBc̄ (�)| − 1. In particular,

we obtain that

|ϕBc (�∅s,�−s)| ≥ |ϕBc (�)| − 1. (4)

Note that relations (1) and (2) imply that |ϕBc (�′s,�−s)| = |ϕBc (�∅s,�−s)| + 1.58 This and

relation (4) imply |ϕBc (�′s,�−s)| = |ϕBc (�∅s,�−s)|+ 1 ≥ |ϕBc (�)|, completing the proof.

A.1.6 Proof of Proposition 6

Consider a sequence of random markets where there are n schools and 3n students, and

the capacity of every school is 2. Assume that preferences of all students are generated

according to the procedure described in Section 4.1 associated with the uniform distribution

over all schools and k = 2. Moreover assume that school preferences over individual students

are drawn identically and independently from the uniform distribution over all preferences

for students such that all students are acceptable. These assumptions guarantee that the

58To see why this equality holds, note that relation (2) means that all students except for s receive
identical assignments between ϕB(�′s,�−s) and ϕB(�∅s,�−s), and the last term accounts for the implication
of relation (1) that student s is matched to c at ϕB(�′s,�−s) while she is unmatched at ϕB(�∅s,�−s) by
definition of �∅s.
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regularity and sufficient thickness conditions are satisfied.

Given any n ≥ 2, fix an arbitrary school c and let Event 1 be the event that there are

exactly two students who prefer that school c most. The probability of Event 1 is(
3n

2

)
×
(

1

n

)2

×
(

1− 1

n

)3n−2

=
3n(3n− 1)

2
×
(

1

n

)2

×
(

1− 1

n

)3n−2

.

This expression converges to 9
2e3

as n approaches infinity, where e is the basis of the natural

logarithm. Therefore, for any sufficiently large n, the probability of Event 1 is at least, say,
1
e3

. Denote by s and ŝ the students who prefer c most.

Since there are 3n students and 2n school seats, there are at least n students who are not

matched in the first step of the algorithm of the Boston mechanism. Since k = 2, that is,

each student finds two schools to be acceptable, each of these students applies for a school

in the second step of the algorithm. Therefore, given Event 1, the conditional probability of

the event (call this event Event 2) that there is at least one student who lists c as her second

choice and hence applies for it in the second step of the mechanism is at least

1−
(

1− 1

n− 1

)n
.

As n approaches infinity, this expression converges to 1 − 1
e , so for any sufficiently large n,

the conditional probability of Event 2 given Event 1 is at least, say, 1− 2
e .

Finally, conditional on Events 1 and 2, the probability that at least one of the applicants

to school c in the second step of the algorithm is preferred to both s and ŝ by school c (call

this event Event 3) is at least 1
3
: To see this point, observe that conditioning on Events 1

and 2 places no restriction on how students are ranked by school c. So, for any student s̄, the

conditional probability that s̄ is more preferred to s and ŝ by c is exactly 1/3, which provides

a lower bound for the conditional probability of Event 3 given Events 1 and 2. Thus the

unconditional joint probability that Events 1, 2, and 3 happen is at least 1
e3
×(1− 2

e
)× 1

3
=

1− 2
e

3e3
,

which is independent of n and bounded away from below by zero.

Assume that the realization of preferences is such that Events 1, 2, and 3 occur. Then,

under this preference profile, school c is matched with students s and ŝ. Without loss of

generality assume that s �c ŝ and consider the following disimprovement for c: Student

s declares c to be unacceptable while keeping the relative rankings of all other schools

unchanged, and preferences of all other students are unchanged. Under this preference

profile, the only applicant to c in the first step is ŝ by Event 1. Also, there is at least one

applicant to c in the second step of the algorithm by Event 2. Thus c is matched with

the most preferred student, say s̄, among those who apply in the second step. By Event 3,
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that student is preferred to s by c. Therefore, the set of students matched with c after the

disimprovement is {s̄, ŝ}, which is preferred to {s, ŝ}, the set of students matched with c

before the disimprovement. Moreover, the improvement in the preference relation of s (from

the disimproved preferences, where s finds c unacceptable, to the improved preferences,

where s prefers c most) has properties (1) and (2) in Definition 6 of respecting improvements

for desirable students: That is, s is more preferred to ŝ by c, while ŝ is matched to c under

the preference profile after the disimprovement.

