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Abstract: We provide a pure Nash equilibrium existence theorem for games with discon-
tinuous payoffs whose hypotheses are in a number of ways weaker than those of the theorem
of Reny (1999). Our result subsumes a prior existence result of Nishimura and Friedman
(1981) that is not covered by his theorem. In comparison with Reny’s argument, our proof
is brief.

1 Introduction

Many important and famous games in economics (e.g, the Hotelling location game,
Bertrand competition, Cournot competition with fixed costs, and various auction
models) have discontinuous payoffs, and consequently do not satisfy the hypotheses
of Nash’s existence proof or its infinite dimensional generalizations, but nonethe-
less have a nonempty set of pure Nash equilibria. Using an argument that is quite
ingenious and involved, Reny (1999) establishes a result that subsumes earlier equi-
librium existence results covering many such examples. His theorem’s hypotheses
are simple and weak, and in many cases easy to verify. The result has been ap-
plied in novel settings many times since then. (See for example Monteiro and Page
(2008).) Largely in response to his work, a number of papers on discontinuous
games have appeared recently (Bagh and Jofre (2006); Bich (2006, 2008); Monteiro
and Page (2007); Carmona (2008); Prokopovich (2008); Barelli and Soza (2009);
de Castro (2009); Tian (2009)). Of these, Barelli and Soza (2009) deserves special
mention because it adopts many of our techniques from an earlier version of this
paper.

∗We have benefitted from useful conversations with Phil Reny and Paulo Barelli. Comments
of seminar audiences at the University of Chicago, the University of Illinois Urbana-Champagne,
the University of Kyoto, the 2009 European Workshop on General Equilibrium Theory, and the
2009 NSF/NBER/CEME Conference on General Equilibrium and Mathematical Economics, are
gratefully acknowledged. McLennan’s work was funded in part by Australian Research Council
grant DP0773324.
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As Reny explains, the results of Nishimura and Friedman (1981) and Roberts
and Sonnenschein (1976) seemingly have a different character, and are not obvious
consequences of his result. Here we provide a generalization of Reny’s theorem
that easily implies the Nishimura and Friedman result. The concepts introduced
in Section 3 were inspired by the hope of developing a generalization that could
by used to prove the existence result of Novshek (1985), which is the most refined
result asserting existence of Cournot equilibrium in the stream of literature following
Roberts and Sonnenschein. This was eventually accomplished for the case of two
firms, but extending the argument to an arbitrary number of firms proved to be
quite difficult, and subsequently we learned of the work of Kukushkin (1994), which
presents a brief proof of the general case. As with various proofs of topological
fixed point theorems, Kukushkin’s argument combines a nontrivial combinatoric
result with a straightforward limiting argument. The combinatoric component of
Kukushkin’s argument is quite different from the analogous component of proofs of
Brouwer’s fixed point theorem, suggesting that the Novshek-Kukushkin fixed point
theorem has a fundamentally different character.

The next section reviews Reny’s theorem and states a result whose hypotheses
are less restrictive than Reny’s, but more restrictive than our main result. We
also explain how this result implies the Nishimura-Friedman existence theorem.
Section 3 states our main result Theorem 3.3. Reny introduces two concepts, payoff
security and reciprocal upper semicontinuity, which together imply the hypotheses
of his main result, and which are often easy to verify in applications. Section 3
also explains the extension of those concepts to our setting. Section 4 discusses an
example illustrating the application of our result, and Section 5 gives its proof.

2 Preliminaries: Reny and Nishimura-Friedman

Our system of notation is largely taken from Reny (1999). There is a fixed normal

form game

G = (X1, . . . ,XN , u1, . . . , uN )

with N players, where, for each i = 1, . . . , N , the i-th player’s strategy set Xi is a
non-empty compact convex subset of a topological vector space, and the i-th player’s
payoff function ui is a function from the set of strategy profiles X =

∏N
i=1

Xi to R.
We adopt the usual notation for “all players other than i.” Let X−i =

∏

j 6=iXj .
If x ∈ X is given, x−i denotes the projection of x on X−i. For given x−i ∈ X−i

(or x ∈ X) and yi ∈ Xi we write (yi, x−i) for the strategy profile z ∈ X satisfying
zi = yi and zj = xj if j 6= i. We endow X and each X−i with their product
topologies.

