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1 Introduction

Many real world negotiations take place in the shadow of a third party, such as an expert,

an arbitrator or even a court. Consider, for example, a firm in disputes with its employees

or customers regarding wage increase or damage compensation.1 These disputes often

involve repeated interaction between a single privately informed long-run player and a

sequence of short-run players. The recent high-profile litigations surrounding Merck,

a pharmaceutical firm, offer an interesting case in point. Merck refused to settle and

contested every case in court. After losing the first case with a compensation verdict of

$253 million in 2005, it continued to fight in court over the following two years. After

winning most of them, the firm ended up settling further 27,000 cases out of court for

$4.85 billion in total, an amount far smaller than experts predicted at the beginning.2

In these examples, the bargainers obtain random outside options ruled by a third

party when they fail to reach an agreement. Moreover, the outside options represent not

merely a disagreement point in a repeated setup; they partially reveal the informed party’s

private information. Our goal is to explore how this linkage between outside options and

incomplete information determines bargaining strategies and outcomes, and to provide a

useful analytical tool to study a variety of other related applications.

The bilateral bargaining literature has long recognized the fundamental roles of out-

side options and incomplete information in determination of bargaining strategies and

outcomes. Various details of outside options have been introduced in recent literature

to study interesting applications, from settlement bargaining (e.g. Spier (1992)) to final-

offer arbitration and mediation (e.g. Yildiz (2007) and Goltsman, Hörner, Pavlov and

Squintani (2009)). Bargaining theory with incomplete information explores uncertainties

regarding the players’ payoffs (Fudenberg, Levine and Tirole (1985), Gul, Sonnenschein

and Wilson (1986) and Cho (1990), among many others) as well as their behaviors (My-

erson (1991), Kambe (1999), Abreu and Gul (2000) and Abreu and Pearce (2007)).

The interaction between outside options and incomplete information has received little

attention to date. In a notable exception, Compte and Jehiel (2002) show that introducing

outside options to the Myerson-Abreu-Gul setup of single-sale bargaining with irrational

behavioral types may cancel out the delay and inefficiency that such informational asym-

1The sheer existence of collective governance arrangements such as courts is a demonstration of the
prominence of these applications.

2Source: New York Times, http://www.nytimes.com/2007/11/09/business/09merck.html
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metry otherwise generates. In a recent paper, Atakan and Ekmekci (2009) consider search

market as a way of endogenizing outside options.

In this paper, we highlight another interplay between outside options and incomplete

information in a repeated bargaining model, partly motivated by the aforementioned real

world applications: outside options provide informative signals as well as determinant of

the players’ immediate disagreement payoffs. In our model, a long-run player (e.g. firm)

faces disputes with a sequence of short-run players (e.g. customers/employees). The

long-run player has private information regarding his responsibility towards a transfer

(e.g. damage compensation/wage increase) to each short-run player. He is either “good”

(responsible) or “bad” (not responsible). In each period, a new short-run player enters

the game and the two parties bargain. If they reach an agreement, a transfer is made

from the long-run player to the short-run player who subsequently leaves the game. If

they disagree, an imperfect yet unbiased third party is called upon to judge the long-run

player’s responsibility, at a cost to each party.

The uninformed players in our model therefore learn from two sources of information:

any decisions made by an imperfect third party, or “hard” information, and the actions of

the informed player, or “soft” information. The presence of third party signals alters the

players’ intertemporal incentives in a significant way, as our analysis will demonstrate.

In order to derive sharp insights into our objectives, we assume that the good, non-

responsible type adopts an insistent strategy ; that is, he accepts a demand if and only if it

is less than or equal to a low constant cutoff. We develop a novel algorithm to construct

a Markov perfect equilibrium, and show that this is the generically unique equilibrium

satisfying a natural monotonicity requirement.

Remarkably, the equilibrium bargaining strategies and reputation dynamics resem-

ble the gambler’s ruin process. There exist two critical threshold levels of reputation,

0 < p∗ < p∗∗ < 1, the players’ posterior belief about the long-run player being good.

When reputation falls into the interval (p∗, p∗∗), the long-run player will turn down any

equilibrium demand made by the short-run players, receiving outside options ruled by the

third party. The belief updating is therefore driven by third party signals alone, and the

dynamics parallel those of a gambler who faces a sequence of bets with money (reputation)

and two boundaries (i.e. one below p∗ and the other above p∗∗).

When reputation is above the upper threshold p∗∗, the long-run player accepts the

short-run players’ low equilibrium demand for sure. There is no learning, and the full
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benefits of reputation are reaped. When reputation is below the lower threshold p∗, the

bad type builds reputation by randomizing between accepting and rejecting the demand

and, hence, outside options are invoked only occasionally. Here, the negative reputational

effect of a bad third party signal is reduced, and may even be overturned, by the long-

run player’s sheer act of rejection. It is worth noting that the bad type reveals himself

only when he voluntarily gives up reputation building; a third party signal, due to its

imperfectness, can never lead to full revelation.

These reputation dynamics provide one possible explanation of the bargaining postures

adopted by Merck. The huge compensation verdict in the first case may not have damaged

the firm’s reputation so severely in view of its decision to fight, and winning many other

cases would have eventually taken its reputation to a level high enough to induce favorable

settlements.3

We apply the gambler’s ruin technique to further derive the properties of bargaining

strategies and reputation dynamics, as the discount factor δ or third party precision q

goes to 1. First, as the long-run player becomes extremely patient, the lower threshold

p∗ converges to 0 while the upper threshold p∗∗ remains unchanged. Thus, the players

adopt incompatible bargaining postures over a wider range of beliefs. Note that, in

the equilibrium, the bad long-run player reveals himself only below p∗, but surprisingly,

despite this lower threshold approaching 0, the probability of reputation building, i.e.

the posterior reaching p∗∗, converges to a level strictly between 0 and 1. Second, as

third party signals become perfectly informative, p∗ tends to 0 while p∗∗ increases, and

the probability of reputation building converges to 0. The two limiting cases also differ

crucially in another respect: the number of signals invoked is larger when the discount

factor goes to 1 than when the precision of signals improves. Furthermore, letting τ(δ) be

the stopping time at which reputation hits either boundary, we derive from the gambler’s

ruin property that limδ→1 E[δτ(δ)] = 1. This allows us to explicitly characterize the limit

equilibrium payoffs.

We also investigate strategic behavior of the short-run players. In models with rep-

utation dynamics (e.g. Benabou and Laroque (1992), Mailath and Samuelson (2001),

Bar-Isaac (2003) and Mathis, McAndrews and Rochet (2009)) the uninformed players

face competitive environments and, consequently, respond continuously to their beliefs.

3One possible way to test our predictions would be to analyze the performance of Merck’s stock prices
during the process of the firm’s “gambling reputation.”
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The short-run players in our repeated bargaining model however behave in a more sophis-

ticated pattern, and this feature is crucial for our equilibrium dynamics. Remarkably, the

short-run players essentially make one of just two demands in equilibrium even though

they are allowed to choose any distribution over the real line, a prediction supported by

observations.4 This property gives rise to distinct arguments for equilibrium characteri-

zation that involve a discontinuous value function.

The presence of informative outside options is a salient feature of many repeated

interactions beyond the bargaining setup that we consider. It is not difficult to see that our

analysis and tools can be readily adapted to capture other seemingly different situations.

We elaborate on two examples below:

• Repeated Sales. A seller serves a sequence of identical buyers. The seller privately

knows his unit production cost. Each buyer only consumes one unit of the product

and his valuation is commonly known to be higher than the high cost. Each buyer

makes an offer. The high cost seller insists on a high price while the low cost seller

behaves strategically. A disagreement invokes a random and fair but imperfect third

party arbitration which results in an informative signal about the seller’s private

cost.5 Applying our analysis to this model, we will obtain gambler’s ruin dynamics:

transactions are conducted with direct involvement of third parties when the belief

on high cost seller lies between two thresholds, while the low cost seller bets his

reputation until it reaches one of the boundaries.

• Entry Deterrence. An incumbent faces a sequence of potential entrants over spatially

separated markets. The incumbent has private information about technology or

consumer brand loyalty, and this stochastically affects the parties’ profits. Each

entrant decides whether to enter and the incumbent decides whether to start a price

war. The incumbent who possesses a superior technology or high consumer loyalty

insists on fighting, while the incumbent with a regular technology or low consumer

4For instance, in her study of repeated shareholder litigations involving long-run underwriters, Alexan-
der (1991) finds that, beyond very few exceptions, the estimated strength of the case does not matter for
the settlement amount.

5Gambetta (1993) and Dixit (2009) report an intriguing example of the Sicilian Mafia’s role as an
arbitrator. Reputation in a repeated bargaining model without informative outside options has been
previously considered by Schmidt (1993). The equilibrium dynamics in his setup drastically differ from
ours.
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loyalty behaves strategically. We can interpret entry as “disagreement” and the

profits after entry as “informative outside options.”Applying our analysis to this

model, we will again derive gambler’s ruin dynamics: entry is deterred only when

the incumbent’s reputation is high, and the incumbent will fight for sure when the

reputation is between two thresholds, betting on the random payoffs to improve

his reputation. It is very important to note the difference between this model and

the standard chain-store model á la Kreps and Wilson (1982) and Milgrom and

Roberts (1982). In the above model, the incumbent is not building a reputation for

being tough per se. Such an incumbent will not scare the entrant away; rather, the

incumbent is building a reputation of having a superior technology or high consumer

loyalty, convincing the potential entrants that entry will not be profitable.

The rest of the paper is organized as follows. The next section describes a model of

repeated bargaining with a third party. Section 3 then presents our main characterization

results. In Section 4, we further discuss the properties of our equilibrium by introducing

the gambler’s ruin technique. Finally, we offer some concluding remarks in Section 5. All

proofs are relegated to Appendix, and the formal statements and proofs of some results

appear in the Supplementary Material for space reasons.

2 The Model

2.1 Description

We consider a discrete time model. Periods are indexed by t = 1, 2, . . .. A single long-run

player 1 faces an infinite sequence of short-run players 2 with a new player 2 entering in

every period. Each player 2 brings a claim to player 1.

Player 1 privately knows his type θ ∈ {G,B}, where G stands for good and B for

bad. Type B is responsible for each claim, while type G is not. As discussed in Remark

1 below, this assumption is imposed primarily for simplicity. Nonetheless, it is valid in

applications, such as the aforementioned Merck example, where the long-run player faces

repeated disputes all related to some foregone act.

The stake involved in each period, denoted by H > 0, is fixed and commonly known.

Each player 1-player 2 pair attempts to settle their dispute via voluntary bargaining, but

should they fail to reach an agreement, an external third party is called upon to determine
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whether player 1 is responsible (or, equivalently, type B) or not responsible (or type G).

Both players are committed to obey the third party’s decision: if the decision is B, player

1 should pay H to player 2 and, otherwise, player 1 should pay nothing.

The third party is imperfectly informative but unbiased: independently of the true

type of player 1 and history of the game, he makes an error with probability 1− q, where

q ∈
(

1
2
, 1
)

is common knowledge. Specifically, when player 1’s type is B (or G), the third

party decision is G (or B) with probability 1 − q. Third party decisions are therefore

conditional i.i.d. signals with precision q. Note that the signals are correlated over time

although their precision is constant. The third party could be drawn from a pool each

period.6

The timing of the stage game in period t is as follows. Player 2 makes a take-it-or-

leave-it demand st ∈ R, which player 1 can either accept or reject. If st is accepted, then

player 1 pays st to player 2; if the demand is rejected, a third party is called upon to

make a decision. At the end of a period, player 2 leaves the game forever.

Note that if player 1 is type B his expected transfer to player 2 under third party

resolution is equal to qH; if he is type G the corresponding amount is (1− q)H. To focus

on interesting cases, it is assumed throughout that c1 + c2 < qH− (1− q)H = (2q−1)H.7

Also, we assume that (1− q)H − c2 > 0, that is, each short-run player’s expected payoff

from third party resolution is always positive.

A third party signal is publicly observable and so are the details of an agreement.

However, the value of a rejected demand is unobservable to later short-run players.8 The

prior belief that player 1 is G is p1 ∈ (0, 1). Short-run players update their beliefs from

this prior and the public history that they observe. Let pt ∈ [0, 1] denote player 2’s belief

that player 1 is good at the beginning of period t. This will be referred to as player 1’s

“reputation.”

Remark 1. We have assumed that type B (G) is always responsible (not responsible).

