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The present paper investigates repeated games with imperfect private monitoring, where each player pri-
vately receives a noisy observation (signal) of the opponent’s action. Such games have been paid considerable
attention in the AI and economics literature. Since players do not share common information in such a game,
characterizing players’ optimal behavior is substantially complex. As a result, identifying pure strategy equi-
libria in this class has been known as a hard open problem. In our previous work, we showed that the theory
of partially observable Markov decision processes (POMDP) can be applied to identify a class of equilibria
where the equilibrium behavior can be described by a finite state automaton (FSA). However, we have not
yet provide a practical method or a program to apply this general idea to actual problems. In this paper,
we first develop a program that acts as a wrapper of a standard POMDP solver, which takes a description
of a repeated game with private monitoring and an FSA as inputs, and automatically checks whether the
FSA constitutes a symmetric equilibrium. We apply our program to repeated Prisoner’s dilemma and find
a novel class of FSA, which we call k-period mutual punishment (k-MP). The k-MP starts with cooperation
and defects after observing a defection. It restores cooperation after observing defections k-times in a row.
Our program enables us to exhaustively search for all FSAs with at most three states, and we found that
2-MP beats all the other pure strategy equilibria with at most three states for some range of parameter
values and it is more efficient in an equilibrium than the grim-trigger.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multi-agent systems; J.4 [Social and Behavioral Sciences]: Economics

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Game theory, repeated games, private monitoring, POMDP

ACM Reference Format:
Iwasaki, A., Joe, Y., Kandori, J., Obara, I., Yokoo, M. 2012. Automated Equilibrium Analysis of Repeated
Games with Private Monitoring: A POMDP Approach ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39
(March 2010), 17 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

We consider repeated games with imperfect private monitoring, where each player
privately receives a noisy observation (signal) of the opponent’s action. This class of
games represents long-term relationships among players and has a wide range of ap-
plications, e.g., secret price cutting and agent planning under uncertainty. Therefore,
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it has been paid considerable attention in the AI and economics literature. In par-
ticular, for the AI community, the framework has become increasingly important for
handling noisy environments. In fact, Ng and Seah [2008] examine protocols in multi-
hop wireless networks with self-interested agents and Wang et al. [2009] investigate
strategies in ad hoc networks with noisy channels. Tennenholtz and Zohar [2009] con-
sider repeated congestion games where an agent has limited capability in monitoring
the actions of her counterparts.

Analytical studies on this class of games have not been quite successful. The diffi-
culty comes from the fact that players do not share common information under private
monitoring, and finding pure strategy equilibria in such games has been known as a
hard open problem [Mailath and Samuelson 2006]. Under private monitoring, each
player cannot observe the opponents’ private signals, and he or she has to draw sta-
tistical inferences about the history of the opponents’ private signals. The inferences
quickly become very complicated over time, even if players adopt relatively simple
strategies [Kandori 2010]. As a result, finding a profile of strategies which are mutual
best replies after any history, i.e., finding an equilibrium, is a quite demanding task.

In our previous work [Kandori and Obara 2010], we showed that the theory of the
partially observable Markov decision process (POMDP) can be used to identify equilib-
ria, when equilibrium behavior can be described by a finite state automaton (FSA). We
believe this result is significant since it implies that by utilizing a POMDP solver, we
can systematically determine whether a given profile of FSAs can constitute an equi-
librium. Furthermore, this result is interesting since it connects two popular areas in
AI and multi-agent systems, namely, POMDP and game theory.

Traditionally, in the AI literature, the POMDP framework is a popular approach for
single-agent planning/control, and game theory has been extensively used for analyz-
ing multi-agent interactions. However, these two areas have not been well-connected
so far, as mentioned in the most recent edition of a popular AI textbook “. . . game theory
has been used primarily to analyze environments that are at equilibrium, rather than
to control agents within an environment” [Russell and Norvig 2009]. As one notable
exception, Doshi and Gmytrasiewicz [2006] investigate the computational complexity
and subjective equilibrium. In a subjective equilibrium, a player may not perfectly
know the opponent’s strategy. As a result, the definition of a subjective equilibrium is
involved, and they showed that reaching a subjective equilibrium is difficult under the
limit of computational complexity. In contrast, we have examined that if simple be-
havior described by FSA can be mutual best replies and proposed a general method to
check if a given profile of FSAs constitutes an equilibrium [Kandori and Obara 2010].

Also, Hansen et al. [2004] deal with partially observable stochastic games (POSGs)
and develop an algorithm that iteratively eliminates dominated strategies POSGs can
be considered a generalization of repeated games with private monitoring, since agents
might play different games at each stage. However, this algorithm can be applied only
for a finite horizon, and it cannot guarantee to identify an equilibrium.

Furthermore, in our previous work [Nair et al. 2003], we present a decentralized
POMDP algorithm called Joint Equilibrium-based Search for Policy with Nash Equi-
librium (JESP-NE). In this algorithm, a locally optimal joint policy for cooperative
agents is obtained by utilizing a POMDP solver. However, in this approach, we restrict
our attention to finite horizon cases and assume a policy/strategy is not necessarily
represented as an FSA. Also, in our another previous work [Marecki et al. 2008], we
consider infinite horizon cases and assume a policy/strategy is represented as an FSA.
However, in this approach, the goal is to find a joint FSA that obtains the best reward
as a team. Thus, we do not guarantee that the joint FSA constitutes an equilibrium.

