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Abstract: This paper considers a pure-endowment stationary stochastic overlapping generations econ-

omy, in which agents have maximin expected utility preferences à la Gilboa and Schmeidler (1989). It

proves two main results. First, we show that multiple stationary monetary equilibria exist and hence real

as well as price indeterminacy arises under the assumption that the aggregate shock exists. Second, we

show that each of these stationary monetary equilibria is conditionally Pareto optimal, that is, no other

stationary allocations strictly Pareto dominate the equilibrium allocations.

1. Introduction

This paper studies a pure-endowment stationary stochastic overlapping generations econ-

omy (OLG economy) under uncertainty. In each single period, one of shocks in a finite state

space realizes, one new agent is born, and she lives for two periods and dies. In the economy,

there are available a single physical (consumption) good at each period and an infinitely-lived

outside asset with no dividend payment: fiat money. In the first period of her life, an agent

divides an initial endowment into a consumption at this period and money holdings. In her

second period, she buys goods from a next generation (in its first period) and consume both

these and an second-period endowment which realizes depending only on the shock in her second

period. There are no storage technology and production.

So far, the model is quite similar with stochastic OLG models in the literature. However,

our model is quite different from those in that each agent evaluates her consumption streams over

two periods by the maximin expected utility à la Gilboa and Schmeidler (1989). Each agent

faces uncertainty about her second-period consumption which is represented by not a single
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probability distribution but a set of probability distributions. Such uncertainty is sometimes

referred to as Knightian uncertainty after an economist who distinguished such a multi-prior

situation from risk where uncertainty is summarized by a single probability distribution (Knight,

1921). Then, each agent is supposed to use the “worst” probability distribution to calculate her

final evaluation of consumption streams. Such a behavior of decision-makers was characterized

by some behavioral axioms by Gilboa and Schmeidler (1989) for an infinite state space and by

Casadesus-Masanell, Klibanoff and Ozdenoren (2000) for a finite state space, which is the case

in this paper.

Under these schemes, this paper proves two main results. First, we show that an open

set of “economy” exists in which multiple stationary monetary equilibria exist. Here, “economy”

is defined by a pair of initial endowments in the agent’s first and second period. Since we assume

that each generation is identical and that the state space is finite, the economy is defined by

a point in a finite-dimensional Euclidean space (apart from the preference structure). It is

shown that for some open set of the economy, a continuum of equilibrium prices exists. We

also provides several numerical examples which indicate that an increase in uncertainty (in the

sense that the set of probability measures of each agent expands) enlarges not only the degree of

indeterminacy of equilibrium prices and allocations but also the range of the economy in which

indeterminacy is observed. It is well-known (Gottardi, 1996) that when the agent’s preference

is differentiable, each equilibrium price is locally isolated (although there might be many). In

contrast, the preference in our model, which is represented by the maximin expected utility,

may not be differentiable and this is why the continuum of equilibria shows up in our model.

Second, we conduct some welfare analysis and prove that each of these stationary mon-

etary equilibria is conditionally Pareto optimal, that is, no other stationary allocations strictly

Pareto dominate the equilibrium allocations. In particular, this is somewhat surprising since

any equilibrium in the continuum of equilibria cannot be dominated by another one in it.

We finally mention the relationship of our model to the existing literature. Epstein

and Wang (1994, 1995) extend Lucas’ (1978) dynamic asset pricing model by assuming that a

representative agent evaluates consumption streams by maximin expected utility. By definition,

at an equilibrium, the representative agent does not hold any asset and consume all of her initial
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endowment in each period. Then, the equilibrium (supporting) prices are those prices under

which the optimal decision of the representative agent is to hold no asset. Epstein and Wang

(1994, 1995) show that there exists uncountably many such equilibrium prices. However, in their

model, indeterminacy of equilibrium allocation cannot happen because of the representative-

agent setting. On the other hand, in our exchange economy, indeterminacy of allocation (real

indeterminacy) as well as price indeterminacy takes place.