We now review Reny’s theorem. A Nash equilibrium of G is a point x∗ ∈ X
satisfying ui(x

∗) ≥ ui(yi, x
∗
−i) for all i and all yi ∈ Xi. (This would usually be

described as a “pure Nash equilibrium,” but we never refer to mixed equilibria, so
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we omit the qualifier ‘pure.’) For each player i let Bi : X×R → Xi be the set valued
mapping

Bi(x, αi) = {yi ∈ Xi : ui(yi, x−i) ≥ αi} .

Definition 2.1. A player i can secure a payoff αi ∈ R at x ∈ X if there is a neigh-
borhood U of x in X such that

⋂

z∈U

Bi(z, αi) 6= ∅.

That is, there is some yi ∈ Xi such that ui(yi, z−i) ≥ αi for all z ∈ U .
Throughout we assume that each ui is bounded. Let

u = (u1, . . . , uN ) : X → R
N .

For x ∈ X let A(x) be the set of α ∈ R
N such that (x, α) is in the closure of the

graph of u. Since u is bounded, each A(x) is compact. The game G is better reply

secure at x ∈ X if, for any α′ ∈ A(x), there is some player i and ε > 0 such that
player i can secure α′

i +ε at x. The game G is better reply secure if it is better reply
secure on every strategy profile that is not a Nash equilibrium.

Theorem 2.2 (Reny (1999)). Suppose that for each i and each x−i ∈ X−i the func-

tion ui(·, x−i) : Xi → R is quasiconcave. If G is better reply secure, then it has a

Nash equilibrium.

To better understand Reny’s result in the context of this note we reformulate
better reply security.

Definition 2.3. The game is A-secure at x ∈ X if there is α ∈ R
N and ε > 0 such

that:

(a) every player i can secure αi + ε at x;

(b) there is a neighborhood U of x such that for any z ∈ U there exists some
player i with ui(zi) < αi − ε, i.e., zi /∈ Bi(z, αi − ε).

Lemma 2.4. For each x ∈ X the game is better reply secure at x if and only if it is

A-secure at x.

Proof. First assume that the game is A-secure at x, with α, ε and U as in the
definition. Each α′ ∈ A(x) is the limit of values of u along some sequence or net
converging to x, so there is some i with α′

i ≤ αi − ε. This i can secure α′
i + ε at x,

which shows that the game is better reply secure at x.
Now assume that the game is better reply secure at x. For each i let τi be a

neighborhood base of x−i, and let

βi = sup
yi∈Xi

sup
U∈τi

inf
z−i∈U

ui(yi, z−i) .
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Then α′
i < βi if and only if there is some ε > 0 such that α′

i + ε can be secured by
player i at x. Since the game is better reply secure at x, for each α′ ∈ A(x) there is
some player i such that βi > α′

i, which implies that the inequality βi > α′′
i + ε holds

for some ε > 0 and all α′′ in some neighborhood of α′. Since A(x) is compact, it is
covered by finitely many such neighborhoods, so we may choose ε > 0 such that for
any α′ ∈ A(x) there is some i with βi > α′

i + 2ε. Define α ∈ R
N by setting

αi = βi − ε.

In view of the definition of βi, for each i, player i can secure αi + ε at x, as per (a).
Aiming at a contradiction, suppose (b) is false, so for each U ∈ τi there is some

zU ∈ U such that ui(zU ) ≥ αi − ε for all i. Since τi is a directed set (ordered
by reverse inclusion) the boundedness of the image of u implies that there is a
convergent subnet, so there is α′ ∈ A(x) such that α′

i ≥ αi − ε = βi − 2ε for all i,
contrary to what we showed above.

For each i let Ci : X × R → Xi be the set valued mapping

Ci(x, αi) = conBi(x, αi) .