Unfortunately, our previous results [Kandori and Obara 2010] have not yet been
widely acknowledged in the AI and agent research communities. Furthermore, for the
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time being, there exists no work that actually applies this method to identify equilibria
of repeated games even in the economics/game-theory field.

The main difficulty for utilizing the result is that, although a general theoretical
idea is presented based on POMDP, to identify equilibria of repeated games with pri-
vate monitoring, we have not demonstrated how to implement our idea computation-
ally. Moreover, it has not yet been confirmed that this approach is really feasible when
analyzing problem instances that are complex enough to represent realistic and mean-
ingful application domains. In particular, we found that there exist one non-trivial dif-
ference between the POMDP model and the model for repeated games with private
monitoring. More precisely, in a standard POMDP model, we usually assume that an
observation depends on the current action and the next state. On the other hand, in
the model of repeated games, we assume that an observation depends on the current
action and the current state. As a result, applying/extending the results of Kandori
and Obara [2010] is difficult for researchers in game theory, as well as those in the AI
and agent research communities.

To overcome this difficulty, we first develop a program that acts as a wrapper of a
standard POMDP solver. This program takes a description of a repeated game with
private monitoring and an FSA as inputs. Then, this program automatically creates
an input for a POMDP solver, by taking into account the differences in the models de-
scribed above. Next, this program runs a POMDP solver, analyzes the obtained results,
and answers whether the FSA constitutes a symmetric equilibrium.

Furthermore, as a case study to confirm the usability of this program, we identify
equilibria in an infinitely repeated prisoner’s dilemma game, where each player pri-
vately receives a noisy signal about each other’s actions. First, we consider the situa-
tion where an opponent’s action is observed with small observation errors. This case
is referred to as the nearly-perfect monitoring case. Although the monitoring structure
is quite natural, systematically finding equilibria in such structure has not been pos-
sible without utilizing a POMDP solver. We exhaustively search for simple FSAs with
a small number of states and find a novel class of FSA called k-period mutual pun-
ishment (k-MP). Under this FSA, a player first cooperates. If she observes a defection,
she also defects, but after the observation of k consecutive defections, she returns to
cooperation. We can control the forgiveness of k-MP by changing the parameter k. Note
that k-MP incorporates grim-trigger and the well-known strategy Pavlov [Kraines and
Kraines 1989] as a special case (k = ∞ or k = 1). Although it is somewhat counter-
intuitive, requiring such mutual defection periods is beneficial in establishing a ro-
bust coordination among players in the nearly-perfect monitoring case. In contrast,
in the almost-public monitoring case, the tit-for-tat (TFT) can better coordinate play-
ers’ behavior; TFT can be an equilibrium, while k-MP is not. In both cases, the grim-
trigger can be an equilibrium. Accordingly, our program helps us to gain important
insights into the way players coordinate their behavior under different private moni-
toring structures.

2. REPEATED GAMES WITH PRIVATE MONITORING

2.1. Model

We model a repeated game with private monitoring. We concentrate on two-player,
symmetric games (where a game is invariant under the permutation of players’ iden-
tifiers). However, the techniques introduced in this paper can be easily extended to
n-player, non-symmetric cases.

Player i ∈ {1, 2} repeatedly plays the same stage game over an infinite horizon
t = 1, 2, . . .. In each period, player i takes some action ai from a finite set A, and her
expected payoff in that period is given by a stage game payoff function gi(a), where
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a = (a1, a2) ∈ A2 is the action profile in that period. Within each period, player i ob-
serves her private signal ωi ∈ Ω. Let ω denote an observation profile (ω1, ω2) ∈ Ω2 and
let o(ω | a) be the probability of private signal profile ω given an action profile a. We
assume that Ω is a finite set, and we denote the marginal distribution of ωi by oi(ωi | a).
It is also assumed that no player can infer which action was taken (or not taken) by
another player for sure; to this end, we assume that each signal profile ω ∈ Ω2 occurs
with a positive probability for any a ∈ A2.

Player i’s realized payoff is determined by her own action and signal and denoted
πi(ai, ωi). Hence, her expected payoff is given by gi(a) =

∑
ω∈Ω2 πi(ai, ωi)o(ω | a). This

formulation ensures that the realized payoff πi conveys no more information than ai
and ωi do. Note that the expected payoff is determined by the action profile, while the
realized payoff is determined solely by her own action and signal. This model is the
standard one in the repeated game literature with private monitoring [Kandori and
Obara 2010].

Let us motivate this model by an example. Assume players are managers of two
competing stores. The action of each player is to determine the price of an item in her
store. The signal of a player represents the number of customers who visit her store.
The signal is affected by the action of another player, i.e., the price of the competing
store, but the realized payoff is determined solely by her own action and signal, i.e.,
the price and the number of customers.

