
Complexity consideration on the existence of

strategy-proof social choice functions

Koji TAKAMIYA∗

Economics, Niigata University

July 13, 2010

Abstract

Social choice theorists have long recognized that in models of private goods
economies, strategy-proofness is sometimes incompatible with individual rational-
ity plus Pareto efficiency, and that it is usually more or less “difficult” to prove this
incompatibility. In this paper we examine this “difficulty” from the viewpoint of
computational complexity. We set up a simple model of private goods exchange
where agents bring in and trade indivisible objects under consumption constraints.
We consider the computational problem of deciding whether for a given specifica-
tion of the economy, there exists a social choice function which is strategy-proof,
individually rational and Pareto efficient. We prove that (i) this is an NP-hard
problem, and point out, however, that (ii) the problem becomes computationally
trivial if we drop one of these three properties of the social choice function.

JEL Classification— C72, C78, D71, D78.
Keywords— computational complexity; allocation of indivisible objects; NP-

hardness; strategy-proofness; individual rationality; Pareto efficiency.

1 Introduction

In the traditional literature of social choice, it has been a central issue to investigate the

existence of social choice procedures which satisfy various desirable properties from the

viewpoints of incentive, efficiency, equity and so on. Among many themes in this realm,

the existence of strategy-proof social choice functions has attracted significant attention

for many years. It has been long recognized that strategy-proofness often conflicts with

other desirable properties. And not only that there are conflicts but also it is often
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difficult to establish that there is indeed a conflict, i.e. to prove that strategy-proofness is

incompatible with some other desirable properties. For example, the celebrated Gibbard-

Satterthwaite theorem (Gibbard 1973, Satterthwaite 1975) depicts the conflict between

strategy-proof and non-dictatorship, a very weak requirement of equity. And this conflict

was difficult to establish: The Gibbard-Satterthwaite theorem had been conjectured many

years before it was proved. It took a long time for the theorem to be proved.

More recent studies on strategy-proof functions in models of private goods economies

have revealed the conflict between strategy-proofness and individual rationality plus Pareto

efficiency, which is also often difficult to establish. For example, in 1972, Hurwicz proved

that for any classical pure exchange economy with two persons and two goods, if the pref-

erence domain includes a sufficiently wide set of classical preferences, then there does not

exist a social choice function which is strategy-proof, individually rational and Pareto effi-

cient (Hurwicz, 1972). He conjectured that the same result holds true for those economies

with three or more agents and goods. However, this problem had remained unsolved for

about thirty years until Serizawa’s work appeared (Serizawa, 2002), which proved that

Hurwicz’s result is generalized to the case of any finite numbers of agents and goods.

Another example is from the theory of matching models such as of the marriage

problem (Gale and Shapley, 1962) and the housing market (Shapley and Scarf, 1972).

It had been known from the early 1980’s that (i) for the marriage problem with the

full strict preference domain1, no core stable rule (i.e. a social choice function which

chooses a core stable matching for each preference profile) is strategy-proof, and that

(ii) in contrast, for the housing market also with the full strict preference domain, there

exists the unique core stable rule and this rule is strategy-proof (Roth, 1982a; Roth

1982b). (Note that any core stable rule is both individually rational and Pareto efficient.)

Clearly these two results exhibit a sharp contrast. However, for a long time, it had not

been fully understood where this sharp contrast came from. It was 1999 when Sönmez

provided an answer to this question: He set up a general model of indivisible objects

allocation, which covers both the marriage problem and the housing market, and proved

the following: Provided that the preference domain is the full strict preference domain, if

a social choice function is strategy-proof, individually rational and Pareto efficient, then

it must be that for each preference profile, the core (i.e. the set of core stable allocations)

is a singleton unless it is empty, and that this function chooses the core stable allocation

whenever available. In the marriage problem the core is neither a singleton nor empty for

some preference profile. Thus Sönmez’s result implies the nonexistence of strategy-proof

functions which are individaully raiotional and Pareto efficient in the marriage problem.