The analysis remains the same by instead assuming the following structure. For each

6We further discuss the unbiasedness assumption in Section 5.
7If the third party is too costly, the players would never seek an external decision.
8The assumption of unobservable rejected demands allows us to avoid signaling issues. It is also

consistent with reality. See, for instance, the shareholders-auditor bargaining documented by Alexander
(1991) and Palmrose (1991), where the details of disagreement are private information while the terms
of agreement are publicly available. As discussed in Section 5, our results are robust to the possibility of
endogenous confidential agreement or open disagreement.
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claim, type G is responsible with probability q′ < 1
2

and type B is responsible with

a probability 1 − q′. Player 1 knows his type, but not his responsibility due to some

randomness. The third party makes a decision on player 1’s responsibility with precision

q′′. It is readily verified that this is isomorphic to the model above with third party

precision q = q′q′′ + (1− q′)(1− q′′).
Remark 2. Our model assumes that the stake of each claim is fixed and the same

amount of transfer from player 1 to player 2 results from the third party decision. However,

we can alternatively interpret the model as representing the following scenario. If the third

party is called upon, he decides whether or not player 1 is responsible and, in the event

of the decision being B, also identifies a random transfer whose expectation is commonly

known to the players as H.

2.2 Insistent behavior of the good type

The motivation of our paper is to model and study the dynamics of bargaining postures.

In particular, we seek to address whether and how the bad long-run player, the responsible

type, could profitably build a reputation for not being responsible by strategically adjust-

ing his bargaining postures. To analyze reputation effects in bargaining, Myerson (1991)

and Abreu and Gul (2000) propose an incisive approach that introduces the possibility of

a player who adopts a simple bargaining rule that never yields to a demand above some

cutoff. We follow this approach in our repeated setup by modeling type G’s bargaining

posture as an “insistent strategy.”

In our model, under a third party decision, good player 1 would incur an expected

payment equal to C ≡ (1−q)H+c1 while each player 2 can guarantee himself an expected

payment C ≡ (1− q)H − c2. Therefore, we assume that type G accepts a demand if and

only if it does not exceed a cutoff C ∈
(
C,C

]
. As usual, acceptance of any demand

strictly greater than C reveals that player 1 is type B, both on and off the equilibrium

path. Given the insistent strategy assumption, in what follows whenever we refer to player

1 we shall mean type B unless otherwise stated.

Remark 3. We assume the cutoff C in the above range in order to to focus on interesting

cases, for the same reason that the cutoff in r -insistent behavior of Myerson (1991) is taken

to be strictly higher than the player’s outside value. It is indeed true a priori that the

cutoff can be anything in the real line. However, modeling insistent bargaining postures
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with cutoffs outside the considered range will not deliver any insights. In particular, if

C ∈ [0, C], the equilibrium dynamics are trivial as we show in the Supplementary Material.

Remark 4. As will become clear in the analysis below, the insistent strategy assumption

with C ∈
(
C,C

]
can in fact be rationalized in our repeated setup. That is, the assumed

strategy of the good type can arise as an equilibrium behavior.

2.3 Equilibrium notion

We focus on perfect Bayesian equilibria in Markov strategies in which, at the beginning

of each period before a demand is made, any relevant past history is summarized by the

short-run players’ belief that it induces.9 A Markov strategy of player 2 in any given

period, d, maps his belief to a probability distribution over all possible demands. That is,

d : [0, 1]→4(R).

For (bad) player 1, given the current belief and demand made by player 2, a Markov

strategy, r, specifies a probability of rejection. That is,

r : [0, 1]× R→ [0, 1].

If (r, d) is a Makrov strategy profile, we write player 1’s discounted average expected

payment at belief p as S(p) with discount factor δ ∈ (0, 1). That is, it is the discounted

average expected sum of transfers to player 2 and, if any, third party costs incurred by

player 1. Note that we have already surpressed the dependence of S on the strategy profile

and the discount factor. Player 2 maximizes his expected stage game payoff while player

1 minimizes his discounted average expected payment.

A strategy profile (r, d), together with a system of beliefs, forms a Markov perfect

equilibrium if the usual conditions are satisfied. We will invoke a natural restriction of

beliefs: when the type is revealed, the game proceeds as if it has complete information.

Note also that the Markov property implies that player 1, when his type is known by

player 2, will accept a demand equal to the best that he could expect from a third party

signal, that is, qH + c1.

9Allowing for non-Markov behavior will generate a large number of equilibrium possibilities in our
repeated setup, thereby making it difficult to draw a clear conclusion. We further discuss non-Markov
equilibria in Section 5 below.
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3 Equilibrium Characterization

3.1 Some preliminary results

We first present some useful properties of a Markov equilibrium. Our first Lemma is an

important implication of the insistent strategy assumption on the good type.

Lemma 1 (Player 1 plays a cutoff strategy) Fix any δ and Markov equilibrium.

Also, fix any belief p, and consider a demand s > C (where C is the good type’s cutoff).

The following is true on or off the equilibrium path:

• If player 1 accepts s with a positive probability, then he must accept any s′ < s with

probability 1.

• If player 1 rejects s with a positive probability, then it must reject any s′ > s with

probability 1.

In equilibrium, the short-run player can make a demand which will be rejected for sure;

let us refer to such a demand as a losing demand; a demand that is made and accepted

with a positive probability in equilibrium will be referred to as a serious demand.10 Next,

we obtain an important property regarding player 2’s demand in any equilibrium. If

player 1 is patient enough, there are only two serious demands despite the fact that a

priori anything in the real line is possible. Any other demands must be either off the

equilibrium path, or offered and rejected for sure in equilibrium.

Proposition 1 (Characterization of serious demands) Fix any δ > c1+c2
(2q−1)H+c1+c2

.

In any Markov equilibrium, before player 1 reveals his type, a serious demand is either C

or qH − c2.

Let us argue informally that the only acceptable equilibrium demand other than C is

qH−c2.11 Suppose to the contrary that a higher demand s > qH−c2 is acceptable. Then,

the acceptance must occur for sure. This is because, otherwise, player 2 could profitably

10The terminology is borrowed from Hörner and Vieille (2009).
11Player 2 clearly has no incentive to demand anything between C and qH− c2 since only the bad type

would accept such a demand and the expected payoff under third party resolution conditional on player
1 being bad is qH − c2.
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deviate by demanding slightly less and the deviation would be met with sure acceptance

(by Lemma 1). But then, the bad type has an incentive to reject s and show that he is

good, a contradiction.

3.2 Main characterization

3.2.1 Intuition

Despite the technical complexity, our equilibrium characterization is driven by a simple

economic intuition. We first spell out this intuition to facilitate the reading of the paper.

If player 1’s reputation is sufficiently high, player 2’s expected payoff from resolving

the dispute via the third party is low and, moreover, he has to pay a cost to obtain a

signal. Thus, he would make a low demand C that will be accepted by both types of

player 1. Let us denote this belief threshold as p∗∗. If player 1’s reputation is sufficiently

low, player 2 expects to win a large amount under third party resolution and, therefore,

he would make a large demand not acceptable to the good type. How should the bad

type respond?

If the bad type accepts it, he reveals his type and consequently his future payments

will be high. He cannot therefore accept it with probability 1; otherwise, the equilibrium

posterior following rejection must be 1, and the bad type would mimic the good type by

rejecting the demand. The bad type should also be reluctant to reject the large demand

for sure. A third party signal is imperfect but nonetheless informative. Thus, it will hurt

his reputation on average. Moreover, from a very low reputation, he needs many pieces

of good luck (good third party signals) in order to reach a reputation high enough that

player 2 begins to make low demands. This suggests that, when his reputation is very low,

the bad type should play a mixed strategy: he rejects the high demand with an interior

probability. Moreover, given Proposition 1 above, the demand must be qH − c2.
However, when reputation is close to p∗∗, the bad type may still wish to fully mimic

the good type, reject the high demand with probability 1 and count on the chance that

the signal favors him. If he is lucky, his reputation will jump above p∗∗. Therefore, when

reputation is below p∗∗, there must exist some threshold at which player 1’s incentives

change. We shall denote this reputation level as p∗. Remarkably, we show that player 1’s

randomization at any p ∈ (0, p∗) is such that the posterior immediately after rejection,

but before a third party signal, must be constant and indeed equal to p∗.
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3.2.2 Formal statement

Theorem 1 There exists δ̄ ∈ (0, 1), independent of C, such that, for any δ > δ̄, we have

the following:

1. there exist two reputation thresholds, p∗ and p∗∗, 0 < p∗ < p∗∗ < 1, such that the

following is a Markov equilibrium outcome:

• If p ∈ (0, p∗), player 2 demands qH − c2 for sure; player 1 rejects it with

probability r(p) = p
p∗

1−p∗
1−p ≤ 1.

• If p ∈ [p∗, p∗∗), player 2 makes a losing demand.

• If p = p∗∗, player 2 demands C with probability x and makes a losing demand

with probability 1− x for some x ∈ [0, 1); player 1 accepts C for sure.

• If p ∈ (p∗∗, 1], player 2 demands C for sure; player 1 accepts it for sure.

2. The above is the generically unique Markov equilibrium outcome with the property

that S(p) is non-increasing in reputation p.12

The monotonicity of S(p) simply states that reputation is valuable. Benabou and

Laroque (1992) and Mathis, McAndrews and Rochet (2009) also derive sharp equilibrium

characterizations with the assumption of monotone value function in their repeated setups.

In the single sale bargaining setup, a similar property is invoked by Fudenberg, Levine

and Tirole (1987). It is difficult to prove that this intuitive property must hold in all

equilibria. This is also the case in our setup. We are not able to show uniqueness without

the aid of this monotonicity property.

Figure 1 below illustrates this equilibrium. The left panel describes player 2’s demand

at different reputation levels; the right panel illustrates player 1’s corresponding rejection

probability.

Figure 2 below illustrates player 1’s expected equilibrium payment at different repu-

tation levels. It is a decreasing step function with a finite number of jumps. When repu-

tation is low (p ∈ (0, p∗)), S(p) = qH + δc1− (1− δ)c2 ≡ S; when it is high (p = (p∗∗, 1]),

12Our uniqueness characterization is generic in the sense that, for a given C, it holds for all but at most
a countable set of values of δ which are roots of a series of polynomials. In the Supplementary Material,
we clarify the non-generic case and also characterize the equilibria therein.
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Figure 1: Equilibrium strategies

S(p) = C. The reputation gain of player 1 is S(0) − S(p1), the difference between the

expected payments when his type is known and when there is a prior belief p1 that he

could be good. We immediately derive that this amounts just to the total costs of a single

third party signal for low initial reputation: if p1 ∈ (0, p∗), S(0)−S(p1) = (1− δ)(c1 + c2).

Figure 2: Equilibrium payments
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3.3 The algorithm of equilibrium construction

We now sketch the technique behind the equilibrium construction which we believe to

be interesting and useful in itself. The rigorous arguments, as well as a proof for the

uniqueness result, appear in Appendix.

Step 1: From the intuition above, we can deduce player 1’s payments for the proposed

equilibrium at p ∈ (0, p∗) and p ∈ (p∗∗, 1].13 But, note that we do not yet know the values

of p∗ and p∗∗. All we have is the payment levels in the two reputation regions. The

intriguing aspect of our construction is that we identify p∗ and p∗∗ in the process of

installing correct incentives through continuation payments.

If p ∈ (0, p∗), player 2 demands qH − c2 and player 1 is indifferent between rejecting

and accepting it and, hence, his expected payment is given by accepting and revealing his

type. If his type is revealed, the demand will be qH + c1 in every period thereafter (and

he is going to accept it). Thus, for p ∈ (0, p∗), S(p) = qH + δc1 − (1− δ)c2 = S. Let us

summarize these payments in the following illustration.

Figure 3: Step 1

Step 2: We have to construct continuation payments to support S as equilibrium

payment and make player 1 indifferent at p ∈ (0, p∗) and reject at p∗ with probability 1.

What is the continuation payment from rejecting at p∗? In the current period, player 1

expects to spend qH + c1 from the third party. As of the next period, the continuation

payment depends on the signal. A bad signal (which happens with probability q) takes

13The detailed proof for this statement is rather involved. See Proposition 5 in Appendix.
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the belief below p∗ but then the continuation payment is given by S. After a good signal

the belief improves to, say, p1 > p∗ with continuation payment S(p1).14 Thus we obtain

the following Bellman equation

S(p∗) = (1− δ)(qH + c1) + δqS + δ(1− q)S(p1). (1)

Since S(p∗) = S, equation (1) pins down S(p1). It is easy to check that S(p1) ∈
(
C, S

)
when δ is sufficiently large.15 The next figure illustrates these arguments.

