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Abstract

We study coalition formation processess of Konishi and Ray (2003). It
is shown that an absorbing and deterministic process of coalition formation
that also forms an equilibrium - satis�es a coalitional one-deviation prop-
erty - does exist if one allows the process to be history dependent. All such
dynamic equilibrium processes of coalition formation are characterized. Ab-
sorbing outcomes of dynamic equilibrium processes are also identi�ed. It is
shown that they always constitute a subset of the largest consistent set of
Chwe (1994). A procedure that identi�es a dynamic equilibrium process of
coalition formation in �nite time is constructed.
Keywords: one-deviation principle, coalition formation, history depen-

dence
JEL: C71, C72, C78.

1 Introduction

As discussed by Ray (2007), any general model of farsighted behavior in a one-shot
coalition game su¤ers from the so called prediction problem: the eventual payo¤
from a blocking cannot be predicted unless one knows the future blocking behavior
of the coalitions.1 But as further blockings should be evaluated according to the
same criterion as the original one, there may not be a concrete �nal step from
which to start the analysis. This is why static solution concepts, e.g. the core, are
in trouble: they restrict coalitional behavior in way that is against its fundamental

�I am grateful for the three referees for excellent comments. I thank the seminar audiences
in Universitat Autonoma Barcelona, Maastricht University and PCRC workshop for useful com-
ments, and Ariel Rubinstein, Jean-Jacques Herings, Hannu Salonen, and Juuso Välimäki for
bene�cial comments.

yTurku School of Economics and Yrjö Jahnsson Foundation. E-mail: hannu.vartiainen@tse.�.
1Aumann and Maschler (1974) is a case in point.
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dynamic nature. Much of the modern literature of one-shot coalition formation,
originated by Rosenthal (1972) and further developed e.g. by Greenberg (1990),
Chwe (1994) and Xue (1998), capture aspects of this dynamic coalition formation
process. A recurrent problem with these models is, however, that they either su¤er
from existence problems or tend to be too permissive by accepting outcomes that
are intuitively not plausible (see Barberà and Gerber, 2007, for a formal argument
on this).2

Konishi and Ray (2003) (henceforth KR) develop a modi�cation of the stan-
dard, one-shot coalition formation framework that solves the prediction problem in
an elegant way. In their model, payo¤s of the agents do not materialize just once
but they accumulate over time depending on the state of play at di¤erent points of
time. States are a¤ected by coalitional moves and future payo¤s are discounted. A
key bene�t of this approach is that it allows consistent and explicit modeling of the
dynamics of farsighted coalitional behavior: current coalitional move is justi�ed by
the prediction of the coalitional behavior that the move induces. KR establish a
natural coalitional solution - equilibrium process of coalition formation - that cap-
tures these considerations. The solution can be (roughly) interpreted as a coalition
version of the one-deviation principle. Since the process of coalition formation de-
�nes, for any in�nite stream of states, an intertemporal (discounted) payo¤, the
model avoids the prediction problem. Importantly, KR show that a (possibly)
randomized equilibrium process of coalition formation always exists, and that any
absorbing equilibrium process only implements outcomes in the largest consistent
set of Chwe (1994). However, KR also demonstrate that randomization or cycling
may be needed for the existence of a Markovian equilibrium process of coalition
formation where the coalitional move is conditioned only one the current state.
In an in�nite horizon model, cyclic or random equilibrium processes of coalition

formation have a clear meaning. However, in the classic one-shot framework they
are more di¢ cult to interpret. On the one hand, in a one-shot game, optimality
of a coalitional move cannot dependent on the hypothesis that payo¤s following
the move are random - a property that may be needed for a process to be optimal
in an in�nite horizon model. On the other hand, if blockings are interpreted as
coalitional negotiation prior to a binding agreement, as is often the case in the
context of one-shot coalitional games, it is not clear which outcome could the
coalitions "agree upon" if there is no state in which the play stays permanently.
But both of the above concerns are warranted only if there does not exist an

equilibrium process of coalition formation that is detereministic and absorbing.