Dana (2004) considers a static exchange economy model with maximin-expected-utility-

maximizing agents and shows that the price, and hence, real indeterminacy arises under the

assumption of no aggregate shock. Here, no aggregate shock means that the total endowment

does not change over the state space. On the other hand, ours is a dynamic model and show

that the real indeterminacy arises when the aggrregate shock does exists, that is, when the sum

of initial endowments of the old generation and the young generation in the same period changes

over the state space.

2. The Economy

We consider a stationary stochastic overlapping generations economy with a single phys-

ical good, in which agents assign multiple priors to uncertainty.

2.1. Fundamentals

Time is divided into discrete periods and indexed by t. While this index can have values

between −∞ and +∞, we use convention of calling the current date (or equivalently, the initial

period) period 1. That is, t = 1, 2, 3, . . . . Uncertainty is modeled by a realization of a shock s

in the finite set of shocks, S, at the beginning of each single period. The past of the economy,

that is, the history of shocks up to period 0 is treated as given and denoted by σ0. We denote

by ∆(S) or, more simply, ∆S the set of all probability measures on S.

In each period, one new agent enters the economy after the realization of the shock and

lives for two periods. Thus, agents are essentially indexed by (t, st), which is a pair of the period

and the shock at which they are born. Agent (t, st)’s endowment is assumed to depend on the

shocks which occurred in the first and the second period of their life, st, st+1 ∈ S, but not on
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the period t itself nor on the past history of shocks. Let ω1
st and (ω2

st+1
)st+1∈S denote the first-

and the second-period endowments of the physical good of agent (t, st), respectively. We assume

that (ω1
s , (ω

2
s′)s′∈S) ∈ R++ × RS

++ for all s ∈ S. Note that the second-period endowment is

assumed to be independent of the shock in the first period.

We denote by ctst = (c1tst , (c
2t
sts′

)s′∈S) the contingent consumption stream of agent (t, st).

Agent (t, st) is assumed to rank the consumption streams ctst according to her lifetime utility

function Ust : R++ × RS
++ → R.

Throughout this paper, we assume that agents have the maximin expected utility (MMEU)

preferences1, that is, there exist an increasing2, strictly concave, and continuously differentiable

real-valued function u on R2
++ and a family of compact and convex subsets of ∆S , (Ps)s∈S , such

that

(∀s ∈ S)(∀c ∈ R++ × RS
++) Us(c) = min

π∈Ps

∑
s′∈S

u(c1, c2s′)πs′ . (1)

Since the MMEU preference crucially depends on Ps and since s affects U only through Ps, we

often write Us(c) as U(Ps)(c). We denote by U(π)(c) the MMEU preference rather than by

U({π})(c) when Ps ≡ {π} for some π ∈ ∆S . Since U(·)(c) is clearly continuous on ∆S for each

c and since each Ps ⊆ ∆S is compact by the assumption, it turns out that the minimum in (1)

is actually achieved. Hence, we may define

(∀s ∈ S)(∀c ∈ R++ × RS
++) M(Ps)(c) := argmin

π∈Ps

U(π)(c),

which is the nonempty set of priors minimizing the expected utility given the consumption

stream c ∈ R++ × RS
++. We can prove the strict concavity of U(Ps)(c) in c :3

Theorem 1 U(Ps)(·) is strictly concave for all s ∈ S.

We will invoke Theorem 1 when we characterize the equilibria and when we show their

conditional optimality.
1An axiomatization of the maximin expected utility preferences over Savage acts with a finite state space is

given, for example, by Casadesus-Masanell, Klibanoff and Ozdenoren (2000).
2Let H be a nonempty finite set. A real-valued function f on X ⊆ RH is nondecreasing if f(x) ≥ f(y) for all

x, y ∈ X such that xh ≥ yh for all h ∈ H and is increasing if f(x) > f(y) for all x, y ∈ X such that xh ≥ yh for
all h ∈ H and xk > yk for some k ∈ H.