Later, Takamiya (2003) showed a conditional converse of Sönmez’s result: Provided that

1The full strict preference domain is the domain where each agent can have any strict ranking over the
agent’s own assignments (i.e. no consumption externalities). This domain is usually assumed in social
choice analysis of matching problems.
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the preference domain is the full strict preference domain, if the core is a singleton for

each preference profile, then the unique core stable rule is strategy-proof. Evidently the

strategy-proofness of the core stable rule in the housing market immediately follows from

this result. These two results of Sönmez and Takamiya have provided some understanding

in the existence problem of strategy-proof functions by relating it to the singletonness of

the core. However, to this date, it has not been fully investigated under what conditions

the singletonness of the core is obtained in the general setting formulated by Sönmez.

This seems to be a hard combinatorial problem.2

To date, social choice theorists know from experience (partially described as above)

that in models of private goods economies, it is usually more or less difficult to decide

whether there exists a social choice function which satisfies these three properties alto-

gether. This is in contrast to that it is also known that it is usually easy to obtain

strategy-proof functions which are individually rational or Pareto efficient separately. For

example, in most models of private goods economies, it is trivial to have a strategy-proof

function which is Pareto efficient only: A dictatorial function, in which some fixed agent

always receives all the goods in the economy, is both strategy-proof and Pareto efficient.

The purpose of the present research is to examine the idea that in private goods

economies, it is difficult to determine whether there exists a social choice function which

is strategy-proof, individually rational and Pareto efficient. Our approach is metaphorical

in the sense that we do not directly analyze those problems which social choice theorists

have attacked or do not go into the ingenuity of their proofs. Rather, for our analytical

purpose, we set up a simple and artificial problem and analyze its difficulty of a specific

kind: To embody the concept of “difficulty” we employ the concept of time complexity in

the theory of computational complexity.

Concretely, our analysis is as follows: We give a simple model of private goods

economies where agents bring in and trade indivisible objects. There each agent is faced

with a consumption constraint. This model is a special case of the general model of indi-

visible objects allocation formulated in Sönmez’s above-mentioned paper. We consider the

computational problem of deciding whether for a given specification of the economy (i.e.

a given instance of the problem), there exists a social choice function which is strategy-

proof, individually rational and Pareto efficient. First, for our main theorem, we prove

that this is an NP-hard problem. Here NP-hardness captures the idea of “difficulty”

in deciding the existence of such functions. Second, we point out, however, that this

problem becomes computationally trivial if we drop one of these three properties of the

social choice function. That is, for any two properties out of these three properties, for

2This problem has been partially solved: In the setting of the coalition formation problem, a special
case of Sönmez’s general model, Pápai (2004) has provided a necessary and sufficient condition for the
core to be a singleton for each preference profile in the full strict preference domain. However, to our
knowledge, the computational complexity of checking this condition has not been investigated.
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any instance of the problem there exists at least one social choice function which satisfies

these two properties. Thus the answer to the decision problem is always “yes”.

It is important to note that the nature of our research is different from that of most lines

of research in computational social choice. Usually in computational social choice theory,

computational ideas are used to formulate and analyze various realistic constraints put on

the prosecution of social choice procedures or the behavior of agents who act in the social

choice process, which arise from the limited availability of material and mental resources.

However, here computational ideas are employed to express the idea of the difficulty which

(traditional) social choice researchers face with when they look for desirable strategy-proof

functions. In this sense, our paper is still research in computational social choice but more

precisely is “research about the traditional social choice research from the viewpoint of

computation”.

2 Preliminaries

2.1 Economic Model

Let us define the economic model that we examine. We consider modeling reallocation of

multiple indivisible objects. An allocation problem is a list E = (N,Ω, {Θi}i∈N , u, (w, q), x0).

Here N is the set of agents, and Ω is the set of (indivisible) objects. N and Ω are

both assumed to be nonempty finite sets.