The stage game is to be played repeatedly over an infinite time horizon. Player i’s
discounted payoff Gi from a sequence of action profiles a1,a2, . . . is

∑∞
t=1 δ

tgi(a
t), with

discount factor δ ∈ (0, 1). Also, the discounted average payoff (payoff per period) is
defined as (1− δ)Gi.

2.2. Repeated game strategies and finite state automata

We now explore several ways to represent repeated game strategies. We start with
the conventional representation of strategies in the repeated game defined above. A
private history for player i at the end of time t is the record of player i’s past actions
and signals, ht

i = (a0i , ω
0
i , . . . , a

t
i, ω

t
i) ∈ Ht

i := (A× Ω)t+1. To determine the initial action
of each player, we introduce a dummy initial history (or null history) h0

i , and let H0
i be

a singleton set {h0
i }. A pure strategy si for player i is a function specifying an action

after any history, or, formally, si : Hi → A, where Hi =
∪

t≥0 H
t
i .

A finite state automaton (FSA) is a popular approach for compactly representing the
behavior of a player. An FSA M is defined by ⟨Θ, θ̂, f, T ⟩, where Θ is a set of states,
θ̂ ∈ Θ is an initial state, f : Θ → A determines the action choice for each state, and
T : Θ × Ω → Θ specifies a deterministic state transition. Specifically, T (θt, ωt) returns
the next state θt+1 when the current state is θt and the private signal is ωt. We call
an FSA without the specification of the initial state, i.e., m = ⟨Θ, f, T ⟩, a finite state
preautomaton (pre-FSA). Now, we introduce a symmetric pure finite state equilibrium.

Definition 2.1. A symmetric pure finite state equilibrium (SPFSE) is a pure strat-
egy sequential equilibrium of a repeated game with private monitoring, where each
player’s behavior on the equilibrium path is given by an FSA M = ⟨Θ, θ̂, f, T ⟩.

A sequential equilibrium is a refinement of a Nash equilibrium for dynamic games
of imperfect information. Traditionally, this concept is defined for a full repeated game
strategy, i.e., a strategy must specify actions for all possible histories including histo-
ries for off-equilibrium paths. As a result, an strategy tends to be quite complex; we
might need an infinite number of states to represent such a strategy using an FSA.
Thus, analytical studies on this class of games have not been quite successful so far. In
contrast, our definition requires that an FSA specifies only the behavior of a player on
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equilibrium paths. As a result, we can concisely represent an equilibrium strategy in
our definition.

It must be emphasized that if an FSA M constitutes an equilibrium, it means that as
long as player 2 acts according to M , player 1’s best response is to act according to M .
Here, we do not restrict the possible strategy space of player 1 at all. More specifically,
M is the best response not only within strategies that can be represented as FSAs but
also within all possible strategies, including strategies that require an infinite number
of states (please consult Example 1 in [Kandori and Obara 2010] for details).

2.3. Monitoring structures in repeated prisoner’s dilemma

We apply the POMDP technique to the prisoner’s dilemma model. The stage game
payoff is given as follows.

a2 = C a2 = D
a1 = C 1, 1 −y, 1 + x
a1 = D 1 + x,−y 0, 0

Each player’s private signal is ωi ∈ {g, b} (good or bad), which is a noisy observation
of the opponent’s action. For example, when the opponent chooses C, player i is more
likely to receive the correct signal ωi = g, but sometimes an observation error provides
a wrong signal ωi = b. Let us introduce the joint distribution of private signals o(ω | a)
for the prisoner’s dilemma model. When the action profile is (C,C), the joint distri-
bution is given as follows (when the action profile is (D,D), p and s are exchanged).

w2 = g w2 = b
w1 = g p q
w1 = b r s

Notice that the probability that players 1 and 2 observe (g, g) is p, and the probability
that they observe (g, b) is q.

Similarly, when the action profile is (C,D), the joint distribution of private signals
is given as follows (when the action profile is (D,C), v and u are exchanged).

w2 = g w2 = b
w1 = g t u
w1 = b v w

These joint distributions of private signals require only the constraints of p+q+r+s = 1
and t+ u+ v + w = 1.

Repeated games with private monitoring is a generalization of infinitely repeated
games with conventional imperfect monitoring. By changing signal parameters, the
joint distributions can represent any monitoring structure in repeated games. Let us
briefly explain several existing monitoring structures. First, we say monitoring is per-
fect if each player perfectly observes the opponent’s action in each period, i.e., p = v = 1
and q = r = s = t = u = w = 0 hold. Second, we say monitoring is public if each player
always observes a common signal, i.e., p + s = t + w = 1 and q = r = u = v = 0
hold. Third, we say monitoring is almost-public if players are always likely to get the
same signal (after (C,D), for example, players are likely to get (g, g) or (b, b)), i.e.,
p+ s = t+ w ≈ 1 and q = r = u = v ≈ 0.
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2.4. Existing FSAs

Let us summarize the existing FSAs in the literature of repeated games. First, grim-
trigger (GT) is a well-known FSA under which a player first cooperates, but as soon
as she observes defection, she defects forever. As shown in Fig. 1, this FSA has two
states, i.e., R (reward) and P (punishment). Player i takes ai = C in state R and
ai = D in state P . GT can often constitute an equilibrium under perfect and imperfect
monitoring.