3One can also show the (quasi-/strict quasi-) concavity of U(Ps)(·) under the assumption of the (quasi-/strictly
quasi-) concavity of u.
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2.2. Equilibria

To describe the intergenerational trade, we introduce an infinitely-lived outside asset,

which yields no dividends. This asset is so-called fiat money. The stock of fiat money is constant

over date-events and is denoted by M > 0.

A pair of a contingent real money balance q∗ ∈ RS
+ and a contingent consumption stream

c∗ = (c∗1s , (c∗2ss′)s′∈S)s∈S , (q
∗, c∗), is a stationary competitive equilibrium if there exists a m∗ ∈ RS

such that: for all s ∈ S, (i) (c∗s,m
∗
s) belongs to the set

argmax
(c1,(c2

s′ )s′∈S ,m)∈R++×RS
++×R

{
Us(c)

∣∣∣∣∣ c1 = ω1
s − q∗sm/M ,

(∀s′ ∈ S) c2s′ = ω2
s′ + q∗s′m/M

}

and (ii) m∗
s = M . While the condition (i) requires that the pair of the consumption stream

(c∗1s , (c∗2ss′)s′∈S) and money holding m∗
s must be the solution of agent (t, st)’s (lifetime) utility-

maximizing problem, the condition (ii) is the market clearing condition of fiat money.4 From (i),

(c∗s,m
∗
s) satisfies c∗1s = ω1

s − q∗sm
∗
s/M and (∀s′) c∗2ss′ = ω2

s′ + q∗s′m
∗
s/M , which together with (ii)

implies that c∗1s = ω1
s −q∗s and (∀s′) c∗2ss′ = ω2

s′ +q∗s′ . Therefore, it follows that c
∗2
ss′ is independent

of s (which we write as c∗2s′ ) and that

(∀s ∈ S) c∗1s + c∗2s = ω1
s + ω2

s .

That is, we obtain the market-clearing conditions of the contingent consumption good (the

Warlas law).

A nonnegative-valued function q∗ on S is a stationary equilibrium if there exists a contin-

gent consumption streams c∗ with which (q∗, c∗) is a stationary competitive equilibrium. Note

that we often identify a stationary competitive equilibrium with a stationary equilibrium since

they have a one-to-one relationship with each other. A stationary equilibrium q∗ is monetary

if it is positive-valued. We also say that a stationary equilibrium q∗ with its corresponding

consumption streams c∗ = (c∗1s , (c∗2s′ )s′∈S)s∈S is fully-insured (with respect to the second period

consumptions) if, for all s′, s′′ ∈ S, c∗2s′ = c∗2s′′ .

3. Characterization of Stationary Equilibria

4In (i), though the first budget constraint holds with an equality by the increase of u, the other budget
constraints may hold with inequalities. Here, we simply assume that all the constraints hold with equalities.
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This section provides a characterization of stationary equilibria. Under the current

framework, the agents’ optimization problems degenerate into the simple form: for all s ∈ S,

the agent solves

max
m∈R

U(Ps)(ω
1
s − q∗sm/M, (ω2

s′ + q∗s′m/M)s′∈S). (2)

We denote by V (Ps)(m) the objective function in (2) for the notational convenience. When Ps is

a singleton for all s ∈ S, the objective function can be differentiable with respect tom, and hence,

a stationary equilibrium can be characterized by a system of equations, which is derived from

the first order condition of the optimization problem and the money market clearing condition

ms = M for all s ∈ S. However, if Ps has multiple elements, the objective function may not

be differentiable. This is the main difficulty in characterizing a stationary equilibrium under

MMEU preferences. In such cases, we can no longer characterize a stationary equilibrium by

a system of equations. To overcome this difficulty, we will use the following theorem, which is

adapted from Aubin (1979, p.118, Proposition 6).

Theorem 2 (Aubin, 1979) Let ∆ be a nonempty subset of a metric space and let {fπ}π∈∆ be

a collection of functions from R to R. For each x ∈ R, define

g(x) := inf
π∈∆

fπ(x) and M(x) := {π ∈ ∆| g(x) = fπ(x)}.