Figure 4: Step 2

Step 3: Having obtained the value of S(p1), we now turn to the continuation payment

that supports S(p1) in equilibrium. At p1, the proposed equilibrium requires player 1 to

reject player 2’s demand for sure. The current period’s expected payment is qH + c1. At

the next period, if the third party signal is good, the belief improves to some p2 > p1 with

continuation payment S(p2); otherwise, the belief goes back to p∗ and the continuation

payment is S(p∗) = S as explained above.

By similar arguments, we can derive S(p3) that supports S(p2) in equilibrium and

so forth, and put together the following recursive equation to characterize S(pn) for any

14By Bayesian updating, p1 = p∗q
p∗q+(1−p∗)(1−q) .

15For any p ∈ (0, p∗), we let the rejection probability be such that right after the rejection, but before
the signal, the posterior is exactly p∗; therefore, S(p) = S(p∗).
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integer n:16

S(pn) = (1− δ)(qH + c1) + δqS(pn−1) + δ(1− q)S(pn+1). (2)

Starting from the two initial conditions S(p∗) and S(p1), the solution to this difference

equation can be shown to be strictly decreasing and divergent. Thus, eventually, S(pn)

will drop below C, the lowest possible continuation payment in equilibrium. Let N be

the largest integer such that S(pN) > C. Figure 5 below summarizes these arguments.

Figure 5: Step 3

Step 4: Note that S(pN) is needed in order to support S(pN−1) as an equilibrium

continuation payment, but we cannot use S(pN+1) to support S(pN) if the former is

less than C. Recall that the recursive arguments here are based on player 1 rejecting

player 2’s demand for sure. Therefore, the critical aspect of the equilibrium is that,

at pN , player 2 randomizes such that some demand is accepted while others rejected.

The accepted demand must be C from Proposition 1. The only belief level at which

the short-run player could be indifferent between C and a losing demand is such that

pN(1− q)H + (1− pN)qH − c2 = C, yielding

pN =
qH − c2 − C
(2q − 1)H

.17 (3)

16Note that the unbiased third party assumption, that the precision of third party decision, q, is
symmetric across player 1 types, implies that the posterior updated from pn following a bad signal is
exactly pn−1.

17Since we assume that (2q − 1)H > c1 + c2, p∗∗ ∈ (0, 1) is well-defined for any C ∈
(
C,C

]
.
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This belief is precisely the upper threshold p∗∗ that we seek such that S(p) = C for

p > p∗∗. From pN = p∗∗, we then backtrack to find p∗; that is, N consecutive bad signals

from p∗∗ gives p∗. These arguments are illustrated in Figure 6 below.

Figure 6: Step 4

The exact mixing probability that supports S(pN), or S(p∗∗), is computed in Appendix.

Since p∗ and p∗∗ are now identified, we can also trace the entire continuation payment

schedule, which takes the form illustrated in Figure 2 above.

4 Gambler’s Ruin and Limit Equilibrium Properties

We now introduce gambler’s ruin technique to study several key limit properties of the

equilibrium.

4.1 The probability of reputation building

We say that player 1 builds his reputation if the posterior belief moves above p∗∗. Our

concern is the impacts of increased patience δ and third party precision q on the reputation

building process.

Fix a prior p1 ∈ (p∗, p∗∗). In this reputation region player 1 always rejects player 2’s

demands and the movement of beliefs is driven only by conditional i.i.d. third party

signals. We first compute the probability that, conditional on type B, the posterior pt

exceeds p∗∗ before dropping below p∗ in equilibrium, denoted by L(p1).

17



The process of Bayesian updating can be transformed into a simple random walk.18

Let λt = log
(

pt
1−pt

)
and λ = log

(
q

1−q

)
. Then, if pt ∈ (p∗, p∗∗), λt+1 = λt − λ upon

a bad signal, which happens with probability q, and λt+1 = λt + λ otherwise. Write

λ∗ = log
(

p∗

1−p∗

)
and λ∗∗ = log

(
p∗∗

1−p∗∗

)
. The aforementioned probability L(p1) is the

probability that, starting from λ1, λt exceeds λ∗∗ before falling below λ∗.

This is a ruin problem. Intuitively, we are considering a gambler with λ1 − λ∗ in

his pocket entering a sequence of bets, each with stake λ and winning probability 1− q.
What are the odds that the gambler wins λ∗∗ − λ1 before going broke? Let dxe denote

the smallest integer larger than or equal to x ∈ R. The following is immediate by taking

into account the integer problem in the gambler’s ruin result (e.g. Billingsley (1995)).

Lemma 2 Starting from a prior p1 ∈ (p∗, p∗∗), the probability that, conditional on type

B, the posterior pt exceeds p∗∗ before dropping below p∗ is

L(p1) =

(
q

1−q

)l
λ1−λ

∗
λ

m
− 1(

q
1−q

)l
λ∗∗−λ1

λ

m
+

l
λ1−λ∗
λ

m
− 1

.

Note that, even after it falls below p∗, the posterior can still go up to p∗∗ with a positive

probability in the equilibrium. Thus, L(p1) gives a lower bound on the probability of

reputation building. By taking into account player 1’s randomization in the region (0, p∗),

we can also derive an upper bound. It turns out that, as player 1 becomes increasingly

patient, the two bounds collapse into the same limit.

Proposition 2 As δ goes to 1, we have the following:

• p∗ goes to 0; p∗∗ is independent of δ.

• The probability of reputation building from a prior p1 ∈ (0, p∗∗) converges to an

interior level:

R(p1) =

(
q

1− q

)−l
log p∗∗

1−p∗∗
1−p1
p1

/ log q
1−q

m
∈ (0, 1).

18See Chamley (2004), for example.

18



The upper threshold, p∗∗, is derived from the short-run player’s indifference and, hence,

is independent of δ. A patient long-run player puts a large weight on his future reputation

and, therefore, as he becomes more patient, player 1 adopts tougher bargaining postures:

p∗ goes to 0 and the region (p∗, p∗∗) expands.

Recall that, in this equilibrium, player 1 reveals his type only in the low reputation

region below p∗ by accepting a high demand. Surprisingly, even when this lower threshold

vanishes to 0 as δ goes to 1, the overall chance of reputation building in the equilibrium

is strictly between 0 and 1. The intuition is similar to that of gambler’s ruin. No matter

how much the gambler starts with (i.e. p1 is many “steps” away from p∗), he wins (i.e. the

belief goes above p∗∗) with a probability strictly less than 1; likewise, even if the gambler

starts with little, his chance of success is strictly bounded above 0.

The gambler’s ruin formulation also allows us to consider the impact of increased

precision of third party signals.

Proposition 3 As q goes to 1, we have the following:

• p∗ goes to 0; p∗∗ goes to p̄ = H−c2−C
H

.

• The probability of reputation building from a prior p1 ∈ (0, p̄) converges to 0.

Increased third party precision generates two opposing effects on the reputation build-

ing process. When the third party is very precise, on the one hand, an external signal is

very likely to be bad (conditional on the bad type), but on the other hand, a good signal

generates a large upward shift in belief. The short-run player is myopic and still makes a

high demand at a low belief; this leads the bad type to reject his demand. Hence, we can

show that p∗ goes to 0 as q goes to 1. Furthermore, when q is close to 1, it can be shown

that, from any p1 ∈ (p∗, p∗∗), p∗∗ is just a single jump away and, hence, the lower bound

on reputation building probability is L(p1) = 1 − q. We can then demonstrate that the

probability indeed converges to 0 as q goes to 1.

Remark 5. From Propositions 2 and 3, even though p∗ → 0 and the bargaining

postures appear similar as δ or q goes to 1, the dynamics are quite different. As δ goes

to 1, the number of third party signals increases for a fixed level of precision, whereas as

q goes to 1 there is only one signal. This is illustrated by a numerical example in Figure

7 below, where the two graphs in the right panel are obtained by increasing δ or q from

a simulation result presented in the left panel.
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Figure 7: Comparative statics

4.2 Payoffs

The recursive equations in Section 3.3 characterize the equilibrium payments, and the

gambler’s ruin technique provides a powerful tool to compute the payments in the limit

as δ → 1. Recall that R(p) =
(

q
1−q

)−l
log

p∗∗(1−p)
(1−p∗∗)p/ log q

1−q

m
is the probability of reputation

building in the limit.

Proposition 4 For a generic p ∈ (0, p∗∗), player 1’s limit equilibrium payment as δ → 1

is given by R(p)C + (1−R(p))(qH + c1)
19

Intuitively, the bad type expects to pay qH + c1 per period if he fails to build a

reputation (note also that the continuation payment upon revelation, S = qH + δc1 −
(1− δ)c2, goes to qH + c1 as δ → 1), which occurs with probability 1−R(p) in the limit,

while successful reputation building yields a low expected payment C.

19We say that a belief p < p∗∗ is generic if it cannot be reached from p∗∗ after any finite number of
consecutive signals. The set of non-generic beliefs is therefore countable.
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The result is however more complicated than the intuition suggests. A formal ar-

gument requires a rate comparison. For a fixed δ, reputation will settle in finite time

almost surely: player 1 will either reveal himself or build his reputation. But, p∗ → 0

as δ → 1 and hence the time it takes for reputation to converge could grow to infin-

ity. We show that the convergence of δ dominates. Formally, we define a stopping time

τ(δ) = inf{t : pt > p∗∗ or pt < p∗}, and show that limδ→1 E[δτ(δ)] = 1.

5 Concluding Discussion

Our model can be enriched in many interesting directions to address a variety of real world

issues. We believe this to be another merit of the model. We conclude by discussing some

potential extensions.

Coalitional bargaining In bargaining with multiple short-run players, it is sometimes

possible for the players to form a coalition (e.g. class action). Che (1996, 2002) explores

the cost sharing effect of a coalition. Extending our model could provide an alternative

perspective on the coalitional bargaining problem. How will the long-run bargainer’s rep-

utation concern affect coalition formation? There is also a related timing issue regarding

the short-run players’ incentives on when to enter bargaining.

Unbiasedness of a third party In our model, the precision of third party signals is

constant. This does not mean that third party decisions are independent. Indeed, they

are correlated over time in our model because of the persistent uncertainty about player

1’s type. The substance of this assumption is “unbiasedness.” For example, in the US,

unbiasedness is a primary concern of the jury selection process. One might also enrich

our model by considering a biased third party whose decisions explicitly depend on past

decisions. An important question would then be to model the third party’s decision

process when he holds Bayesian beliefs.20 One possible way to endogenize a bias could be

to assume that an otherwise unbiased third party has to exert a cost to make a decision

and, therefore, follows the herd if his posterior belief is extreme.

The (un)observability of demands We have assumed that the details of bargaining are

observable if and only if there is an agreement. (This assumption is consistent with ap-

plications; see footnote 8 above.) We can also extend the model by considering voluntary

20In one related paper, Che and Yi (1993) assume that a court’s decision depends on the previous court’s
decision in a way that is specified exogenously, assuming away the court’s dynamic decision process.
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disclosure of an accepted demand and/or voluntary concealment of a rejected demand.

Our equilibrium is robust under the following natural specification of beliefs upon ob-

serving a confidential agreement or open disagreement: player 2 assigns probability 1 to

the bad type. This equilibrium survives refinements such as the intuitive criterion. This

argument eliminates any benefit of confidentiality and suggests that other factors not

captured in the current model are responsible for confidential agreements observed in real

world. For example, a confidenial agreement may reduce the arrival of new disputes. On

the other hand, allowing for observability of rejected demands brings a fresh signaling

issue.

Non-Markov equilibria When player 1’s type is known, our model admits a folk theo-

rem: when p = 0, any payment in [qH−c2, qH+c1] can be supported by a subgame perfect

equilibrium with simple trigger strategies. Thus, by simply allowing for non-Markov be-

havior after the bad type reveals himself, our equilibrium construction can be extended to

deliver a wide range of equilibrium payments. More generally, we can construct equilibria

in which the players behave differently at the same belief. In particular, we can have an

equilibrium where the sequence of observed signals matters. Recall that in the Markov

equilibrium player 2 must randomize at the upper reputation threshold p∗∗. If we allow for

non-Markov strategies, however, an equilibrium can be obtained without such random-

ization. The formal details of these non-Markov equilibria appear in the Supplementary

Material.

