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Abstract

We present a model of inductive inference that includes, as
special cases, Bayesian reasoning, case-based reasoning, and rule-
based reasoning. This unified framework allows us to examine,
positively or normatively, how the various modes of inductive
inference can be combined and how their relative weights change
endogenously. We establish conditions under which an agent who
does not know the structure of the data generating process will
decrease, over the course of her reasoning, the weight of credence
put on Bayesian vs. non-Bayesian reasoning. We show that even
random data can make certain theories seem plausible and hence
increase the weight of rule-based vs. case-based reasoning, leading
the agent in some cases to cycle between being rule-based and
case-based. We identify conditions under which minmax regret
criteria will not be effective.
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1 Introduction

How should we model an agent who learns and updates her beliefs? Learning
and inductive inference are extensively studied in a variety of fields, ranging
from statistics and machine learning to psychology and artificial intelligence.
It makes sense to assume that, when statistical analysis is possible, as in
the case of many observations of iid random variables, rational agents will
perform such analysis more or less correctly in the long run. By contrast,
our interest is in the way economists model agents who face problems that
do not naturally lend themselves to statistical analysis. For example, when
predicting financial crises and economic growth, the eruptions of wars and
revolutions, or the outcome of elections, an agent surely relies on statistical
learning, but also has to use other methods to reason about economic, polit-
ical, and social trends. It is this type of reasoning that is the focus on this
paper.

Consider an agent who each year is called upon to predict the price of oil
over the subsequent year. To keep this illustrating example simple, suppose
the agent need only predict whether the average price will be higher or lower
than the previous year’s price. We can imagine the agent working for a hedge
fund that is interested in whether it should bet for or against an increasing
price.

To support her decision, the agent’s research staff regularly compiles a
list of data potentially relevant to the price of oil, as well as data identifying
past values of the relevant variables and past oil prices. For our example, let
us assume that the data include just two variables: a measure of the change
in the demand for oil and a measure of the change in the severity of conflict
in the Middle East. Each is assumed to take two values, indicating whether
there has been an increase or decrease. Each year the agent receives the
current changes in demand and in conflict, examines the data from previous
years, and then predicts whether the price will increase or decrease. How do
and how should agents reason about such problems? We wish to model three
types of reasoning.1

1In personal conversation, a hedge fund principal indicated that his fund used all three
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The mode of reasoning most widely used in economic modeling is Bayesian.
The agent first formulates the set of possible states of the world, where a state
identifies the strength of demand, the measure of conflict, and the price of
oil, in each year over the course of her horizon. The agent then formulates
a prior probability distribution over this state space. This prior distribution
will reflect models and theories of the market for oil that the agent finds
helpful, her analysis of past data and past events in this market, and any
other prior information she has at her command. Once this prior has been
formulated, the agent’s predictions are a relatively straightforward matter of
applying Bayes’s rule, as new observations allow her to rule out some states
and condition her probability distribution on the surviving states in order to
make new predictions.

An alternative mode of reasoning is case-based. This means that the agent
considers past observations and predicts an outcome that appeared more
often in those past cases that are considered similar or otherwise relevant. If
all past observations are considered equally similar (and relevant), case-based
prediction is simply the mode, that is, the outcome that is most frequent in
the database. If, by contrast, the agent uses a similarity function that puts
all its weight on the most recent outcome, her prediction will simply be that
outcome.2 However, more interesting similarity functions can use more data
for the judgment of relevance of past cases. For example, the agent may
argue that the current state of conflict in the Middle East is reminiscent of
the state of affairs in 1991 or in 2003, and hence predict that there will soon
be a war and an increase in the price of oil.

Finally, rule-based reasoning calls for the agent to base her predictions on
regularities that she believes characterize the market for oil. For example,
the agent may adopt a rule that any increase in the level of demand leads to
an increase in the price of oil. Based on this and her expectation that the
Chinese economy will continue to grow, the agent might reasonably predict
that the price is about to rise.

The boundaries between the three modes of reasoning are not always
sharp. Case-based and rule-based agents can update the probabilities they
attach to the validity of various analogies or rules in light of their experi-
ence, much as would a Bayesian. A Bayesian will base her prior distribution

methods of reasoning introduced in this section in predicting the likelihood of mortgage
defaults.

2Indeed, Alquist and Kilian (2010) find that the best prediction of the future price of
oil is the current price.
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on analogies to similar past cases, as well as on general rules that she has
observed. A precise definition of rule-based reasoning is especially elusive,
leaving us instead with an “I know it when I see it” approach. To make one
boundary precise, we say that reasoning is “Bayesian” if all past analogies,
regularities, and other prior information can be summarized in a prior prob-
ability distribution over the possible remaining histories, with all subsequent
reasoning captured by standard Bayesian updating.3

This paper presents (in Sections 2–3) a framework that unifies these three
modes of reasoning (and potentially others), allowing us to view them as
special cases of a general learning process. The agent attaches weights to
conjectures. Each conjecture is a set of states of the world, which captures
a way of thinking about how events in the world will develop, while the
associated weights capture the relative influence that the agent attaches to
the various conjectures. To generate a prediction, the agent sums the weight
of all nontrivial conjectures consistent with each possible outcome, and then
ranks outcomes according to their associated total weights. In the special case
where each conjecture consists of a single state of the world, our framework
is the standard Bayesian model, and the learning algorithm is equivalent to
Bayesian updating. Employing other conjectures, which include more than
a single state each, we can capture other modes of reasoning, as illustrated
by simple examples of case-based and of rule-based reasoning.

Within this framework, one may pose both positive and normative ques-
tions, having to do with the conjectures that the agent considers, and the
weight she attaches to them. An example of a positive question would be,
what are the weights that people tend to attach to various conjectures? Or,
given certain initial weights, how do they evolve, and what would be the
long-term relative weights of different types of reasoning? Section 4 addresses
such questions. Alternatively, one may ask more normative questions, such
as which conjectures should be considered and what is an appropriate way
to assign weights to them, so as to lead to effective learning. Section 5 deals
with such questions.

Specifically, in Section 4.1 we consider the long-term weight of Bayesian
reasoning relative to other modes of reasoning. We suggest conditions under
which Bayesian reasoning will give way to other modes of reasoning, and

3The belief that all uncertainty can be quantified by (possibly subjective) probabilities
is at the heart of the Bayesian approach. It is this belief that has been challenged by
non-Bayesian thinkers such as Knight [23].
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alternative conditions under which the opposite conclusion holds. We discuss
these conditions in an attempt to distinguish between situations in which the
Bayesian approach is likely to be robust and situations in which it is not.
Section 4.2 deals with a similar question, studying the evolution of relative
weights of case-based and rule-based reasoning. Here, we show that even
random data can occasionally give rise to belief in a specific theory and hence
in rule-based reasoning in general, until the theory is refuted and agents resort
to case-based reasoning, potentially leading them to cycle between case-based
and rule-based reasoning. Section 5 considers a normative question. We
assume that the agent can choose the weight assigned to conjectures, for
instance by putting more weight on conjectures that did well, or that would
have minimized regret in the past. We show that in the absence of additional
knowledge about the nature of the problem, these criteria do not lead to
effective predictions.

2 The Framework

2.1 The Environment

At each period t ∈ {0, 1, . . .} there is a characteristic xt ∈ X and an outcome
yt ∈ Y . The sets X and Y are assumed to be finite and non-empty, with Y
containing at least two possible outcomes.4

In predicting the price of oil, the characteristic xt might identify the type
of political regime and the state of political unrest in various oil-producing
countries, as well as describe the extent of armed conflict in the Middle East,
indicate whether new nuclear power plants have come on line or existing ones
been disabled by accidents, describe the economic conditions of the major
oil importers, summarize climate conditions, and so on. In our simplified
example, Y has only two elements, {0, 1}, and each x = (x1, x2) ∈ X has two
components, each also taking values in {0, 1}, with a 1 in each case indicating
an increase in the relevant variable.

We make no assumptions about independence or conditional indepen-
dence of the variables across periods. Our preferred interpretation is that
this lack of structure reflects the agent’s lack of knowledge about the data
generating process—we are most interested in cases in which the agent has
no certain knowledge that she can bring to bear on the prediction problem.

4The extension to infinite sets X and Y can be carried out with no major difficulties.
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For example, we do not think of statistical inference, in which the agent
knows she faces a sequence of independent random variables from a fixed
distribution, as our prime application. This is in keeping with our example
of an agent who must predict long-term movements in the price of oil, rather
than daily fluctuations of the price around a long-term trend.5

A state of the world ω identifies the characteristic and outcome that
appear in each period t, i.e., ω : {0, 1, ...} → X × Y . We let (ωX(t), ωY (t))
denote the element (xt, yt) of X×Y appearing in period t given state ω, and
let

Ω = (X × Y )∞

denote the set of states of the world. In our example, a state identifies the
sign of changes in the strength of demand, the level of conflict, and the price
of oil in each period.

A period-t history

ht(ω) = (ω(0), . . . , ω(t− 1), ωX(t))

identifies the characteristics (e.g., changes in the levels of demand and of
conflict) and outcomes (e.g., changes in the price of oil) that have appeared
in periods 0 through t−1, as well as the period-t characteristic, given state ω.
We let Ht denote all possible histories at period t, i.e., Ht = {ht(ω) |ω ∈ Ω}.
For a history ht we define the corresponding event

[ht] = {ω ∈ Ω | (ω(0), . . . , ω(t− 1), ωX(t)) = ht}

consisting of all states that are compatible with the history ht. In other
words, [ht] is the set of states whose period-t history matches ht, with different
states in this set corresponding to different possible future developments. We
define, for ht ∈ Ht and Y ′ ⊂ Y , the event

[ht, Y
′] = {ω ∈ [ht] |ωY (t) ∈ Y ′}

consisting of all states that are compatible with the history ht and with the
next outcome being in the set Y ′.