Definition 2.5. The game is B-secure at x ∈ X if there is α ∈ R
N such that:

(a) every player i can secure αi at x;

(b) there is a neighborhood U of x such that for any z ∈ U there exists some
player i with zi /∈ Ci(z, αi).

Because there is no ε > 0, in one respect B-secure is more easily satisfied than
A-security. A very simple maximization example illustrates how this may matter:
let N = 1 and X1 = [0, 1] with

u1(x1) =

{

0, x1 = 0,

(x1 −
1

2
)2, 0 < x1 ≤ 1.

The game is B-secure at every x ∈ [0, 1) for α1 = 1

4
. But the game is not A-secure at

x1 = 0. Proposition 2.6 below implies that it has an equilibrium, which obviousely
is x1 = 1.

On the other hand, in part (b) Definition 2.5 replaces Bi(z, αi) with Ci(z, αi),
which makes it harder to satisfy. However, Bi(z, αi) = Ci(z, αi) when each ui(·, x−i)
is quasiconcave, so the net effect is to make the hypotheses of Proposition 2.6
below weaker than those of Reny’s Theorem 2.2. The hypotheses of the main result
Theorem 3.3 are weaker still.

Proposition 2.6. If the game is B-secure at each x ∈ X that is not a Nash equilib-

rium, then G has a Nash equilibrium.
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Nishimura and Friedman (1981) prove the existence of a Nash equilibrium when
each Xi is a nonempty, compact, convex subset of a Euclidean space, u is continuous
(but not necessarily quasiconcave) and for any x that is not a Nash equilibrium there
is an agent i, a coordinate index k, and an open neighborhood U of x, such that

(y1
ik − x1

ik)(y
2
ik − x2

ik) > 0

whenever x1, x2 ∈ U and y1
i and y2

i are best responses for i to x1 and x2 respectively.
Using compactness, and the continuity of ui, it is not difficult to show that this is
equivalent to (y1

ik−xik)(y
2
ik−xik) > 0 for any two best responses y1

i , y
2
i to x. A more

general condition that does not depend on the coordinate system, or the assumption
of finite dimensionality, is that there is a hyperplane that strictly separates xi from
the set of i’s best responses to x.

We now show that if G satisfies the hypotheses of Nishimura and Friedman’s
result, then it is B-secure and thus satisfies the hypotheses of Proposition 2.6.
Consider an x ∈ X that is not a Nash equilibrium. For each i = 1, . . . , N let βi be
the utility for i when other agents play their components of x−i and i plays a best
response to x. Since u is continuous, for any ε > 0 player i can secure βi − ε at x
by playing such a best response. For any neighborhood V of Bi(x, βi) it is the case
that Bi(x, βi − ε) ⊂ V when ε is sufficiently small, and in turn it follows that there
is a neighborhood U of x such that Bi(z, βi − ε) ⊂ V for all z ∈ U . It follows that if
there is a hyperplane strictly separating xi from Bi(x, βi), then for sufficiently small
ε > 0 and a sufficiently small neighborhood U of x, this hyperplane also strictly
separates zi and Bi(z, βi − ε) for all z ∈ U , in which case zi /∈ Ci(z, βi). Setting
α = (β1 − ε, . . . , βN − ε) gives the required property.

3 The Main Result and Payoff Security

For each i fix a set valued mapping Xi : X → Xi, and let X = (X1, . . . ,XN ). We call
X a restriction operator. For each i define the set valued mappings BX

i : X×R → Xi

and CX
i : X × R → Xi by setting

BX
i (x, αi) = {yi ∈ Xi(x) : ui(yi, x−i) ≥ αi} and CX

i (x, αi) = conBX
i (x, αi).