Let x ∈ R. If (a) ∆ is compact, (b) there exists a neighborhood X of x such that functions

π 7→ fπ(y) are continuous (in the metric topology) for all y ∈ X, and (c) for all π ∈ ∆, fπ is

concave and differentiable, then g is differentiable at x both from left and right and it holds that

D−g(x) = max
π∈M(x)

Dfπ(x) and D+g(x) = min
π∈M(x)

Dfπ(x).

By Theorem 1, U(Ps)(·) is strictly concave. Hence, a real number m ∈ R is a solution

of the degenerate optimization problem (2) if and only if

(∀s ∈ S) D+V (Ps)(m) ≤ 0 ≤ D−V (Ps)(m),

where D−V (Ps)(m) and D+V (Ps)(m) are the left and the right derivatives of V (Ps)(m) taken

with respect to m, whose existence is guaranteed by Theorem 2.
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Given any q∗ ∈ RS
+ and any s ∈ S, let cms (q∗) := (ω1

s − q∗sm/M, (ω2
s′ + q∗s′m/M)s′∈S). We

are now ready to characterize a stationary equilibrium by the system of inclusions:

Theorem 3 A nonnegative-valued function q∗ on S is a stationary equilibrium if and only if

(∀s ∈ S) 0 ∈

{
−
∑
s′∈S

q∗su1(c
M
s (q∗))πs′ +

∑
s′∈S

q∗s′u2(c
M
s (q∗))πs′

∣∣∣∣∣ π ∈ M(Ps)(c
M
s (q∗))

}
, (3)

where cMs (q∗) = (ω1
s − q∗s , (ω

2
s′ + q∗s′)s′∈S).

This is a natural extension of the characterization of a stationary equilibrium in the

standard OLG models as considered by Magill and Quinzii (2003) and Ohtaki (2010), in which

agents have a unique prior. In fact, if Ps is singleton for all s ∈ S, this system of inclusions

degenerates into a system of equations, which is the same result with the standard stochastic

OLG model with a unique prior.

4. Existence and Indeterminacy of Stationary Monetary Equilibria

In the previous section, we have observed that a stationary equilibrium can be charac-

terized by a system of not equations but inclusions. However, we have no idea on the existence

and the number of stationary monetary equilibria yet. This section will present the existence of

a continuum of stationary monetary equilibria.

Let ω2 ∈ RS
++ be arbitrarily given. Consider an equilibrium price q∗ ∈ RS

++ such that for

any s′, s′′ ∈ S, ω2
s′ + q∗s′ ̸= ω2

s′′ + q∗s′′ whenever s
′ ̸= s′′. In this case, there exists a neighborhood

of q∗ on which M(Ps)(c
M
s (q)) is constant and a singleton for each s. We call this unique measure

by µs (which depends on s since Ps depends on s). Then the system of inclusions, (3), turns

out to be the system of simultaneous equations:

(∀s ∈ S) 0 = −
∑
s′∈S

q∗su1(ω
1
s − q∗s , ω

2
s′ + q∗s′)µss′ +

∑
s′∈S

q∗s′u2(ω
1
s − q∗s , ω

2
s′ + q∗s′)µss′ .

Any solution to this system is an equilibrium of the economy and its local nature, including

whether or not there exists a continuum of solutions, is the same as in the standard stochastic

OLG model. There is nothing new here and we do not pursue this line any more.
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Next, we turn to a partially-insured equilibrium. Let S′ be a subset of S with |S′| ≥ 2.

Consider an equilibrium price q∗ ∈ RS
++ such that for any s′, s′′ ∈ S′, ω2

s′ + q∗s′ = ω2
s′′ + q∗s′′ .

Then M(Ps)(c
M
s (q∗)) includes all probability measures in Ps which assign the same probability

to S′. However, since q∗ need not be constant over S′ (although ω2 + q∗ need), the set in (3)

is not necessarily a singleton. Therefore, a continuum of solutions to the system of inclusions,

(3), may arise. To spell out the configuration of endowments which allows such indeterminacy

will become very complicated. But importantly, we can choose q∗ conveniently so as to make

ω2 + q∗ to be constant over some set. This “endogenized flatness” can be further exploited to

show indeterminacy of fully-insured equilibria. We do this in a new subsection.

