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Abstract 

We extend evolution of preferences theory by endogenizing mindsight, the ability to 
observe the decision logic that another agent uses to choose his action in a strategic 
interaction.  The agents we study are randomly paired to play a sequential-move game and 
are subject to evolutionary selection based on their performance in the game.  The agents 
may be opaque or transparent, blind or with mindsight.  Agents with mindsight observe the 
decision logic of transparent agents.  We argue that consistent with Aumann’s distinction 
between act-rationality and rule-rationality, evolution selects opaque agents to be act-
rational and transparent agents to be rule-rational. We find that in the unique evolutionary 
equilibrium all agents are blind, opaque and act-rational.  However, we also find that there 
exists an evolutionary focal point surrounded by closed orbits along which rule-rational 
transparent agents and agents with mindsight are present in significant proportions.  We 
apply the theory to Ultimatum and Trust games and find that evolved populations with 
mindsight can exhibit significantly different economic performance than populations 
without mindsight. 

 

Keywords:   evolution of preferences, act-rationality, rule-rationality, ultimatum game, trust 
game 
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1. Introduction 

Models of strategic interaction usually assume that agents obey the following two 
directives:  (D1) always choose the action that yields oneself the highest payoff, and (D2) 
assume every other agent always chooses the action that yields him the highest payoff.  In 
the context of the one-shot anonymous Ultimatum Game to divide a dollar, a responder 
who obeys D1 accepts any offer of one cent or more, and a proposer who obeys D1 and D2 
offers one cent, thereby earning 99.  A large body of experimental evidence shows that 
human subjects usually do not play this way: most proposers make substantial offers and 
many responders refuse small offers. (Oosterbeek 2004)  Evidently many human 
responders do not obey D1 and most human proposers not obey D1 and/or D2.  One 
possible reason is that players are influenced by commitments that have been left out of the 
model. 

That commitments can drastically change the course of strategic interactions has 
been widely appreciated since Schelling’s Strategy of Conflict, in which he observed that 
“it may be perfectly rational ... to wish for the power to suspend certain rational capabilities 
in particular situations.” (Schelling 1960, p. 18)   Recently, Aumann (2008) emphasized the 
distinction between “rule-rationality,” which relies on commitment to a rule of behavior, 
and “act-rationality,” which optimizes without rules, and argued that evolution favors 
agents who are rule-rational.1  Evolution of preferences theory has explored the evolution 
of agents committed to maximize a “subjective utility” which may differ from the objective 
payoffs. (Banerjee and Weilbull 1995; Guth and Peleg 2001)  The theory established that in 
most games evolutionary selection produces agents committed to pursue subjective utility 
that does differ from objective payoffs.  Asking “What to maximize if you must” in a 
generic game, Heifetz, et. al. (2007) formally demonstrated that strategic interaction 
inherently generates the incentive to commit to maximize something other than the 
objective payoffs, and such commitments do not disappear under evolutionary dynamics.  

An essential assumption underlying these results is that agents can make credible 
commitments and induce other agents to take such commitments into account.  To what 
extent this assumption holds in human interactions is a central issue in evolutionary 
psychology.  To evolutionary psychologists, it is naïve to analyze the Ultimatum Game as 
if it were the whole game, because even anonymous strangers meeting to play only once are 
a product of a long process of evolution during which there was selection pressure to 
become committed and able to perceive or infer the commitments of others.  Evolutionary 
psychology views human interactions as fundamentally mediated by theory of mind, by 
subjective commitments secured by emotions, and by other psychological capabilities 
shaped by evolution. (Nesse 2001)  At the level of the brain, interpersonal neurobiology 

                                                 
1 Using different nomenclature, the distinction between rule-rationality and act-rationality has also been made 
by philosophers of morality and rationality.  (e.g.,  Gauthier, 1986, Chapter VI) 
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studies “mindsight,” the ability to form and make use of mental representations of how 
another human thinks and feels in a given interaction.  (Siegel 2001)      

One specific example of the evolved human capacity to show and observe mental 
states is gaze-following studied by Tomasello et. al. (2007).  Summarizing evidence that 
“human eyes are colored in a way that helps advertise both their presence and their gaze 
direction much more saliently than in other primates” they cite studies showing that: 

 In a sample of 81 species (including humans), 80 species were found to have low 
contrast in eye and facial skin coloration (i.e., the outline of the eyes and the position of 
the iris were difficult to distinguish due to the similarity in color of the facial skin, 
sclera, and iris).  Humans were the only species in which the eye outline and the 
position of the iris were clearly visible, since the exposed sclera was paler than the 
lightest colored iris or surrounding skin.  