In each period t the agent observes a history ht and makes a prediction
about the period-t outcome, ωY (t) ∈ Y . A prediction is a ranking of subsets

5When statistical learning is possible, we would be most interested in the unstructured
learning process that remains after the agent has learned what she can from such inference.

5



in Y given ht. Hence, for ht ∈ Ht there is a binary relation %ht⊂ 2Y ×2Y that
ranks subsets of outcomes according to their plausibility. %ht is assumed to
be a weak order that is monotone with respect to set inclusion.

In our example, Y = {0, 1}, and the only interesting subsets to compare
are those consisting of specific outcomes, {0} and {1}. In a richer model
Y could consist of all possible prices of oil, and we would allow the agent
to consider subsets of Y of the form “the price of oil will exceed $100 per
barrel” or “the price of oil will be below $80 a barrel,” and to rank some such
subsets as being more likely than others. Hence, the agent may view a price
of oil above $100 as being more likely than a price under $100, which is in
turn more likely than a price of precisely $110; or, she may view an increase
in price as more likely than a decrease, and so forth.

2.2 Predictions

Predictions are made with the help of conjectures. Each conjecture is a subset
A ⊂ Ω. A conjecture can represent a specific scenario, that is, a single state
of the world, in which case A = {ω}, and such conjectures will suffice to
capture Bayesian reasoning. However, conjectures can contain more than
one state, and thereby capture rules and analogies. In general, any reasoning
aid one may employ in predicting yt can be described by the set of states
that are compatible with it.

The set of all subsets of Ω is rather large and unwieldy. Nothing is lost
by taking the set of conjectures to be the σ-algebra A generated by the
events {[ht]}t≥0,ht∈Ht

. Note that this is the same σ-algebra generated by
{[ht, Y ′]}t≥0,ht∈Ht,Y ′⊂Y and that it contains all singletons, i.e., {ω} ∈ A for
every ω ∈ Ω.

To make predictions in period t, the agent first identifies, for any subset
of outcomes Y ′ ⊂ Y , the set of conjectures that have not been refuted by
previous observations and that predict an outcome in Y ′. She then considers
the weight of credence attached to this set of conjectures. The agent considers
the set of outcomes Y ′ as more likely than the set Y ′′ if and only if the former
attains a higher weight of credence than the latter.

Formally, suppose that the agent has observed history ht in period t and
considers the set of outcomes Y ′. A conjecture A ∈ A has not been refuted
by history ht if A ∩ [ht] 6= ∅. The set of conjectures that have not been
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refuted by history ht and predict an outcome in Y ′ is6

A(ht, Y
′) = {A ∈ A |∅ 6= A ∩ [ht] ⊂ [ht, Y

′]} . (1)

The agent evaluates the relative likelihoods of outcomes Y ′ and Y ′′, at
history ht, by comparing the sets A(ht, Y

′) and A(ht, Y
′′). The agent makes

this comparison by using a “weight of credence” function ϕht
. Formally, ϕht

is a finite, σ-additive measure on sigma-algebra E ⊂ 2A to be defined shortly.7

We interpret ϕht
(A(ht, Y

′)) as the weight the agent attaches to conjectures
consistent with the outcomes Y ′, and ϕht

(A(ht, Y
′′)) as the weight the agent

attaches to conjectures consistent with the outcomes Y ′′.8 The agent ranks
Y ′ as “at least as likely as” Y ′′, denoted Y ′ %ht Y

′′, iff

ϕht
(A(ht, Y

′)) ≥ ϕht
(A(ht, Y

′′
)). (2)

The prediction rule given by (2) exhibits a standard feature of informa-
tion updating. Refuted conjectures are excluded from every set of the form
A(ht, Y

′) and hence (cf. (1)) are excluded from the prediction process at
ht. Intuitively, one may think of each conjecture A as an expert, who argues
that the state of the world has to be in the event A. The weight ϕht

(A) is a
measure of the expert’s reliability in the eyes of the agent. The agent listens
to the forecasts of all experts and, when comparing two possible predictions
Y ′ and Y ′′, chooses the prediction that commands higher total support from
the experts. When an expert is proven wrong, he is asked to leave the room
and his future forecasts are ignored.

To complete this definition, we need to specify the σ-algebra E ⊂ 2A over
which the measures ϕht

are defined.9 For convenience, the domain of the
function ϕht

will be the same σ-algebra E for each history ht, even though

6Observe that the conjectures ∅ and Ω are never included in A(ht, Y
′) for any Y ′ ( Y .

The impossible conjecture ∅ is not compatible with any history ht, whereas the certain
conjecture Ω is tautological at every history ht.

7There is no loss of generality in taking ϕht
to be a probability measure, but it econ-

omizes on notation to refrain from imposing this normalization. For example, we thereby
avoid the need to constantly make special provision for cases in which denominators are
zero.

8The weighting function ϕht
is equivalent to a belief function in the Dempster-Shafer

theory of evidence (Dempster [10], Shafer [37]).
9Recall that a conjecture A is an element of the σ-algebra A over the set of states Ω.

An element of E is a set of conjectures, and hence is an element of a σ-algebra over the
set 2A of sets of states.
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only a subset of conjectures, ∪Y ′(YA(ht, Y
′), is relevant for prediction at ht,

and the definition of ϕht
outside this set is irrelevant. Over this set, the

weighting function ϕht
can still depend on the history ht. We interpret ϕ∅

as the model the agent uses at the outset of the prediction problem. As the
evidence unfolds, the agent may reevaluate the relative likelihoods of some
conjectures, allowing ϕht

to differ from ϕ∅.
A first step is obvious. Since predictions will be made by comparing the

ϕht
value of subsets of the type A(ht, Y

′), we need to make sure that these
are measurable. Let E0 be the σ-algebra generated by all such sets,

{A(ht, Y
′)}t≥0,ht∈Ht,Y ′⊂Y .

For every measurable event, A ∈ A, it will be useful to be able to refer to
its weight of credence as ϕht

({A}), which requires that {A} be a measurable
set. Let E1 be the σ-algebra generated by all such sets for A ∈ A. Similarly,
the set of singletons in a conjecture will also be of interest, and we let E2 be
the σ-algebra generated by all sets,

{{ω} |ω ∈ A}

for A ∈ A.10 Finally, we define E as the σ-algebra that is generated by
E0 ∪ E1 ∪ E2 and define a model ϕht

to be a (σ-additive) probability measure
on E .

The use of states of the world to represent possible outcomes is standard
in decision theory, as is the summation of a function such as ϕht

to capture
beliefs, and the elimination of conjectures that have been proven wrong.
The most obvious departure we have taken from the familiar framework of
Bayesian updating is to allow conjectures that consist of more than one
state.11 To confirm this, Section 3.1 shows that if we restrict attention to
singe-state conjectures, then we have the familiar framework of Bayesian
reasoning. Expanding the framework to encompass multi-state conjectures
is necessary if we are to capture case-based and rule-based reasoning (cf.
Sections 3.2 and 3.3).

10The collection E1 contains every set of the form {ω}, but {{ω} |ω ∈ A} may be un-
countable, and so must be explicitly included in the definition of the sigma-algebra E .
Doing so ensures, for example, that the set of Bayesian conjectures is measurable.

11In the process, the notion of compatibility needs to be adapted: whereas a single
state ω is compatible with history ht if ω ∈ [ht], a (possibly multistate) conjecture A is
compatible with history ht if A ∩ [ht] 6= ∅.

8



We have restricted attention to deterministic conjectures. One sees this
in (1), where conjectures are either clearly compatible or clearly incompatible
with a given history. This is obviously restrictive, as we are often interested
in drawing inferences about theories that do not make sharp predictions.
However, a framework in which the implications of the evidence for various
conjectures is dichotomous simplifies the analysis by eliminating assessments
as to which theories are more or less likely for a given history, in the process
allowing us to focus attention on the resulting induction. Section 6.2 sketches
the beginnings of a generalization to non-deterministic conjectures.

It will be useful to have notation for the set of conjectures, in a subset
D ∈ E , that are relevant for prediction at history ht:

D(ht) = ∪Y ′(Y {A ∈ D |∅ 6= A ∩ [ht] ⊂ [ht, Y
′]} .

Notice that
D(ht) = ∪Y ′(Y ( D∩A(ht, Y

′)) .

Hence, D(ht) ∈ E . It is the set of conjectures in D that have not been refuted
by ht and that could lend their weight to some non-tautological (Y ′ ( Y )
prediction after history ht, and ϕht

(D(ht)) is be the total weight of credence
for these conjectures.12

2.3 Updating

How does the agent learn in this model? We have already identified one
avenue for learning, namely that refuted conjectures are thereafter excluded
from consideration. If this were the only avenue for learning in our model,
then the updating would precisely mimic Bayesian updating, and the only
generalization from a standard Bayesian model would be the introduction of
multi-state conjectures.