4.1. Fully-insured Equilibria

Henceforth, we consider a fully-insured stationary equilibrium such that

(∃d > 0)(∀s ∈ S) ω2
s + q∗s ≡ d . (4)

where d > 0 is some constant. Then, we first observe that

M(Ps)(c
M
s (q∗)) = Ps .

Furthermore, we have the following theorem.

Theorem 4 Suppose that q∗ satisfies (4) for some d. Then, q∗ is a stationary equilibriujm if

and only if, for all s ∈ S,

d−max
π∈Ps

∑
s′∈S

ω2
s′πs′ ≤ (d− ω2

s)
u1(ω

1
s + ω2

s − d, d)

u2(ω1
s + ω2

s − d, d)
≤ d− min

π∈Ps

∑
s′∈S

ω2
s′πs′ . (5)

For a notational ease, we define a function f : R2
++ → R++ by

(∀(x, y) ∈ R2
++) f(x, y) :=

u1(x, y)

u2(x, y)
.

Note that f is continuous, since u is continuously differentiable. We can then demonstrate the

indeterminacy of full-insured stationary monetary equilibria.
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Theorem 5 Suppose that it holds that, for all s ∈ S,

max
π∈Ps

∑
s′∈S

ω2
s′πs′ > min

π∈Ps

∑
s′∈S

ω2
s′πs′ . (6)

and that the function f(·, y) is surjective for each y > 0. Then, there exists an open set Ω1 ⊆ R|S|
++

such that, for any ω1 ∈ Ω1, there exists an open interval D(ω1) ∈ R++ such that (5) holds for

any d ∈ D(ω1) and for any s ∈ S.

When the function u is time-separable, the assumptions of Theorem 5 may be further

simplified.

Corollary 1 Suppose that (6) holds. Also, assume that there exist continuously differentiable

functions v, w : R++ → R such that

(∀c1, c2 ∈ R++) u(c1, c2) = v(c1) + w(c2) .

Finally, assume that v satisfies the Inada conditions, that is,

lim
c↓0

v′(c) = +∞ and lim
c↑+∞

v′(c) = 0 .

Then, all the assumptions of the previous theorem are satisfied.

Precisely, we have found indeterminacy of the second-period consumption d. For any d

found in Theorem 5, define q∗(d) : S → R++ by q∗s(d) := d−ω2
s > 0 for all s ∈ S. One can easily

find that q∗(d) ̸= q∗(d′) for d ̸= d′ and that q∗(d) is a full-insured stationary monetary equilibrium

for any d found in Theorem 5. These imply the indeterminacy of full-insured stationary monetary

equilibria, and hence, the real indeterminacy (indeterminacy of equilibrium allocation) also

arises.

When agents have a unique prior, i.e., when Ps is singleton for all s ∈ S, the lifetime

utility function can be differentiable. Then, according to Gottardi (1996), a stationary monetary

equilibrium generically exists and is generically regular and hence locally isolated.5 On the other

5Moreover, if preferences are separable as in Corollary 1 and if the relative risk aversion of w is less than or
equal to unity, the number of stationary monetary equilibrium is at most one. See Ohtaki (2010) for more details.
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hand, we have shown the existence of a continuum of stationary monetary equilibria when agents

assigns not a single prior but the set of priors.

Dow and Werlang (1992), Epstein and Wang (1994, 1995), and Dana (2003) explored

implications of Knightian uncertainty. While they also showed indeterminacy, it may disappear

in their model when aggregate shocks exist. On the other hand, if one of ω and ω2 is constant

over S and the other is not, then there is no d > 0 which satisfies (5). Thus, in our model,

indeterminacy of stationary monetary equilibria requires aggregate shocks and shocks on the

second period endowments.

Also note that sufficient conditions for indeterminacy of stationary monetary equilibria,

which we have found, are imposed on not the pair of ω1 and ω2 but only ω2. The robustness of

Theorem 5 or its corollary depends on the size of the set Ω1. To see this and other aspects of

indeterminacy, we consider a simple two-state example in the next section.