 The human eye and its visible regions were found to be disproportionately large and 
horizontally elongated for body size (i.e., the visible regions of human eyes were bigger 
than that of the much larger gorilla). The amount of visible sclera was three times 
greater in humans than in orangutans when looking straight ahead and twice as large 
when looking to the side. 

Tomasello et. al. conducted experiments showing that the information made available by 
the human eye design is used by humans but not by apes.  Thus, the human equilibrium is 
“disclose gaze direction to others / observe gaze direction of others” whereas the ape 
equilibrium is “do not disclose / do not observe.”   Arguably, showing and observing each 
other’s gaze direction is just one small component of mindsight.  But the fact that it has 
evolved in humans and not other primates lends support to the view that mindsight 
capabilities may help explain unique aspects of human interactions that are not found 
among other species or among the psychologically simplistic agents of economic theory. 

Taking hints from evolutionary psychology, this paper attempts to extend evolution 
of preferences theory by endogenizing mindsight.  The agents we study are randomly 
paired to play a sequential-move game and are subject to evolutionary selection based on 
their performance in the game.  The agents may be opaque or transparent, blind or with 
mindsight.  Only agents with mindsight observe the decision logic of transparent agents.  
The decision logic of opaque agents is not observable.  Mindsight and transparency are 
costly. 

We find that in the unique evolutionary equilibrium all agents are blind, opaque and 
act-rational.  However, we also find that there exists an evolutionary focal point surrounded 
by closed orbits along which rule-rational transparent agents and agents with mindsight can 
be present in significant proportions.  Although the evolutionary basis for 
blindness/opaqueness/act-rationality is much stronger than for mindsight/transparency/rule-
rationality, the latter can exist in evolved populations and have a significant effect on 
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behavior.  We examine our results in two specific contexts – Ultimatum and Trust games --  
and find that evolved populations with mindsight can exhibit significantly different 
economic performance than populations without mindsight. 

Previous attempts in the evolution of preferences literature to model how agents get 
information about other agents’ subjective utility or strategic commitments have mostly 
adopted the paradigm noisy signaling.  (Guth and Kliemt, 1998 and 2000;  Heifetz, et. al., 
2007)  In such models, an agent observes the type of another agent but with exogenous 
noise that results in a positive probability of error.  By endogenizing mindsight and 
transparency in a deterministic framework, our approach allows focus on the evolutionary 
aspects of the problem without the complications of stochastic issues. 

Philosophers working on rationality and morality have gone further in explicitly 
considering mindsight and transparency among strategically interacting agents.  
Danielson’s (1990) pioneering book, in which he algorithmically examines Gauthier’s 
(1986) theory of rational morality, conceives agents as logic programs that may examine 
other agents’ programs and may allow themselves to be examined by others’ programs.  
Like Danielson, we let each agent operate according to its own decision logic and allow 
agents that show and observe these decision logics.  Unlike Danielson, we assume 
mindsight and transparency are costly, develop a general framework with a generic base 
game, and analyze evolutionary population dynamics. 

The rest of the paper is organized as follows.  The next section lays out a formal 
framework for analyzing evolution of mindsight and Section 3 presents equilibrium 
analysis.  We then apply the results to Ultimatum Game (Section 4) and Trust Game 
(Section 5).   Section 6 concludes.  

 

2. The model 

There are two separate populations of agents:  “leaders” and “responders.”  A dyad 
is formed by randomly drawing one leader from the population of leaders and one 
responder the population of responders.  A parameter e drawn from a given probability 
distribution describes the state of the environment (e.g., weather) that prevails at the time 
the dyad interacts.2  Each dyad plays a base game as follows:  first both players observe e, 
then the leader takes action x, and finally the responder observes x and takes action y.  The 
resulting payoffs are ),,(1 eyx  to the leader and ),,(2 eyx  to the responder.  When a dyad 

is formed, the leader is endowed with 0
1 and the follower is endowed with 0

2 .  If either 

or both players in a dyad abstain from the game, both players keep these endowments. 

                                                 
2 The assumption of the changing environment requires agents to dynamically compute their actions when 
they play rather than be hardwired to always play the same action.  
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Every leader is one of two psychological types: either blind (type B) or with 
mindsight (type M).  Every responder is one of two psychological types: either transparent 
(type T) or opaque (type O).     

Definition   An agent’s decision logic is the function, algorithm, or program that determines 
how the agent chooses actions. 

Definition  The decision logic of an agent with mindsight takes as input the decision logic 
of a transparent agent.   

Definition  The decision logic of a transparent agent is taken as input by the decision logic 
of every agent with mindsight.    