Multiple payoff/behavioral types Our analysis considers the case in which the long-run

player takes one of two possible payoff types. In many product liability cases, a sequence of

bargaining takes place in order to settle disputes over a single act for which the defendant

is either guity or not guilty. The binary type assumption also motivates the third party

whose decisions are binary. Extending our analysis to the case of multiple payoff types

and/or to incorporate richer third party signals, nonetheless, is an important direction for

future research. Another extension will be to consider multiple insistent cutoffs for the

good long-run player.

Bargaining protocol The model also considers a simple bargaining protocol within

each period: the uninformed player makes a take-it-or-leave-it offer. Such simplicity

allows us to focus on the long-run player’s dynamic incentives. The one-sided offer by

the uninformed player however rules out complex signaling effects. Spier (1992) considers

settlement bargaining between a single pair of defendant and plaintiff under more complex
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bargaining procotols.

6 Appendix

6.1 Omitted proofs of Section 3.1

Proof of Lemma 1

First, if s is accepted, the continuation (discounted average expected) payment from

accepting s must be at least as good as that from rejecting it.

Since rejected demands are not observable, rejecting any demand results in the same

continuation payment. Also, by the insistent strategy assumption on type G, accepting

any demand strictly above C leads to the same continuation payment at the next period

(equal to qH + c1). Then, accepting any s′ ∈ (C, s) must be strictly better than rejecting

it since it yields a lower immediate payment.

On the other hand, accepting a demand s′ ≤ C needs not lead to revelation but the

continuation payment at the next period must still be bounded above by qH + c1 and,

hence, the same arguments imply that such a demand must also be accepted for sure.

Second, if s is rejected, the continuation payment from rejecting s must be at least as

good as that from accepting it. Rejecting s or s′ results in identical expected payments,

both in the current period and each forthcoming period; on the other hand, while accepting

s′ and s yield the same continuation payment as of the next period, accepting s′ > s

involves a strictly higher stage expected payment than accepting s. Thus, any s′ > s

must be rejected for sure.

Proof of Proposition 1

The proof is by contradiction. We consider the following cases.

Case 1. s < C or s > qH + c1.

Any demand s < C is dominated by C since type G accepts C and player 2’s stage

payoff from type B is qH − c2 > (1 − q)H + c1 ≥ C should he reject C. Therefore, in

equilibrium, player 2 will not demand s < C. This contradicts the assumption that s is

demanded in equilibrium.
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If B accepts a demand s > qH+c1, he will reveal his type and the subsequent expected

payment is qH + c1 each period. If he rejects s, his current period expected payment is

qH + c1 while future expected payments are bounded above by qH + c1. Therefore,

s > qH+ c1, if demanded, will be rejected by B for sure. This contradicts the assumption

that s is accepted.

Case 2. s ∈ (C, qH − c2).
But then, player 2 can profitably deviate by not demanding s and, instead, demanding

any s′ > qH + c1. Given the insistent strategy, G rejects both s and s′ for sure; from

Case 1 above, we know that B must also reject s′ for sure. But player 2 expects to earn

qH − c2 > s from B by seeking a third party and, therefore, would strictly prefer to have

s′ rejected than to have s accepted. This is a contradiction.

Case 3. s ∈ (qH − c2, qH + c1] and type B rejects s with probability r ∈ (0, 1).

But then, consider player 2 deviating by demanding s− ε > qH − c2 instead of s for

some small ε > 0. By Lemma 1, such an demand must be accepted by B for sure, while G

rejects s−ε. The deviation payoff then amounts to p((1−q)H−c2)+(1−p)(s−ε), while

the corresponding equilibrium payoff is p((1−q)H−c2)+(1−r)(1−p)s+r(1−p)(qH−c2).
Thus, such a deviation is profitable if ε < r(s− qH + c2). This is a contradiction.

Case 4. s ∈ (qH − c2, qH + c1] and type B accepts s with probability 1.

Let r be B’s equilibrium strategy, and let s∗(p) > qH − c2 denote the supremum of

demands that it accepts with probability 1 at p, i.e. s∗(p) = sup{s : r(p, s) = 0}. When

there is no confusion, we shall also refer to it as s∗ to save on notation.

Then, by Lemma 1, r(p, s′) = 0 for any s′ ∈ (qH − c2, s
∗) and r(p, s′′) = 1 for any

s′′ ∈ (s∗,∞). Therefore, player 2’s payoff from B is s′ by demanding s′ and qH − c2 < s∗

by demanding s′′. However, both s′ and s′′ are dominated by s∗− s∗−s′
2

which is accepted

for sure, yielding a payoff of s∗− s∗−s′
2

> qH − c2. Therefore, given our arguments against

Cases 1 and 2 above, player 2 will not make a demand other than C or s∗ in equilibrium.

Suppose now that player 2 demands s∗ with a positive probability. We shall show that

this is impossible.

On the one hand, if player 2’s equilibrium strategy demands s∗ with a positive proba-

bility, B must accept it with probability 1 by the same argument as in Case 3; otherwise,

player 2 could profitably deviate by demanding s∗− ε instead of s∗ for some small enough

ε > 0.

On the other hand, B has an incentive to deviate by rejecting s∗ if δ > c1+c2
(2q−1)H+c1+c2

.
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As we have already established, in equilibrium, the demand can only be either C or s∗

where C ≤ (1 − q)H + c1. Here C is accepted for sure by both types and s∗ is accepted

for sure by B while rejected for sure by G. It then follows that the equilibrium posterior

at the next period after observing rejection in the current period must be 1 and B’s

continuation payment is

(1− δ)(qH + c1) + δC. (4)

But, in equilibrium, acceptance of s∗ results in revelation and, hence, the continuation

payment

(1− δ)s∗ + δ(qH + c1). (5)

Since s∗ > qH − c2 and δ > c1+c2
(2q−1)H+c1+c2

, (5) exceeds (4) and, therefore, the deviation is

profitable, a contradiction.

6.2 Proof of Theorem 1

We shall first establish that, generically, every Markov equilibrium such that S(p) is non-

increasing in p must result in the outcome stated in part 1 of Theorem 1. We then

construct an equilibrium explicitly.

For any p ∈ (0, 1), let

Φ1(p) =
pq

pq + (1− p)(1− q)
and Φ−1(p) =

p(1− q)
p(1− q) + (1− p)q

.

That is, Φ1(p) (Φ−1(p)) is the posterior after a good (bad) signal at p. It is readily verified

that Φ−1 (Φ1(p)) = p for any p. Let Φ0(p) = p and, for any integer k > 1, recursively

define Φk(p) = Φ1
(
Φk−1(p)

)
and Φ−k(p) = Φ−1

(
Φ−(k−1)(p)

)
.

We begin by deriving the following characterization of the equilibrium payments.

Proposition 5 There exists δ̄ ∈ (0, 1), independent of C, such that, for any δ > δ̄, any

Markov equilibrium is such that, for some p∗ ∈ (0, p∗∗), p∗∗ = qH−c2−C
(2q−1)H

, we have:

• For any p ∈ (0, p∗), S(p) = qH + δc1 − (1− δ)c2 ≡= S.

• For any p ∈ (p∗∗, 1), S(p) = C.

• For any p ∈ [p∗, p∗∗], S(p) ∈
[
C, S

]
. Moreover, for any positive integer k and any

p ∈ (Φ−k(p∗∗),Φ−(k−1)(p∗∗)), S(p) ≥ min{(1− δk)qH + δk(1− q)H + c1, S}.

25



Proof of Proposition 5

We proceed with the following lemmata.

Lemma 3 For any p ∈ (0, 1), S(p) ∈
[
C, S

]
.

Proof. The lower bound, C, is immediate since any demand less than C is strictly

dominated for player 2 and thus will never occur in equilibrium. For the upper bound,

let us consider two cases in turn.

Case 1. Every equilibrium demand of player 2 is accepted.

In this case, player 2 must play pure strategy since, given the assumption that each

equilibrium demand is accepted, player 2 cannot randomize between a low demand and

a high demand. Then, by Proposition 1, the equilibrium demand is either C or qH − c2.
If the demand is C, no belief updating occurs and, therefore, S(p) = C; if the demand is

qH − c2, B reveals himself and hence by the Markov property S(p) = (1− δ)(qH − c2) +

δ(qH + c1) = S.

Case 2. Some equilibrium demand is rejected with a positive probability.

Let s∗ be the infimum of the demands that B rejects. By Lemma 1, all demands below

s∗ will be accepted and all demands above s∗ will be rejected by this type.

Note that B’s equilibrium payment, S(p), is bounded above by rejecting all demands.

In particular, given the definition of s∗, the upper bound equals the continuation payment

from rejecting an equilibrium demand s∗ + ε, for some ε ≥ 0.

But, at the same time, since s∗+ε occurs and is rejected in equilibrium, B’s equilibrium

payment is also bounded above by the continuation payment from accepting it. Therefore,

it must be that S(p) ≤ (1−δ)(s∗+ε)+δ(qH+c1), where qH+c1 is the maximum possible

continuation payment. By the definition of s∗, we can take ε→ 0 and, hence, obtain

S(p) ≤ (1− δ)s∗ + δ(qH + c1). (6)

From (6), we are done if s∗ ≤ qH − c2. We simply note that it is impossible that

s∗ > qH − c2. The reasoning is as follows. Suppose not. By the definiton of s∗, there

exists an equilibrium demand s ≥ s∗ such that s is rejected and player 2 obtains a payoff

of qH − c2. But, by the definition of s∗, any s∗ − ε > qH − c2 will be accepted by B

which gives player 2 a payoff of s∗ − ε > qH − c2. Therefore, s cannot be demanded in

equilibrium. This is a contradiction.
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Lemma 4 For any p ∈ (p∗∗, 1), C is demanded and accepted for sure.

Proof. By demanding C, player 2 obtains a payoff of at least C since the good type

accepts it and he can obtain qH − c2 > C if the bad type ever rejects the demand. Note

that all lower demands are strictly dominated by C.

By demanding qH − c2, player 2 obtains at most

p((1− q)H − c2) + (1− p)(qH − c2) (7)

since G will reject it, leading to expected payoff of (1− q)H− c2 for player 2, and qH− c2
is player 2’s expected payoff from B regardless of B’s response. Note that all demands in

((1− q)H + c1, qH − c2) are weakly dominated by qH−c2, because G rejects the demand

and player 2’s payoff is lower than qH − c2 if B ever accepts it.

Now, by Lemma 1 and Proposition 1, any demand greater than qH − c2 is rejected by

both types for sure, which gives player 2 a payoff of p((1− q)H − c2) + (1− p)(qH − c2).
Therefore, we only need to compare C with (7). Since p > p∗∗, the former is larger,

implying that C must be demanded for sure.

Then, since player 2 plays a pure strategy here, and by G’s insistent behavior, ac-

cepting the equilibrium demand C cannot reduce the posterior. Thus, acceptance yields a

continuation payment C to B. On the other hand, rejection yields, at best, a continuation

payment (1− δ)(qH + c1) + δC > C, implying that C is accepted for sure.

In order to pin down the last part of the claim, we first need the following lemma.

Lemma 5 Consider the state space P ⊂ [0, 1] such that P = P1 ∪ P2 ∪ P3. Let S(p) be

the discounted average expected payment at p (with discount factor 0 < δ < 1).

At any p ∈ P3, with probability 1 − q the immediate payment is 0 and the new state

becomes p′ = Φ1(p); with probability q, the payment is H and the new state becomes

p′′ = Φ−1(p), where Φ1(·) and Φ−1(·) are as defined in the main text above. If p ∈ P1,

S(p) = S1 > 0; If p ∈ P2, S(p) = S2 > 0.

We then have the following: If qH ≥ min{S1, S2}, then S(p) ≥ min{S1, S2} for any

p ∈ P3.

Proof. Suppose not. Let S3 = infp∈P3 S(p). Then, by assumption, S3 < min{S1, S2}. For

any small ε > 0, there exists pε ∈ P3 such that S(pε) < S3 + ε. We know that

S(pε) = (1− δ)qH + δ((1− q)S(p′) + qS(p′′))

≥ (1− δ)qH + δmin{S(p′), S(p′′)}.

27



Therefore,

min{S(p′), S(p′′)} ≤ δ−1(S(pε)− (1− δ)qH)

≤ δ−1[S3 + ε− (1− δ)S3 + (1− δ)S3 − (1− δ)qH]

< S3 + δ−1[ε+ (1− δ)(S3 − qH)].