Our generalized model allows a second avenue for learning—the weighting
function ϕht

is allowed to vary with the history ht. Collecting information
allows the agent not only to exclude falsified conjectures, but to modify
the weights she attaches to her surviving conjectures. This contrasts with
Bayesian updating in a standard probability model, where unrefuted states

12The restriction of attention to non-tautological conjectures is introduced in order to
render the numerical values of ϕ(D(ht)), for different classes D, more intuitive. Our main
result also holds, and is in fact easier to prove, if one leaves in the set D(ht) also conjectures
that are unrefuted and that do not restrict the prediction y ∈ Y in any way.
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retain their original relative weights, as well as with the notion of a likelihood
function, which can only decrease in value as data are gathered.

We can obviously expect ϕht
to vary with ht if the agent is initially un-

aware of some conjectures. Such a conjecture will be assigned a zero weight
at the outset, but a positive weight at a history ht that brings the conjecture
to mind. For example, it is possible that prior to September 11, 2001 the
agent had not imagined that terrorists might fly commercial airliners into
buildings. This unawareness is naturally captured by setting ϕ∅ of related
conjectures to zero. However, given a history ht that includes this event, con-
jectures that involve similar events in the future may have a positive weight
in ϕht

.
Even without unawareness, ϕht

may depend on the history ht. The com-
peting conjectures in our model have different domains of application. Some
conjectures make predictions at each period, while others only rarely hazard
a prediction. Once we reach a history ht, shouldn’t conjectures that have
made many correct predictions along the way be upgraded in comparison to
those who have hitherto said little or nothing? In effect, shouldn’t the value
ϕht

({A}) increase as A passes more prediction tests?
For example, suppose that there are two possible outcomes (|Y | = 2) and

that conjecture A makes predictions at each of the periods t = 0, ..., 100,
while conjecture A′ makes a prediction only at t = 100. Conjecture A may
be a market analyst who arrives at time t = 100 having pegged the market
correctly in every period, while conjecture A′ may be a competing analyst
who thus far has said nothing other than “can’t tell.” It seems that the weight
we attach to A at time t = 100 should be higher than that of A′, even if at
the outset the two analysts seemed equally reliable.

However, rewarding conjectures (or experts) for passing more prediction
tests does not require that ϕht

depend on ht. Instead, these rewards can be
built into a function ϕ that is independent of ht. In the example above, at
time t = 0 the agent already knows that conjecture A′ will be irrelevant for
the first 100 observations, and will join the game only at period t = 100.
The agent can then build this comparison into the function ϕ∅, perhaps by
assigning weights ϕ∅(A) = 100ϕ∅(A′), and can then simply use ϕ∅ through-
out. Thus, if at time t = 100 conjecture A is still in the game, it will have
a much higher weight than would A′.13 There is then no need to alter ϕ

13Alternatively, if A predicts incorrectly during some of the first 100 periods, it will
subsequently be excluded and hence this choice of ϕ∅ will not interfere with further pre-
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once t = 100 has been reached. In effect, if we know that conjecture A′ will
take no chances until period 100 and so will then be allocated a small weight
relative to whatever conjecture has in the meantime passed many prediction
tests, we might as well downgrade A′ at the beginning.

Consider a somewhat more involved example in which conjecture A again
makes predictions in every period, and A′ now makes predictions at periods
t = 0 and t = 100, but remains silent in between. We may then want to assign
the two conjectures equal weights at time t = 0, but adjust ϕh100

in order to
give A credit for having made the intervening string of correct predictions,
should both still be relevant at time t = 100. It seems as if simply adjusting
ϕ∅ and thereafter holding ϕ fixed will not accomplish both goals. However,
we can indeed incorporate all of these considerations without allowing ϕ to
depend on ht. The key is to note that the conjectures A and A′ can both
be relevant at time t = 100 only if they make identical predictions at time
t = 0. But if they make the same prediction at time t = 0, only the sum of
their weights (and not their relative weighting) has any effect on predictions
at t = 0. If both conjectures are potentially relevant at t = 100, we can
thus freely adjust ϕ∅(A) and ϕ∅(A′) in such a way that would not change
predictions until time t = 0, but will give A more weight at time t = 100.

The more general point is that {ϕht
}t≥0,ht∈Ht is under-identified by the

rankings
{
%ht⊂ 2Y × 2Y

}
t≥0,ht∈Ht

. Many different models {ϕht
}t≥0,ht∈Ht give

rise to the same ranking of subsets (at each and every history). Indeed it
turns out that any ranking that can be obtained by a history-dependent
{ϕht
}t≥0,ht∈Ht can also be represented by a history-independent ϕ:

Proposition 1 Let {ϕht
}t≥0,ht∈Ht be a collection of finite measures on (Ω,A}.

Then there exists a measure ϕ on (Ω,A} such that, at each ht and for every
Y ′, Y ′′ ⊂ Y ,

ϕ(A(ht, Y
′)) ≥ ϕ(A(ht, Y

′)) ⇔ ϕht
(A(ht, Y

′)) ≥ ϕht
(A(ht, Y

′′)).

It thus sacrifices no generality to work with a function ϕ that is unchanged
as history unfolds. Whether one wants to respond to the unfolding data
by incorporating conjectures of which the agent was initially unaware or
by increasing the weight of conjectures that have passed many tests, the
resulting system of weight functions

(
ϕht

)
ht

is equivalent to a single function

dictions.

11



ϕ that does not change with history. We accordingly hereafter drop the ht
subscript on ϕ and work with an unchanging ϕ.

Observe that, when ϕ is independent of history, the updating rule inherent
in (1)–(2) is equivalent to the Dempster-Shafer (cf. Dempster [10], Shafer
[37]) updating of the belief function defined by ϕ, in face of the evidence [ht].
This updating rule has been axiomatized by Gilboa and Schmeidler [16] in
the context of Choquet expected utility maximization.14

3 Special Cases

The unified framework is sufficiently general as to capture several standard
models of inductive reasoning.

3.1 Bayesian Reasoning

We first show that our framework reduces to Bayesian reasoning if one re-
stricts attention to conjectures that consist of one state each.

Bayesian reasoning appeared explicitly in the writings of Bayes [3].15 Be-
ginning with the work of de Finetti and his followers, it has given rise to the
Bayesian approach to statistics (see, for example, Lindley [26]). Relying on
the axiomatic approach of Ramsey [31], de Finetti [8, 9], and Savage [34],
it has grown to become the dominant approach in economic theory and in
game theory. The Bayesian approach has also made significant headways
in computer science and artificial intelligence, as in the context of Bayesian
networks (Pearl [30]). Within the philosophy of science, notable proponents
of the Bayesian approach include Carnap [5] and Jeffrey [22]. These mani-
festations of the Bayesian approach differ in several ways, such as the scope
of the state space and the degree to which Bayesian beliefs are related to
decision making, but they share two common ingredients: (i) uncertainty
is always quantified probabilistically; and (ii) when new information is ob-
tained, probabilistic beliefs are updated according to Bayes’s rule.

14This updating is a special case of Dempster’s rule of combination, in which the belief
function defined by ϕ is combined with the belief function that attaches weight 1 to the
events that contain the conjecture [ht] (and zero to all other events). This special case of
Dempster’s rule of combination does not suffer from common criticisms of the Dempster-
Shafer theory, such as those leveled by Voorbraak [40].

15Precursors can be found in the early days of probability; see Bernoulli [4].
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To embed Bayesian reasoning in our framework, define the set of Bayesian
conjectures to be

B = {{ω} |ω ∈ Ω} ⊂ A. (3)

Notice that B is an element of E . Moreover, for every history ht, B(ht) is
given by

B(ht) = {{ω} |ω ∈ [ht]}

and it is in E as well.
Each of the Bayesian conjectures thus fully specifies a single state of the

world. In our price-of-oil example, a specific scenario might be that, at each
t, demand for oil will increase, the level of conflict will not, and the price
of oil will increase. This identifies a unique state ω with ωX(t) = (1, 0) and
ωY (t) = 1 for all t, and the corresponding conjecture is A = {ω}.

A Bayesian agent will attach credence to no other conjectures, i.e.,

ϕ ({A ∈ A | |A| > 1}) = 0.

We can now state:

Observation 1 Let p be a probability on (Ω,A). There exists a model ϕp
such that ϕ (A\B) = 0 and such that for every history ht, there is a constant
λ > 0 for which, for every Y ′ ⊂ Y

p (yt ∈ Y ′ | [ht]) = λϕp(A(ht, Y
′)).

This observation is verified by constructing the model ϕp ({{ω} |ω ∈ A}) =
p (A) for A ∈ A, attaching to each set of singleton conjectures a weight of
credence equal to the prior probability of the corresponding event. It is easy
to verify that ϕp satisfies the equality of Observation 1 and that it is the
unique such model, up to multiplication by a positive constant.

Bayesian reasoning is thus a special case of our framework: every Bayesian
belief can be simulated by a model ϕ, and Bayesian updating is imitated by
our process of excluding refuted conjectures. Apart from the normalization
step, which guarantees that updated probabilities continue to sum up to
1 as conjectures are deleted but has no effect on relative beliefs, Bayesian
updating is nothing more than the exclusion of refuted conjectures from
further prediction.