Definition  The decision logic of a blind agent cannot take as input the decision logic of any 
other agent. 

Definition The decision logic of an opaque agent cannot be taken as input by any other 
agent. 

The type of responder is given by ),(  , where },{ OT  indicates transparency 

or opaqueness and   is the decision logic; that is ),( exy  .  Displaying one’s decision 

logic is a costly capability – a transparent responder incurs a cost 0  every time he plays.  
Many types of opaque and transparent responders may exist, differing in terms of their 
decision logic.  The state of responder population is given by the population share vector3 

),...,,,...,( 11 TOOO qqqq q , where ]1,0[iq is the share of the ith type of responder ),( ii  , 

O is the number of opaque responder types, T is the number of transparent responder types, 

and 1 iq . 

A leader is programmed to act according to decision logic  .  The leader’s action 
is given by ),( ex  , where   is the decision logic of the responder as believed by the 

leader.  In other words,   is the leader’s theory of the responder’s mind.  Every leader 
maximizes its own payoff given his belief in how the responder will react; that is the 
decision logic of a leader with theory of mind   is 

)),,(,(maxarg),( 1 eexxe
x

  . 

The type of leader is specified by ),(  , where },{ MB indicates blindness or 

mindsight.   Mindsight is a costly capability – a leader with mindsight incurs a cost μ > 0 
every time he plays.  Many types of blind leaders and leaders with mindsight may exist, 
differing in terms of their decision logic.  The state of leader population is given by the 

population share vector ),...,,,...,( 11 MBBB pppp p , where ]1,0[ip  is the share of the ith 

                                                 
3 Population share vectors q and p are column vectors. 
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type of leader ),( ii  , B is the number of blind leader types, M is the number of leader 

types with mindsight, and 1 ip .    

In terms of psychological traits, there are four possible types of dyads:  MT, MO, 
BT, and BO.  Mindsight operates only in the MT dyad: the leader’s decision logic takes the 
responder’s decision logic as input and computes the action ),( ex  .  In the MO, BT, 

and BO dyads, the leader cannot observe   and therefore the leader’s decision logic relies 
on a built-in theory of mind to compute ),( ex  .  The payoffs earned in each of the 

four dyads are as follows4: 

Blind-Opaque dyad:  (leader type i = 1,…,B; responder type j = 1,…,O) 

)))((),((1 iji
BO
ij    to the leader 

)))((),((2 iji
OB
ij    to the responder 

Blind-Transparent dyad: (i = 1,…,B;  j = O+1,…,O+T) 

)))((),((1 iji
BT
ij    to the leader  

  )))((),((2 iji
TB
ij  to the responder 

Mindsight-Opaque dyad:  (i = B+1,…,B+M;  j = 1,…,O) 

  )))((),((1 iji
MO
ij  to the leader  

)))((),((2 iji
OM
ij    to the responder 

Mindsight-Transparent dyad:  (i = B+1,…,B+M;  j = O+1,…,O+T) 

  )))((),((1 jjj
MT
ij  to the leader  

  )))((),((2 jjj
TM
ij  to the responder 

 

The leaders’ payoff matrix has B+M rows and O+T columns arranged as follows: 









 MTMO

BTBO

L ΠΠ

ΠΠ
Π  

                                                 
4 For notational clarity, we omit the environment parameter e in most expressions hereinafter. 
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where  ][ BO
ij

BO Π  is the B-row O-column matrix of leader payoffs in blind-opaque 

dyads, BTΠ  is the B-row T-column matrix of leader payoffs in blind-transparent dyads, 

MOΠ  is the M-row O-column matrix of leader payoffs in mindsight-opaque dyads, and 

MTΠ  is the M-row T-column matrix of leader payoffs in mindsight-transparent dyads.   

Analogously, the responders’ payoff matrix has O+T rows and B+M columns 
arranged as follows: 









 TMOM

TBOB

R ΠΠ

ΠΠ
Π  

The evolutionary dynamics occur as follows.  During each generation many random 
dyads are formed to play the base game.  Each type of leader (responder) accumulates 
fitness equal to the sum of the payoffs earned by that type of leader (responder) in the base 
game.  At the end of a generation agents replicate and die.  Replication occurs within the 
leader and responder populations separately.  The replication is governed by a standard 
replicator dynamic.  Specifically, the share of a given type of leader (responder) in the new 
population of leaders (responders) equals the fitness share earned by that type of leader 
(responder) in the old population, computed as the share of the total fitness earned by all  
leaders (responders) in the old generation.  Many generations ensue.   