The above arguments imply that there exists n0 such that the joint probability of Events

1, 2, and 3 is at least
1− 2

e

3e3
for any n ≥ n0. Thus, denoting by pn the probability that Events

1, 2, and 3 occur in the market with n, the probability that Events 1, 2, and 3 occur in the

market with any n ≥ 2 is at least min{p2, p3, . . . , pn0−1,
1− 2

e

3e3
}, which is bounded away from

below by zero, completing the proof.

A.1.7 Proof of Proposition 7

Consider a case where there are n schools and n students, and the capacity of each school is 2.

Assume that preferences of all students are generated according to the uniform distribution

over all schools with k = 1. Moreover, assume that school preferences are drawn identically

and independently from the uniform distribution over all preferences over students such that

all students are acceptable. These assumptions guarantee that the regularity and sufficient

thickness conditions are satisfied.

Let n ≥ 6. Take an arbitrary school c and let Event 1 be the event that there are exactly

3 students who prefer c best. The probability of Event 1 is(
n

3

)
× 1

n3 ×
(

1− 1

n

)n−3

=
n(n− 1)(n− 2)

3× 2
× 1

n3 ×
(

1− 1

n

)n−3

.

As n approaches infinity, this expression converges to 1
6e

. Thus, for any sufficiently large n,

the probability of Event 1 is at least, say, 1
7e

.

Under Event 1, there are exactly 3 students who prefer c best. Call these students h,

m and l.59 Given Event 1, consider the conditional probability of the event (call this event

Event 2) that except school c, there is exactly 1 school that ranks h first, exactly 1 school

that ranks m first, and exactly 1 school that ranks l first. This conditional probability is

59Later in the proof, we will impose the assumption that h is the highest-ranked, m is the middle-ranked,
and l is the lowest-ranked by c among h, m, and l.
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given by

(n− 1)(n− 2)(n− 3)× 1

n3 ×
(

1− 3

n

)n−4

.

As n approaches infinity, this expression converges to 1
e3 . Thus, for any sufficiently large n,

the conditional probability of Event 2 given Event 1 is at least, say, 1
2e3 .

Given Event 2, denote the schools that rank h, m, and l first by ch, cm, and cl, respectively.

Given Events 1 and 2, consider the conditional probability of the event (call this event Event

3) that except h, m and l, there is exactly 1 student who ranks ch first, exactly 1 student

who ranks cm first, and exactly one student who ranks cl first. The conditional probability

is given by

(n− 3)(n− 4)(n− 5)× 1

(n− 1)3 ×
(

1− 3

n− 1

)n−6

.

As n approaches infinity, this expression converges to 1
e3 , so for any sufficiently large n, the

conditional probability of Event 3 given Events 1 and 2 is at least, say, 1
2e3 .

Given Event 3, denote the students who rank ch, cm, and cl first by sh, sm and sl,

respectively. Given Events 1, 2, and 3, the conditional probability of the event (call this

event Event 4) that at least two out of sh, sm, and sl have higher rankings than all of h, m,

and l in school c’s preference relation is 1
5
.60 (Note that Events 1, 2, and 3 do not impose

any restriction on the rankings of h, m, l, sh, sm, and sl in c’s preference relation.) Given

the above calculations, the joint probability of Events 1, 2, 3, and 4 is bounded from below

by zero (at least 1
140e7

) for any sufficiently large n.

Given Event 1, school c is matched with two students out of h, m and l with conditional

probability 1 by the assumption that k = 1. In addition, given Events 1, 2, 3, and 4, the

following event occurs with conditional probability 1: c is matched with two students out

of h, m, and l while being contained in a cycle involving another agent than c, h, m, and

l. Since the above events are symmetric for h, m and l, this means that c is matched with

{m, l} with conditional probability 1
3
. Therefore, c is matched with {m, l} with unconditional

probability of at least 1
420e7

.