Given that our model captures Bayesian reasoning via an assumption that
conjectures contain only a single state each, it is worth noting that an agent
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who assigns positive weight to non-Bayesian conjectures (i.e., ϕ(A\B) > 0)
will not be “Bayesian” by any common definition of the term. For example,
suppose that A = {ω1, ω2} and ϕ({A}) = δ > 0. Such an agent can be
viewed as arguing, “I think that one of ω1 or ω2 might occur, and I put a
weight δ > 0 on this conjecture, but I cannot divide this weight between the
two states.” Intuitively, this abandons the Bayesian tenet of quantifying all
uncertainty in terms of probabilities. Formally, the corresponding rankings
of subsets of outcomes, %ht , will not satisfy de Finetti’s [8, 9] cancellation
axiom: it can be the case that, for two events, B,C, B %ht C but not
B\C %ht C\B. In addition, if we use the weight function to make decisions
by maximization of a Choquet integral of a utility function, the maximization
will fail to satisfy Savage’s [34] “sure-thing principle”(axiom P2).16 As a
result, especially upon adding decisions to our model of beliefs (cf. Section
6.4), we have a converse to Observation 1: the decision maker will be Bayesian
if and only if ϕ(A\B) = 0.

3.2 Case-Based Reasoning

Analogical reasoning was explicitly discussed by Hume [21], and received
attention in the twentieth century in the guise of case-based reasoning (Ries-
beck and Schank [33], Schank [35]), leading to the formal models and axiom-
atizations of Gilboa and Schmeidler [17, 18, 19].

We consider here a very simple version in which case-based prediction is
equivalent to kernel classification.17 The agent has a similarity function over
the characteristics,

s : X ×X → R+,

and a memory decay factor β ≤ 1. Given history ht = ht(ω) ∈ Ht, a possible
outcome y ∈ Y is assigned the weight

S(ht, y) =
t−1∑
i=0

βt−is(ωX(i), ωX(t))1{ωY (i)=y},

16If positive weight is assigned to non-Bayesian conjectures, one should specify how
expected utility maximization is generalized to a theory of decision making where beliefs
are given by a function ϕ that is not generally additive. A well-known such generalization
is the maximization of a Choquet [6] integral suggested by Schmeidler [36]. See Gilboa
[14] for details and precise definitions. The axiomatic systems of de Finetti and Savage
are also given in Kreps [24].

17See Akaike [1] and Silverman [38].
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where 1 is the indicator function of the subscripted event. Hence, the agent
may be described as if she considered past cases in the history ht, chose
all those that resulted in some period i with the outcome y, and added to
the sum S(ht, y) the similarity of the respective characteristic ωX(i) to the
current characteristic ωX(t). The resulting sums S(ht, y) can then be used
to rank the possible outcomes y. If β = 1 and in addition the similarity
function is constant, the resulting number S(ht, y) is proportional to the
relative empirical frequency of y’s in the history ht. If, on the other hand,
β → 0, the maximizer of S(ht, ·) will be the most recent observation, ωY (t−
1). Thus, when the similarity function is constant, case-based reasoning can
be viewed as a simultaneous (and smooth) generalization of prediction by
empirical frequencies on the one hand, and of prediction by recency on the
other hand. Clearly, more interesting generalizations are possible when the
similarity function isn’t constant, and uses the information given in X to
make more informed judgments.

To embed case-based reasoning in our framework, we first define case-
based conjectures as follows. For every i < t ≤ T − 1, x, z ∈ X, let

Ai,t,x,z = {ω ∈ Ω |ωX(i) = x, ωX(t) = z, ωY (i) = ωY (t)}

and observe that it is the union of finitely many sets of the type [ht, Y
′].

Hence Ai,t,x,z ∈ A and {Ai,t,x,z} ∈ E .
We can interpret this conjecture as indicating that, if the input data in

period i are given by x and are given in period t by z, then periods i and t
will produce the same outcome (value of y). Notice that in contrast to the
Bayesian conjectures, a single case-based conjecture consists of many states:
Ai,t,x,z does not restrict the values of ωX(k) or ωY (k) for k 6= i, t.

Let the set of all conjectures of this type be denoted by

CB = {Ai,t,x,z | i < t ≤ T, x, z ∈ X } ⊂ A. (4)

For example, our oil-price predictor may focus only on the years in which
demand and conflict had the same trends as in the current period, and make
her prediction based on the prevalence of price increases in these periods.
This would correspond to the similarity function

s
((
x1, x2

)
,
(
z1, z2

))
=

{
1 x1 = z1, x2 = z2

0 otherwise
.
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Alternatively, the agent may assign some weight also to past periods that
resembled the current period only in one aspect, and use a similarity function
such as

s
((
x1, x2

)
,
(
z1, z2

))
=


1 x1 = z1, x2 = z2

a x1 = z1, x2 6= z2

b x1 6= z1, x2 = z2

0 otherwise

for some a, b ∈ (0, 1).
We can now state:

Observation 2 Let there be given s : X×X → R+ and β ≤ 1. There exists
a model ϕs,β, such that ϕ(A\CB) = 0 and for every history ht and every
y ∈ Y ,

S(ht, y) = ϕs,β(A(ht, {y})).

This observation is verified by constructing the model

ϕs,β({Ai,t,x,z}) = β(t−i)s(x, z). (5)

At history ht = ht(ω), only the conjectures
{
Ai,t,ωX(i),ωX(t) | i < t

}
yield

predictions that are included in a singleton {y}. Hence, of all the case-based
conjectures, only t conjectures will affect the prediction, corresponding to
the t possible conjectures of the form Ai,t,ωX(i),ωX(t) (with i = 0, 1, ..., t − 1).
Moreover, this implies that the set of all relevant case-based conjectures,
at ht, CB(ht) is in E . These conjectures will be divided among the |Y |
possible values, each lending its weight to the outcome that occurred at the
corresponding period i , ωY (i).

In general, we could define similarity relations based not only on single
observations but also on sequences, or on other more general patterns of
observations. Such higher-level analogies can also be captured as conjectures
in our framework. For instance, the agent might find history ht similar to
history hi for i < t, because in both of them the last k periods had the same
observations. This can be reflected by conjectures including states in which
observations (i − k + 1), ..., i are identical to observations (t − k + 1), ..., t,
and so forth.
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3.3 Rule-Based Reasoning

The earliest models of reasoning employing general rules date back to Greek
philosophy and its study of logic, focusing on the process of deduction and
the concept of proof. The rise of analytical philosophy, the philosophy of
mathematics, and artificial intelligence greatly extended the scope of rule-
based reasoning, including its use for modeling human thinking, as in the
introduction of non-monotonic (McCarthy [27], McDermott and Doyle [28],
Reiter [32]), probabilistic (Nilsson [29]), and a variety of other new logics.18

We do not have a precise definition or rule-based reasoning. Instead,
rule-based reasoning is to a large extent a collection of everything that is left
over after one extracts whatever categories are of interest. We illustrate in
this section some examples of reasoning that we regard as rule-based.

In many circumstances, we will think of particular conjectures as captur-
ing rules. For example, the rule “the price of oil always rises” corresponds
to the conjecture

A = {ω ∈ Ω |ωY (t) = 1 ∀t} .

There are many states in this conjecture, featuring different sequences of
changes in the values of the level of demand and conflict.

Our framework can also encompass association rules, or rules that can be
expressed as conditional statements. For example, consider the rule “if the
level of conflict has risen, so will the price of oil.” This rule can be described
by

A = {ω ∈ Ω |ωX2(t) = 0 or ωY (t) = 1 ∀t} . (6)

(Recall that ωX2(t) indicates whether there was an increase in the index of
conflict, and ωY (t) an increase in the price of oil. The rule “A implies B” is
then read as “A is false, or B is true, or possibly both.”)

An association rule will be excluded from the summation defining ϕ(A(ht))
as soon as a single counter-example is observed. Thus, if history ht is such
that for some i < t we observed an increase in the level of conflict that was
not followed by a rise in the price of oil, the conjecture (6) will not be used
for further analysis. When an association rule is unrefuted, it may or may
not affect predictions, depending on whether its antecedent holds. Specifi-
cally, if we consider a period t in which the level of conflict did not rise, the
antecedent of rule A does not hold (ωX2(t) 6= 1). This ensures that any value
ωY (t) is compatible with A, and hence that the weight of the rule ϕ({A}) will

18See also Gardenfors [13] and Levi [25].
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not be counted in the summation ϕ(A(ht, Y
′)) for any Y ′ ( Y . In general,

if the antecedent of a rule is false, the rule becomes vacuously true and does
not affect prediction. However, if (in this example) we do observe a rise in
the level of conflict, ωX2(t) = 1, the rule has bite (retaining the assumption
that it is as yet unrefuted). Its weight of credence ϕ will be added to the
prediction that the price of oil will rise, ωY (t) = 1, but not to the prediction
that it will not, ωY (t) = 0.

Our framework also allows one to capture functional rules, stating that
the value of y is a certain function f of the value of x, such as

A = {ω ∈ Ω |ωY (t) = f(ωX(t)) ∀t} .

Holland’s [20] genetic algorithms employ additive aggregation over rules.
This method addresses a classification problem where the value of y is to be
determined by the values of x = (x1, ..., xm), based on past observations of
x and y. The algorithm maintains a list of association rules, each of which
predicts the value of y according to values of some of the xj’s. For instance,
one rule might read “if x2 is 1 then y is 1” and another, “if x3 is 1 and x7

is 0 then y is 0.” In each period, each rule has a weight that depends on its
success in the past, its specificity (the number of xj variables it involves) and
so forth. The algorithm chooses a prediction y that is a maximizer of the
total weight of the rules that predict this y and that apply to the case at
hand.