This machinery can be motivated by considering Cournot oligopoly with fixed
costs. It will often happen that the quantities that allow a firm to obtain at least a
certain level of profits αi, for a given vector x−i of quantities of its rivals, will include
both increases and reductions to zero, in which case the current quantity will be
in Ci(x, αi), contrary to (b) of Definition 2.5. Introducing a restriction operator
allows the analyst to restrict attention to one possibility or the other at each point,
and if this is done in a “sufficiently continuous” manner the conditions below will
be satisfied.
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We should expect the restriction operator to be defined in different ways in
different regions of X, and consequently the power of this technique should be
enhanced if we allow multiple securing strategies to be employed at points in the
boundaries of these regions. Our main result allows this possibility, but it should be
mentioned that it does not figure in the analysis of the example in the next section.

Definition 3.1. Player i can X -secure a payoff αi ∈ R at x ∈ X if there is a fi-
nite closed cover F 1, . . . , F J of a neighborhood of x such that for each j we have
⋂

z∈F j BX
i (z, αi) 6= ∅.

As in Reny (1999) X need not be a Hausdorff space. Thus, for x ∈ X the set
{x} need not be closed, and we let [x] denote the closure of {x}.

Definition 3.2. If x ∈ X, U ⊂ X, and α ∈ R
N , then the game G is (X , α, U)-secure

at x if:

(a) each player i can X -secure αi at x;

(b) for any z ∈ U there is some player i for whom zi /∈ C
X
i (z, αi).

The game is (X , α)-secure at x if it is (X , α, U)-secure at x for some neighborhood
U of x, and it is X -secure at x if there is some α such that it is (X , α)-secure at
x. We say that G is X -secure if it is X -secure at every x such that [x] does not
contain a Nash equilibrium, and we say that G is restrictionally secure if there is a
restriction operator X such that it is X -secure.

Our main result, which is proved in Section 5, is as follows:

Theorem 3.3. The game G is restrictionally secure if and only if it has a Nash

equilibrium.

Reny points out that a combination of two conditions, payoff security and re-
ciprocal upper semicontinuity, imply the hypotheses of his existence result, and in
applications it is typically relatively easy to verify them when they hold. We now
define natural generalizations of these notions in our setting, and establish that
together they imply that the game is restrictionally secure.

Reny’s notion of payoff security requires that for each x and ε > 0 each player
i can secure ui(x) − ε at x. We say that X is universal if Xi(x) = Xi for all i and
x ∈ X. Even when this is the case the following definition is more easily satisfied
than Reny’s notion because of the possibility of using different securing strategies
in different cells of a finite closed cover of a neighborhood of x.

Definition 3.4. The game G is X -payoff secure at x ∈ X if, for each ε > 0, each
player i can X -secure ui(x)−ε at x. The game G is X -payoff secure if it is X -secure
at each x ∈ X.
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Reny’s reciprocal upper semicontinuity requires that u(x) = α whenever (x, α)
is in the closure of the graph of u and α ≥ u(x). That is, for each δ > 0 there is a
neighborhood U of x and an ε > 0 such that for each z ∈ U , if ui(z) > ui(x) + δ for
some j, then there must be a player j with uj(z) < uj(x)− ε. Our generalization is
as follows:

Definition 3.5. The game G is X -reciprocally upper semicontinuous at x ∈ X if for
every δ > 0 there exists ε > 0 and a neighborhood U of x such that for each z ∈ U ,
if there is a player i with zi ∈ CX

i (z, ui(x) + δ), then there is a player j such that
zj /∈ CX

j (z, uj(x) − ε). The game G is X -reciprocally upper semicontinuous if it is
reciprocally upper semicontinuous at each x ∈ X.

The next result generalizes Reny’s Proposition 3.2, which asserts that pay-
off security and reciprocal upper semicontinuity imply better reply security. We
say that X is other-directed if, for each i, Xi(x) depends only on x−i, so that
Xi(yi, x−i) = Xi(zi, x−i) for all x−i ∈ X−i and yi, zi ∈ Xi.

Proposition 3.6. If X is other-directed and G is X -payoff secure and X -reciprocally

upper semicontinuous, then it is X -secure. Thus, the game has a Nash equilibrium.