The expected fitness of each leader type given the state of the responder population 

is given by the expected fitness vector qΠV L
L  .  The population average fitness of 

leaders is L
LV Vp  .  Analogously, the expected fitness of each responder type given the 

state of the leader population is pΠV R
R ˆ , where RΠ̂  is the transpose of RΠ .   The 

population average fitness of responders is R
RV Vq  .  The replicator dynamic is: 

Leaders:   MBiVVpp L
L

iii  ,...,1),(  

Responders:   TOjVVqq R
R
jjj  ,...,1),(  

 

Definition  A fixed point of the replicator dynamics is a population state of leaders and 
responders (p,q) that satisfies the following conditions for all i = 1,…, B+M and j = 1,…, 
O+T: 

(i) 0 iL
L

i pifVV  

(ii) ,0 jR
R
j qifVV  
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(iii) 0 iL
L

i pifVV  

(iv) 0 jR
R
j qifVV  

 

3. Equilibrium analysis 

Consider the following responder decision logics that correspond to Aumann’s 
(2008) act-rationality and rule-rationality: 

Definition  An act-rational responder has the decision logic ),,(maxarg),( 2 eyxexA
y
  .

 

Definition  A rule-rational responder has decision logic R(x, e) which satisfies   

))),((),(())),((),((.. 22 eRRReRRRtsRe     and 

)),(,()),(,(..)( 11 exRxexRxtsRRxe    

Decision logic A is the responder’s best response whereas decision logic R is the 
responder’s best strategic commitment.  The first condition in the definition of R ensures 
that no other decision logic yields the responder a higher payoff.  The second condition 
ensures R “punishes” as much as possible a leader who does not maximize own payoff by 
taking into account the leader’s commitment to R.  

We will denote the leader’s payoff-maximizing strategy given the decision logic of 
the responder as follows: 

))(,(maxarg)( 1 xAxAx
x

A   

))(,(maxarg)( 1 xRxRx
x

R   

We use the following shorthand notation to denote base game payoffs to leaders 
(i=1) and responders (i=2), net of the costs of mindsight and transparency: 

))(,(.

))(,(.

))(,(.

))(,(.

AAi
AR

i

RRi
RA
i

AAi
AA

i

RRi
RR
i

xRx

xAx

xAx

xRx

















 

We confine attention to base games in which strategic commitment affects payoffs.    
This class of games is large and can be formally described as in Heifetz, et. al. (2007).  For 
our purposes, it suffices to assume the following about the payoff structure of the base 
game: 
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Assumption 1   The base game is such that xA, and xR are uniquely defined and satisfy the 
following: 

exx RA    

 ei
AA
i  0     (participation constraint under act-rationality) 

ei
RR
i  0     (participation constraint under rule-rationality) 

 

In order to make it possible for mindsight and transparency to evolve, it is necessary 
to assume that the cost of these capabilities is not too large relative to how they influence 
payoffs in the base game.  Specifically: 

Assumption 2     For a responder facing a leader with mindsight, the cost of transparency is 
less than the benefit of strategic commitment: 

                                                   eAARR  22   

Assumption 3    For a leader facing a rule-rational transparent responder, the cost of 
mindsight is less than the benefit of heeding the responder’s strategic commitment: 

                                                   eARRR  11   

 

The following propositions identify which types of agents may exist in fixed point 
populations.  All the proofs are in the Appendix. 

 

Proposition 1   At a fixed point every opaque responder is act-rational. 

 

Proposition 2   At a fixed point all leaders with mindsight believe that opaque responders 
are act-rational.  That is, a leader with mindsight in a dyad with a responder of type ),( 
has the theory of mind:  









OifA

TifM




 

 

Proposition 3  The monomorphic populations of blind leaders (B, A) and opaque act-
rational responders (O, A) constitute an evolutionarily stable fixed point. 
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Proposition 4   There does not exist a fixed point at which all leaders have mindsight. 

 

Proposition 5   There does not exist a fixed point at which all responders are transparent 
and all have the same decision logic. 

 

Proposition 6   If the cost of mindsight is sufficiently small, there exists a unique fixed 
point at which a share )1,0(*m of leaders have mindsight, a share )1,0(*t  of responders 

are transparent, all blind leaders believe responders are rule-rational, and all transparent 
responders are rule-rational.  This fixed point is given by 

RAAA

RARR

m
22

22*








         
RAAA

t
11

1*





  

Moreover, (m*, t*) is an evolutionary focal point around which all trajectories are closed 
orbits with the time frequencies of (m, t) along the orbits equal to (b*, o*).   

 

Proposition 7   There exists a unique unstable fixed point at which a fraction )1,0(*m of 

leaders have mindsight, a fraction )1,0(*t  of responders are transparent, all blind leaders 

believe responders are act-rational, and all transparent responders are rule-rational.    