The prediction part of genetic algorithms is therefore a special case of our
framework, where the conjectures are the association rules involved. How-
ever, in a genetic algorithm the set of rules does not remain constant, with
rules instead being generated by a partly-random process, including crossover
between “parent genes,” mutations, and so forth.

We may be interested in sets of rules, and in tracking how the agent’s
weight of credence shifts among them. For example, suppose the agent is
convinced that the price of oil will steadily increase over the next fifty hears
(and has no idea what will happen after that, believing that at that point
the world’s reserves of oil will be exhausted). The she may attach her highest
weigh to credence to those states that feature 1’s in their first fifty places.
She may attache her next highest weight to the collection of states that
feature a single 0 in the first fifty periods, followed by a somewhat lower
weight attached to states featuring two 0’s, and so on. As time progresses,
her prediction will be dominated by the unfalsified conjecture featuring the
smallest number of 0s, and hence she will continue to predict increases.
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There are many examples of rule-based reasoning that go beyond the
simple cases we have just discussed. Indeed, any rule with a clear empirical
meaning corresponds to a conjecture A, which is its extension: the set of
states of the world that are consistent with the rule.

3.4 Combined Models

The previous subsections illustrate how our framework can capture each of
the modes of reasoning separately. Its main strength, however, is in being
able to smoothly combine such modes of reasoning, simply by considering
models ϕ that assign positive weights to sets of conjectures of different types.

For example, consider an agent who attempts to reason about the world in
a Bayesian way, to foresee all possible eventualities and assign probabilities
to them. The agent has a probability p over the states of the world, Ω.
However, in the back of her mind she also carries with her some general rules
and analogies. Assume that she employs a model ϕ such that

ϕ (B) = 1− ε

(where ε > 0) with weight allocated among the Bayesian conjectures accord-
ing to

ϕ ({{ω} |ω ∈ A}) = (1− ε) p (A)

(for all A ∈ A) and the remaining weight ε is split among case-based and
rule-based conjectures.

If ε is small, the non-Bayesian conjectures will play a relatively minor
role is determining predictions, as long as history proceeds along a path that
had a high a-priori probability p. However, suppose that the reasoner faces
an eventuality, such as the September 11 attacks or the Lehman Brothers’
collapse, that is surprising in the sense that the agent had assigned low or
even zero probability p to this event. How will the agent make predictions?
If she has assigned the event zero probability, Bayesian updating will not be
well-defined. In this case, the non-Bayesian conjectures, whose total weight
is bounded by ε, may determine the agent’s predictions. For example, in the
face of the September 11 attack, the agent might discard Bayesian reasoning
and resort to the general rule that “at the onset of war, the stock market
plunges.” Alternatively, the agent may resort to analogies, and predict the
stock market’s behavior based on past cases such as the attack on Pearl
Harbor.

19



If the event in question had a nonzero but very small prior probability,
non-Bayesian reasoning will again be relatively more important. For exam-
ple, it is possible that the agent has conceived of the possibility of Lehman
Brothers’ collapse, but assigned a very small probability to this event. Once
the event occurred, conditional probabilities are well-defined and can be used.
However, non-Bayesian conjectures, which used to have a negligible effect on
the reasoner’s predictions, will now be much more prominent. This can be
interpreted as if the reasoner has a certain degree of doubt about her own
probabilistic assessments, captured by the weight ε > 0 put on non-Bayesian
conjectures. When a small probability event occurs, it as if the agent tells
herself, “I do have my updated Bayesian beliefs, but I start doubting my
probability assessments; after all, according to these very same assessment,
it used to be very unlikely to find ourselves where we are. Hence, it might
be a good idea to consider other modes of reasoning as well.”

Our framework can thus describe the reasoning of agents who are mostly
Bayesian most of the time. However, they have a certain degree of self-
criticism that allows them to doubt their probabilistic assessments when
they encounter surprises. Indeed, as we will see in the next section, it may
not be easy for the reasoner to try to avoid surprises and at the same time
to remain Bayesian.

4 Dynamics of Reasoning Methods

4.1 Bayesian vs. non-Bayesian Reasoning

We first illustrate the unified model with a positive question. Under what
conditions will Bayesian reasoning survive as evidence accumulates, and when
will the agent turn to other modes of reasoning? Our answer is that Bayesian
reasoning will wither away if the agent’s prior is not sufficiently informative.

4.1.1 Assumptions

We start by assuming that at least some weight is placed on both Bayesian
and case-based reasoning:

Assumption 1
ϕ(B), ϕ(CB) > 0.
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There can be many other types of conjectures that get non-zero weight ac-
cording to ϕ. The specific inclusion of case-based reasoning is a matter of
convenience, born out of familiarity. We explain in Section 4.1.2 how this
assumption could be reformulated to make no reference to case-based con-
jectures.

Next, we think of the agent as allocating the overall weight of credence
in a top-down approach, first allocating weights to modes of reasoning, and
then to specific conjectures within each mode of reasoning. First consider the
weight of the Bayesian conjectures, ϕ(B). We are interested in an agent who
believes that she knows relatively little about the process she is observing,
and who has already made use of advanced statistical techniques where these
are available. An extreme case of ignorance is modeled, as in the example,
by a uniform prior:

ϕ (B(ht))

ϕ (B(h′t))
= 1,

for any pair of histories of the same length, ht and h′t. We can relax this
assumption, requiring only that the probability assigned to any particular
event cannot be too much smaller than that assigned to another event at the
same period t. Thus, one may assume that there exists M > 1 such that, for
every t and every ht, h

′
t ∈ Ht,

ϕ (B(ht))

ϕ (B(h′t))
< M. (7)

We weaken this condition still further, allowing M to depend on t, and
assume only that the ratio between the probabilities of two events cannot go
to infinity (or zero) too fast as we consider ever-larger values of t. Formally,

Assumption 2 (Ignorance) There exists a polynomial P (t) such that, for
every t and every two histories ht, h

′
t ∈ Ht,

ϕ(B(ht))

ϕ(B(h′t))
≤ P (t).

Assumption 2 will be violated if, as often assumed in Bayesian models,
the agent believes she faces successive iid draws, say, ωY (t) = 1 in each period
with probability p > 0.5.19 In this case the agent believes that she knows

19For an easy illustration of this failure, observe that the ratio of the probabilities of a
string of t successive 1’s and a string of t successive 0’s is (p/(1−p))t, and hence exponential
in t.
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the data generating process up to the specification of a single parameter.
This is not the case we are interested in. Rather, Assumption 2 is designed
to capture the intuition that the agent does not know the data generating
process.20

We make an analogous assumption regarding the way that the weight of
credence is distributed among the various case-based conjectures. It would
suffice for our result to impose a precise analog of Assumption 2, namely that
there is a polynomial Q(t) such that, for any t and any pair of case-based
conjectures Ai,t,x,z and Ai′,t′,x′z′ , we have

ϕ({Ai,t,x,z})
ϕ({Ai′,t′,x′,z′})

≤ Q(t). (8)

However, suppose (analogously to (5)) that there exists a similarity function
s : X ×X → R+, a decay factor β ∈ (0, 1], and a constant c > 0 such that,
for every i < t and every x, z ∈ X,

ϕ({Ai,t,x,z}) = cβt−is(x, z). (9)

In this case, the characteristics x, z ∈ X determine the relative weights placed
on the case-based conjectures involving information of a given vintage (i.e.,
a given value of t− i), with β ≤ 1 ensuring that older information is no more
influential than more recent information. This formulation is rather natural,
but it violates (8) if β < 1, as the relevance of older vintages then declines
exponentially. Fortunately, there is an obvious and easily interpretable gen-
eralization of (8) that allows us to encompass (9).

Assumption 3 There exists a polynomial Q(t) such that, (1) for every i, i′,
t, t′, x, x′ and z, z′ with t− i = t′ − i′, and t′ < t,

ϕ({Ai,t,x,z})
ϕ({Ai′,t′,x′,z′})

≤ Q(t) (10)

and (2) for every t, x, z ∈ X and i < i′ < t,

ϕT ({Ai,t,x,z})
ϕT ({Ai′,t,x,z})

≤ Q(t). (11)

20Interestingly, violations of Assumption 2 do not necessarily mean that the conclusion
of the following result is false. See the discussion in Section 4.1.3.
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Condition (10) stipulates that within a set of conjectures based on sim-
ilarities across a given time span (i.e., for which t − i = t′ − i′), the agent’s
weights of credence cannot be too different. Condition (11) stipulates that
when comparing similarities at a given period t, based on identical character-
istics but different vintages, the older information cannot be considered too
much more important than more recent information. Typically, we would
expect older information to be less important and hence this constraint will
be trivially satisfied.

4.1.2 Result

The following result establishes that under Assumptions 1–3, in the long run
the agent puts all of her weight on non-Bayesian (rather than on Bayesian)
conjectures.

Proposition 2 Let Assumptions 1–3 hold. Then at each ω ∈ Ω,

lim
t→∞

ϕ (B(ht))

ϕ (CB(ht))
= 0.

The Bayesian part of the agent’s beliefs converges to the truth at an
exponential rate as evidence is accumulated (that is, as t grows): within
this Bayesian class of conjectures, the probability of the true state relative
to the probability of all unrefuted states grows exponentially with t. How
is this fast learning reconciled with Proposition 2? This increase of the
posterior probability of the true state does not result from any change in its
prior probability, but from the exclusion of falsified states. In other words,
the conditional probability of the true state increases at an exponential rate
because its denominator, given by the total probability of all unrefuted states,
decreases at an exponential rate. But this is precisely the reason that the
weight of the entire class of Bayesian conjectures tapers off and leaves the
stage to others, such as the case-based conjectures.