Second, tit-for-tat (TFT) is another well-known FSA in Fig. 2. It is well known that
TFT does not prescribe mutual best replies after a deviation (hence it is not a subgame
perfect Nash equilibrium) under perfect monitoring. This problem does not arise under
public and almost-public monitoring, and TFT can be a sequential equilibrium under
public monitoring.

Finally, 1-period mutual punishment (1-MP) in Fig. 3 is known as Pavlov [Kraines
and Kraines 1989], simpleton [Rapoport and Chammah 1965], perfect tit-for-tat [Fu-
denberg and Tirole 1991], or win-stay, lose-shift [Nowak and Sigmund 1993].” Accord-
ing to this FSA, a player first cooperates. If her opponent defects, she also defects, but
after one period of mutual defection, she returns to cooperation.

Pavlov is frequently used in the literature of evolutionary simulation, e.g., [Kraines
and Kraines 1989; Nowak and Sigmund 1993]. They examine several extensions of
Pavlov in the repeated prisoner’s dilemma, where a player’s action is subject to noise
(trembling hands). It is well-known that Pavlov can constitute a subgame perfect Nash
equilibrium under perfect monitoring. However, this has not been investigated well in
the setting of private monitoring. To the best of our knowledge, 1-MP/Pavlov has not
yet been identified as an equilibrium in repeated games with private monitoring. We
will again discuss TFT and 1-MP under our monitoring structures in Section 4.
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3. PROGRAM FOR EQUILIBRIUM ANALYSIS

In this section, we describe our newly developed program that checks whether an FSA
M = ⟨Θ, θ̂, f, T ⟩ constitutes an SPFSE according to Fig. 4.1

3.1. Main Procedure

Let us describe the main procedures of our program indicated as “Equilibrium Ana-
lyzer” and “Standard POMDP solver” in Fig. 4. First, by assuming each player acts
according to an FSA M , we can create a joint FSA. The expected discounted payoff of
this joint FSA for player 1 is given as Vθ̂,θ̂, where Vθ1,θ2 can be obtained by solving a
system of linear equations defined as follows.

Vθ1,θ2 = g1((f(θ1), f(θ2)))

+δ
∑

(ω1,ω2)∈Ω2

o((ω1, ω2) | (f(θ1), f(θ2))) · VT (θ1,ω1),T (θ2,ω2).

Now, let us consider how to obtain the best response for player 1, assuming player
2 acts according to M . Player 1 confronts a Markov decision process, where the state
of the world is represented by the state of player 2’s FSA. However, player 1 cannot
directly observe the state of player 2. Thus, this problem is equivalent to finding an
optimal policy in POMDP.

More precisely, the POMDP of this problem is defined by ⟨Θ, A,Ω, O, P,R⟩, where Θ
is a set of states of player 2, A is a set of actions of player 1, Ω is a set of observations
of player 1, O represents an observation probability function, P represents a state
transition function, and R is a payoff function. Θ, A, and Ω are already defined. O(ω1 |
a1, θ

t) represents the conditional probability of observing ω1 after performing an action
a1 at a state θt (of player 2), which is defined as: O(ω1 | a1, θt) = o1(ω1 | (a1, f(θt))).

Note that in a standard POMDP model, we usually assume that the observation
probability depends on the next state θt+1 rather than on the current state θt. We
present this alternative model here, since it is more suitable for representing repeated
games with private monitoring. In the next subsection, we show how to map this model
into the standard formulation of POMDP.
P (θt+1 | θt, a1) represents the conditional probability that the next state is θt+1 when

the current state is θt and the action of player 1 is a1, which is defined as:

P (θt+1 | θt, a1) =
∑

ω2∈Ω|T (θt,ω2)=θt+1

o2(ω2 | (a1, f(θt))).

An expected payoff function R : A× S → R is given as: R(a1, θ
t) = g1((a1, f(θ

t))).
We can check whether an FSA M = ⟨Θ, θ̂, f, T ⟩ constitutes an SPFSE by using the

following procedure. This procedure is based on the general ideas presented in our
previous work [Kandori and Obara 2010], but this description is concrete and clearly
specifies a way of utilizing an existing POMDP solver.

(1) First solve a system of linear equations of a joint FSA and obtain the expected
discounted payoff of player 1, i.e., Vθ̂,θ̂, when both players follow M .

(2) Obtain an optimal policy Π∗ (which is given as a pre-FSA) and its value function
v(·) for the POMDP
⟨Θ, A,Ω, O, P,R⟩. Since our POMDP model is different from the standard POMDP
model, we cannot directly use a standard POMDP solver such as [Kaelbling et al.
1998]. We describe how to absorb this difference in the next subsection. In general,

1Our software will be publicly available.
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this computation might not converge and no optimal policy can be represented as a
pre-FSA. In such a case, we terminate the computation and obtain a semi-optimal
policy.2

(3) Let us denote the belief of player 1 such that player 2 is in θ̂ for sure, as bθ̂. If
v(bθ̂) = Vθ̂,θ̂, then the FSA M = ⟨Θ, θ̂, f, T ⟩ constitutes an SPFSE.