An allocation is a set-valued function x : N →→ Ω which is “partitional,” i.e. (i)

i 6= j =⇒ x(i)∩ x(j) = ∅ and (ii)
⋃
N x(i) = Ω. Let us denote the set of allocations by X .

u := {ui}i∈N are utility functions, and Θi is the type space of agent i. Each

element of Θi specifies the preference of agent i in the following way: A value function

v : (Θ1 ∪ . . . ∪Θn)× Ω→ Z is defined. We assume utility functions are all additive with

respect to the values given by the value function. That is, the utility function of agent i,

ui : X ×Θi → Z is defined so as to satisfy the following: for all x ∈ X and θi ∈ Θi,

ui(x, θi) =
∑
ω∈x(i)

v(θi, ω). (1)

Note that values v(θi, ·) could be negative and so are utility levels.

(w, q) is a feasibility constraint, which consists of weights w and capacities q.

Here w is a function w : N × Ω → Z+, and q is a function q : N → Z+. Here Z+ :=

{0, 1, 2, · · ·}. For agent i ∈ N , object ω ∈ Ω has a weight w(i, ω), and i can consume a

bundle of objects unless the sum of the weights of these objects exceeds i’s capacity q(i).

Thus it is defined that an allocation x ∈ X is feasible to agent i ∈ N if

∑
ω∈x(i)

w(i, ω) ≤ q(i). (2)
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An allocation x ∈ X is called feasible if it is feasible to all the agents. Let us denote

the set of feasible allocations by X f . In the following we refer to feasible allocations

simply as allocations.

Finally, x0 denotes the initial endowments. We assume x0 ∈ X f .

Let x ∈ X f and θ ∈ Θ. Then x is individually rational at θ if for any i ∈ N ,

ui(x, θi) ≥ ui(x0, θ
i). (3)

And x is Pareto efficient at θ if for any y ∈ X f

[∀i ∈ N, ui(y, θi) ≥ ui(x, θi)] =⇒ [∀i ∈ N, ui(y, θi) = ui(x, θi)]. (4)

2.2 Relevance of the model

Our model is a special case of the general allocation model studied by Sönmez (1999)

(which we have mentioned in Sec.1). To Sönmez’s model, we have added specific structures

on admissible preferences and feasible allocations, namely, additivity of utilities, weights

of objects, capacities of agents. These structures admit concise representations of feasible

allocations and preferences. Without such structures, inputs of the problem can be overly

redundant, which apparently reduces the complexity of the problem.

We admit that as a model of private goods economies, our model is unusual and

perhaps artificial in assuming weights and capacities. However, it is still relevant as a

modeling of economic problems. For example, our model includes the housing market

(Shapley and Scarf, 1974), an important economic model, as a special case. Further, in

some cases, we may interpret weights as personalized prices of objects and capacities as

budgets that agents face.

2.3 Properties of social choice functions

Let an allocation problem be given. Let us denote Θ := Θ1×Θ2×· · ·×Θn. Any element

θ of Θ is called a type profile. A social choice function is a function f : Θ → X f .

We consider the following three properties of social choice functions.

• Strategy-proofness. Let i ∈ N and θ ∈ Θ. Then we say that i manipulates f

at θ if for some θ̃i ∈ Θi,

ui(f(θ−i, θ̃i), θi) > ui(f(θ−i, θi), θi), (5)

f is called strategy-proof if for any i ∈ N , i cannot manipulate f at any θ ∈ Θ.

• Individual rationality. Let us call f individually rational if for any θ ∈ Θ, x

is individually rational at θ.

• Pareto efficiency. Let us call f Pareto efficient if for any θ ∈ Θ, x is Pareto

efficient at θ.
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3 Results

3.1 Main theorem

We consider the decision problem in the following. Let a positive integer n̄ be given.

NAME: SP + IR + PE(n̄)

INSTANCE: An allocation problem E = (N,Ω, {Θi}i∈N , u, (w, q), x0) with |N | = n̄.