The key observation is that, as t grows, and under the ignorance assump-
tion, the weight of Bayesian conjectures that remain unrefuted by history ht,
ϕ (B(ht)), becomes an exponentially small fraction of the original weight of
all Bayesian conjectures, ϕ (B). In contrast, the number of case-based con-
jectures at period t is only a polynomial (in t), and there is no reason for the
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weight of those that make predictions at history ht to decrease exponentially
fast in t. Unless one explicitly builds into ϕ an exponential decline of the
weight of case-based conjectures (which is ruled out by Assumption 3), the
relative weight placed on Bayesian conjectures declines to zero.

It follows that a similar result would hold if we were to replace the class
of case-based conjectures with any other class of conjectures that grows poly-
nomially in t and that provides some non-tautological prediction for each ht,
provided an assumption similar to Assumption 3 holds. Therefore, we do
not view this result as extolling the virtues of case-based reasoning. Case-
based reasoning is simply a familiar example of a mode of reasoning with the
requisite properties.

Recall that case-based prediction can be viewed as generalizing the pre-
diction of the modal outcome in the past, as well as predicting the most
recent outcome. Similar to kernel classification, the case-based predictions
we consider here further generalize these prediction by allowing different
past observations to have different weights given their similarity to the cur-
rent period. While the role of case-based reasoning in this argument could
be filled by many alternatives, we find it unsurprising that an agent who
does not know much about the data generating process may use simple sta-
tistical techniques, predicting outcomes that have been observed most often
or most recently. Our result describes a possible mechanism by which this
may happen, for reasons unrelated to bounded rationality or to cognitive or
computational limitations.

The proposition is driven by the fact that there are fewer case-based con-
jectures than there are Bayesian ones. More generally, when there are fewer
conjectures in a given class, each of them gets a larger share of the credence
weight. However, should a smaller class of conjectures have unrefuted repre-
sentatives at each history, it must be the case that many of these conjectures
make no predictions at many histories. Thus, classes of conjectures that are
often silent may retain a higher weight than classes of conjectures that make
predictions most of the time. In a sense, conjectures of the former type may
be viewed as saving their ammunition and picking their fights selectively.
When such a conjecture makes a prediction, it gets a relatively high weight,
as if it were getting credit for the meta-knowledge, knowing when to predict
and when to remain silent.

Are the Bayesian conjectures treated fairly by our assumptions on the
function ϕ? Specifically, if, at time t, the agent compares the Bayesian
conjectures to the case-based ones, she will find that each of the former (that
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is still in the game) has made t successful predictions, whereas each of the
latter has made no predictions at all. Shouldn’t the tested conjectures get
more weight than the untested ones? Shouldn’t the model ϕ be updated to
reflect the fact that some conjectures have a more impressive track record
than others?

Section 2.3 explained that it sacrifices no generality to work with a func-
tion ϕ that is never revised as history unfolds. This refocuses the question in
terms of the a priori assignment of weights: Should we not make the weight of
case-based conjectures decline exponentially fast in t (violating Assumption
3), to give the Bayesian ones a fair chance, as it were? We believe that, when
all Bayesian conjectures get similar weights, the answer is negative. To see
why, assume first that there were only one Bayesian conjecture with a positive
ϕ. In this case, at time t, if this conjecture is still unrefuted, the agent might
wish to put an exponentially high relative weight on it, that is, to shrink
the total weight of the competing case-based conjectures exponentially fast
in t. This, however, is not the case when Assumption 2 holds. Under this
assumption, when all Bayesian conjectures get similar weights at the outset,
there is no wonder that some of them are still unrefuted by history ht: by
construction, there had to be states of the world that are compatible with
ht. The agent knew, at time t = 0, that, whatever history materializes at
time t, some Bayesian conjectures will be in the game. Hence it seems wrong
to artificially increase the relative weight of these conjectures as if they were
a priori selected. Decreasing the weight of the case-based conjectures at an
exponential or even faster rate would be tantamount to a pre-commitment
to the alternative, Bayesian approach, irrespective of how successful it will
indeed be in its predictions.

4.1.3 When will Bayesianism Prevail?

Bayesian reasoning is a common and successful method of learning. This
suggests that there are many learning problems in which some of the as-
sumptions of Proposition 2 do not hold. We are therefore led to ask, under
which alternative assumption will Bayesian reasoning remain useful in the
long run, or even dominate other reasoning methods?

Clearly, an agent who is committed to Bayesianism (i.e., who assigns
ϕ(B) = 1 contrary to Assumption 1) will remain Bayesian. Our interest
is in agents who satisfy Assumption 1 and for whom the relative weight of
the Bayesian conjectures remains large or increases over time. We consider
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several examples.

Example 1 Suppose the agent believes that she nearly knows the true state
of the world. We capture this by letting there be some ω, ϕ({ω}) = 1 − ε
(and hence allowing Assumption 2 to fail). If, on top of this, the agent is also
correct in her focus on state ω, then (that is, at state ω) the weight attached
to Bayesian conjectures will never dip below 1 − ε. In other words, if the
agent believes she knows the truth, and happens to be right, her Bayesian
beliefs will remain dominant.

Example 2 A slightly less trivial example is the following. Suppose the
agent believes she faces a cyclical process, but is uncertain of its period. To
capture these beliefs in a simple model, let us consider only Bayesian and
case-based reasoning. In addition, let X = {0} and Y = {0, 1}, so that all
periods have the same observable features, and they only differ in the binary
variable the agent is trying to predict. For k ≥ 1, let ωk ∈ Ω be defined by

ωkY (t) =

{
0 2mk ≤ t < (2m+ 1)k m = 0, 1, 2, ...
1 (2m+ 1)k ≤ t < (2m+ 2)k m = 0, 1, 2, ...

.

Thus, for k = 1 the process is 01010101..., for k = 2 it is 001100110011... and
so forth.

Let the agent’s beliefs satisfy

ϕ(
{
{ωk}

}
) =

1− ε
2k

and
ϕT (
{
{ω}|ω /∈

{
ωk |1 ≤ k

}}
) = 0.

Thus, the agent splits all the weight of the Bayesian conjectures among the
conjectures

{
ωk
}

and leaves no weight to the other Bayesian beliefs.21 Once
again, Assumption 2 fails. The remaining weight, ε, is split among the case-
based conjectures.

Next suppose that the agent is right in her belief that the process is indeed
cyclical (starting with a sequence of 0’s). Thus, the data generating process

21Observe that these Bayesian beliefs can also be readily described as rule-based beliefs.
We suspect that this is not a coincidence. When Bayesian beliefs violate Assumption 2, it
is likely to be the case that they reflect some knowledge about the data generating process,
which can also be viewed as believing in a class of rules.
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chooses one of the states ωk. At this state, once we get to period t = k,
all the Bayesian conjectures

{
ωk

′}
for k′ 6= k are refuted. In contrast, the

conjecture
{
ωk
}

is not refuted at any t. Consequently, at ωk, for every t ≥ k,
the total weight of the Bayesian conjectures remains 1−ε

2k . The total weight
of the case-based conjectures converges to 0, resulting in the Bayesian mode
of reasoning remaining the dominant one (for large t). Clearly, this will only
be true at the states

{
ωk
}

. At other states the converse result holds, because
all Bayesian conjectures will be refuted and case-based reasoning will be the
only remaining mode of reasoning.

Example 3 Let us again take X = {0} and Y = {0, 1}, and restrict
attention to Bayesian and case-based reasoning. Suppose the agent believes
that values of Y are independently and identically distributed across periods,
with a probability of ωY (t) = 1 that is unknown and drawn from a finite set,
for simplicity taken to be the set

{
1
4
, 3

4

}
. The resulting process violates

Assumption 2. However, for every ht, the weight of the Bayesian conjectures
consistent with ht decreases exponentially fast in t. This suggests that a
result analogous to Proposition 2 will still hold. Specifically, one may replace
2 by the more general condition, that there exists γ < 1 such that, for some
polynomial P (t), for every t and every ht,

ϕ (B(ht)) ≤ γtP (t) (12)

and conclude that the ratio ϕ (B(ht)) /ϕ (CB(ht)) still converges to 0 at each
ω. (Indeed, the first part of the proof of Proposition 2 consists in showing
that Assumption 2 implies this condition.) This condition holds in the case
of an iid Bernoulli random variable as long as its parameter is known to
be bounded away from 0, 1. Thus, for Bayesian reasoning to survive in this
set-up, the agent has to make sure that the case-based conjectures get expo-
nentially decreasing weight, as mentioned above. Alternatively, it seems more
reasonable to suggest that the agent predict an average of the realizations of
the random variable, rather than exact sequences thereof.

Example 4 Considering the same set-up, X = {0} and Y = {0, 1}, let us
limit attention to the first T periods. Consider a Bayesian agent who has a
uniform belief over the average

ȳT =
1

T

T−1∑
t=0

ωY (t)
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and, given ȳT , a uniform distribution over all the corresponding states. Thus,
the agent puts a weight of 1

T+1
on the sequence 1, 1, ..., 1, but only a weight

of 1
T (T+1)

on each sequences with (T − 1) 1’s and a single 0, and a weight

o(T−3) on each sequence with two 0’s, and so forth.
The total weight of all case-based conjectures is a convergent series. This

implies that the weight of all the case-based conjectures that are relevant at
T has to decline to zero at a rate that is faster than 1

T
. Hence, if the agent

observes the sequence 1, 1, ..., 1, she will put more weight on the Bayesian
conjecture that can be described also by the rule “ωY (t) = 1 for every
t.”However, if the agent observes one exception to this rule, the Bayesian
conjecture that predicts only 1’s will have a weight that is o(T−2). The more
exceptions one observes, the lower is the weight of the Bayesian conjectures.