Now additionally assume Event 5, that c prefers h to m to l, which happens with prob-

ability 1
6

(conditional on Events 1-4. Given the above argument, the joint probability of

Events 1-5 is at least 1
2520e7

for any sufficiently large n. Then consider the following disim-

60Note that the above event is equivalent to the event that the two highest-ranked students by c among
the six students h, m, l, sh, sm, and sl are from sh, sm and sl. The probability of the latter event is given by
3× 2× 4!

6! = 1
5 .
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provement for c in m’s preference relation: m declares all schools unacceptable. This change

of m’s preference relation leads to the situation where h and l are the only students who rank

c as an acceptable school, which in turn implies that after the disimprovement for c in m’s

preference relation, c has to be matched with {h, l} with probability 1. Since c is matched

with {m, l} with a probability bounded away from below by zero before the disimprovement,

the disimprovement for c makes c strictly better off with a probability that is bounded from

below by zero. Moreover, the improvement for c in the preferences of m (from the disim-

proved preferences, where m finds c unacceptable, to the improved preferences, where m

prefers c most) has properties (1) and (2) in Definition 6 of respecting improvements for

desirable students: That is, m is more preferred to l by c, while l is matched under the

preference profile after the disimprovement.

For n with 2 ≤ n < 6, consider the following random market with n schools and n + 3

students. School preferences are independently and identically distributed over all prefer-

ences over students such that all students are acceptable. Each student’s preference relation

is uniformly distributed over all preferences over schools with k = 1. Then, for each n ≥ 2, it

is a positive probability event that there are two schools c1 and c2, and c3 and five students

s1, ..., s5 such that

�s1 :c2, ∅, �c1 :s5, s1, s2, s3, s4, . . . , ∅,

�s2 :c1, ∅, �c2 :s4, s3, s2, s1, . . . , ∅,

�s3 :c1, ∅.

�s4 :c1, ∅.

�s5 :c2, ∅.

where both schools have a capacity of two. Under this preference profile �, clearly c1 is

matched with {s3, s4}. Meanwhile, for (�′s3 ,�−s3) such that �′s3 prefers ∅ best, c1 is matched

to {s2, s4}, which is strictly preferred to {s3, s4} by c1. Note that s3 is a desirable student

for c1 at (�′s3 ,�−s3).

To finish the proof, let the probability that the respecting improvements criterion is

violated be denoted by pn. Recall that we have already seen that there is an n0 such that

the joint probability of Events 1, 2, 3, and 4 is at least 1
420e7

. The preceding arguments has

shown that, for any n ≥ 2, pn is at least {p2, . . . , pn0−1,
1

2520e7
}, which is bounded away from

below by zero. This completes the proof.
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A.1.8 Proof of Proposition 8

It is useful to start with the following result, presenting an equivalent representation of

virtual homogeneity. This result is similar in spirit to Theorem 2 of Ergin (2002), which

provides an equivalent condition to his acyclicity condition.

Lemma 2. A school preference profile �C is virtually homogeneous if and only if there exist

no a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Proof. The “only if” direction. Let ρ�c(s) be the ranking of student s in �c. That is,

ρ�c(s) = ` if and only if r`(�c) = s.

Suppose that �C is virtually homogeneous and a, b ∈ C and i, j ∈ S satisfy

i �a j, j �b i. (5)

Consider a student s∗ ∈ {i, j} whose worst ranking by a or b is the worst among i and

j’s rankings by a or b. That is, s∗ is a student who satisfies max{ρ�a(s∗), ρ�b
(s∗)} =

max{ρ�a(i), ρ�b
(i), ρ�a(j), ρ�b

(j)}. (If both i and j satisfy this condition, let s∗ be one of

them arbitrarily). Consider the following cases.