QUESTION: Does there exist a social choice function for E which is strategy-proof,

individually rational and Pareto efficient?

Our main result is that SP + IR + PE(n̄) is NP-hard. Note that in our formulation of

the computational problem above, the number of agents is fixed, i.e. |N | = n̄. Without

this restriction on the number of agents, it is not much surprising even if the problem

would be computationally hard because the space of type profiles grows exponentially as

the number of agents gets larger.

Theorem 1 The problem SP + IR + PE(n̄) is NP-hard if n̄ ≥ 4.

The construction made in our proof of Theorem 1 requires four agents at least (n̄ ≥ 4).

We do not know whether SP + IR + PE(n̄) is NP-hard if n̄ = 2 or 3.

3.2 Interpretation of the main theorem

(1) To understand the subtlety of Theorem 1, we should be aware of the following fact.

Theorem 2 Let an allocation problem E = (N,Ω, {Θi}i∈N , u, (w, q), x0) with an arbitrary

size of |N | be given. And let us pick up any two of the three properties, strategy-proofness,

individual rationality and Pareto efficiency. Then there exists a social choice function

which satisfies these two properties.

Theorem 2 says that if we drop one of the three properties of social choice functions

which are listed in the problem SP + IR + PE(n̄), then the computational problem be-

comes trivial: The answer is “yes” for any instance. This fact tells us that what makes

the computational problem hard is neither each single requirement of strategy-proofness,

individual rationality or Pareto efficiency, or even each pair of these three properties, but

rather is the combination of these three properties altogether.

(2) It is important to notice that what is at issue here is the computational problem

deciding the existence of social choice functions which satisfy some properties. One should

carefully distinguish this problem from the computational problem of deciding whether a

given social choice function satisfies those properties. In fact, the latter problem can be

computationally very hard without combining these three properties. For example, if we
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are given an allocation problem and a type profile is fixed, then the problem of deciding

whether a given allocation is not Pareto efficient is NP-complete. To state more precisely,

the following theorem holds. Let us define the following problem: Let a natural number

n̄ be given.

NAME: NOTPARETO(n̄)

INSTANCE: An allocation problem E = (N,Ω, {Θi}i∈N , u, (w, q), x0) with |N | = n̄ and

Θ = {θ}; and an allocation x ∈ X f .

QUESTION: Is x not Pareto efficient?

Theorem 3 The problem NOTPARETO(n̄) is NP-complete if n̄ ≥ 2.

From the above theorem, it directly follows that the problem of deciding whether a

given social choice function is not Pareto efficient is also NP-complete. On the contrary,

it is computationally trivial to decide whether a Pareto efficient social choice function

exists because such a function always exists.

Our Theorem 3 follows from Theorem 1 in the paper of de Keijzer, Bouveret, Klos and

Zhang (2009), which studies computational problems arising from an allocation model of

indivisible objects with additive utilities.3 However, in Sec.3.3, we will give our own proof

of Theorem 3, which utilizes a construction used in our proof of Theorem 1.

3.3 Proofs

For the preparation of proving Theorem 1, let us consider the following allocation problem

E1.

• N = {1, 2, 3}.

• Ω = {c1, c2, c3}.

• x1
0 = {c1}; x2

0 = {c2, c3}; x3
0 = ∅.

• Θ1 = {θ1
1, θ

1
2, θ

1
3, θ

1
4, θ

1
5, θ

1
6}; Θ2 = {θ2

1, θ
2
2, θ

2
3, θ

2
4, θ

2
5, θ

2
6}; Θ3 = {θ3}.

• The following table depicts the values of v(θ1
j , ck), v(θ2

j , ck) and v(θ3, ck).

Table 1.

θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ3

v(·, c1) 1 1 2 2 3 3 3 3 2 2 1 1 0

v(·, c2) 2 3 1 3 1 2 2 1 3 1 3 2 0

v(·, c3) 3 2 3 1 2 1 1 2 1 3 2 3 0

3We are thankful to an anonymous referee for notifying us of the work of de Keijzer et al.
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• The following table depicts the values of w(i, ck) and q(i).

Table 2.

1 2 3

w(·, c1) 1 1 0

w(·, c2) 1 1 0

w(·, c3) 1 1 0

q(·) 1 2 0

Lemma 1 For the allocation problem E1, there does not exist any social choice function

that is strategy-proof, individually rational and Pareto efficient.

Proof. Suppose that f is strategy-proof, individually rational and Pareto efficient. Let us

denote allocations x ∈ X f by 3-tuples, i.e. x = (x(1), x(2), x(3)). Let

x1 = ({c1}, {c2, c3}, ∅), x2 = ({c2}, {c3, c1}, ∅), x3 = ({c3}, {c1, c2}, ∅). (6)

Since f is Pareto efficient, for all θ ∈ Θ, f(θ) ∈ {x1, x2, x3}. Given the above, clearly,

for each of agents 1 and 2, the agent’s possible preferences can be regarded as the set

of strict rankings over {x1, x2, x3}. Further, we can ignore the existence of agent 3.

Therefore, f is regarded as a social choice function with three alternatives and two agents

whose admissible preferences are exactly the set of strict rankings of the three alternatives.

Then since f is strategy-proof and Pareto efficient, by the Gibbard-Satterthwaite theo-

rem (Gibbard 1973, Satterthwaite 1975) f is dictatorial, i.e. there exists some i ∈ {1, 2}
such that for any θ ∈ Θ, f(θ) equals the allocation that maximizes agent i’s utility at θi.

Clearly f violates individual rationality. Thus we reach the desired conclusion. 2

Proof of Theorem 1. Clearly it suffices to prove only for the case where n̄ = 4 because

one can increase the number of agents by adding dummy agents who does not have any

initial assignments and is not able to receive any objects for the capacity constraint. The

proof is done by reduction from the following problem PARTITION ([SP 12] in Gary and

Johnson (1979)).

NAME: PARTITION

INSTANCE: A finite set A = {a1, a2, . . . , ap} and a function s : A→ N.

QUESTION: Does there exist a partition {A1, A2} ofA such that
∑
a∈A1

s(a) =
∑
a∈A2

s(a).

Let an instance of PARTITION (A, s) be given. Then we give a polynomial-time

transformation of this instance into an instance of SP + IR + PE(4) in the following, and
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we will show that the answer to this instance of PARTITION is “yes” if and only if the

the answer to this instance of SP + IR + PE(4) is “yes”.

Let us consider the following instance E2 of SP + IR + PE(4). We denote
∑
a∈A s(a)

by s(A) in the sequel.

• N = {1, 2, 3, 4}.

• Ω = A ∪ {b, c1, c2, c3}.

• x1
0 = {c1}; x2

0 = {c2, c3}; x3
0 = A; x4

0 = {b}.

• Θ1 = {θ1
1, θ

1
2, θ

1
3, θ

1
4, θ

1
5, θ

1
6}; Θ2 = {θ2

1, θ
2
2, θ

2
3, θ

2
4, θ

2
5, θ

2
6}; Θ3 = {θ3}; Θ4 = {θ4}.

• The following table depicts the values of v(·, ·).

Table 3.

θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ3 θ4

v(·, c1) 1 1 2 2 3 3 3 3 2 2 1 1 0 0

v(·, c2) 2 3 1 3 1 2 2 1 3 1 3 2 0 0

v(·, c3) 3 2 3 1 2 1 1 2 1 3 2 3 0 0

v(·, a1) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(a1)
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

v(·, ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(ai)
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

v(·, ap) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(ap)

v(·, b) 4 4 4 4 4 4 0 0 0 0 0 0 0 s(A)− 1

• The following table depicts the values of w(·, ·) and q(·).