To be more precise, due to the cancellation of the significant digit, checking whether
v(bθ̂) = Vθ̂,θ̂ holds can be difficult. To avoid this problem, we need to check the obtained
optimal policy Π∗ as well. Note that even if Π∗ is not exactly the same as a pre-FSA
m of M , the FSA can constitute an SPFSE. This is because there can be a belief state
that is unreachable when players act according to M . m does not need to specify the
optimal behavior in such a belief state, while Π∗ does specify the optimal behavior for
all possible belief states.

To verify whether M constitutes an SPFSE, we first find the initial state θ∗ in Π∗

that is optimal when the other player employs M . Next, we examine a part of Π∗, i.e.,
the states that are reachable from θ∗, and check whether this part is coincident with
M . Then, M is a best response to itself and thus it constitutes an SPFSE. In general,
there can be multiple optimal policies and a POMDP solver usually returns just one
optimal policy. To overcome this problem, we use m as an initial policy and make sure
that Π∗ includes m as long as M constitutes an SPFSE.

3.2. Procedure for Handling Model Differences

In this subsection, corresponding with “Model Translator” in Fig. 4, we describe a
method for translating a POMDP description ⟨Θ, A,Ω, O, P,R⟩ in our model, into a
standard model ⟨Θ′, A,Ω, O′, P ′, R′⟩. Here, the possible set of actions A and observa-
tions Ω are the same in these two models.

The key idea of this translation is to introduce a set of new combined states Θ′,
where Θ′ = Θ2. Namely, we assume that a state θ′t in the standard POMDP model
represents the combination of the previous and current states (θt−1, θt) in our model
present in the previous subsection. For example, assume player 1 acts according to an
FSA called grim-trigger (GT) defined in Fig. 1. There are two states in the original
model. Consequently, in the standard model, there are 2 × 2 = 4 states, i.e., Θ′ =
{(R,R), (R,P ), (P,R), (P, P )}. Among these four states, (P,R) is infeasible, and thus
there exists no state transition to (P,R).

A new state transition function P ′(θ′t+1 | θ′t, a1) is equal to P (θt+1 | θt, a1) in the
original model if θ′t+1 = (θt, θt+1) and θ′t = (θt−1, θt), i.e., the previous state in θ′t+1

and the current state in θ′t are identical. Otherwise, it is 0. Next, let us examine how
to define O′(ω1 | a1, (θt, θt+1)). This is identical to the posterior probability that the
observation was ω1, when the state transits from θt to θt+1. Thus, this is defined as:

O′(ω1 | a1, (θt, θt+1)) =

∑
ω2∈Ω′ O(ω1, ω2 | (a1, f(θt)))∑

ω∈Ω

∑
ω2∈Ω′ O(ω, ω2 | (a1, f(θt)))

,

where Ω′ = {ω2 | T (θt, ω2) = θt+1}. For example, let us consider that player 1 takes
a1 = C when player 2, who acts according to GT, is in state (R,R). The probability that
player 1 observes w1 = g is given by

O′(g | C, (R,R)) =
O(g, g | (C,C))

O(g, g | (C,C)) +O(b, g | (C,C))
.

2When the obtained policy is semi-optimal but v(bθ̂) = Vθ̂,θ̂ holds, we run a procedure to check v(bθ̂) remains
the same in an optimal, non-FSA policy.
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Finally, the expected payoff function, R′(a1, (θ
t−1, θt)), is given as R(a1, θ

t).
This translation does not affect the optimal policy. More specifically, by solving the

translated POMDP
⟨Θ′, A,Ω, O′, P ′, R′⟩, we obtain an optimal policy Π′∗ (which is described as a pre-FSA)
and its value function v′(bθ′). Then, an optimal policy Π∗ of the original POMDP
⟨Θ, A,Ω, O, P,R⟩ is identical to Π′∗. Also, from bθ′ , which is a belief over θ′ = (θt−1, θt),
we can extract bθt , i.e., a belief over the current state. Then, v′(bθ′) = v(bθt) holds.

3.3. Program Interface

This program takes the discount factor, the description of a stage game, a monitoring
structure defined by o(ω | a), i.e., the probability of private signal profile ω given
an action profile a, and an FSA, as “Inputs” of Fig. 4. Let us show an example. The
meanings of these descriptions are self-explanatory.

discount: 0.9
actions: C D
# payoff matrix
PM:C:C: 1: 1
PM:D:C: 2:-1
PM:C:D:-1: 2
PM:D:D: 0: 0

observations: g b
# observation probability
O:g:g:C:C:0.97
O:b:g:C:C:0.01
O:g:b:C:C:0.01
O:b:b:C:C:0.01
...
# FSA description of Grim-trigger
states: R P
start: R
T:R:g:R
T:R:b:P
T:P:g:P
T:P:b:P

4. REPEATED PRISONER’S DILEMMA WITH NOISY OBSERVATION

This section first defines a monitoring structure that is nearly-perfect. We say monitor-
ing is nearly-perfect if each player is always likely to perfectly observe the opponent’s
action in each period, i.e., p = v, q = r = t = w, and s = u = 1 − p − 2q, where p is
much larger than q or s. We assume p ∈ (1/2, 1) and q ∈ (0, 1/4) under the constraint
p + 2q + s = 1. Although the monitoring structure is quite natural, systematically
finding equilibria in such structure has not been possible without utilizing a POMDP
solver.