 

The foregoing propositions identify which combinations of psychological traits and 
decision logics may evolve among agents subject to selection based on their performance in 
a sequential dyadic interaction.  The only evolutionarily stable state is universal blindness, 
opaqueness, and act-rationality.   Blind leaders and opaque responders cannot go extinct.  
Opaque responders must be act-rational.  Although mindsight, transparency, and rule-
rationality cannot be universal and cannot be present in asymptotically stable proportions, 
they may be present in populations along closed erdogic orbits around a fixed point.  In 
such populations, blind leaders assume that responders are rule-rational and leaders with 
mindsight assume that opaque responders are act-rational.    
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4. Ultimatum island 

Imagine an island populated by two species: leaders and responders.  At every unit 
of time, a leader and a responder randomly meet near a resource of value e.  Extracting the 
resource requires them to cooperate.  The leader proposes to give x to the responder after 

they extract the resource, where 0 <ε<= x <= e –ε and ε is the minimum amount that 

can be allocated to an agent.5  The responder accepts or rejects the offer.  If the responder 
rejects, the agents go their separate ways and the resource rots away.  If the responder 
accepts, the agents cooperate to extract and divide the resource.  There are no endowments 

that agents can keep by abstaining from the game:  00
2

0
1   .  The proposer and 

responder payoff functions are, respectively  









rejectyif

acceptyifxe
yx

0
),(1        









rejectyif

acceptyifx
yx

0
),(2  

Under ideal institutions that costlessly ensure cooperation in all dyads, the total average 
product realized on the island per unit of time is  P = e.  This is the first-best baseline.   

The decision logic of an act-rational responder is:  












xifreject

xifaccept
xA )(  

The decision logic of a rule-rational responder is: 












exifreject

exifaccept
xR )(  

Proposer strategies are: Ax  and  exR .  The payoffs under the various 

combinations of decision logics are:  

















RA

AR

RR

AA e

1

1

1

1

0
      

















e

e

RA

AR

RR

AA

2

2

2

2

0
 

By Proposition 3, the blind/opaque/act-rational population in which all leaders are 
(B, A) and all responders are (O, A) is evolutionarily stable.   

By Proposition 6, the following population is an evolutionary focal point:  

                                                 
5 To avoid weak inequalities, we assume that when cooperating each agent incurs a small cost and therefore 
agents make and accept only those offers which give both parties a strictly positive gain of at least ε. 
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Leaders:  (B, R) and (M, ΦM)    Pop. shares: 






2

,
2

1






e

m
e

b  

Responders:  (O, A) and (T, R)    Pop. shares:  






2

1,
2 





e

t
e

o   

           provided 







e

e )2(

 
and   2 e  

 

 Table 1 presents a numerical example comparing economic performance in the 
monomorphic and bimorphic populations.   In the monomorphic equilibrium all proposers 
offer the minimum and responders always accept.  There is no mindsight among proposers 
or transparency among responders.  All responders are act-rational and all proposers 
believe that all responders are act-rational.  Mindsight, transparency and rule-rationality 
exist along closed orbits around the bimorphic fixed point.  In these populations too offers 
are never rejected since blind proposers believe that responders are rule-rational and offer 
almost everything.  The total product realized is only τ less than in the monomorphic 
equilibrium, but is allocated almost entirely to the responders.  Mindsight and transparency 
thus serve to reverse the allocation in favor of responders. 

Without mindsight proposers exploit the act-rational responders and this is a stable 
equilibrium.  Since mindsight and transparency enable responders to turn the tables and 
exploit the proposers, responders prefer display their rule-rational decision logic but leaders 
prefer not to look.   Yet even though mindsight hurts them, leaders with mindsight can be 
present in an evolved population.  As the numerical example shows, even a small fraction 
of proposers with mindsight may be enough to support transparency and rule-rationality 
among almost all responders, and make the blind leaders hold rule-rationality as their 
theory of the responder’s mind.  Although mindsight hurts proposers, because it is locally 
adaptive it does not go extinct. 