Proof. Fixing an x ∈ X that is not a Nash equilibrium, our goal is to show that
the game is X -secure at x. Let I be the set of players such that xi is not a best
response to x−i. For each i ∈ I, choose yi such that ui(yi, x−i) > ui(x), and let
δ > 0 be small enough that ui(yi, x−i) > ui(x) + δ for all i ∈ I. Since the game
is X -payoff secure, each i ∈ I can X -secure αi = ui(x) + δ at (yi, x−i). Since X is
other-directed, player i can also X -secure αi at x.

Since the game is X -reciprocally upper semicontinuous, there is an ε > 0 and
a neighborhood U of x such that for all z ∈ U , if zi ∈ CX

i (z, ui(x) + δ) for some
i, then zj /∈ CX

j (z, uj(x) − ε) for some j. Since the game is X -payoff secure, each
j /∈ I can X -secure αj = uj(x) − ε at x. It is now the case that for each z ∈ U ,
either zi /∈ CX

i (z, αi) for all i ∈ I or zj /∈ CX
j (z, αj) for some j /∈ I.

Reny points out (Corollary 3.4) that if each ui is lower semicontinuous in the
strategies of the other players, then the game is necessarily payoff secure because
for each x, ε > 0, and i, player i can use xi to secure ui(x) − ε. Since it is possible
that xi /∈ Xi(x), this logic does not extend to our setting. However, the game is
evidently X -payoff secure if:

(a) for each each x ∈ X, i, and ǫ > 0, the set BX
i (x, ui(x) − ǫ) is nonempty,

(b) for each i and yi ∈ Xi the set {x ∈ X : yi ∈ Xi(x)} is open, and

(c) each ui is lower semicontinuous in the strategies of the other players.
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Bagh and Jofre (2006) show that best reply security is implied by payoff security
and a condition that is weaker than reciprocal upper semicontinuity. We have not
managed to find a suitable analog of that concept. Carmona (2008) shows that
existence of equilibrium is implied by a weakening of payoff security and a weak
form of upper semicontinuity. Again, we do not know of analogs of these conditions
in our setting.

4 An Example

This section presents an example illustrating how restriction operators can be ap-
plied. Let X1 = X2 = [0, 1], and let u1, u2 : X → R be bounded utility functions
that are upper semicontinuous and continuous in the other agent’s strategy, so that
for each i and xi, ui(xi, ·) is continuous.

For each i = 1, 2 let ri : R → R be the set valued function

ri(x−i) = argmax
zi∈R

ui(zi, x−i).

Since ui is upper semicontinuous, ri is nonempty valued and has a closed graph,
which is to say that it is an upper semicontinuous correspondence. Let

r+i (x−i) = max ri(x−i) and r−i (x−i) = min ri(x−i).

The key assumption is a version of strategic complementarity: if x−i < x′−i, then
r+i (x−i) ≤ r−i (x′−i). Our example is obtained from the two firm Cournot model
by reversing the ordering of one of the agent’s strategies; Novshek (1985) discusses
assumptions on the Cournot model that imply this condition. We also assume that
r−i (0) > 0 and r+i (1) < 1 for both i. This is without loss of generality: for example,
for ε > 0 we can define an extended game with the same set of equilibria by setting
X̃1 = X̃2 = [0, 1 + ε] and

ũi(x̃) = ui(min{x̃1, 1},min{x̃2, 1}) − max{0, x̃i − 1}.

We will say that x is a quasiequilibrium if r−i (x−i) ≤ xi ≤ r+i (x−i) for both i.
Applying the Kakutani fixed point theorem to the correspondence

x 7→ [r−
1

(x2), r
+
1

(x2)] × [r−
2

(x1), r
+
2

(x1)]

shows that the set of quasiequilibria is nonempty and compact, and our assumptions
imply that it is contained in (0, 1)2. If x and x′ are quasiequilibria with x′1 > x1,
then x′2 ≥ r−

2
(x′1) ≥ r+

2
(x1) ≥ x2, and similarly with the two agents reversed.