(1) Suppose s∗ = i. Then, since ρ�a(i) < ρ�a(j) ≤ ρ�b
(i) by assumption (5), virtual

homogeneity implies that ρ�b
(i) ≤ q̄ ≡ min{qĉ : ĉ ∈ C}. Therefore there does not exist

Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for all s ∈ Sb.

(2) Suppose s∗ = j. Then, since ρ�b
(j) < ρ�b

(i) ≤ ρ�a(j) by assumption (5), virtual

homogeneity implies that ρ�a(j) ≤ q̄. Thus we obtain ρ�b
(i) ≤ ρ�a(j) ≤ q̄. Therefore

there does not exist Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for all s ∈ Sb.

The “if” direction. We shall prove the contraposition. Thus assume that �C is not

virtually homogeneous. Let

λ = max{` ∈ N : there exist two schools c, c̄ ∈ C such that r`(�c) 6= r`(�c̄)}.

Then the assumption that �C is not virtually homogeneous implies λ > q̄ ≡ min{qĉ : ĉ ∈ C}.
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Let schools a, b ∈ C satisfy rλ(�a) 6= rλ(�b) and, without loss of generality, qb = q̄.61

Denote i = rλ(�b) and j = rλ(�a). By maximality of λ, it follows that i �a j and j �b i.
Moreover, since λ > q̄ = qb, there exists Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i
for every s ∈ Sb, finishing the proof.

Next, the following lemma offers an equivalent condition to the requirements in the

statement of Proposition 8.

Lemma 3. The condition that either

(1) The school preference profile �C is virtually homogeneous, or

(2) For every school c ∈ C, the capacity associated with �c is one,

is satisfied if and only if the following condition is satisfied: There exist no a, b ∈ C and

i, j ∈ S such that

• qa ≥ 2,

• i �a j and j �b i, and

• There exists a set of students Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Proof. The “only if” direction follows immediately by inspection of the conditions and

Lemma 2. To show the “if” direction, assume that �C is not virtually homogeneous and

there is at least one school c ∈ C with qc ≥ 2, and we shall show that there exist a, b, i, and

j that satisfy the three conditions in the statement of this claim. By Lemma 2, there exist

a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Consider the following cases.

(1) Assume qa ≥ 2. Then the three conditions in the statement of this claim immediately

follow.

61The reason that it is without loss of generality to assume qb = q̄ is as follows. Define b to be a school
with qb = q̄. By assumption there exist two schools ā and â such that rλ(�ā) 6= rλ(�â). Then it is clear
that at least one of the relations rλ(�ā) 6= rλ(�b) and rλ(�â) 6= rλ(�b) should hold. Let a ∈ {ā, â} be a
school such that the relation holds, which shows the claim.
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(2) Assume qa = 1 and qb ≥ 2. Then the desired conclusion holds by relabeling (a, b, i, j)

to (b, a, j, i).

(3) Assume qa = qb = 1. Then, by assumption there exists c 6= a, b such that qc ≥ 2.

If i �c j, then the desired conclusion holds by relabeling c to a. If j �c i, then the

desired conclusion holds by relabeling (c, a, j, i) to (a, b, i, j).

With these lemmas at hand, we are now ready to prove Proposition 8.

The “only if” direction. We shall show the contraposition. Assume that the condition

in Proposition 8 is not satisfied. By Lemma 3, there exist a, b ∈ C and i, j ∈ S such that

• qa ≥ 2,

• i �a j and j �b i, and

• There exists a set of students Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Consider a preference profile �S such that

�i:b, a, ∅,

�j:b, a, ∅,

�k:b, ∅,∀k ∈ Sb,

�l:∅, ∀l ∈ S r ({i, j} ∪ Sb).

Then the unique stable matching at this preference profile matches i to a and Sb ∪ {j} to b

while leaving every other student unmatched. Now consider an alternative preference profile

�′= (�′j,�−j) where �′j: a, b, ∅. Note that �′ is an improvement for a over �. The unique

stable matching at preference profile �′ matches j to a and Sb ∪ {i} to b. Thus a is made

worse off at �′ than at � although �′ is an improvement for a over �, showing the claim.