Table 4.

1 2 3 4

w(·, c1) 1 1 0 s(A) + 1

w(·, c2) 1 1 0 s(A) + 1

w(·, c3) 1 1 0 s(A) + 1

w(·, a1) 2 3 0 2s(a1)
...

...
...

...
...

w(·, ai) 2 3 0 2s(ai)
...

...
...

...
...

w(·, ap) 2 3 0 2s(ap)

w(·, b) 1 3 1 s(A)

q(·) 1 2 0 s(A)
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Note the two key facts of this construction: (a) Agent 3 brings the objects A =

{a1, a2, . . . , ap} into the economy as the initial allocation, and these objects are valuable

only to agent 4. (b) If agent 4 leaves this economy with his initial assignment and agent 3’s

initial assignment is deleted, then the resulting economy is identical with E1 constructed

for Lemma 1.

(i) First, we show that if the answer to the PARTITION instance (A, s) is “yes”, then

that to the SP + IR + PE(4) instance constructed above is “yes”. Now suppose that the

answer to the PARTITION instance is “yes”. In the following we show that for any type

profile, there is only one allocation which is both individually rational and Pareto efficient,

and that the social choice function which chooses this allocation for any type profile (thus

individually rational and Pareto efficient) is strategy-proof.

Let us fix a type profile. Given the date above, it is clear that agent 4 is to be better

off by releasing the object b and instead collecting some objects A′ out of A if and only if

A′ satisfies
∑
a∈A′ 2s(a) = s(A). And that the answer to the PARTITION instance (A, s)

is “yes” means that such A′ exists. This reallocation (agent 4 releases b and obtains A′)

is Pareto improvement because the objects A are valuable only to agent 4 and chucking

out the object b never hurts the other agents’ utility. And this fills up agent 4’s capacity.

Further, Pareto efficiency forces the object b to go to agent 1, and this fills up agent 1’s

capacity. By Pareto efficiency, agent 2 receives the two his most preferred objects out

of {c1, c2, c3} depending on agent 2’s type, and this fills up agent 2’s capacity. Finally

agent 3 receives the remaining object from {c1, c2, c3} and A. Obviously this allocation

is individually rational. This is the unique allocation which is individually rational and

Pareto efficient.

Let us consider the social choice function which chooses the unique individually ratio-

nal and Pareto efficient allocation for each type profile. Agents 1 and 4 receives the same

assignment for any type profile, and only the assignments of agents 2 and 3 vary. Agent

2 obtains his most preferred assignment. And agent 3’s utility level is constant whatever

this agent receives. Therefore, there is no situation where some agent can manipulate the

outcome, that is, this function is strategy-proof.

(ii) Second, we show that if the answer to the PARTITION instance (A, s) is “no”,

then that to the SP + IR + PE(4) instance is “no”. Now suppose that the answer to the

PARTITION instance is “no”. In this case, it is not possible for agent 4 to improve his

utility level by receiving some objects from A in return for giving up the object b. Thus

individual rationality forces agent 4 to keep the object b that fills up agent 4’s capacity.

Now for the feasibility constraint, any object in A cannot go to either agents 1 or 2 so

agent 3 has to keep all the objects of A. Therefore, by the fact (b) indicated above, now

the situation is identical with the economy E1. Then by applying Lemma 1, we conclude

that there does not exist any strategy-proof social choice function which is individually

rational and Pareto efficient. 2
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Proof of Theorem 2. (i) There exists a social choice function which is individually rational

and Pareto efficient. Because it is clear that for every type profile, there exists at least

one allocation which is both Pareto efficient and individually rational.

(ii) There exists a social choice function which is strategy-proof and individually ratio-

nal. An example is the constant function, which always chooses the initial endowments

x0.

(iii) There exists a social choice function which is strategy-proof and Pareto efficient.