Taking ε to 0, we have min{S(p′), S(p′′)} < S3+δ−1(1−δ)(S3−qH). However, we know

that, by assumption, S3 < min{S1, S2} ≤ qH. It then follows that min{S(p′), S(p′′)} < S3.

This contradicts the definition of S3.

We are now ready to complete the proof of Proposition 5 with the following lemma.

Lemma 6 Define Φ−k(·) as above.

• For any positive integer k and any p ∈
(
Φ−k(p∗∗),Φ−(k−1)(p∗∗)

)
, we have

S(p) ≥ min
{

(1− δk)(qH + c1) + δkC, S
}
.

• There exists p∗ ∈ (0, p∗∗) such that, for any p ∈ (0, p∗), S(p) = S.

Proof. We proceed by establishing a series of steps.

Step 1: Fix any p < p∗∗, and suppose that player 2 demands C in equilibrium. Then,

type B must reject this demand with a positive probability and, hence, the equilibrium

posterior after rejection but before the third party signal does not exceed p.

Proof of Step 1. Suppose to the contrary that B accepts the demand for sure. Player

2’s payoff will be C. We shall argue that (1− q)H + c1 is strictly dominated and cannot

be an equilibrium demand.

Consider another demand qH− c2. If player 1 is G then he will reject it and player 2’s

payoff will be (1 − q)H − c2; if player 1 is B then, whether or not he rejects it, player 2

will expects qH − c2. Therefore, player 2’s expected payoff is p(1− q)H + (1− p)qH − c2.
Since p < p∗∗, this amount is greater than C. That is, qH − c2 dominates (1− q)H + c1.

Since C is rejected with a positive probability, all higher demands are rejected for sure

by Lemma 1. It follows that in this case rejection reduces the posterior.

Step 2: Fix any p < p∗∗. One of the following holds:

(a) S(p) = S; or
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(b) player 1 weakly prefers to reject any equilibrium demand and the equilibrium

posterior immediately after rejection (before the third party signal) does not exceed p.

Proof of Step 2. There are two cases to consider.

Case 1 : C is demanded with a positive probability in equilibrium.

Then, by Step 1, (b) holds.

Case 2 : C is not demanded in equilibrium.

In this case only qH − c2 can be possibly accepted by Proposition 1.

(i) If B’s equilibrium strategy prescribes that qH − c2 be rejected for sure then the

belief will not change after rejection; hence, (b) holds.

(ii) If it prescribes that qH−c2 be accepted with a positive probability then all demands

greater than C but less than qH − c2 is accepted for sure, and they are dominated by

qH − c2 for player 2 (because only B accepts these demands). There are two further

possibilities here.

First, if qH − c2 is not demanded in equilibrium then all equilibrium demands are

rejected and, therefore, belief never changes; hence, (b) holds.

Second, if qH − c2 is demanded in equilibrium with a positive probability then B’s

continuation payment from rejecting any demand is higher than or equal to that from

accepting qH − c2. The latter amounts to (1− δ)(qH − c2) + δ(qH + c1) = S. But, since

S(p) ≤ S by Lemma 3, it must be that S(p) = S; hence, (a) holds.

At this point, to ease the exposition, let p−k = Φ−k(p∗∗) for any positive integer k.

Step 3: For any positive integer k and any p ∈ [p−k, p−k+1), we have

S(p) ≥ min{(1− δk)(qH + c1) + δkC, S}.

Proof of Step 3. We employ induction. First, consider any p ∈ [p−1, p∗∗). By Step 2,

we have either S(p) = S, or an equilibrium demand is rejected and so S(p) is given by the

continuation payment from the rejection. In the latter case, clearly, S(p) ≥ (1− δ)(qH +

c1) + δC. Thus,

S(p) ≥ min{(1− δ)(qH + c1) + δC, S}. (8)

Next, for any p ∈ [p−k, p−k+1), let us assume that

S(p) ≥ min{(1− δk)(qH + c1) + δkC, S}

and show that, for any p ∈ [p−k−1, p−k),

S(p) ≥ min{(1− δk+1)(qH + c1) + δk+1C, S}.
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Again, given Step 2, consider the continuation payment when any equilibrium demand

here is rejected such that the posterior immediately after rejection does not go above p.

Rejection results in the current period expected payment of qH+c1. If the subsequent

third party signal is good, the next period’s posterior belongs to [p−k, p−k+1) and, hence,

the corresponding continuation payment must be at least min{(1−δk)(qH+c1)+δkC, S},
by assumption. If the third party signal is bad then the next period’s posterior must

belong to [p−k−2, p−k−1). By Lemma 5 (taking P3 = [p−k−2, p−k−1), P1 = [p−k, p−k+1),

P2 = {p : S(p) = S}\(P1 ∪ P3) ), the corresponding continuation payment must also be

bounded below by min{(1− δk)(qH + c1) + δkC, S}.
Thus, we have

S(p) ≥ min{(1− δ)(qH + c1) + δ
[
(1− δk)(qH + c1) + δkC

]
, S}

= min{(1− δk+1)(qH + c1) + δk+1C, S},

and, given (8), induction closes the proof of Step 3.

Now, let K be the largest integer such that S ≥ (1− δK)(qH + c1) + δKC. Then, Step

3 immediately implies that, for any p ∈ [p−k−1, p−k), k ≥ K, we must have

S(p) ≥ min{(1− δk+1)(qH + c1) + δk+1C, S} = S.

Since by Lemma 3 we already know that S(p) ≤ S for any p ∈ (0, 1), it follows that

S(p) = S for any p < pK .

Refining serious demands and identifying p∗

Now, define δ̄ to satisfy S = (1 − δ)(qH + c1) + δqS + δ(1 − q)C, where, as before,

S = qH + δc1 − (1 − δ)c2 and C = (1 − q)H + c1. It is straightforward to see that

δ̄ ∈ (0, 1). Fix any δ > δ̄ and Markov equilibrium such that S(p) that is non-increasing

in p.21 Given Proposition 5 above, define p∗ = sup{p : S(p) = S}. We next proceed with

the following lemmata.

Lemma 7 Player 2 cannot demand C at any p < p∗∗.

21Note that, since S > C for any δ, at any δ > δ̄ we have S > (1 − δ)(qH + c1) + δC, implying that
δ̄ > c1+c2

(2q−1)H+c1+c2
.
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Proof. Fix any p < p∗∗. We begin by showing that C cannot be accepted if demanded.

First, this demand cannot be accepted with probability 1 by B. To see this, suppose

otherwise. But then, we reach a contradiction against the definition of p∗∗, where player

2 is indifferent between a losing demand and C that is met with sure acceptance. At

p < p∗∗, a losing demand is better than sure acceptance of C and, hence, in this case C

cannot be demanded in equilibrium.

Then, suppose that C is accepted with an interior probability. If B rejects C with

a positive probability, by Lemma 1, he must reject every higher demand for sure. Also,

rejected demands are not observable. Thus, his equilibrium continuation payment S(p) is

given by the payment from rejecting any demand. Therefore, given Proposition 5,

S(p) ≥ (1− δ)(qH + c1) + δC > C. (9)

But, since B accepts C with a positive probability, we also have S(p) ≤ (1− δ)C+ δS(p),

where the second term of RHS is the highest possible continuation payment at the next

period; acceptance of C cannot reduce reputation so that continuation payment is at most

S(p) by S(p) is non-increasing. Thus, S(p) ≤ C but this contradicts (9).

Now, suppose that C is demanded with a positive probability. It follows from above

that this demand must be met with sure rejection by B. On the other hand, C must be

accepted for sure by G. By Lemma 1, any demand higher than C is rejected for sure by

both types. This implies that C strictly dominates all other demands for player 2 and,

therefore, C must be demanded with probability 1.

Then, rejection reveals that player 1 is bad and the corresponding equilibrium con-

tinuation payment for B is qH + c1. Acceptance of C, however, reveals that player 1 is

good. Thus, by deviating to accept C, type B can obtain continuation payment C, which

is lower than the equilibrium payment, a contradiction.

Lemma 8 (i) p∗ ≤ Φ−1 (p∗∗).

(ii) Only losing demands are made at any p ∈ (p∗, p∗∗).

Proof. (i) Suppose to the contrary that p∗ ∈ (Φ−1 (p∗∗) , p∗∗] (we know from Proposition

5 that S(p) = C for p > p∗∗ and note the definition of p∗). Then, consider p∗ − ε >

Φ−1(p∗∗) for some small ε > 0. By monotonicity of the value function, S(p∗ − ε) = S. By

Proposition 1 and Lemma 7, the only possible serious demand here is qH− c2. Therefore,

rejection per se (before third party signal) cannot reduce player 1’s reputation and, since
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p∗−ε ∈ (Φ−1 (p∗∗) , p∗∗], a subsequent good third party signal must take reputation above

p∗∗. This implies the following equilibrium requirement

S(p∗ − ε) = S ≤ (1− δ)(qH + c1) + δqS + δ(1− q)C,

where the RHS represents the worst continuation payment from rejecting a demand.

However, since δ > δ the RHS is less than S, a contradiction.

(ii) Fix any p ∈ (p∗, p∗∗). Given Proposition 1 and Lemma 7, we show that demand

qH − c2 cannot be accepted even if it is made. To see this, suppose otherwise. Then,

conditional on the demand being made, B’s continuation payment from accepting it is

equal to S. But, by the definition of p∗, and since S(p) is non-increasing, S(p) < S. This

implies that rejection must also occur in equilibrium and, since rejected demands are not

observable, rejecting any demand must yield a continuation payoff strictly less than S.

This in turn implies that accepting qH − c2 cannot be optimal.

At this juncture, consider the following recursive equation: for any integer n,

Sn = (1− δ)(qH + c1) + δqSn−1 + δ(1− q)Sn+1 (10)

with the initial conditions S0 = S and S1 satisfying S0 = (1−δ)(qH+c1)+δqS0+δ(1−q)S1.

Simple algebra shows that, given δ > δ̄, S1 > C. Define N = sup{n ∈ Z : Sn > C}, where

Z denotes the set of integers.

Lemma 9 (i) Sn is strictly decreasing in n.

(ii) N is finite.

Proof. (i) Notice that S0 < qH and S0 is a convex combination of qH + c1 and S1. Then

S1 < S0. Suppose Sn < Sn−1 < · · · < S0 < qH. From (10), Sn is a convex combination

of qH + c1, Sn−1, and Sn+1, and hence Sn+1 < Sn. The monotonicity of Sn follows by

induction.

(ii) Suppose to the contrary that N is infinite. That is, Sn > C for all n. Then, since

Sn is strictly decreasing, Sn converges to S∞ such that C ≤ S∞ < qH + c1. But, from

(10), it follows that S∞ = qH + c1. This is a contradiction.

Lemma 10 Fix any p ∈ (0, p∗).

(i) Rejection occurs in equilibrium.

(ii) Player 1’s reputation immediately after rejection is p∗ = Φ−N(p∗∗).
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Proof. (i) Suppose not. But then, since the accepted demand must be qH− c2, rejection

reveals the good type and the bad type’s corresponding continuation payment is (1 −
δ)(qH + c1) + δC, which is less than S(p) = S since δ > δ̄. Thus, B will want to deviate,

a contradiction.

(ii) Fix any p = p∗ − ε, ε ∈ (0, p∗). We proceed in the following steps.

Step 1: Player 1’s reputation immediately after rejection, say, p0, is such that p0 ≤ p∗.

Proof of Step 1. Suppose not; so, p0 > p∗. There are two cases to consider.

First, suppose that p0 ≥ p∗∗. Then, since S(p) = C for any p ∈ (p∗∗, 1), we have

S(p) = S = (1− δ)(qH + c1) + δ(1− q)S
(
Φ1(p0)

)
+ δqS

(
Φ−1(p0)

)
= (1− δ)(qH + c1) + δ(1− q)C + δqS

(
Φ−1(p0)

)
.

But, since S (Φ−1(p0)) ≤ S and δ > δ̄, we have a contradiction.

Second, suppose that p0 ∈ (p∗, p∗∗). By Lemma 8, every equilibrium demand is rejected

for sure at p0 and, hence, given the definition of p∗ and monotonicity of S(p),

S(p0) = (1− δ)(qH + c1) + δ(1− q)S
(
Φ1(p0)

)
+ δqS

(
Φ−1(p0)

)
< S. (11)

But, (11) contradicts that

S(p∗ − ε) = (1− δ)(qH + c1) + δ(1− q)S
(
Φ1(p0)

)
+ δqS

(
Φ−1(p0)

)
= S.