The “if” direction. First consider case (2) of the conditions in the statement of the

proposition in which qc = 1 for all c ∈ C. In this case, Theorem 5 of Balinski and Sönmez

(1999) shows that the school-optimal stable mechanism respects improvements.

Second, consider case (1) of the conditions in the statement of the proposition in which

�C is virtually homogeneous. We will show the claim by presenting a specific mechanism
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that is stable and respects improvements. Fix a school c ∈ C arbitrarily and consider the

following serial dictatorship with respect to �c:

• Step t: Choose student rt(�c). Let her be matched with a school (or the outside

option) that she prefers most among all the schools whose entire capacity has not been

exhausted by the end of Step (t− 1).

If �C is virtually homogeneous, then clearly the serial dictatorship with respect to �c is

identical to the serial dictatorship with respect to �c̄ for any c, c̄ ∈ C because the top q̄

students in every school’s preferences are always matched with their most preferred schools

regardless of which school’s preferences are used. Thus, when convenient, we refer to the

mechanism simply as the serial dictatorship.

Claim 4. If �C is virtually homogeneous, then the serial dictatorship with respect to �c is

stable for any c ∈ C.

Proof. Let µ be the matching resulting from the serial dictatorship. It is obvious that µ is

individually rational. To show that there is no blocking pair of µ, assume that c̄ �s µs for

a student s ∈ S. Then, by the definition of the serial dictatorship with respect to �c, it

follows that

|µc̄| = qc̄, (6)

s̄ �c s for every s̄ ∈ µc̄. (7)

Also note that ρc(s) > q̄ because otherwise s should receive her most preferred school in the

serial dictatorship with respect to �c. Property (7) and the assumption that �C is virtually

homogeneous imply

s̄ �c̄ s for every s̄ ∈ µc̄. (8)

Properties (6) and (8) show that (s, c̄) does not block µ, showing that the serial dictatorship

is a stable mechanism.

Claim 5. If �C is virtually homogeneous, then the serial dictatorship respects improvement

of school quality for any c ∈ C.

Proof. Let ϕ be the serial dictatorship. Consider two preference profiles� and�′= (�′s,�−s)
such that �′ is an improvement for c over �, where s ∈ S and c ∈ C.62

62Focusing on the case where only one students’ preferences change is without loss of generality because, for
any � and �′ such that �′ is an improvement for c over �, there exists a finite sequence of preference profiles
(�1,�2, . . . ,�T ) and students (s1, s2, . . . , sT−1) such that �1=�, �T=�′, and for any t = 1, . . . , T −1, �t+1

st

is an improvement for c over �tst and �t+1
−st=�t−st .
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(1) Suppose that ϕs(�) = c. Then, ϕ(�′) = ϕ(�) by inspection of the steps of the serial

dictatorship.63

(2) Suppose that ϕs(�) 6= c and ϕs(�′) 6= c. Then, again ϕ(�) = ϕ(�′) by inspection of

the steps of the serial dictatorship.

(3) Suppose that ϕs(�) 6= c while ϕs(�′) = c.

(a) Suppose ϕc(�) r ϕc(�′) = ∅. Then ϕc(�′) %c ϕc(�) by responsiveness of school

preferences as well as the assumption that every student is acceptable to c under

�c.

(b) Suppose ϕc(�) r ϕc(�′) 6= ∅. We show the following claim.

Claim 6. Suppose ϕc(�) r ϕc(�′) 6= ∅. Then there exists s̄ ∈ S such that

ϕc(�′) = ϕc(�) ∪ {s}r {s̄} and s �c s̄.