In addition to nearly-perfect monitoring, we also consider almost-public monitoring.
Recall that, under almost-public monitoring, players are always likely to get the same
signal. Thus, we set our parameters as follows: p+ s = t+w ≈ 1 and q = r = u = v ≈ 0.
We assume p ∈ (1/2, 1), q ∈ (0, 1/4), and t ∈ (0, 1/2) under the constraints p+2q+ s = 1
and t+ 2q + w = 1.

Notice that πi(ai, ωi) is chosen so that gi(a) is constant under both monitoring struc-
tures. Throughout our paper, we use the default setting: x = 1, y = 1, and the discount
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factor δ = 0.9. Next, this section identifies signal parameters where GT, TFT, and 1-MP
constitute an SPFSE according to our program.

4.1. Grim-trigger

This subsection examines a representative FSA, called grim-trigger (GT). When both
players act according to GT, a joint FSA has four states: RR,RP, PR, and PP . Under
nearly-perfect monitoring, the system of linear equations for this joint FSA is given as VRR

VRP

VPR

VPP

 =

 1
−1
2
0

+ δ

 p q q s
0 q + s 0 p+ q
0 0 q + s p+ q
0 0 0 1


 VRR

VRP

VPR

VPP

 .

By solving this, we obtain

VRR =
1− δ s

(1− δ p) (1− δ s− δ q)
, VPR = − 2

δ s+ δ q − 1
, VRP =

1

δ s+ δ q − 1
, and VPP = 0.

Figure 12 illustrates the range of signal parameters over which GT constitutes
an SPFSE. The x-axis indicates p, the probability that signals are correct, e.g.,
o((g, g)|(c, c)) or o((b, g)|(c, d)). The y-axis indicates q, the probability that signals have
exactly one error, e.g., o((g, b)|(c, c)) or o((b, g)|(d, d)). When p is large, the signals of the
two players tend to be correct, e.g., the player is likely to observe g/b when her oppo-
nent cooperates/defects. When q is small, the signals are strongly correlated, i.e., if the
signal of a player is wrong, the signal of her opponent is also likely to be wrong.

Basically, GT constitutes an SPFSE where p is large and q is small, i.e., the signals
are accurate and strongly correlated. Suppose p is large but q is not small, and assume
that player 1 observes b. Player 1 is quite sure that this is an error.

Furthermore, since the correlation is not so strong, player 2 is likely to receive a cor-
rect signal. Thus, for player 1, it is better to deviate from GT and to keep cooperation.
When p is relatively small, in contrast, the probability that the opponent observes b is
large. Therefore, it is better to start with defection. A shortcoming of GT is that it is
too unforgiving and thus generates a low payoff. For example, when p = 0.9, q = 0.01,
and δ = 0.9, the expected discounted payoff is about 5.31, while if players can keep
cooperating, the expected discounted payoff would be 10.

4.2. TFT and 1-MP

TFT in Fig. 2 is well-known as a more forgiving strategy than GT. However, if two
players use TFT, an observation of defection leads to poorly coordinated behavior. Fig-
ure 5 shows the joint FSA for TFT under nearly-perfect monitoring. Thick/thin/dotted
lines represent the transition with probabilities p, q, and s, respectively. Notice that we
assume p is much larger than q or s. We can see that after an observation error players
largely alternate between (C,D) and (D,C). In such a situation, a player is better off
deviating to end this cycle and returning to (C,C). For this reason, TFT does not con-
stitute an SPFSE under nearly-perfect monitoring. Note that, basically for the same
reason, TFT does not constitute a subgame perfect Nash equilibrium under perfect
monitoring. Furthermore, the payoff associated with TFT is low. After an observation
error, it is difficult to go back to (C,C), as Fig. 5 shows. In fact, the probability of (C,C)
in the invariant distribution is 0.25, as long as q > 0 and s > 0.

Let us turn our attention to almost-public monitoring for a moment. We examined
whether TFT is an SPFSE or not under almost-public monitoring within a wide range
of signal parameters by utilizing our developed software. We confirmed TFT is an
SPFSE only if q is smaller than about 0.07 in our parameterization. If two players
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use TFT under almost-public monitoring, an observation of defection leads to coor-
dinated behavior. Figure 6 shows the joint FSA. Thick/thin/dotted lines represent the
transition with probabilities p (w), s (t), and q, respectively. We can see that after an ob-
servation error players no longer alternate between (C,D) and (D,C). Although they
will likely transit or stay at the mutual punishment state PP , they are more likely
to return to the mutual cooperation state RR than under nearly-perfect monitoring.
Notice that the similar argument can be applied to the public monitoring case.