Step 2: S(p0) = S.

Proof of Step 2. Suppose not; so, S(p0) < S. Given the definition of p∗ and Step 1, it

must then be that p0 = p∗. We have

S(p0) = (1− δ)(qH + c1) + δ(1− q)S
(
Φ1(p0)

)
+ δqS < S, (12)

while, for any p ∈ (0, p∗),

S(p) = (1− δ)(qH + c1) + δ(1− q)S
(
Φ1(p0)

)
+ δqS = S. (13)

Comparing (13) with (12), we derive a contradiction.

Step 3: p0 = Φ−N(p∗∗).

Proof of Step 3. For expositional ease, let Φn(p0) = pn. First, we show that p1 > p∗.

To see this, from Steps 1-2, we have

S(p0) = (1− δ)(qH + c1) + δ(1− q)S
(
p1
)

+ δqS = S,
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which exactly pins down S(p1) < S. Also, since δ > δ̄, S(p1) > C. Thus, p1 ∈ (p∗, p∗∗).

Then, given Lemma 8 and Step 2 above, we have

S(p1) = (1− δ)(qH + c1) + δ(1− q)S
(
p2
)

+ δqS(p0)

= (1− δ)(qH + c1) + δ(1− q)S
(
p2
)

+ δqS,

which pins down S(p2), and so forth.

But, by Proposition 5, we know that S(p) ≥ C for all p and that S(p) = C for all

p > p∗∗. Also, from Proposition 5 and Lemma 7, we can deduce that S(p) > C for all

p < p∗∗. Thus, it must be that S(pn) = Sn only for positive integer n ≤ N , where Sn

solves the recursive equation (10) and N = sup{n ∈ Z : Sn > C} as defined above.

Now, suppose that pN < p∗∗. On the one hand, by Lemma 8, rejection gives the

equilibrium continuation payment at pN and, hence,

S(pN) ≥ (1− δ)(qH + c1) + δ(1− q)S
(
pN−1

)
+ δqC. (14)

On the other hand, from the recursive equation (10), we have

S(pN) = SN = (1− δ)(qH + c1) + δ(1− q)S
(
pN−1

)
+ δqSN+1, (15)

where, generically, SN+1 < C.22 Thus, (15) contradicts (14).

Step 4: p0 = p∗.

Proof of Step 4. Suppose not; so, by Step 1 above, p0 < p∗. We know from Step 3

that p0 is fixed and equal to Φ−N(p∗∗). Moreover, Proposition 1 and Lemma 7 imply that

rejection cannot reduce player 1’s reputation at p. For small ε such that p0 < p∗− ε < p∗,

this contradicts the definition of p0.

Thus, it follows from Lemma 10 that, at any p ∈ (0, p∗), rejection by the bad type must

occur with probability r(p) such that p∗ = p
p+(1−p)r(p) . This implies that r(p) = p

p∗
1−p∗
1−p ≤ 1

as in the claim.

Lemma 11 (i) S(p∗) = S.

(ii) At p∗, rejection occurs with probability 1.

22See the Supplementary Material for the non-generic case.
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Proof. The first property that S(p∗) = S follows immediately from the proof of previous

Lemma. To show the second part, suppose otherwise; so, acceptance occurs with a positive

probability at p∗. We also know from previous Lemma that rejection must also occur at

p∗. Thus, rejection must itself increase reputation, say, to p∗ + ε for some ε > 0.

It follows that

S(p∗) = (1− δ)(qH + c1) + δqS
(
Φ−1(p∗ + ε)

)
+ δ(1− q)S

(
Φ1(p∗ + ε)

)
= S. (16)

Note here that, by monotonicity of S(p), S (Φ−1(p∗ + ε)) ≤ S and, from Step 4 of the

proof of previous Lemma, S (Φ1(p∗ + ε)) ≤ S(p1) since Φ1(p∗ + ε) > p1. We also know

that

S = (1− δ)(qH + c1) + δqS + δ(1− q)S(p1). (17)

Equating (17) with (16) reveals that, since S (Φ−1(p∗ + ε)) ≤ S and S (Φ1(p∗ + ε)) ≤
S(p1), it must be that S (Φ−1(p∗ + ε)) = S and S (Φ1(p∗ + ε)) = S(p1).

Next, given Lemma 8, it follows from above that

S(p∗ + ε) = (1− δ)(qH + c1) + δqS
(
Φ−1(p∗ + ε)

)
+ δ(1− q)S

(
Φ1(p∗ + ε)

)
= (1− δ)(qH + c1) + δqS + δ(1− q)S(p1)

< S, (18)

where the last inequality arises from monotonicity of S(p) and the definition of p∗. But,

comparing (18) with (17) reveals a contradiction.

Behavior at p∗∗

We have already shown in Lemma 4 in the proof of Proposition 5 above that, for any

p ∈ (p∗∗, 1), C is demanded and accepted for sure. Thus, it only remains to consider

behavior at p∗∗.

Lemma 12 At p∗∗, we have the following:

- The only possible serious demand is C; type B accepts it with probability 1.

- A losing demand is made with a positive probability.

- Generically, C is demanded with a positive probability.

Proof. Let us proceed in the following steps.
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Step 1: Type B accepts C with probability 1.

Proof of Step 3. Suppose not; so, C is rejected with a positive probability in equi-

librium. Then, acceptance of C must increase reputation and, hence, the corresponding

continuation payment must be C, which is clearly smaller than the payment from rejec-

tion. This is a contradiction.

Step 2: C is the only serious demand.

Proof of Step 2. Suppose not; so, given Proposition 1, qH − c2 is demanded and

accepted in equilibrium. But then, consider rejecting this demand. Given Step 1, rejection

must increase reputation and, hence, the corresponding continuation payment is at most

(1− δ)(qH + c1) + δqSN−1 + δ(1− q)C. But this is clearly less than S, the continuation

payment from accepting qH − c2. This is a contradiction.

Step 3: A losing demand is made.

Proof of Step 3 : It follows from Step 1 that, if C is the only equilibrium demand,

S(p∗∗) = C. But, this contradicts that S(p∗∗) = SN > C.

Step 4: Suppose that SN+1 < C (where SN+1 is derived from (10) as above). Then,

C is demanded with a positive probability.

Proof of Step 4. Suppose that C is not demanded; so, by Step 2, every equilibrium

demand is rejected for sure. But then, we obtain

S(p∗∗) = SN = (1− δ)(qH + c1) + δqS
(
Φ−1(p∗∗)

)
+ δ(1− q)S

(
Φ1(p∗∗)

)
= (1− δ)(qH + c1) + δqSN−1 + δ(1− q)C,

where SN is derived from (10) and the first equality comes from the proof of Lemma 10.

But, this contradicts the fact that SN = (1− δ)(qH + c1) + δqSN−1 + δ(1− q)SN+1 where

SN+1 < C.

Construction

Fix any δ > δ̄, where δ̄ is as defined above. Let p∗∗ = qH−c2−C
(2q−1)H

as before and p∗ = Φ−N(p∗∗)

as computed for Lemma 10 above. We establish that the following profile constitutes a

Markov equilibrium.

First, player 2’s strategy is such that:

• At p = 0, it demands qH + c1 with probability 1;
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• At any p ∈ (0, p∗∗), it demands qH − c2 with probability 1;

• At p = p∗∗, it demands C with probability x and qH − c2 with probability 1 − x,

where x ∈ (0, 1) is defined later;

• At any p ∈ (p∗∗, 1], it demands C with probability 1.

Second, type B’s strategy is as follows:

• At p = 0, it accepts a demand s if and only if s ≤ qH + c1;

• At any p ∈ (0, p∗],

- it rejects/accepts s with probability 1 if s > qH − c2/if s < qH − c2;

- it rejects qH − c2 with probability r(p) = p
p∗

1−p∗
1−p , as computed above.

• At any p ∈ (p∗, p∗∗], it accepts s if and only if s ≤ max{ξ(p), C}, where ξ(p) is

defined later.

• At any p ∈ (p∗∗, 1], it accepts s if and only if s ≤ C.

Finally, the belief is updated by Bayes’ rule and the equilibrium strategies whenever

possible. We also assume that the posterior belief assigns probability 1 to type B after

an acceptance of a demand higher than C.

Defining x: At p∗∗, player 2 demands C with probability x and qH − c2 with proba-

bility 1− x; both types of player 1 accept the first demand for sure and reject the second

demand with for sure. This implies that the equilibrium posterior at the next period must

be such that:

- if C is accepted then the posterior remains at p∗∗;

- if rejection occurs, followed by a good signal, the posterior increases to Φ1(p∗∗); and

- if rejection occurs, followed by a bad signal, the posterior decreases to Φ−1(p∗∗).

Thus, from the characterization arguments above, we have

S(p∗∗) ≡ SN = x [(1− δ)C + δSN ] + (1− x)X, (19)

where SN is given by (10) above and

X ≡ (1− δ)(qH + c1) + δqSN−1 + δ(1− q)C. (20)
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Lemma 13 There exists a unique x ∈ [0, 1) that satisfies (19).

Proof. Simple computation yields

x =
X − SN

X − (1− δ)C − δSN
.

Note first that SN ≤ X. This follows from comparing (20) above to the recursive

equation

SN = (1− δ)(qH + c1) + δqSN−1 + δ(1− q)SN+1,

where, by assumption, SN+1 ≤ C. Also, we have SN > (1− δ)C + δSN because, again by

assumption, SN > C. Thus, x ∈ [0, 1).

Equilibrium payments: At this juncture, we characterize the equilibrium payments

of type B. The following is clear:

- For p ∈ (0, p∗], S(p) = qH + δc1 − (1− δ)c2 = S.

- For p = Φn(p∗) with any positive integer n ≤ N , S(p) = Sn.

- For p > p∗∗, S(p) = C.

Thus, it remains to obtain equilibrium payments for other values of p ∈ (p∗, p∗∗) such

that p 6= Φn(p∗) for positive integers n ≤ N . To this end, consider the following recursive

structure: for any integer n,

Wn = (1− δ)(qH + c1) + δqWn−1 + δ(1− q)Wn+1 (21)

such that W0 = S0 = S and WN+1 = C. By similar arguments to those behind Lemma 9,

Wn is strictly decreasing.

Lemma 14 Fix any positive integer n ≤ N and any p, p′ ∈ (Φn−1(p∗),Φn(p∗)). Then,

S(p) = S(p′) = Wn as given by (21) above.

Proof. Every equilibrium demand is rejected for sure at p ∈ (p∗, p∗∗). Then, note that

Φ−n(p) = Φ−n(p′) < p∗ and Φ−n+1(p) = Φ−n+1(p′) > p∗;

ΦN−n+1(p) = ΦN−n+1(p′) > p∗∗ and ΦN−n(p) = ΦN−n(p′) < p∗∗.

Thus, it is straightforward to see that Wn = S(p) = S(p′).

Defining ξ(p) for p ∈ (p∗, p∗∗]: Recall that, in specifying player 1’s equilibrium

strategy earlier, we had deferred the definition of ξ(p) at p ∈ (p∗, p∗∗]. Fix any p ∈ (p∗, p∗∗],
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and define ξ(p) as satisfying (1−δ)ξ(p)+δ(qH+c1) = S(p), where S(p) is the equilibrium

payment computed above. It is easily seen that ξ(p) < qH − c2.
Let us now show that the above strategy profile and beliefs constitute a Markov

equilibrium.

First, given the strategies of both types of player 1 and the definition of p∗∗, it is

straightforward to establish optimality of player 2 strategy. In particular, note that it is

never optimal for player 2 to make a demand s ∈ (C, qH − c2).
Second, we check optimality of type B’s behavior:

- It is straightforward to check its optimality at p = 0.

- Fix any p ∈ (0, p∗]. Suppose first that the demand, s, is less than qH − c2. If type

B accepts this demand, the continuation payment amounts to (1− δ)s+ δ(qH + c1) < S,

while, since rejected demands are not observable, the continuation payment from rejecting

continues to be S. Thus, accepting any s < qH − c2 for sure is optimal. A symmetric

argument establishes that rejecting any s > qH − c2 for sure is optimal.