Proof. First note that ϕŝ(�) = ϕŝ(�′) for every student ŝ with ŝ �c s because

of the definition of the serial dictatorship. Thus every student in ϕc(�) r ϕc(�′)
is less preferred to s by c. Let s̄ be the most preferred student according to

�c in ϕc(�) r ϕc(�′). Suppose that s̄ is the last student who receives c in the

serial dictatorship at preference profile �. Then, since no student receives c in

subsequent steps either at � or �′, clearly ϕc(�′) = ϕc(�) ∪ {s}r {s̄}. Suppose

that s̄ is not the last student who receives c in the serial dictatorship at preference

profile �. This implies that a seat in c is still available to be received by s̄ at that

step in both preference profiles � and �′. Therefore, the school that student s̄

is assigned to at �′ is the unique school that has a vacant seat in that step at

�′ but not at �. This implies that at the end of that step, the numbers of seats

available in each school in the serial dictatorships are identical between � and �′.
Therefore, assignments for every student who is less preferred to s̄ are identical

between � and �′, implying that ϕc(�′) = ϕc(�) ∪ {s}r {s̄}.

Since �c is responsive, Claim 6 implies that ϕc(�′) �c ϕc(�).

Hence, when ϕc(�) r ϕc(�′) 6= ∅, we have that ϕc(�′) %c ϕc(�).

As these three cases are exhaustive, this shows Claim 5.

Claims 4 and 5 complete the proof of Proposition 8.

63Technically speaking, this is a consequence of Maskin monotonicity. Note that it is well-known than the
serial dictatorship satisfies Maskin monotonicity.
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A.1.9 Proof of Proposition 9

The “only if” direction. Assume for contradiction that �C is not virtually homogeneous,

but there exists a mechanism that is Pareto efficient for students and respects improvements

of school quality. By Lemma 2, there exist a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊆ S r {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

First, consider the following preference profile �S of students:

�i:a, ∅,

�k:b, ∅,∀k ∈ Sb ∪ {j},

�l:∅,∀l ∈ S r ({i, j} ∪ Sb)

Under �≡ (�S,�C), the unique Pareto efficient matching matches i to a, Sb ∪ {j} to b, and

leaves all other students unmatched.

Next, consider students’ new preferences �′S≡ (�′i,�−i) where i’s preference is �′i: b, a, ∅.
Note that �′ is an improvement for school b over �. Since j �b i, s �b i for every s ∈ Sb,
and the mechanism is Pareto efficient for students and respects improvement, the outcome

of the mechanism under �′, b has to be matched with Sb ∪ {j}. This in turn means that a

must be matched with i under �′.
Finally, consider another preference profile �′′≡ (�′i,�′j,�−{i,j}) where �′j: a, b, ∅. Note

that �′′ is an improvement for school a over �′. Under �′′, the unique matching that

is Pareto efficient for students matches j to a and Sb ∪ {i} to b, which implies that a is

matched with j in the outcome of the mechanism. However, note that i �a j although �′′

is an improvement for school a over �′. This means that this mechanism does not respect

improvements of school quality, which is a contradiction.

The “if” direction. Fix c ∈ C arbitrarily and consider the serial dictatorship with re-

spect to �c. It is well-known that the serial dictatorship is Pareto efficient for students (see

Abdulkadiroğlu and Sönmez (1998)). This fact and Claim 5 in the proof of Proposition 8

complete the proof.
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A.1.10 Proof of Proposition 10

Consider a student s, a student preference profile �S, and two school preference profiles

�C and �′C , where �′C is an improvement for student s over �C . Consider the first step t

at which the Boston algorithm using �C matches a student to a different school than the

Boston algorithm using �′C . (If no such step occurs, then s must get the same school under

both preference profiles, and we are done.) Since all other students besides s are ranked

the same relative to each other under preference profiles �C and �′C , this step must involve

student s applying to some school c. However, since student s is ranked (weakly) higher by

all schools, this means that the difference in the outcome of the algorithm at t using the two

different inputs must be that student s is assigned to the school c under preference profile

�′C , but is not assigned to c under preference profile �C . Therefore, student s is better off

under �′C as she can only recieve a worse outcome in the later steps of the Boston algorithm

under preferences �C , and so we are done.