According to experimental evidence compiled across numerous studies in different 
cultures, on average, human proposers offer 40% of the pie and human responders reject 
16% of offers. (Oosterbeek 2004)   Although our simple model cannot explain this data, it 
points to the possibility that a more refined model of mindsight and evolutionary 
commitment to rule-rationality may be able to help account for this evidence. 
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Table 1  Economic performance in the ultimatum game in populations with and without 
mindsight  

Base game: Ultimatum  e=100, ε=5, μ=2, τ=1 

      Monomorphic  Bimorphic  

Population          

Leaders          

Blind  (B, A)  a  1  0 

Blind  (B, R)  b  0  0.989 

Mindsight (M, ΦM)  m  0  0.011 

Responders          

Opaque act‐rational  (O, A)  o  1  0.022 

Transparent rule‐rational  (T, R)  t  0  0.978 

           

Performance          

Leader average fitness  VL  100  5 

Responder average fitness  VR  0  94 

Total product realized  P=VL+VR 100  99 

First‐best product possible  e  100  100 

Fraction of first‐best realized  P/e  1  0.99 

Leader share of product  VL/P  1  0.05 

Responder share of product  VR/P  0  0.95 

Fraction of dyads with rejected offers  at  0  0 

 

 

5. Trust island 

An island is populated by two species: leaders and responders.  At every unit of 
time, a leader and a responder meet near a resource of value e > 0.  The leader can keep the 
entire resource to himself or can “invest” some portion  ],0[ ex  of it in a project managed 

by the responder.   The responder works to multiply the value of the investment by a factor 
of k > 1.  The responder can then pay back any amount ],0[ kxy  to the leader.  The 

resulting payoffs are yxeyx ),(1  to the leader and ykxyx ),(2  to the 

responder.  The endowments that the agents in each dyad keep if one or both abstain from 

playing are:  e0
1    and 00

2  .  First-best institutions that costlessly ensure maximal 

investment in all dyads generate a total average product of  P = ke.  This is the first-best 
baseline.  

The decision logic of an act-rational responder never returns anything to the leader:  

0),( exA  
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The decision logic of a rule-rational responder minimally rewards those leaders who invest 
everything and punishes all others: 









exif

exife
exR

0
),(


 

Leader strategies are: 0Ax  and exR  . The payoffs under the various combinations of 

decision logics are:  

01

1

1

1









RA

AR

RR

AA

e

e

e









      

ke

eke

RA

AR

RR

AA









2

0

2

2

0

0









 

By Proposition 3, the blind / opaque / act-rational population in which all leaders are 
(B, A) and all responders are (O, A) is evolutionarily stable.   

By Proposition 6, the following population is an evolutionary focal point:  

Leaders:  (B, R) and (M, ΦM)    Pop. shares: 
ke

e
m

ke

e
b

 



 ,1  

Responders:  (O, A) and (T, R)    Pop. shares:  
e

t
e

o


 1,  

           provided 





e

e

 
and    )1(ke  

 

Table 2 gives a numerical example comparing economic performance in the 
monomorphic and bimorphic populations.  In the monomorphic equilibrium leaders do not 
invest anything and the responders earn nothing.  In orbits around the bimorphic fixed point, 
blind leaders believe that responders are committed to repay with interest and invest 
everything.  Some of them are betrayed by act-rational responders.  But investment occurs 
in most dyads, the only exception being dyads in which a leader with mindsight is paired 
with an opaque act-rational responder.  Mindsight and transparency serve to increase the 
total average product but also allocate most of the gains to the responders.  However, since 
average fitness of both leaders and responders is higher at the bimorphic fixed point, 
bimorphic populations near the fixed point are Pareto-superior to the monomorphic 
equilibrium. 
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This case shows that mindsight, transparency and rule-rationality can be critical for 
trust, can make all players better off, and may exist in evolved populations.  Unlike in the 
Ultimatum Game, mindsight and transparency are incentive-compatible for all: responders 
want to show their decision logic and leaders want to see it.  But since mindsight is costly, 
a fraction of leaders evolve to free-ride without mindsight.  Such blind trusting leaders in 
turn create a niche for opaque act-rational responders, who evolve to prey on them.  
However, as the numerical example in Table 2 shows, distrust, betrayal, opaqueness and 
act-rationality can all be very rare even if only a minority of the leaders have mindsight.   

 

Table 2  Economic performance in the trust game in populations with and without 
mindsight  

Base game: Trust  e=100, ε=5, μ=2, τ=1, k=5 

      Monomorphic  Bimorphic  

Population          

Leaders          

Blind  (B, A)  a  1  0 

Blind  (B, R)  b  0  0.788 

Mindsight (M, ΦM)  m  0  0.212 

Responders          

Opaque act‐rational  (O, A)  o  1  0.02 

Transparent rule‐rational  (T, R)  t  0  0.98 

           

Performance          

Leader average fitness  VL  100  102.9 

Responder average fitness  VR  0  394 

Total product realized  P=VL+VR 100  496.9 

First‐best product possible  ke  500  500 

Fraction of first‐best realized  P/(ke)  0.2  0.9938 

Leader share of product  VL/P  1  0.21 

Responder share of product  VR/P  0  0.79 

Fraction of dyads with reciprocated trust (b+m)t  0  0.98 

Fraction of dyads with distrust  a + m o 1  0.00424 

Fraction of dyads with betrayal  b o  0  0.01576 

 