The fact that TFT can be an SPFSE under almost-public monitoring has already
been shown by Phelan and Skrzypacz [2012]. However, their analysis is limited to only
very restricted parameter settings. Our software enables us to systematically search a
variety of parameter settings. Also, we exhaustively search for all FSAs with at most
three states that can constitute an equilibrium under almost-public monitoring, and
found that TFT is the most efficient in SPFSE among these FSAs, including GT.
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Now, let us consider the FSA in Fig. 3, which we call 1-period mutual punishment
(1-MP). As we noted, traditionally, this FSA is known as Pavlov [Kraines and Kraines
1989]. Recall that, according to this FSA, a player first cooperates. If her opponent
defects, she also defects, but after one period of mutual defection, she returns to coop-
eration. Figure 7 shows the joint FSA of 1-MP. We can see that after one observation
error occurs, players can quickly return to the mutual cooperation state RR. The ex-
pected probability (in the invariant distribution) that players are in state RR is about
p− 2q.

Unfortunately, 1-MP does not constitute an SPFSE in our parameterization, since it
is too forgiving. Basically, 1-MP punishes a deviator by one period of mutual defection.
The gain from defection x is exactly equal to the loss in the next period y (x = y = 1).
Therefore, as long as a player discounts future payoff, 1-MP cannot be an SPFSE, even
under perfect monitoring.3 Also, 1-MP does not constitute an SPFSE under almost-
public monitoring. Figure 8 illustrates that an observation of defection leads to poorly
coordinated behavior, as in TFT under nearly-perfect monitoring.

5. K-PERIOD MUTUAL PUNISHMENT

This section generalizes the idea of 1-MP to k-period mutual punishment (k-MP). Un-
der this FSA, a player first cooperates. If her opponent defects, she also defects, but
after k consecutive periods of mutual defection, she returns to cooperation.

Figure 9 shows the FSAs of 2-MP. 2-MP is less forgiving than 1-MP, since it cooper-
ates approximately once in every three periods to the opponent who always defects. By
increasing k, we can make this strategy less forgiving. When k = ∞, this strategy be-
comes equivalent to GT. Figure 11 shows a joint FSA for 2-MP. For simplicity, we only
show thick lines that represent the transition with probability p. We can see that after

31-MP is a subgame perfect Nash equilibrium under perfect monitoring only if 1+x
1−δ2

< 1
1−δ

.
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Fig. 13. Average payoff per period of FSA (q = 0.01).

some observation errors occur players can quickly return to the mutual cooperation
state RR.

Figure 12 illustrates the range of signal parameters over which 2-MP is an SPFSE.
For comparison, we show the range where GT is an SPFSE. We can see that even for
k = 2, k-MP can be an SPFSE in a reasonably wide range of signal parameters, though
the size of the range is smaller than GT.

When the correlation of signals is quite strong (q ≒ 0), 2-MP constitutes an SPFSE in
the range of signal correctness p ∈ [0.82, 1). As the correlation becomes slightly larger
(i.e., q > 0.04), 2-MP is no longer an SPFSE. When q = 0.04, 2-MP constitutes an SPFSE
in the range of correctness p ∈ [0.86, 0.91). It is significant that GT is more sensitive to
the correlation than 2-MP when p is sufficiently large. When the correctness p exceeds
0.86, there is a range of correlation where GT is not an SPFSE but 2-MP is. Figure 12
also shows the range of signal parameters over which 3-MP (Fig. 10) is an SPFSE. The
SPFSE range of 3-MP includes almost all that of 2-MP.
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Now, let us examine the average payoff of GT and k-MP. In Fig. 13, the x-axis in-
dicates the correctness of signal p, while the correlation q is fixed at 0.01. The y-axis
indicates the average payoff per period. Note that average payoff is 1 if mutual cooper-
ation is always achieved. It is clear that 2-MP significantly outperforms GT and 3-MP
regardless of signal correctness. We also placed two points on each line. Within the
range between the two points, an FSA constitutes an SPFSE. We can see that the size
of the range becomes wider by increasing k, but the efficiency becomes lower.

One obvious question is whether there is any FSA (except k-MP) that constitutes
an SPFSE and achieves a better efficiency. To answer this question, we exhaustively
search for small-sized FSAs that can constitute an equilibrium. We enumerate all
possible FSAs with at most three states, i.e., |A||Θ| · |Θ||Θ|·|Ω|=5832 FSAs, and check
whether they constitute an SPFSE. We found that only eleven FSAs (after removing
equivalent ones) could be an SPFSE in a reasonably wide range of signal parameters.

Next, let us consider a generalization of TFT called tit-for-k-tats (TF-k-T), which is
based on a similar idea to k-MP. According to TF-k-T, a player first cooperates. If her
opponent defects, she also defects, but after k periods of her opponent’s cooperation, she
returns to cooperation. Note that TF-k-T incorporates GT and TFT as a special case.
Phelan and Skrzypacz [2012] have shown that TF-2-T can constitute an equilibrium
under almost-public monitoring. We confirmed that TF-2-T is an SPFSE only if q is very
small (about 0.05 or smaller) in our parameterization. Furthermore, our exhaustive
search found that TF-1-T, a.k.a. TFT is the most efficient among all FSAs within three
states. We also observed that as k increases, the range of signal parameters over which
TF-k-T is an SPFSE becomes wider, but the average payoff becomes lower. This trend
is similar to k-MP under nearly-perfect monitoring. Furthermore, we confirmed that k-
MP is no longer an SPFSE under almost-public monitoring. This fact can be explained
using the same argument presented in Section 4.2.