If the rate of decline of the weight of case-based conjectures in polynomial
in T , say, o(T−k) for k > 1, then finitely many exceptions to the rule “y is
always 1” will suffice to switch to case-based reasoning. (Observe, however,
that this reasoning is likely to make similar predictions: if all but k times
one has observed yt = 1, the modal prediction will still be yT = 1.) If, by
contrast, the weight of case-based conjectures decreases exponentially fast in
T , even very spotty patterns will keep the Bayesian conjectures on par with
the case-based ones.

4.2 Case-Based vs. Rule-Based Reasoning

This section sketches another positive application of the model, dealing with
the dynamics of case-based versus rule-based reasoning. In a sense, Example
4 above can also be viewed as comparing the two modes of reasoning. How-
ever, in that example that “rule” and its exceptions were jointly modeled
by Bayesian beliefs. Here our focus is on “rules” that are given directly by
multi-state conjectures.

Consider again the simplest case of X = {0}, Y = {0, 1}. Assume that
yt are iid, where yt = 1 with probability p.

Define the set of rules,

RB = {Ri,y | i ≥ 0, y ∈ Y } ,

where
Ri,y = {ω ∈ Ω |ωY (t) = y ∀t ≥ i}
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for i ≥ 0 and y ∈ Y . Hence, each rule is identified by a given period i
and outcome y, and predicts that from period i on, only outcome y will be
observed.

Because there are no x values to consider, the case-based conjectures are
simply

Ai,t = {ω ∈ Ω |ωY (i) = ωY (t)} ,

and the set of all case-based conjectures is

CB = {Ai,t | i < t} .

Thus, bothRB and CB are countable. At history ht there are precisely t case-
based (unrefuted and non-tautological) conjectures, that is, CB (ht) contains
t conjectures, whereas the number of rule-based conjectures inRB (ht) ranges
between 2 and (t+ 1).

When recent history is suggestive of a simple rule (a large number of
observations of 0 or of 1), the agent adopts the rule “recent observations will
continue forever.” When recent history is more spotty, and no simple rule
explains it, the agent assigns less weight to rule-based reasoning and resorts
to case-based reasoning, which in this case means reliance on past frequencies.
Since, for every k, there is a positive probability to observe a run of k 0’s
or k 1’s, in the long run we should expect to find periods in which history
suggests rules, followed by periods in which no rule seems to explain the data.
Therefore, it should be expected that from time to time there will emerge a
theory that is accepted by most agents, and at some point it will collapse.
When it does collapse, confusion may lead agents to adopt less theoretical,
more case-based methods, until the data seem to suggest a new theory, and
so forth. In other words, even if the data are completely random, it should
be expected that theories would rise and fall every so often, with case-based
reasoning being more prominent between regimes of different theories.

Observe that the balance of weights between the two modes of reasoning is
driven by the success of rule-based reasoning. This reflects the intuition that
people would like to understand the process they observe, and that such “un-
derstanding” means a simple, concise theory that explains the data. If such
a theory exists, agents will tend to prefer it over case-based reasoning. But
when all simple theories are refuted, agents will resort to case-based reason-
ing. Theories or rules are exciting when they succeed, but, being ambitious,
they can also fail. Cases, by contrast, are no more than an amalgamation of
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data, and thus they do not provide any deep insights or a sensation of “un-
derstanding.” On the bright side, they can never be refuted. They are always
there, waiting faithfully for the agent, who would devote more attention to
them when her heroic attempts to understand the process fail.

5 Optimal Credence

We not turn to a normative question. Suppose that the agent can choose her
weighting function ϕ. How should she make this choice? Or, what should be
the criterion for choosing ϕ?

In this set-up, the agent has no prior probability over the state space. In
fact, the question we ask is precisely which is an appropriate “prior prob-
ability,”where the latter may put some weight of credence on multi-state
conjectures. In the absence of such a prior, expected utility maximization is
not well-defined. Instead, one may consider the maxmin payoff (or minmax
loss) or minmax regret criteria.

The agent will always be safer predicting that the outcome will be in
larger rather than smaller sets Y ′ ⊂ Y . To make the prediction problem
meaningful, suppose that at each history ht, the agent must predict a single
element of Y . The agent’s decision rule is to predict a value y′ that maximizes
the function ϕ(A(ht, {y})).

Now let
L(ϕ, ω}

be the expected loss the agent encounters if she uses weighting function ϕ and
the actual state is ω. We take this to be the discounted sum of the agent’s
losses over her infinite horizon, for some discount factor less than one.22

Given a state ω and model ϕ, the agent’s payoff is

−L(ϕ, ω}
22This is in general an expected payoff because histories may occur at which ϕ(A, {y})

has multiple maximizers, in which case we would like to allow the agent to randomize. We
could extend this formulation to allow the agent to make multivalued predictions, with
a loss from prediction |Y ′| of 1/|Y ′| if the realized outcome lies in |Y ′| and a loss of 1
otherwise, without affecting the result. We could substitute a limit-of-the-means payoff
criterion for the discounted expected loss, at the cost of some technical modifications in
the arguments, to account for the fact that changes in behavior over any finite number of
periods are irrelevant for a limit-of-the-means calculation.
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and her regret is
L(ϕ, ω)− inf

ϕ′
L(ϕ′, ω).

Now suppose the agent chooses ϕ to either to minimize her maximum loss

sup
ω∈Ω
L(ϕ, ω)

or to minimize her maximal regret:

sup
ω∈Ω
{L(ϕ, ω)− inf

ϕ′
L(ϕ′, ω)}.

This turns out to be an unhelpful criterion for choosing ϕ:

Proposition 3 For any ϕ,

sup
ω∈Ω
L(ϕ, ω) = sup

ω∈Ω
{L(ϕ, ω)− inf

ϕ′
L(ϕ′, ω)} ≥ |Y | − 1

|Y |
.

There exists a function ϕ that achieves the lower bound |Y |−1
|Y | on the minmax

loss or minmax regret, and the only such function is one that after every
history ht sets ϕ(A(ht, {y})) = ϕ(A(ht, {y′})) for all y, y′ ∈ Y .

The implication of this result is that the agent minimizes her maximum
loss, or minimizes her maximum regret, by adopting a model that is abso-
lutely useless in prediction.

This result should not be too surprising: in the absence of additional
structure, no learning is possible. For learning to be effective, one needs to
know something about the problem, for instance, that the data generating
process is one of a given set of distributions. But if nothing is known, and
nature, as it were, is allowed to be malevolent and choose a state that is worse
for the agent’s prediction strategy, the agent will be better off by random
predictions than by reasoned ones.

6 Concluding Remarks

6.1 Methods for Generating Conjectures

In many examples ranging from scientific to everyday reasoning, it may be
more realistic to put weight ϕ not on specific conjectures A, but on methods
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or algorithms that generate them. For example, linear regression is one such
method. When deciding how much faith to put in the prediction generated
by the OLS method, it seems more plausible that agents put weight on
“whatever the OLS method prediction came out to be” rather than on a
specific equation such as “yt = 0.3 + 5.47xt.”

One simple way to capture such reasoning is to allow the carriers of weight
of credence, that is, the argument of ϕ, to be sets of conjectures, with the
understanding that within each set a most successful conjecture is selected for
prediction, and that the degree of success of the set is judged by the accuracy
of this most successful conjecture. The following example illustrates.

Suppose that the agent is faced with a sequence of datasets. In each
dataset there are many consecutive observations, indicating whether a comet
has appeared (1) or not (0). Different datasets refer to potentially different
comets.

Now assume that the agent considers the general notion that comets
appear in a cyclical fashion. That is, each dataset would look like

0, 0, ..., 0, 1, 0, 0, ..., 0, 1, ...

where a single 1 appears after k 0’s precisely. However, k may vary from
one dataset to the next. In this case, the general notion or “paradigm” that
comets have a cyclical behavior can be modeled by a set of conjectures—
all conjectures that predict cycles, parametrized by k. If many comets have
been observed to appear according to a cycle, the general method, suggesting
“find the best cyclical theory that explains the observations” will gain much
support, and will likely be used in the future. Observe that the method may
gain credence even though the particular conjectures it generates differ from
one dataset to the next.

6.2 Probabilistic Conjectures

An important next step is to extend this framework to probabilistic conjec-
tures. Conjectures would then be represented by probability distributions
rather than by sets of states. The Bayesian conjectures in such an exten-
sion are straightforward, and consist of probability distributions over states.
Each such distribution f has an a priori weight ϕ({f}). If the support of
ϕ is contained within the set of Bayesian conjectures, then ϕ is simply the
Bayesian prior. Given a history ht, the conjecture f is no longer classified
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dichotomously into “consistent with ht” or “inconsistent with ht.” Rather,
it is continuously ranked in [0, 1] according to the probability of history ht
given theory f , that is, according to the theory’s likelihood function at ht.
Multiplying the likelihood function by the a-priori weight ϕ({f}) leads to a
natural measure of the belief in theory f following history ht. Indeed, this
is, up to renormalization, precisely the result of a Bayesian update over the
Bayesian conjectures.