5. A Two-state Example

Let S = {L,H} and ω2
L < ω2

H . Assume that v(x) = w(x) = lnx for all x > 0 and

Ps = { {1− p, p} : ε ≤ p ≤ δ}

for all s ∈ S, where 0 ≤ ε ≤ δ ≤ 1. Then, (5) can be rewritten as, for all s ∈ S,

(d− ω2
s)Aε(d) ≤ ω1

s ≤ (d− ω2
s)Bδ(d),

where

Aε(d) :=
2d− ((1− ε)ω2

L + εω2
H)

d− ((1− ε)ω2
L + εω2

H)
and Bδ(d) :=

2d− ((1− δ)ω2
L + δω2

H)

d− ((1− δ)ω2
L + δω2

H)
.

It is easy to verify that Aε(d) < Bδ(d) if ε < δ. Moreover, both an increase in δ and a decrease

in ε enlarge the interval between Aε(d) and Bδ(d). Finally, Ω
1 is given by

Ω1 :=
∪

d>ω2
H

[
((d− ω2

L)Aε(d), (d− ω2
L)Bδ(d))× ((d− ω2

H)Aε(d), (d− ω2
H)Bδ(d))

]
.

Figures 1 and 2 plot the region of ω1 at which the indeterminacy arises for some specific values

of ω2, ε and δ. In particular, Figure 2 shows that, when uncertainty increases in accordance
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with the sense of Ghirardato and Marinacci (2002), the “economy” that exhibits indeterminacy

of stationary monetary equilibria is enlarged. Figure 3 depicts the “Edgeworth Box” when

ε = δ = 1/2, that is, when uncertainty is reduced to risk, in which indifference curves and the

contract curve are drawn. Figure 4 depicts typical indifference curves of both types (the old

who is born at state H and the old who is born at state L), which exhibit kinks on 45 degree

line. Figure 5 depicts the “Edgeworth Box” when uncertainty is present, from which we see

how indeterminacy arises. In that figure, we add two budget lines at two of many stationary

monetary equilibria. (Note that in Figures 3-5, (w1
L, w

1
H) is chosen from the region depicted in

Figure 1 and that the “Edgeworth Box” is drawn under this endowment configuration.)

5 10 15 20

0

5

10

15

Ω
1

L

Ω
1

H

Figure 1: Range of ω1: (ω2
L, ω

2
H) = (1, 2), (ε, δ) = (1/4, 3/4)

6. Efficiency of Stationary Monetary Equilibrium Allocations

We have found multiple stationary monetary equilibria. A natural question is that

allocations corresponding to stationary monetary equilibria are optimal or not. To investigate

equilibrium welfare, we begin with definition of stationary feasible allocations.
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Figure 2: Increase in Uncertainty: (ω2
L, ω

2
H) = (1, 2), (ε, δ) = (1/8, 8/9)
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c 2
H

c
2

H

Figure 3: “Edgeworth Box”: (ω1
L, ω

1
H) = (6, 3), (ω2

L, ω
2
H) = (1, 2), (ε, δ) = (1/2, 1/2)
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c 2
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c
2

L

Figure 4: Indifference Curves at the Initial Endowment: (ω1
L, ω

1
H) = (6, 3), (ω2

L, ω
2
H) = (1, 2),

(ε, δ) = (1/4, 3/4)

Let S0 := {σ0} ∪ S. A stationary feasible allocation is a pair of c1 : S → R+ and

c2 : S0 × S → R+, which satisfies that

(∀(s, s′) ∈ S0 × S) c1s′ + c2ss′ = ωs′ .

It is easy to verify that the stationary feasible allocations are independent of the predecessor

events, that is, c2ss′ is independent of s. To see this, let c = (c1, c2) be a stationary feasible

allocation. By its feasibility, it follows that (∀(s, s′) ∈ S0 × S) c1s′ + c2ss′ = ωs′ and (∀s′ ∈

S) c1s′ + c2σ0s′
= ωs′ . Therefore, we obtain that (∀s, s′ ∈ S) c2σ0s′

= c2ss′ , which verifies the claim.