A social choice function based on serial dictatorship (Satterthwaite and Sonnenschein,

1981) satisfies both properties. In the following we define this class of functions and prove

that any function in this class satisfies these two properties: Let π be a bijection from

{1, 2, . . . , |N |} to N . For each θ ∈ Θ, the sets Cπ(θ, i) (i = 0, 1, 2, . . . , |N |) is defined

inductively as follows:

Cπ(θ, 0) = X f , (7)

for i = 1, 2, . . . , |N |, Cπ(θ, i) = arg max
x∈Cπ(θ, i−1)

uπ(i)(x, θπ(i)). (8)

Note that if i < j, then Cπ(θ, j) ⊂ Cπ(θ, i). A social choice function f is a serial

dictatorship based on π if for all θ ∈ Θ, f(θ) ∈ Cπ(θ, |N |).
First, we show that for any bijection π : {1, 2, . . . , |N |} → N , any serial dictatorship f

on π is Pareto efficient: Let x ∈ f(θ) and y ∈ X f . Suppose ∀i ∈ N, ui(y, θi) ≥ ui(x, θi).

Then, first of all, we have y ∈ Cπ(θ, 1) because otherwise it would be uπ(1)(y, θπ(1)) <

uπ(1)(x, θπ(1)), a contradiction. Next, we note that for any i ∈ {2, 3, . . . , |N |} if y ∈
Cπ(θ, i−1), then y ∈ Cπ(θ, i) because otherwise it would be also uπ(i)(y, θπ(i)) < uπ(i)(x, θπ(i)).

Consequently, by induction, we have y ∈ Cπ(θ, |N |), which implies ∀i ∈ N, ui(y, θi) =

ui(x, θi). Thus we conclude that x is Pareto efficient.

Second, it is easy to see that these f are also strategy-proof. Because of the way

serial dictatorship is defined, any agent π(i) receives one of his best assignments among

Cπ(θ, i−1). However, Cπ(θ, i−1) is fully determined by (θπ(1), . . . , θπ(i−1)) so agent π(i)’s

reporting of his type does not affect this set. Thus π(i) cannot be better off by misre-

porting his type. 2

Proof of Theorem 3. First, we show that NOTPARETO(2) (so NOTPARETO(n̄) with

n̄ ≥ 2) isNP-hard by reduction from PARTITION. Let an instance (A, s) of PARTITION

be given. Let us give a polynomial-time transformation of this instance into an instance

of NOTPARETO(2) as follows. The following construction is based on the same idea as

the gadget consisting of agents 3 and 4 in the proof of Theorem 1 above.

• N = {1, 2}.

• Ω = A ∪ {b}.
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• x1
0 = A; x2

0 = {b}

• The following table depicts the values of v.

Table 5.

θ1 θ2

v(·, a1) 0 2s(a1)
...

...
...

v(·, ai) 0 2s(ai)
...

...
...

v(·, ap) 0 2s(ap)

v(·, b) 0 s(A)− 1

• The following table depicts the values of w, q.

Table 6.

1 2

w(·, a1) 0 2s(a1)
...

...
...

w(·, ai) 0 2s(ai)
...

...
...

w(·, ap) 0 2s(ap)

w(·, b) 0 s(A)

q(·) 0 s(A)

• The allocation x equals x0.

Now the allocation x is not Pareto efficient if and only if there exists a subset A′ of

A such that
∑
a∈A′ 2s(a) = s(A). (Because if such A′ exists, agent 2 can be better off

without hurting agent 1’s utility by releasing the object b and instead collecting A′. )

And that the answer to the PARTITION instance (A, s) is “yes” if and only if such A′

exists. This establishes the NP-hardness of NOTPARETO.

Second, it is easy to see NOTPARETO(n̄) ∈ NP . If the answer to a NOTPARETO(n̄)

instance is “yes” i.e. the considered allocation x is not Pareto efficient, then there exists

some other allocation y which Pareto dominates x. Now y is a certificate and it can be

checked in polynomial time whether y Pareto dominates x. 2
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