Since the set of quasiequilibria is compact, there is a quasiequilibrium x∗ such that
x1 ≤ x∗1 and x2 ≤ x∗2 for all quasiequilibria x. Let

Ω = {x ∈ [0, 1]2 : x1 ≤ x∗1 or x2 ≤ x∗2 }.
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The restriction operator X = (X1,X2) is defined by setting

Xi(x) =











[r−i (x−i), 1], if x /∈ Ω,

(xi, 1], if x ∈ Ω and xi 6= 1,

{1}, if x ∈ Ω and xi = 1.

We will show that if there is no Nash equilibrium, then the game is X -secure. An
important point is that r−

2
(x1) > x∗2 whenever x1 > x∗1. This is certainly the case

if r+
1

(x∗2) = x∗1 because then r+
2

(x∗1) > x∗2. (Otherwise x∗ is a Nash equilibrium.)
On the other hand, if r+

1
(x∗2) > x∗1 and r−

2
(x1) = x∗2, then r−

2
(x′1) = r+

2
(x′1) = x∗2

whenever x∗1 < x′1 < x1, so that (x′1, x
∗
2) is a quasiequilibrium whenever x∗1 < x′1 <

r+
1

(x∗2), contrary to the definition of x∗. Symmetrically, r−
1

(x2) > x∗1 whenever
x2 > x∗2.

We need to show that the game is X -secure at an arbitrary x. There are two
main cases:

Case 1: x ∈ Ω. Let α = (α1, α2) where α1 and α2 be lower bounds for u1 and u2

on [0, 1]2. Then each agent i can use any element of Xi(x) to X -secure αi at x. We
claim that there is a neighborhood U of x such that there is at least one i such that
for all z ∈ U we have zi /∈ CX

i (z, αi) because Xi(z) ⊂ (zi, 1], so that the game is
(X , α, U)-secure at x. This is obviously the case when x is in the relative interior of
Ω. If x is in the relative boundary of Ω, then x1 ≥ x∗1 and x2 ≥ x∗2, and at least one
of these inequalities holds with equality. Suppose that x1 > x∗1 and x2 = x∗2. (The
case x2 > x∗2 and x1 = x∗1 is symmetric.) Since r−

2
(x′1) > x∗2 whenever x′1 > x∗1, and

r−
2

is weakly increasing, there is a δ > 0 such that r−
2

(x′1) > x∗2 + δ for all x′1 in
some neighborhood of x1, and it follows that X2(z) ⊂ [r−

2
(z1), 1] ⊂ (z2, 1] for all z

in some neighborhood of x. Finally suppose that x = x∗. Then either r+
1

(x∗2) > x∗1
or r+

2
(x∗1) > x∗2 because otherwise x∗ is a Nash equilibrium. By symmetry we may

assume that r+
1

(x∗2) > x∗1. Then X1(z) ⊂ (z1, 1] for all z in some neighborhood of x,
either because z ∈ Ω or because z2 > x∗2, so that X1(z) ⊂ [r+

1
(x∗2), 1].

Case 2: x /∈ Ω. Since x is not a quasiequilibrium, for some i we have either
xi < r−i (x−i) or xi > r+i (x−i). We will consider the case xi < r−i (x−i) (the other
case is handled similarly) and by symmetry we may suppose that i = 1. Let α1 be
a number less than the best response utility u1(r

−
1

(x2), x2) but large enough that
for some δ > 0, u1(x

′) < α1 for all x′ with x′1 ≥ x1 − δ and x2 − δ ≤ x′2 ≤ x2 + δ.
(Such an α1 exists because u1 is upper semicontinuous.) Then z1 /∈ CX

1 (z, α1) for
all z near x. Since u1(r

−
1

(x2), ·) is continuous, player 1 can X -secure α1 at x by
playing r−

1
(x2). Let α = (α1, α2) where α2 is a lower bound on u2. Then player 2

can X -secure α2 by playing anything in X2(x), so the game is (X , α)-secure at x.
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5 The Proof of Theorem 3.3