- Fix any p ∈ (p∗, p∗∗). Here, we know that S(p) < S, but accepting the demand

qH − c2 yields precisely S = (1 − δ)(qH − c2) + δ(qH + c1) due to revelation. Thus,

rejecting the equilibrium demand, qH − c2, is optimal.

- Consider p = p∗∗. If B accepts the equilibrium demand qH − c2, he reveals his

type and, hence, obtains a continuation payment S. If he rejects this demand, he obtains

(1 − δ)(qH + c1) + δqSN−1 + δ(1 − q)C ≡ X < S, where the last inequality is obtained

from the proof of Lemma 13 above. Thus, it is optimal to reject qH − c2.
Next, consider the demand C. Rejection, again, yields a continuation payment X,

while acceptance leads to (1 − δ)C + δSN . Since SN < X and C < X, acceptance is

optimal.

- For p ∈ (p∗∗, 1], see Lemma 4 above.

Remark 6 We can see from this construction that the insistent strategy of type G

is in fact optimal given that at any p < 1 player 2 never makes a demand belonging

to [0, C) ∪ (C, qH − c2). Note also that, by the Markov property, at p = 1, C must be

demanded and accepted if G were a rational type. But, a careful inspection of previous

arguments will show that all our arguments remain valid.
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6.3 Omitted proofs of Section 4

Proof of Proposition 2

1. We have already established that p∗∗ is independent of δ (see (3) above). By definition,

p∗ is the posterior after N consecutive bad signals from p∗∗. Therefore, to show p∗ goes

to 0 as δ goes to 1, it suffices to establish that N(δ) goes to +∞ as δ goes to 1.

We first note that limδ→1 S(pn) = S(p0) = qH + c1 > C for any fixed n. This follows

directly from the difference equation (10) and its initial conditions. Thus, as δ → 1, N

goes to +∞ by definition.

2. We first establish the upper bound on the probability of reputation building.

Lemma 15 Starting from a prior p1 ∈ (p∗, p∗∗), the probability of reputation building is

at most

U(p1) = 1− (1− L(p1))(2q − 1)

(2q − 1) + (1− q)L(Φ1(p∗))
.

Proof. Consider the lower threshold p∗. Let ρ be the probability that type B accepts

the equilibrium demand at Φ−1(p∗); this is

ρ = 1− r(Φ−1(p∗))

= 1− Φ−1(p∗)

1− Φ−1(p∗)

1− p∗

p∗
= 1− p∗(1− q)

(1− p∗)q
1− p∗

p∗
=

2q − 1

q
.

Define R(p) as the probability that, starting from p, type B reveals his type. Then,

we must have the following:

R(p∗) ≥ q(ρ+ (1− ρ)R(p∗)) + (1− q)
[
1− L(Φ1(p∗))

]
R(p∗) (22)

The RHS is obtained from the following reasoning. From p∗, on the one hand, a bad

signal (which occurs with probability q) takes the posterior down to Φ−1(p∗), and the

probability of immediate revelation there is ρ while rejection takes the posterior back up

to p∗ and the revelation probability from there on is R(p∗) by definition. On the other

hand, a good signal takes the posterior up to Φ1(p∗), from where the posterior will come

back to p∗ before hitting p∗∗ with probability 1 − L(Φ1(p∗)), where L(·) is derived from

the gambler’s ruin formula as in Lemma 2 above. Re-arranging (22) leads to

R(p∗) ≥ qρ

qρ+ (1− q)L(Φ1(p∗))
.
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Now, fix a prior p1 ∈ (p∗, p∗∗) and consider R(p1). From Lemma 2, the posterior

falls below p∗ before going above p∗∗ with probability 1 − L(p1) and, due to player 1’s

randomization, immediate revelation occurs with a positive probability once it has fallen

below p∗. Therefore, we obtain the following lower bound on R(p1):

R(p1) ≥ (1− L(p1))R(p∗)

≥ (1− L(p1))qρ

qρ+ (1− q)L(Φ1(p∗))

=
(1− L(p1))(2q − 1)

(2q − 1) + (1− q)L(Φ1(p∗))
.

The upper bound on the probability of reputation building immediately follows.

Fix a prior p1 ∈ (p∗, p∗∗). We take the limits of L(p1) and U(p1) as in Lemmas 2-

15. In the expression of L(p1), only λ∗ depends on δ. Since p∗ → 1 as δ → 1, we have

λ∗ → −∞ as δ → 1. Therefore,

lim
δ→1

L(p1) = lim
λ∗→−∞

(
q

1−q

)l
λ1−λ

∗
λ

m
− 1(

q
1−q

)l
λ∗∗−λ1

λ

m
+

l
λ1−λ∗
λ

m
− 1

.

Since q
1−q > 1, applying l’Hôpital’s rule, we have

lim
δ→1

L(p1) =

(
q

1− q

)−l
λ∗∗−λ1

λ

m
=

(
q

1− q

)−l
log

p∗∗(1−p1)
(1−p∗∗)p1

/ log q
1−q

m
.

Also, note that, when p1 = Φ1(p∗),
⌈
λ1−λ∗
λ

⌉
= 1 and

⌈
λ∗∗−λ1

λ

⌉
=
⌈
λ∗∗−λ∗

λ

⌉
− 1, where

the latter follows from the fact that ΦN(p∗) = p∗∗ with N =
⌈
λ∗∗−λ∗

λ

⌉
. Therefore,

L(Φ1(p∗)) =

(
q

1−q

)
− 1(

q
1−q

)dλ∗∗−λ∗λ e
− 1

.

Since λ∗ → −∞ as δ → 1, and q
1−q > 1, it is immediate that limδ→1 L(Φ1(p∗)) = 0.

It therefore follows that

lim
δ→1

U(p1) = lim
δ→1

[
1− (1− L(p1))(2q − 1)

(2q − 1) + (1− q)L(Φ1(p∗))

]

= lim
δ→1

L(p1) =

(
q

1− q

)−l
log

p∗∗(1−p1)
(1−p∗∗)p1

/ log q
1−q

m
.
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Proof of Proposition 3

1. The definition of p∗∗ immediately implies that p∗∗ → H−c2−C
H

as q → 1. Solving the

recursive equation (10) in the main text, we obtain limq→1 S1 = H + δc1 − (1 − δ)c2 =

limq→1 S0 and limq→1 S2 = −∞. Thus, there exists some q̄ > 0 such that N = 1 for any

q > q̄ and, hence, p∗ = p∗∗(1−q)
p∗∗(1−q)+(1−p∗∗)q . Given the limit of p∗∗, it follows p∗ → 0 as q → 1.

2. If follows from part 1 above that, for any p1 ∈ (p∗, p∗∗) and q > q̄,
⌈
λ1−λ∗
λ

⌉
=⌈

λ∗∗−λ1

λ

⌉
= 1 and, hence,

L(p1) =

(
q

1−q

)
− 1(

q
1−q

)2

− 1
= 1− q and L(Φ1(p∗)) = L(p∗∗) = 1.

Plugging L(p1) and L(Φ1(p∗)) into U(p1), we have, for q > q̄,

U(p1) = 1− q(2q − 1)

(2q − 1) + (1− q)
= 2(1− q).

Therefore, limq→1 L(p1) = limq→1 U(p1) = 0.

Proof of Proposition 4

Recall that type B does not build reputation with probability 1. For any δ, type B reveals

himself with an interior probability when the belief drops below p∗ and attains a payoff

S = qH+δc1−(1−δ)c2. Furthermore, as δ → 1, p∗ → 0 (Proposition 2). This complicates

the explicit computation of type B’s limit payment.

Fix δ ∈ (δ̄, 1) (where δ̄ is as in Theorem 1) and any prior p = p1 ∈ (p∗, p∗∗) such that

p1 6= Φ−n(p∗∗) for any integer n . Define τ = inf{t : pt > p∗∗ or pt < p∗} as the first

time that, conditional on type B, the posterior either exceeds p∗∗ or falls below p∗. By

convention, inf ∅ = +∞. Since p1 6= Φ−n(p∗∗) we have pt ∈ (p∗, p∗∗) for any t < τ.

According to our equilibrium, the third party must be called upon before τ. Type B’s

(one-period) expected payment before τ is therefore qH + c1. At or after period τ, type

B’s expected payment is either C or S, and the former event happens with probability

L(p) by Lemma 2. Therefore type B’s expected continuation payment at p = p1 is

E[(1− δτ )(qH + c1)] + E
[
δτ
(
L(p)C + (1− L(p))S

)]
.
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It follows that, to evaluate type B’s limit payment as δ → 1, we need to evaluate

limδ→1 E[δτ ]. This is not immediate since τ is a function of δ (through p∗ in our equi-

librium). We shall show limδ→1 E[δτ ] = 1 in several steps.

Step 1: By convexity of δτ and Jensen’s inequality, E[δτ ] ≥ δE[τ ].

Step 2: As before, denote by N(δ) the number of steps from p∗∗ to p∗. From our

gambler’s ruin formulation, N(δ) =

⌈
log p∗∗

1−p∗∗−log p∗
1−p∗

log q
1−q

⌉
. Denote a =

⌈
log p∗∗

1−p∗∗−log
p1

1−p1
log q

1−q

⌉
.

Note that p∗∗ is a constant for δ > δ̄. Then, by the well-known formula (e.g. Grimmett

and Welsh (1986)), the expectation of the stopping time is given by

E[τ ] =
1

2q − 1

N(δ)

(
1−q
q

)a
− 1(

1−q
q

)N(δ)

− 1

− a

 ≤ N(δ)

2q − 1
.

Therefore, δE[τ ] ≥ δ
N(δ)
2q−1 . By Step 1, to show limδ→1 E[δτ ] = 1, it suffices to show

limδ→1 δ
N(δ) = 1.

Step 3: In our equilibrium construction, N(δ) is obtained by a second-order difference

equation, which we reproduce here,

Sn = (1− δ)(qH + c1) + δqSn−1 + δ(1− q)Sn+1 (23)

with the initial condition S0 = S and S0 = (1−δ)(qH+c1)+δqS0 +δ(1−q)S1. Note that

Sn is decreasing and divergent, and N(δ) is defined as the largest n such that Sn < C.

We now approximate N(δ) by considering the following first-order difference equation:

Ŝn = (1− δ)(qH + c1) + δq(qH + c1) + δ(1− q)Ŝn+1 (24)

with initial condition Ŝ0 = S. By the same argument as before, Ŝn is divergent. Define

N̂(δ) as the largest integer n such that Ŝn < C. Note that (24) is obtained by replacing

Sn−1 with qH + c1 in (23). Since Sn−1 < qH + c1 for any n = 1, . . . in (23), Sn ≤ Ŝn

for any n = 0, 1, . . .. It follows immediately that N̂(δ) ≥ N(δ) (i.e. the sequence Ŝn falls

below C at a slower pace than Sn). Therefore, to show limδ→1 δ
N(δ) = 1, it suffices to show

limδ→1 δ
bN(δ) = 1.

Step 4: The solution to the first order difference equation (24) is given by

Ŝn =
b(1− ρn)

1− ρ
+ ρnŜ0,
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where ρ = 1
δ(1−q) , b = −1−δ(1−q)

δ(1−q) (qH + c1) and Ŝ0 = S̄ = qH + δc1 − (1 − δ)c2. Thus,

Ŝn < C is equivalent to

n >
log

C− b
1−ρbS0− b
1−ρ

log ρ
.

Plugging in ρ, b and S0, this is equivalent to

n >
log qH+c1−C

(1−δ)(c1+c2)

log 1
δ(1−q)

=
X + log(1− δ)
Y + log δ

,

where X = log(c1 + c2)− log(qH + c1 − C) and Y = log(1− q) < 0. Therefore,

N̂(δ) =

⌈
X + log(1− δ)
Y + log δ

⌉
.

To compute limδ→1 δ
bN(δ), first consider

lim
δ→1

log δ
bN(δ) = lim

δ→1

[
X + log(1− δ)
Y + log δ

log δ

]
=

(
lim
δ→1

1

Y + log δ

)(
lim
δ→1

X + log(1− δ)
(log δ)−1

)
=

1

Y

(
lim
δ→1

X + log(1− δ)
(log δ)−1

)
.

Applying l’Hospital’s rule twice on the second term on RHS, we obtain

lim
δ→1

X + log(1− δ)
(log δ)−1

= lim
δ→1

−1
1−δ
−1

(log δ)2
1
δ

= lim
δ→1

δ(log δ)2

1− δ
= lim

δ→1

(log δ)2 + 2 log δ

−1
= 0.