A stationary feasible allocation b = (b1, b2) is conditionally Pareto superior to a station-

ary feasible allocation c = (c1, c2) if

(∀s ∈ S) Us(b
1
s, b

2
s) ≥ Us(c

1
s, c

2
s) and b2σ0s ≥ c2σ0s

with strict inequality somewhere. A stationary feasible allocation c is conditionally Pareto

optimal if there is no other stationary feasible allocation that is conditionally Pareto superior to

c. The proof of the following theorem is essentially the same as that of Sakai (1988) and hence,

is omitted.
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A Set of Stationary 

Monetary Equilibria
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Figure 5: “Edgeworth Box:” (ω1
L, ω

1
H) = (6, 3), (ω2

L, ω
2
H) = (1, 2), (ε, δ) = (1/4, 3/4)
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Theorem 6 If Us : R++×RS
++ → R is monotone and strictly quasi-concave for all s ∈ S, then,

for any stationary feasible allocation c corresponding to a stationary monetary equilibrium, there

exists no other stationary feasible allocation b that is conditionally Pareto superior to c.

By Theorem 1, U(Ps)(·) is strictly concave, so that it is also strictly quasi-concave.6

Theorefore, thanks to Theorem 7 we have established

Theorem 7 For any stationary feasible allocation c corresponding to a stationary monetary

equilibrium, there exists no other stationary feasible allocation b that is conditionally Pareto

superior to c.

One might be surprised at the statement of this theorem. While there exists a continuum

of stationary monetary equilibria under MMEU preferences, Theorem 7 says that all of them

are conditionally Pareto optimal.7

7. Proofs

Proof of Theorem 1. Let s ∈ S. Note that U(·)(c) is continuous for any given c ∈ R++×RS
++.

Also let c, b ∈ R++ × RS
++ and α ∈ [0, 1]. We denote by cαb the convex combination of c and b,

i.e., cαb = αc+ (1− α)b. We first claim that

U(Ps)(cαb) > min
π∈Ps

[αU(π)(c) + (1− α)U(π)(b)] .

Suppose the contrary that

U(Ps)(cαb) ≤ min
π∈Ps

[αU(π)(c) + (1− α)U(π)(b)] . (7)

By compactness of Ps and continuity of U(·)(d) for all d ∈ R++ ×RS
++, M(Ps)(cαb) and the set

N(Ps) = argmin
π∈Ps

[αU(π)(c) + (1− α)U(π)(b)]

6See, for example, Theorem 1.E.1(i) of Takayama (1974)
7Notice that we can show Theorem 7 without continuous differentiability of u. Also notice that we can replace

the strict concavity of u with its strict quasi-concavity. See also Footnote 3.
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are nonempty. Hence, it follows from Eq.(7) that there exist µ ∈ M(Ps)(cαb) and ν ∈ N(Ps)

such that

U(µ)(cαb) = U(P)(cαb)

≤ min
π∈P

[αU(π)(c) + (1− α)U(π)(b)]

= αU(ν)(c) + (1− α)U(ν)(b),

which implies that

αU(µ)(c) + (1− α)U(µ)(b) < U(µ)(cαb) ≤ αU(ν)(c) + (1− α)U(ν)(b)

by strict concavity of u. This contradicts with the definition of ν, which should minimize

αU(·)(c) + (1− α)U(·)(b) in Ps. This completes the claim.

Recall that N(Q) is nonempty. For any ν ∈ N(Q), we can obtain that

min
π∈Ps

[αU(π)(c) + (1− α)U(π)(b)] = αU(ν)(c) + (1− α)U(ν)(b)

≥ αU(Ps)(c) + (1− α)U(Ps)(b),

by the definition of U(P)(·). Combining this with the previous claim, it follows that

U(Ps)(cαb) > min
π∈Ps

[αU(π)(c) + (1− α)U(π)(b)]

≥ αU(Ps)(c) + (1− α)U(Ps)(b).