It is not hard to show that the game is restrictionally secure when it has a Nash
equilibrium, so we do this first. Recall that a topological space is regular if each
point has a neighborhood base of closed sets. Topological vector spaces are regular
topological spaces, even if they are not Hausdorff (e.g., Schaefer (1971, p. 16)). It is
easy to see that any subspace of a regular space is regular, and that finite cartesian
products of regular spaces are regular, so each Xi, each X−i, and X are all regular.
Suppose x∗ ∈ X is a Nash equilibrium. For each i we define Xi : X → Xi by setting
Xi(x) = {x∗i }. Consider an x ∈ X such that [x] does not contain a Nash equilibrium.
Then x∗ /∈ [x], and regularity implies that X \ [x] contains a closed neighborhood of
x∗ that is disjoint from [x], so x /∈ [x∗]. Let U be any neighborhood of x that does
not contain x∗. For each i let αi = infx′∈U ui(x

∗
i , x

′
−i), and let α = (α1, . . . , αN ).

Evidently each player i can X -secure αi at x. For each i and z ∈ U we have
BX

i (z, αi) = CX
i (z, αi) = {x∗i }, so zi /∈ CX

i (z, αi). We have shown that the game is
X -secure at x.

What this argument points to is that, in practice, the value of the result is not
that it gives conditions that are necessary and sufficient. Rather, it is useful to
the extent that one can find restriction operators that are easily shown to satisfy
the hypotheses even though the existence of equilibrium would not otherwise be
obvious.

In preparation for the main body of the argument we present three lemmas, the
first of which is a fixed point theorem. Unlike Kakutani’s fixed point theorem and
its various infinite dimensional extensions, it holds in topological vector spaces that
are neither Hausdorff nor locally convex.

Lemma 5.1. Let X be a nonempty compact convex subset of a topological vector

space Y and let P : X → X be a set valued mapping. If there is a finite closed cover

G1, . . . , Gm of X such that
⋂

z∈Gj
P (z) 6= ∅ for each j = 1, . . . ,m, then there exists

x∗ ∈ X such that x∗ ∈ conP (x∗).

Proof. For each j = 1, . . . ,m choose a yj ∈
⋂

z∈Gj
P (z). Let H = {ω ∈ R

m :
∑

j ωj = 1 }, and let π̃ : H → Y be the function ω 7→
∑

j ωjyj. Then π̃ is
continuous, because addition and scalar multiplication are continuous operations
in any topological vector space. Let J̃ be the image of π̃, let J be J̃ endowed with
the usual Euclidean topology (this is unambiguous because J̃ is finite dimensional)
and let π be π̃ interpreted as a map from H to J . Then π is evidently an open
mapping. For any open V ⊂ J̃ the corresponding subset of J is π(π̃−1(V )), which
is open, so the identity map from J to J̃ is continuous, which is to say that the
topology of J is at least as fine as the topology of J̃ .

Let C̃ be the convex hull of y1, . . . , ym endowed with the subspace topology
inherited from J̃ , and let C be C̃ with the topology inherited from J . Each Gj ∩ C̃
is closed in C̃, so it is also closed in C. Define a correspondence Q : C → C by
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setting Q(x) = con{ yj : x ∈ Gj}; this is nonempty because the Gj cover X, and of
course it is compact. Since each Gj ∩ C is closed, Q is upper semicontinuous, and
applying Kakutani’s fixed point theorem gives an x∗ such that

x∗ ∈ Q(x∗) ⊂ con
(

⋃

j:x∗∈Gj

(

⋂

x∈Gj

P (x)
)

)

⊂ con P (x∗).

Lemma 5.2. Suppose that x ∈ X, α1, . . . , αℓ ∈ R
N , U1, . . . , Uℓ are neighborhoods

of x, and, for each h = 1, . . . , ℓ, the game is (X , αh, Uh)-secure at x. Let α =
maxℓ

h=1
αh and U =

⋂ℓ
h=1

Uh. Then the game is (X , α, U)-secure at x.