A.1.11 Proof of Proposition 11

Consider a student s, a student preference profile �S, and two school preference profiles

�C and �′C , where �′C is an improvement for student s over �C . Consider, without loss

of generality, the s-avoiding TTC algorithm, where in each step t, we remove one cycle

(s1, c1, s2, . . . , sK , cK); if there are multiple cycles, we clear a cycle that does not involve

student s. Since the order of cycle removal does not affect the outcome, this is equivalent to

the original TTC mechanism.

At each step of the s-avoiding TTC algorithm before s is removed under preferences

(�S,�′C), the same cycle is also removed under preferences �C , as a school at each step

under �′C is pointing either at the same student as under �C or at s.

Now note that, when agent s is removed under (�S,�′C), every school is directly or

indirectly pointing at agent s, and so agent s receives his favorite school from those remaining

at that step. Hence, as the set of schools left at the step where s is removed under preferences

�′C is a superset of the schools left at the step s is removed under preferences �C , s is weakly

better off.
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A.2 The Boston Mechanism Does Not Respect Improvements Even

When a School Preference Profile is Virtually Homogeneous:

An Example

Let S = {s, s̄, ŝ} and C = {c, c̄}. Consider the following preferences:

�s : c, c̄, ∅, �c : s, s̄, ŝ, ∅,

�s̄ : c, c̄, ∅, �c̄ : s, s̄, ŝ, ∅,

�ŝ : c, c̄, ∅.

The capacities of the schools are given by qc = qc̄ = 1. Note that the two schools’ preferences

are exactly the same and thus this school preference profile is virtually homogeneous.

Under �≡ (�s,�s̄,�ŝ,�c,�c̄), the Boston mechanism ϕB produces the following match-

ing:

ϕB(�) =

(
c c̄ ∅
s s̄ ŝ

)
.

Now, consider student ŝ’s new preference relation �′ŝ: c̄, c, ∅. Note that �′ŝ is an improve-

ment for school c̄ over �ŝ. Under (�′ŝ,�−ŝ), the Boston mechanism produces the following

matching:

ϕB(�′ŝ,�−ŝ) =

(
c c̄ ∅
s ŝ s̄

)
.

Hence,

ϕBc̄ (�) = s̄ �c̄ ŝ = ϕBc̄ (�′ŝ,�−ŝ),

even though �′ŝ is an improvement for c̄ over �ŝ. Therefore, the Boston mechanism does

not respect improvements of school quality at school preference profile (�c,�c̄) even though

(�c,�c̄) is virtually homogeneous.

A.3 The Relationship between Virtual Homogeneity and Acyclic-

ity (and Its Variants)

As referenced in the Remark at the end of Section 6.1, virtual homogeneity is stronger

than acyclicity by Ergin (2002) and all of its variants proposed in the literature: strong x-

acyclicity by Haeringer and Klijn (2009), the stronger notions of acyclicity by Kesten (2006),
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and essential homogeneity by Kojima (2011). In this section, we prove this statement. We

first introduce the definitions of the above properties.

Definition 9. A school preference profile �C is Ergin acyclic if there exist no a, b ∈ C

and i, j, k ∈ S such that

• i �a j �a k �b i and

• there exist (possibly empty) disjoint sets of students Sa, Sb ⊆ S r {i, j, k} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 10. A school preference profile �C is essentially homogeneous if there exist

no a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• there exist (possibly empty) sets of students Sa, Sb ⊆ S r {i, j} such that |Sa| =

qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 11. A school preference profile �C is strongly x -acyclic if there exist no

a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i and

• there exist (possibly empty) disjoint sets of students Sa, Sb ⊆ S r {i, j} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 12. A school preference profile �C is Kesten acyclic if there exist no a, b ∈ C
and i, j, k ∈ S such that

• i �a j �a k, k �b i, and k �b j

• there exists a (possibly empty) set of students Sa ⊆ Sr{i, j, k} such that |Sa| = qa−1

and for every s ∈ Sa, either (1) s �a i or (2) both s �a j and k %b s.