Therefore, limδ→1 log δ
bN(δ) = 0, and it follows that limδ→1 δ

bN(δ) = 1.

Now, summarizing the four steps, we have

lim
δ→1

E[δτ ] ≥ lim
δ→1

δE[τ ] ≥ lim
δ→1

δ
N(δ)
2q−1 ≥ lim

δ→1
δ

bN(δ)
2q−1 = 1.

We thus obtain that limδ→1 E[δτ ] = 1.

Since p∗ → 0 as δ → 1 (Proposition 2), we are ready to compute type B’s limit

payment at p = p1 ∈ (0, p∗∗) such that p1 6= Φ−n(p∗∗) for any n = 1, . . .. Notice that

limδ→1 L(p) = R(p) by Proposition 2 and limδ→1 S = qH + c1. Therefore,

lim
δ→1

{
E[(1− δτ )(qH + c1)] + E

[
δτ
(
L(p)C + (1− L(p))S

)]}
= R(p)C+(1−R(p))(qH+c1).
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1 Multiple equilibria in the non-generic case

We consider the non-generic case not covered by Theorem 1 in the main text. Fix any

δ > δ̄ as in the proof of Theorem 1. Also, fix any C ∈ (C,C]. Let S0, . . . , SN , . . . be the

solutions to the recursive equation

Sn = (1− δ)(qH + c1) + δ(1− q)Sn+1 + δqSn−1 (1)

with the initial conditions S0 = (1−δ)(qH+c1)+δ(1−q)S1 +δqS0 = qH+δc1−(1−δ)c2,
where N = sup{n ∈ Z : Sn > C}. Define p∗ = Φ−N(p∗∗), where p∗∗ = qH−c2−C

(2q−1)H
.

The case of SN+1 = C is non-generic in the following sense. Note that, in order to

have SK = C for some integer K, C and δ must satisfy one of a family of polynomials

that are at most countable (recall that such an integer K goes to∞ as δ → 1). Therefore,

for each C, the roots in δ are at most countable.

In the non-generic case, two equilibrium outcomes are possible. The first equilibrium

is as reported in Theorem 1 such that, at p∗∗, player 2 makes a losing demand for sure

and, hence, S(p∗∗) = SN . The other equilibrium is identical to the first equilibrium except

for the following:

∗Emails: jihong.lee@econ.yonsei.ac.kr and qingmin@econ.upenn.edu
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- At any p ∈ (0,Φ−1(p∗)), type B rejects player 1’s demand in a way that posterior

immediately after rejection moves to Φ−1(p∗).

- At any p ∈ [Φ−1(p∗), p∗), type B rejects player 1’s demand for sure.

- At p∗∗, player 2 demands C for sure and type B accepts it for sure. Thus, in this

equilibrium, S(p∗∗) = C.

The next figure illustrates these two equilibria.

Figure 1: Non-generic equilibria

2 When type G’s cutoff is C ∈ [0, C]

Proposition 1 Let C = C. Fix any δ > c1+c2
(2q−1)H+c1+c2

. There exists a Markov equilib-

rium. Furthermore, any Markov equilibrium is such that, at any p ∈ (0, 1), a demand s

is serious only if s ∈ [qH − c2, qH + c1] and, moreover, every demand is rejected with a

positive probability; thus, type B’s payment is at least S = qH + δc1 − (1− δ)c2.

Proof. First, It is straightforward to observe that, with C = C, there exists a Markov

equilibrium such that, at any p ∈ (0, 1), player 2 demands qH + c1 and type B rejects it

with an arbitrary but interior probability.

Next, fix a Markov equilibrium, and consider any p ∈ (0, 1). Note that

p(1− q)H + (1− p)qH − c2 > (1− q)H − c2.

Thus, player 2 will demand C only if type B rejects it for sure. Assume that type B rejects

C for sure when C is demanded. But, it is straightforward to see that accepting such a

2



demand is profitable since acceptance would then show that he is good, a contradiction.

Thus, C cannot be demanded in equilibrium. On the other hand, it is clear that any

demand below C will not be made, while given type G’s behavior any s ∈ (C, qH − c2)
will be demanded only if it is rejected for sure. Thus, a demand s can be serious only if

s ∈ [qH − c2, qH + c1].

Fix any s ∈ [qH − c2, qH + c1]. This demand cannot be accepted with probability 1.

To see this, suppose otherwise. But then, rejection would show that player 1 is good and,

hence, the deviation yields continuation payment (1−δ)(qH+c1)+δC, which is less than

the equilibrium payment (1− δ)s+ δ(qH + c1) given δ. Thus, s must be rejected and the

equilibrium payment must be given by rejection.

Since the good type also rejects every equilibrium demand, rejection (and any sub-

sequent third party signal) can never reveal the good type. Moreover, rejection gives

one-period expected payment qH + c1. On the other hand, accepting s leads to continu-

ation payment (1− δ)s+ δ(qH + c1). It therefore follows that S(p) ≥ S.

Proposition 2 Fix C ∈ [0, C). Then, the following characterizes all Markov equilibria

with sufficiently large δ: player 2 demands a constant demand s∗ ∈ [qH − c2, qH + c1] for

sure which type B accepts for sure; acceptance leads to a constant demand qH + c1 while

rejection (only by type G) leads to a constant demand s′ = (1
δ
− 1)s∗ + (2− 1

δ
)(qH + c1).

Proof. Cases 1-3 in the proof of Proposition 1 (Characterization of serious demands) of

the main text remain true. But Case 4 are no longer true with C < C since, then, even

when s∗ is rejected and hence player 1 is known to be type G, player 2 will not demand

C. Since there are only two possible demands in Case 4, C or s∗, and s∗ is accepted by

type G with probability 1, we have the following observations in this case.

(1) Player 2 will never make a demand lower than or equal to C. demands lower than

C contradict that B plays a cutoff strategy (Lemma 1 in the main text), while a demand

C gives player 2 a payoff of at most pC + (1− p)(qH − c2). This quantity is strictly less

than the payoff from the losing demand qH+c1
1−δ because C < (1− q)H − c2.

(2) The implication of (1) is that type G will always reject player 2’s demands.

(3) Therefore, the only demand is s∗ ∈ (qH − c2, qH + c1], and it is accepted with

probability 1 by type B. Then type B’s expected payment is

(1− δ)s∗ + δ(qH + c1). (2)
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This payment must not be higher than that from rejection (which leads to the revelation of

good type), while the payment from accepting s∗(p)+ε must not be lower than that from

rejection (by the definition of s∗(p)) to make rejection incentive compatible. Therefore,

(1− δ)s∗ + δ(qH + c1) = (1− δ)(qH + c1) + δs′.

where s is the demand made by player 2 when he believes player 1 is type G (note that

player 2 can make a very high demand here since the insistent type only accepts a demand

below C even at p = 1). Hence

s′ =

(
1

δ
− 1

)
s∗ +

(
2− 1

δ

)
(qH + c1) . (3)

This implies that s′ ∈ [s∗(p), qH + c1]. Note that type B will accept player 2’s demand

for sure when s′ < qH + c1 in all future periods (but player 2 does not have a deviation

because the belief is stuck at 1). It follows from (3) that s∗ is independent of belief because

s′ must be constant (the belief is 1).

(4) Now consider an equilibrium where player 2 demands s = qH− c2. If s is expected

to be accepted with probability 1, we need s′ =
(

1
δ
− 1

) (
qH − c2) + (2− 1

δ

)
(qH+c1) as in

(3) above. We now argue that it cannot be accepted by type B with an interior probability.

Suppose type B accepts it with an interior probability. Then, because rejection leads to

an interior posterior, the lowest possible expected payment for type B after rejection is

(1− δ)(qH + c1) + (δ − δ2)(qH − c2) + δ2(qH + c1).

This amount is larger than the payment from immediate acceptance of qH − c2.

3 Non-Markov equilibria

First, we establish a folk theorem for the case of complete information with p = 0.

Proposition 3 Suppose that player 1’s type is known to be B. Then, we have the follow-

ing:

1. In any subgame perfect equilibrium, player 1’s equilibrium expected payment, S, is

such that S ∈ [qH − c2, qH + c1].
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2. Fix any δ > 1
2
. Then, any S ∈ [qH− c2, qH+ c1] can be supported as an equilibrium

expected payment of player 1.

Proof. 1. Fix any δ and any subgame perfect equilibrium.

First, let us show that S ≥ qH−c2.Suppose not, so S < qH−c2. Then, since rejecting

any offer gives player 1 (one-period) expected payment of qH + c1, acceptance of an offer

strictly below qH − c2 must occur at some history on the equilibrium path. Consider

player 2 who makes such an offer. But, clearly, this short-run player can improve his

expected payoff by instead making any offer at least qH − c2; player 1’s rejection gives

him payoff qH − c2. Next, let us show that S ≤ qH + c1. Suppose not. But, the bad type

can guarantee himself payment of qH + c1 by always rejecting.

2. We know that there exists a Markov equilibrium that supports payment qH + c1.

Consider any S ∈ [qH − c2, qH + c1) and the following trigger strategy profile:

• At any history in which no deviation from the equilibrium has been observed, player

2 offers S for sure and player 1 accepts an offer if and only if it is less than or equal

to S.

• At any history in which acceptance of an offer higher than S has been observed,

player 2 offers qH + c1 for sure and player 1 accepts an offer if and only if it is less

than or equal to qH + c1.

• At any other history, player 2 offers S for sure and player 1 accepts an offer if and

only if it is less than or equal to S.

In order to establish that the above profile constitutes a subgame perfect equilibrium,

it suffices to consider player 1’s incentives when facing a devitating offer S + ε for small

ε > 0. Given the above profile, rejecting the offer yields payment (1− δ)(qH + c1) + δS,

while acceptance leads to (1− δ)(S + ε) + δ(qH + c1). Since δ > 1
2

and S < qH + c1, it is

easily seen that the latter is larger than the former. Thus, player 1 will reject S + ε for

sure. This, in turn, supports optimality of player 2’s strategy.

Two constructions of non-Markov equilibrium with incomplete

information

Fix any δ > δ̄ as in the proof of Theorem 1 in the main text. Also, fix any C ∈ (C,C].
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1. At any history/period t with pt > 0, all players play according to the Markov

equilibrium of Theorem 1 for belief pt; at any history with pt = 0, the continuation

strategies are given by the equilibrium in which the bad type obtains payment S∗ ∈
[qH − c2, qH + c1) (Proposition 3 above). It is straightforward to see that this non-

Markov profile only changes the initial condition for the recursive equation (1) above,

from S(p0) = S to (1− δ)(qH − c2) + δS∗. We draw below the corresponding equilibrium

payments for S∗ = qH − c2 (lower lines and squares), together with the equilibrium

payments of the Markov equilibrium in the top right panel of Figure 8 (Comparative

Statics) in the main text (upper lines and dots).

Figure 2: A non-Markov equilibrium

2. At any history/period t with pt < p∗∗ and pt = 1, all players play according to the

Markov equilibrium of Theorem 1 for belief pt. At other histories, the strategies are as

follows:

• At any period t such that pt ∈ (p∗∗, 1), player 2 offers C ′ ∈ (C,C] and the bad type

accept offer s if and only if s ≤ C ′.

• Phase p∗∗
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- The phase begins at any period t such that pt = p∗∗ and pt−1 < p∗∗, and lasts for

K + 1 periods.

- In the first K periods of the phase, player 2 offers C for sure and both types of

player 1 accept it for sure. Belief upon rejection (off-the-equilibrium) is 0.

- In the last period of the phase, player 2 offers qH − c2 for sure and the bad type

reject it for sure.

To establish that the above profile constitutes an equilibrium, consider the equilibrium

continuation payment of type B at the beginning of Phase p∗∗. It corresponds to

(1− δK)C + δK [(1− δ)(qH + c1) + δqSN−1 + δ(1− q)C ′] , (4)

where SN−1 is derived from the recursive equation (1) above. Note that (4) must equal

SN where

SN = (1− δ)(qH + c1) + δqSN−1 + δ(1− q)SN+1. (5)

If SN+1 < C ′, we have (1 − δ)(qH + c1) + δqSN−1 + δ(1 − q)C ′ > qSN−1 + (1 − q)SN+1;

also, C < qH + c1. Then, there exist a positive integer K and C ′ ∈ (C,C] such that (4)

equals (5). The players’ behavior during the phase are mutually optimal given the stated

off-the-equilibrium beliefs.
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