Proof. For each h and z ∈ Uh there are closed sets F 1
h , . . . , F

Jh

h whose union contains
Uh such that for each i and j we have

⋂

z∈F
j
h

BX
i (z, αh

i ) 6= ∅. This condition continues

to hold with Uh replaced by U . It also continues to hold if F 1
h , . . . , F

Jh

h is replaced

by the collection G1, . . . , GJ of all nonempty intersections of the form F j1
1

∩ . . . ∩

F jℓ

ℓ . Then
⋂

z∈Gj BX
i (z, αh

i ) 6= ∅ for all i = 1, . . . , N , j = 1, . . . , J , and h =
1, . . . , ℓ. For each i there is some h such that αi = αh

i , so for any j we actually have
⋂

z∈Gj BX
i (z, αi) 6= ∅, so i can X -secure αi at x.

For any z ∈ U there are h and i such that zi /∈ CX
i (z, αh

i ). Since αi ≥ αh
i , this

implies that zi /∈ CX
i (z, αi).

Lemma 5.3. If, for each x ∈ X, there is some αx ∈ R
N such that the game is

(X , αx)-secure at x, then there is a function ψ : X → R
N , each of whose component

functions ψi : X → R is upper semicontinuous and takes on finitely many values,

such that the game is (X , ψ(x))-secure at each x ∈ X.

Proof. For each x ∈ X there is an open neighborhood Ux ⊂ X such that the game is
(X , αx, Ux)-secure at x. Since X is regular, for each x there is a closed set Fx ⊂ Ux

containing x in its interior, and since X is compact it is covered by the interiors of
some finite subcollection, say Fx1

, . . . , Fxm . For each x ∈ X let

ψ(x) = max
x∈Fxj

αxj
.

Then each component ψi : X → R of ψ is upper semicontinuous and finite valued.
If x ∈ Fxj

, then x ∈ Uxj
and the game is (X , αxj

, Uxj
)-secure at x. By Lemma 5.2

there is a neighborhood U of x such that the game is (X , ψ(x), U)-secure at x.

We now have the tools we need to complete the proof of our theorem. Aiming at
a contradiction, suppose thatG is restrictionally secure but has no Nash equilibrium,
so that there is a restriction operator X such that G is X -secure at each x ∈ X.
Lemma 5.3 gives a function ψ : X → R

N , each of whose component functions is
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finite valued and upper semicontinuous, such that each x is (X , ψ(x))-secure. For
each i and x let Pi(x) = BX

i (x, ψi(x)).
Consider a particular agent i. For each x ∈ X there is a neighborhood U of x

and a finite collection of closed sets F1, . . . , Fm whose union contains U such that
⋂

z∈Fj
BX

i (z, ψi(x)) 6= ∅ for each j. Since X is regular, we can replace U with a

smaller closed neighborhood K, and in fact (because ψi is upper semicontinuous
and finite valued) we can choose K small enough that ψi(z) ≤ ψi(x) for all z ∈ K.
Replacing each Fj with Fj ∩K, we then have

⋂

z∈Fj

Pi(z) =
⋂

z∈Fj

BX
i (z, ψi(z)) ⊇

⋂

z∈Fj

BX
i (z, ψi(x)) 6= ∅ .

Since X is compact, it has a finite cover F i1, . . . , F iki where, for each j = 1, . . . , ki,
F ij is a neighborhood of a point xij ∈ X such that the description above is satisfied.

For each x let P (x) = P1(x) × · · · × PN (x). If G1, . . . , Gm are the nonempty
intersections of the form F 1j1 ∩ . . . ∩ FNjN , then

⋂

z∈Gh
P (z) 6= ∅ for each h =

1, . . . ,m. Thus the hypotheses of Lemma 5.1 are satisfied by P : X → X, so there
is an x∗ ∈ X satisfying x∗ ∈ conP (x∗), which is to say that x∗i ∈ CX

i (x∗, ψi(x
∗))

for all i. But the game is X -secure at x∗ for ψ(x∗), so for some i we have x∗i /∈
CX

i (x∗, ψi(x
∗)). This contradiction completes the proof.
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