 

6. Conclusion 

We identified the decision logics and mindsight-related capabilities that may evolve 
among randomly paired agents subject to selection based on their performance in a 
sequential interaction.  We found that the state of universal blindness, opaqueness, and act-
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rationality is the unique evolutionarily stable equilibrium.  Blind leaders and opaque 
responders cannot go extinct and opaque responders evolve to be act-rational.  Mindsight, 
transparency, and rule-rationality cannot be universal and cannot be present in 
asymptotically stable proportions.  However, mindsight, transparency, and rule-rationality 
are not ruled out by evolution.  Mindsight, transparency, and rule-rationality may comprise 
significant share of populations along closed erdogic orbits around a fixed point.  In such 
populations, blind leaders assume each responder is rule-rational and leaders with 
mindsight assume that an opaque responder is act-rational.   

We examined our findings in two specific contexts: Ultimatum Game and Trust 
Game.   In both games, mindsight, transparency, and rule-rationality serve to allocate most 
of the surplus to responders.  Given the zero-sum nature of the Ultimatum Game,  
mindsight does not engender new value and leaders are better off in the equilibrium without 
mindsight.  But in the Trust Game, both leaders and responders earn more in populations 
with mindsight and mindsight, transparency, and rule-rationality are critical for investment 
that generates new surplus.   

Both on stability and complexity grounds, we conclude that act-rationality, 
blindness, and opaqueness are more likely to be found in evolved populations than rule-
rationality, mindsight, and transparency.  But although we found that populations with rule-
rationality, mindsight, and transparency are at best fluctuating around a fixed point, we also 
conclude that mindsight may constitute an important dimension along which agents with 
complex psychologies evolve and may be critical for understanding behavior among such 
agents.  
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Appendix  

Model in the case of bimorphic population 

 The model introduced in Section 2 allows for an arbitrary number of decision logics. 
In the special case of a bimorphic population we use the following simplified notation.  

Population state 

Leaders:  (B, R) and (M, ΦM) types only.   ),( mbp ,  b + m = 1   

Responders:  (O, A) and (T, R) types only.   ),( toq ,  o + t = 1 

The payoff matrices summarizing fitness earned in each of the four dyads are respectively:  
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Leaders:     














RRAA

RRRA

L

11

11Π       

Responders:      















RRAA

RRRA

R

22

22Π  

Expected fitness of the two leader types  

RRRA
BR totoV 11),(    

  RRAA
M totoV 11),(  

Expected fitness of the two responder types  

RAAA
OA bmmbV 22),(    

  RR
TR mbV 2),(  

Population average fitness: 

Leaders:     MBRL mVbVV   

Responders:    TROAR tVoVV   

Replicator dynamic: 

Leaders:   )( LBR VVbb   

Responders:   )( ROA VVoo   

 

Proof  of Proposition 1  Suppose there is a type of opaque responder in a fixed point 
population that has decision logic A and another type with a different decision logic Z ≠ A.  
Since each type of responder is opaque, every type of leader plays the same action against 
each.   By definition of act-rationality, replying to the leader’s action using A yields a 
higher payoff than using any other decision logic Z.  Thus opaque responders who use Z 
have lower average fitness than act-rational responders, which implies the population is not 
a fixed point.  It also follows that if all responders are opaque and act-rational, a mutant 
opaque responder with decision logic Z cannot invade.  ■ 

 

Proof of Proposition 2   By Proposition 1, at a fixed point all opaque responders are act-
rational.  A leader with mindsight who believes an opaque responder is not act-rational 
earns lower average fitness than a leader with mindsight who believes an opaque responder 
is act-rational.  Therefore, leaders with mindsight who believe an opaque responder is not 
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act-rational cannot coexist at a fixed point with leaders with mindsight who believe an 
opaque responder is act-rational.  It also follows that if all leaders with mindsight believe 
that opaque responders are act-rational, a mutant leader with different theory of mind 
cannot invade. ■ 

 

Proof of Proposition 3   Suppose all leaders are of type (B, A) and all responders are of 
type (O, A).  Since all responders are opaque, a mutant leader with mindsight can get no 
information but would incur the cost of mindsight.  Since all responders are act-rational, a 
mutant leader with a different theory of mind would earn less fitness.  Thus mutants with 
mindsight or different theory of mind cannot invade the leader population.  Since all leaders 
are blind, a mutant responder who is transparent cannot influence any leader’s action, but 
would incur the cost of transparency.  A mutant responder who is not act-rational would 
earn less fitness than an act-rational responder.  Thus mutant responders who are 
transparent or have a different decision logic cannot invade the responder population. ■ 