There has been a series of iterated prisoners’ dilemma competitions in noisy envi-
ronments [Rogers et al. 2007]. In these competitions, a player is assumed to make an
error, i.e., she sometimes takes an action that is different from her intended action.
However, players can publicly observe their realized actions. Thus, this monitoring
structure is substantially different from both of our settings, i.e., nearly perfect and
almost public.

Alternatively, these competitions are not for finding strategies that constitute an
equilibrium. They only examines which program/strategy performs better within a
limited set of programs/strategies in a round-robin style tournament. In contrast, we
identified several FSA, e.g., 2-MP, that constitutes an equilibrium. The implication
that an FSA constitutes an equilibrium is far-reaching. If 2-MP constitutes an equilib-
rium, as long as the opponent is playing 2-MP, the best strategy is also to play 2-MP.
Playing any other strategy, including very sophisticated strategies considered in these
competitions, is meaningless.

6. EXTENSION WITH A RANDOM PRIVATE SIGNAL

Let us assume that agents can observe additional signals which (i) do not affect pay-
offs, (ii) convey no information about players’ actions, and (iii) are strongly correlated.
Interestingly, players can achieve better coordination by utilizing such “irrelevant” al-
most public signals. More specifically, let us assume that a player observes whether a
particular event happens or not before each stage game. We assume with probability p′,
that both players observe the event, with probability s′ that neither players observes
the event, and with probability (1− p′ − s′)/2 that player 1 or 2 observes the event but
player 2 or 1 does not, respectively. We assume p′ is relatively small (not too frequent),
and (1 − p′ − s′)/2 is much smaller than p′, i.e., if one player observes the event, it is
very likely that the other player also observes the event.
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Then, how can players utilize (or disregard) this signal? Let us assume a parame-
ter setting where GT constitutes an SPFSE. Since this signal is totally independent
from the utilities/observation of players, disregarding this signal never hurts. Thus,
GT (which disregards the signal) still constitutes an equilibrium.

Now let us assume player 2 uses the following strategy: as long as the event is not
observed, play GT, but when the event is observed, move to state R. Then, assuming
player 2 uses this strategy, for player 1, using the same strategy as player 2 would
be a best response. This is because if player 1 observes the event, it is very likely
that player 2 also observes the event and moves to state R. As long as the probability
that player 2 is in state R is high, the best response for player 1 is to move to state
R, since GT constitutes an SPFSE. Thus, this new strategy, which we call GT-s, can
constitute an SPFSE. We call a similar modification of k-MP as k-MP-s. In summary,
such a signal can serve as a “reset button” to restart a new repeated game, which
makes punishments less severe.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:16 Iwasaki et al.

We examine the range of parameters where GT-s or 2-MP-s constitutes an SPFSE,
where p′ = 0.88, s′ = 0.1, and (1 − p′ − s′)/2 = 0.01. Figure 14 illustrates the ranges
of signal parameters over which GT/2-MP and GT-s/2-MP-s are SPFSE. We can see
that the range of GT-s (2-MP-s) is smaller than that of GT (2-MP) for the probability
p that signals are correct for both players. On the other hand, only for GT, the range
is larger for the probability q that either player observes the wrong signal. Figure 15
illustrates the average payoffs per period. We can see that the range over which GT-s
(2-MP-s) is an SPFSE is smaller than that of GT (2-MP). However, the average payoffs
still increase by introducing the additional signals.

A similar idea is presented in [Ellison 1994], but in that work, the signal is assumed
to be public. By utilizing a POMDP solver, we can analyze the case where the signal is
almost public.

7. CONCLUSION

This paper investigates repeated games with imperfect private monitoring. Although
analyzing such games has been considered as a hard problem, we develop a program
that automatically checks whether a given profile of FSAs can constitute an SPFSE.
Our program is based on the ideas presented in our previous work [Kandori and Obara
2010] and utilizes an existing POMDP solver. This program enables non-experts of the
POMDP literature, including researchers in the game theory, AI, and agent research
communities, to analyze the equilibria of repeated games.

Furthermore, as a case study to confirm the usability of this program, we identify
equilibria in an infinitely repeated prisoner’s dilemma game with imperfect private
monitoring, where the probability of an error is relatively small. We first examine how
observation errors affect the behavior of GT, TFT, and 1-MP (Pavlov). Then we propose
the k-MP strategy, which incorporates GT and Pavlov as a special case, and show that
k-MP constitutes an SPFSE in a reasonably wide range of observation errors. Its effi-
ciency is better than that of GT. We exhaustively search for simple FSAs with at most
three states and confirm that no other FSA constitutes an equilibrium in a reasonably
wide range of signal parameters nor is more efficient than GT. In our future work, we
hope to investigate other games, such as congestion games, which can model various
application problems including a packet routing problem, by utilizing our program.
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