Definition 13. A school preference profile �C is strongly Kesten acyclic if there exist

no a, b ∈ C and i, j, k ∈ S such that

• i �a j �a k, k �b i, and k �b j

• there exists a (possibly empty) set of students Sa ⊆ Sr{i, j, k} such that |Sa| = qa−1

and s �a k for every s ∈ Sa.
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It is easy to see that if a school preference profile is virtually homogeneous, then it is

both Ergin acyclic and essentially homogeneous.64 Also, given that essential homogeneity

implies strong x-acyclicity by definition, any virtually homogeneous preference profile is also

strongly x-acyclic. Also it is clear that strong Kesten acyclicity implies Kesten acyclicity.

Thus, the only thing we have to show is that virtual homogeneity implies strong Kesten

acyclicity.

Proposition 12. If a school preference profile is virtually homogeneous, then it is strongly

Kesten acyclic.

Proof. Suppose that a school preference profile is virtually homogeneous and is not strongly

Kesten acyclic, i.e., there exist a, b ∈ C and i, j, k ∈ S such that

• i �a j �a k, k �b i, and k �b j

• there exists a (possibly empty) set of students Sa ⊆ Sr{i, j, k} such that |Sa| = qa−1

and s �a k for every s ∈ Sa.

This implies that there exist a, b ∈ C and i, j, k ∈ S such that

• i �a k and k �b i

• there exists a (possibly empty) set of students Sa ⊆ S r {i, k} such that |Sa| = qa − 1

and s �a k for every s ∈ Sa.

However, such a, b, i, j, and k cannot exist by the assumption that the school preference

profile is virtually homogeneous. To see this point, observe that if such a, b, i, j, and k

exist, then b, a, k, and i satisfy the condition in Lemma 2. (It can be verified by simply

substituting (b, a, k, i) into (a, b, i, j) into Lemma 2.) However, according to the lemma, such

schools and students cannot exist when a school preference profile is virtually homogeneous,

a contradiction.

In summary, the above discussions show that virtual homogeneity is stronger than acyclic-

ity and its variants in the literature. A more detailed description of the relationships among

these properties is provided in the following Venn diagram in Figure 1, which combines the

results of this section with the Venn diagram on p. 1934 in Haeringer and Klijn (2009).

64These conclusions follow clearly by comparing conditions of Ergin acyclicity and virtual homogeneity
with those in Lemma 2.
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Virtual Homogeneity

Acyclicity 
(Ergin)

Acyclicity (Kesten)

Essential Homogeneity 
(Kojima)

Strong x-acyclicity (Haeringer and Klijn)

x-acyclicity (Haeringer and Klijn)

Strong Acyclicity
(Kesten)

Figure 1: Relationship Between Virtual Homogeneity and Other Properties.

A.4 An Exhaustive List of the Results

The following table provides an exhaustive list of the results in this paper. In this table, “RI”

is an abbreviation of respecting improvements. “X” in a cell means that the corresponding

mechanism satisfies the corresponding property (under the assumption that students truth-

fully report their preferences) while “×” means that the corresponding mechanism does not

satisfy the corresponding property. In addition, for the Boston mechanism, which is not

strategy-proof, marks in parentheses indicate results under the assumption that students

play a Nash equilibrium. Specifically, “(X)” (“X” in parentheses) means that for any selec-

tion of a Nash equilibrium at each preference profile, the corresponding mechanism satisfies

the corresponding property. On the other hand, “(×)” means that there exists a selection of

a Nash equilibrium at each preference profile such that the corresponding mechanism does

not satisfy the corresponding property.
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SOSM Boston TTC
RI in General Markets × × ×

RI for Desirable Students in General Markets × × ×
RI in Large Markets X ×(X) ×

RI for Desirable Students in Large Markets X ×(X) ×
RI in Terms of Enrollment X X ×

RI of Student Quality X X(×) X

Table 2: An Exhaustive List of the Results.
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