The specification of non-Bayesian conjectures is less clear. Should these
be formulated as sets of distributions over states, or as distributions over
sets of states, some combination of these generalizations, or something else?
Finding such an appropriate generalization is a topic for further research.

6.3 Single-Conjecture Predictions

This paper is concerned with reasoning that takes many conjectures into
account and aggregates their predictions. Alternatively, we may consider
reasoning modes that focus on a most preferred conjecture (among the unre-
futed ones) and make predictions based on it alone. For example, if we select
the simplest theory that is consistent with the data, we obtain Wittgenstein’s
[41] definition of induction.23 If, by contrast, we apply this method to case-
based conjectures, we end up with nearest-neighbor approaches (see Cover
and Hart [7] and Fix and Hodges [11, 12]) rather than with the case-based
aggregation discussed here.

6.4 Decision Theory

The present paper deals with prediction. In order to explore its implications
to decision making, the framework needs to incorporate acts and payoffs,
and to specify the interaction between the agent’s choices and the under-
lying process. There are situations in which this interaction is practically
non-existent. For example, a small trader in the stock market may assume
that her actions have no effect on future prices. In this case, the decision
problem is in close relationship to a prediction problem: the payoff at each

23See Solomonoff [39], who suggested to couple this preference for simplicty with Kol-
mogorov complexity measure to yield a theory of philosophy of science. Gilboa and
Samuelson [15] discuss the optimal selection of the preference relation over theories in
this context.
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period is a function of the quality of the guess made, but no additional com-
plications arise. Other examples of this type include a physician who has
to make diagnoses or treatment decisions for a different patient each period,
or a graduate admissions officer who has to make admission decisions for
consecutive candidates.

However, many choice situations require one to go beyond predictions,
and to consider the effect that one’s choices might have on the unfolding
of the process in the future. In these situations, it is conceptually simplest
to assume that the agent makes one choice of an act (or a strategy) at the
outset, then history unfolds, nature determines the state of the world, and the
agent’s utility is determined by the resulting outcome. In this case, each act
f associates outcomes with states ω as in a standard Savage model. But our
framework needs to be augmented before it can be used to generate beliefs
over this state space. The reason is that many conjectures in the framework –
such as case-based conjectures, or those corresponding to association rules –
only constrain the values of yt given xt, but remain silent on the evolution of
the xt’s in the future. Such conjectures are all one needs to make conditional
predictions at a specific period t, but if one engages in long-run predictions,
one has to ask oneself not only which yτ are likely to occur given xτ for τ > t,
but also which xτ are likely to be observed in the future.

7 Appendix: Proofs

7.1 Proof of Proposition 1

Define, for each ht and for every Y ′ ( Y ,

ϕ ({[ht, Y ′] ∪ (ht)
c}) = chtϕht

(A(ht, Y
′))

for every conjecture of the form {[ht, Y ′] ∪ (ht)
c}, and set ϕ(F) = 0 where

F is the set of all conjectures that are not of this form, and cht > 0 is
to be determined. Observe that the conjecture [ht, Y

′] ∪ (ht)
c is unrefuted

and non-tautological only at ht. Hence, at history ht, only conjectures of
the form [ht, Y

′′] ∪ (ht)
c (with Y ′′ ( Y ) are unrefuted and non-tautological,

and the total weight that they assign to a subset of outcomes Y ′ is by con-
struction chtϕht

(A(ht, Y
′)). The coefficient cht is chosen so that the total

weight assigned by ϕ to all conjectures converges, which would be the case,
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for instance, if ∑
ht∈Ht

cht = t−2.

7.2 Proof of Proposition 2

We start by showing that, because the ratio of weights assigned to specific
histories of the same length t is bounded by a polynomial of t, the weight
of each particular such event is bounded by this polynomial divided by an
exponential function of t.

Consider a period t and a history ht. If ϕ(B(ht)) > η, then, since for
every ht, h

′
t ∈ Ht, ϕ(B(ht)) ≤ P (t)ϕ(B(h′t)), for every h′t,

ϕ(B(h′t)) ≥
ϕ(B(ht))

P (t)
>

η

P (t)

Observe that |Ht| ≥ dt for d = |X||Y | > 1. Hence

ϕ(B) >
dtη

P (t)

and ϕ(B) < 1 implies

η <
P (t)

dt

Since this is true for every η such that η < ϕ(B(ht)), we conclude that

ϕ(B(ht)) ≤
P (t)

dt
. (13)

We now turn to discuss the weight of the case-based conjectures that are
relevant for prediction at ht. We wish to show that this weight cannot be
too small. First, observe that the set of case-based conjectures is countable.
Denote the total weight of the case-based conjectures whose second period
is τ by Sτ . Explicitly,

Sτ =
τ−1∑
i=0

∑
x,z∈X

ϕ ({Ai,τ ,x′,z′})

Then,
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ϕ (CB) =
∞∑
τ=1

Sτ .

Choose T large enough so that

T∑
τ=1

Sτ >
ϕ (CB)

2
. (14a)

From now on, assume that t ≥ T .
Consider a conjectureA(t−1),t,x,z ∈ CB and assume that ϕ

({
A(t−1),t,x,z

})
<

ξ. By (10) (of Assumption 3) we have that, for all t′ < t, x′, z′

ϕ
({
A(t′−1),t′,x′,z′

})
< ξQ(t).

By (11) (of that Assumption), we know that for all i < t′ < t, and all x′, z′,

ϕ ({Ai,t′,x′,z′}) < ϕ
({
A(t′−1),t′,x′,z′

})
Q(t) < ξ [Q(t)]2 .

The overall number of case-based conjectures whose second period is t′ ≤ t

is |X|2
(
t
2

)
. Since the weight of each is less than ξ [Q(t)]2 we conclude that

their total weight satisfies

T∑
τ=1

Sτ < ξ [Q(t)]2 |X|2
(
t
2

)
and, using (14a) we obtain

ϕ (CB)

2
<

T∑
τ=1

Sτ < ξ [Q(t)]2 |X|2
(
t
2

)
.

Define

R(t) = 2 [Q(t)]2 |X|2
(
t
2

)
and observe that it is a polynomial in t.

Thus, we have

ξ >
ϕ (CB)

R(T )
.

36



Since this holds for any ξ such that ξ > ϕ
({
A(t−1),t,x,z

})
, it has to be the

case that

ϕ
({
A(t−1),t,x,z

})
≥ ϕ (CB)

R(t)
.

We observe that at ht there are precisely t case-based conjectures that
are unrefuted and non-tautological, and among them there is one of the type
A(t−1)t,x,z (that is, the one defined by x = ωX(t − 1) and z = ωX(t)). It
follows that

ϕ (CB(ht)) ≥ ϕ
({
A(t−1),t,x,z

})
≥ ϕ (CB)

R(t)
. (15)

Combining (13) and (15) we obtain

ϕ (B(ht))

ϕ (CB(ht))
<
P (t)R(t)

ϕ(CB)dt

where the expression on the right clearly converges to 0 as t→∞.

7.3 Proof of Proposition 3

Fix a state ω, and then consider a function ϕ with ϕ({ω}) = 1 and ϕ(A) = 0
for all other conjectures. Then L(ϕ, ω) = 0. This in turn ensures that
infϕ′ L(ϕ′, ω) = 0 for all ω, and hence that the minmax loss and minmax
regret criteria are identical.

We now show that

max
ϕ

[
sup
ω∈Ω
L(ϕ, ω)

]
=
|Y | − 1

|Y |

Consider a two-person zero-sum game between the agent, choosing ϕ, and
nature, choosing ω, where the agent’s payoff is −L(ϕ, ω). Fix ϕ and define
ω (ϕ) inductively as follows: at each ht(ω), choose the y value that has the
lowest weight ϕ(A(ht, {y})). The probability that the agent, predicting a y

in arg maxy ϕ(A(ht, {y})) will be correct is bounded by |Y |−1
|Y | , and therefore

so is the long-run average payoff, L(ϕ, ω). Since the payoff is discounted, one

may invoke the maxmin theorem to conclude that |Y |−1
|Y | is an upper bound

on supω∈Ω L(ϕ, ω) for every ϕ.
Clearly, a random ϕ obtains this bound. For any other ϕ′, such that

arg maxy ϕ(A(ht, {y})) is a proper subset of Y for some ht, ω (ϕ′) achieves a
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strictly lower payoff (than |Y |−1
|Y | ) at ht, and therefore also for the discounted

average.

References

[1] Hirotugu Akaike. An approximation to the density function. Annals of
the Institute of Statistical Mathematics, 6(2): 127–132, 1954.

[2] Ron Alquist and Lutz Kilian. What do we learn from the price of crude
oil futures? Journal of Applied Econometrics, 25: 539–573, 2010.

[3] Thomas Bayes. An essay towards solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society of London, 53:
370–418, 1763. Communicated by Mr. Price.

[4] Jacob Bernoulli. Ars Conjectandi. Thurnisius, Basel, 1713.

[5] Rudolf Carnap. The Continuum of Inductive Methods. University of
Chicago Press, Chicago, 1952.

[6] Gustave Choquet. Theory of capacities. Annales de l’Institut Fourier,
5 (Grenoble): 131–295, 1953–54.

[7] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1): 21–27, 1967.

[8] Bruno de Finetti. Sul Significato Soggettivo della Probabilità. Funda-
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