Therefore, U(Ps)(·) is concave. �

Proof of Theorem 3. By Theorems 1 and 2, we can characterize a stationary equilibrium by

the system of inequalities:

(∀s ∈ S) D+V (Ps)(M) ≤ 0 ≤ D−V (Ps)(M).

Since

D+V (Ps)(m) = min
π∈M(Ps)(cms (q∗))

(
−
∑
s′∈S

q∗su1(c
m
s (q∗))πs′ +

∑
s′∈S

q∗s′u2(c
m
s (q∗))πs′

)
,

D−V (Ps)(m) = max
π∈M(Ps)(cms (q∗))

(
−
∑
s′∈S

q∗su1(c
m
s (q∗))πs′ +

∑
s′∈S

q∗s′u2(c
m
s (q∗))πs′

)

for all m ∈ R and M(Ps)(c
M
s (q∗)) is convex for all s ∈ S, we obtain (3). �
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Proof of Theorem 4. Let s ∈ S. Under (4), (3) is successively rewritten as follows:

0 ∈

{
−
∑
s′∈S

q∗su1(ω
1
s − q∗s , d)πs′ +

∑
s′∈S

q∗s′u2(ω
1
s − q∗s , d)πs′

∣∣∣∣∣π ∈ Ps

}
,

which is equivalent to

0 ∈

{
−q∗su1(ω

1
s − q∗s , d) +u2(ω

1
s − q∗s , d)

∑
s′∈S

q∗s′πs′

∣∣∣∣∣π ∈ Ps

}
.

Hence, it follows that

q∗s
u1(ω

1
s − q∗s , d)

u2(ω1
s − q∗s , d)

∈

{∑
s′∈S

q∗s′πs′

∣∣∣∣∣π ∈ Ps

}
Because Ps is compact and convex for each s, the last expression is equivalent to

min
π∈Ps

∑
s′∈S

q∗s′πs′ ≤ q∗s
u1(ω

1
s − q∗s , d)

u2(ω1
s − q∗s , d)

≤ min
π∈Ps

∑
s′∈S

q∗s′πs′ .

By substituting q∗s = d− ω2
s to this, we obtain (5). �

Proof of Theorem 5. Note that d > ω2
s for all s. This follows from (4) since we are looking

for an equilibrium q∗ such that q∗s > 0 for all s. Therefore, by (6) and the assumption on f , for

any s and for any d, we can find an open interval Ω1
s(d) ⊆ R++ such that, for any ω1

s ∈ Ω1
s(d),

ω1
s satisfies (5) with strict inequalities.

Let d be given and let ω1 ∈ R|S|
++ be such that ω1

s ∈ Ω1
s(d) for each s. Then, for

each s, there exists an open interval Ds(ω
1) which satisfies that d ∈ Ds(ω

1) and that, for

each d′ ∈ Ds(ω
1), (5) holds with d = d′. This follows because we may take an appropriate

neighborhood of d since ω1
s satisfies (5) with strict inequalities by the previous paragraph and

since f is a continuous function.

Finally, define Ω1 by

Ω1 :=
∪

d>maxs ω2
s

|S|∏
s=1

Ω1
s(d) .

Let ω1 ∈ Ω1. Then, there exists d > maxs ω
2
s such that, for each s, ω1

s ∈ Ω1
s(d). Therefore, by

the previous paragraph, there exists an open interval Ds(ω
1) such that, for any d′ ∈ Ds(ω

1), (5)

holds with d = d′. Define D(ω1) by D(ω1) := ∩|S|
s=1Ds(ω

1). Note that D(ω1) is nonempty and

open since for all s, d ∈ Ds(ω
1) by the previous paragraph. Then, if d′ ∈ D(ω1), (5) holds with

d = d′. Thus, we obtained Ω1 and D(ω1) whose existence is claimed in the theorem. �
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Proof of Corollary 1. Under the stated assumptions, the function f will become f(x, y) =

v′(x)/w′(y) for each x and y. By the Inada condition on v, f(·, y) is clearly surjective for each

y, which completes the proof. �
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