 

Proof of Proposition 4   Suppose there is a fixed point at which all leaders have mindsight.  
Assumption 2 implies that all responders must be transparent and rule-rational, since any 
other type of responder would earn lower average fitness.  A blind leader who believes 
responders are rule-rational would earn the same payoff in the base game as a leader with 
mindsight but save the cost of mindsight.  Thus a mutant leader of type (B, R) can invade 
the leader population. ■ 

 

Proof of Proposition 5  Suppose there is a fixed point at which all responders are of type (T, 
Θ).  A blind leader with theory of mind  Φ = Θ would earn the same payoff in the base 
game as a leader with mindsight but save the cost of mindsight.  Thus the leader population 
must consist entirely of agents of type (B, Θ).  But an opaque act-rational responder (O, A) 
can earn more against such leaders than a transparent responder (T, Θ).   Therefore a 
mutant responder of type (O, A) can invade if the responder population consists entirely of 
(T, Θ) responders.  ■ 

 

Proof of Proposition 6   Consider a population of leaders consisting of (B, R) and (M, ΦM) 
types and a population of responders consisting of (O, A) and (T, R) types.  The system is 
an asymmetric evolutionary game analyzed by Gintis (2009, Sec. 12.17).  We follow his 
approach to solve for the fixed point and ascertain its stability.   
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Adding a constant to each entry in a column of  LΠ  or in a row of FΠ  does not affect the 

replicator dynamics.  Therefore we can simplify the payoff matrices as follows: 












0

0

11 


RAAALΠ          

 












0

0

22

22




RRAA

RARR

RΠ  

Using the population share of blind leaders b and population share of opaque responders o 
as state variables, we can express the replicator equations of the two populations as follows: 

))(1(

))(1(

oooo

bbbb










 

where 

RAAA

RAAA

RRAA

22

11

22 0

0

















 

The fixed point is given by: 

RAAA

RRAA

b
22

22*









      ,   
RAAA

o
11

*







  

and m* = 1 – b* and t* = 1 – o*.  Since α and β have opposite signs, this population is an 
evolutionary focal point surrounded by trajectories which are closed orbits such that the 
time frequencies of (b, o) along the orbits equal (b*, o*).   (Gintis, 2009, Theorem 12.9) 

Next, we need to establish that a third type of responder cannot invade the bimorphic 
responder population consisting of (O, A) and (T, R) types.  By Proposition 1, a mutant of 

type (O, Z≠A) cannot invade.  A mutant of type (T, A) also cannot invade because it is 

treated the same as (O, A) responder by both types of leader and therefore earns τ less 
fitness than (O, A) responder.  Lastly, consider a mutant responder of type (T, Z) such that 

Z≠R and Z≠A.  Since R is the decision logic that induces the leader with mindsight to 

take the action which lets the responder maximize its payoff, the mutant earns less than the 
incumbent (T, R) responder earns against (B, R) or (M, ΦM) leader.     

Finally, we need to establish that a third type of leader cannot invade the bimorphic leader 
population consisting of (B, R) and (M, ΦM) types.  Consider a mutant leader of type (B, A).  
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Its expected fitness is ARAA
BA toV 11    .  The expected fitness of incumbent (M, ΦM) is 

  RRAA
M toV 11  .   The mutant cannot invade if BAM VV  , which reduces to 

tARRR )( 11   .   At the fixed point t*, this condition is 

)()(

))((

1111

1111
ARRRRAAA

ARRRRAAA






  

Lastly, consider a mutant leader of type (B, Z) such that Z≠R and Z≠A.  Such a mutant 

earns less against  (O, A) responder than (B, A) leader and less against (T, R) responder 
than (B, R) leader.  ■ 

 

Proof of Proposition 7   The proof is analogous to the proof of Proposition 6.  The 
difference lies in the fitness earned by blind leaders and by responders paired with blind 
leaders.    Consider a population of leaders consisting of (B, A) and (M, ΦM) types and a 
population of responders consisting of (O, A) and (T, R) types.   The key parameters of the 
replicator dynamic are: 

RRAR

RRAR

RRAA

RRAR

22

11

22

11

0

0




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









 

The fixed point is given by: 

RRAR

RRAA

b
22

22*









      ,   RRAR

RRAR

o
11

11*









  

Since α and β have the same sign, (b*, o*) is a saddle point and therefore unstable.  (Gintis, 
2009, Theorem 12.9)  ■ 

 

 