2Other recent models of farsighted coalition formation include Ray and Vohra (1997), Mariotti
(1997), Barberà and Gerber (2003), Bloch and Gomez (2006), Diamantoudi and Xue (2006),
Conley and Konishi (2002), Page and Wooders (2006), Page et al. (2005). Relatedly, Chatterjee
et al. (1993), Bloch (1996), Ray and Vohra (1999), and Gomes and Jehiel (2005) model coalition
formation non-cooperatively via a protocol.
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Such equilibria do not contain randomization and, more importantly, converge to
an outcome of which the coalitions can be interpreted to agree upon. The aim of
this paper is to show that a version of detereministic and absorbing equilibrium
process of coalition formation does exist if one drops the assumption that the
processes are Markovian, i.e., allows coalition formation processes to be history
dependent.3

Formally, we apply a modi�ed version of the solution concept of KR to the
classic one-shot framework where coalitional negotiations take place prior to the
binding agreement. We look at deterministic and �nitely terminating processes of
coalition formation that implement an outcome in �nite time. They can, in the
framework of KR, interpreted as deterministic and absorbing processes of coalition
formation: processes that do not contain randomization and nor cycles in the long
run. However, we relax the Markovian restriction imposed by KR. To highlight
the possibility that coalition formation process may now depend on the history,
we dub the solution as dynamic equilibrium process of coalition formation. The
solution coincides with the standard one-deviation principle when restricted to
games where each coalition consists of a single player.
It is important to note that our focus on deterministic and absorbing coalition

formation processes is not a restriction on players�rationality but rather on the
solution concept: it is more di¤cult to �nd a solution with the desired properties
than it is without them. In fact, our model can be interpreted as an undiscounted
version of the KR framework, re�ecting "full farsightedness" of the players (see
below).
Our main result is that, due to �exibility coming with history dependency, a

dynamic equilibrium process of coalition formation always exists. We show this by
�rst characterizing the basic structure of all dynamic equilibrium processes of coali-
tion formation. Like Xue (1998), the characterization is provided directly in terms
of possible play paths. By varying possible histories, any dynamic equilibrium
process of coalition formation induces a collection of play paths called a consistent
path structure. This characterization is complete in a sense that each consistent
path structure also gives rise to a dynamic equilibrium process of coalition forma-
tion that induces this collection of paths. Hence consistent path structures de�ne a
subset of outcomes that are implementable in equilibrium. Indeed, we characerize
explicitly the largest set of outcomes that are implementable in any equilibrum.
The existence of a consistent path structure is obtained by applying techniques
from the social choice theory.4 5

3KR �nds the issue of history dependent coalition formation processes interesting and di¢ cult
but do not analyze it in detail.

4In particular those introduced by Fishburn (1977) and Dutta (1988).
5Equilibrium binding agreement -solution of Ray and Vohra (1997) coincides with dynamic

equilibrium process of coalition formation when restricted to the class of games where coalitions
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To see how the history dependency works, let us consider the "roommate prob-
lem" in KR (Example 10). There are three players f1; 2; 3g, three choices fx; y; zg,
and payo¤s are

x y z
Player 1 1 0 a
Player 2 a 1 0
Player 3 0 a 1

where a 2 (0; 1): Possible coalitional moves are depicted in the commuting diagram
in Figure 1.a, where x!f2;3g y means that coalition f2; 3g may change status quo
outcome x to y, etc..

Figure 1.a. Figure 1.b.

The game proceeds as follows. At each point of time t = 0; 1; :::, there is a status
quo outcome. This status quo can be replaced with a new outcome by the eligible
coalition, as depicted in Figure 1.a. (e.g., x!f2;3g y means x can be replaced with
y by coalition f2; 3g). The new outcome becomes the status quo in t + 1: If the
status quo outcome is not replaced with any other outcome, then it is implemented.
KR demonstrate that this game lacks an absorbing and deterministic equi-

librium process of coalition formation, i.e., a plan that speci�es, at each node,
whether the current status quo is implemented or not, and that is, at each node,
optimal from viewpoint of the eligible coalition, given how the process behaves

can integrate but not disintegrate.
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in the future (KR show, however, that the game does posses a randomized equi-
librium process of coalition formation or, depending the value of paramter a; a
cyclic equilibrium process of coalition formation). We argue that the game has
an absorbing deterministic equilibrium process of coalition formation if one lets
the process have memory. Let history a¤ect the coalitional process via two phases
fq; q0g; as follows. Divide the set of outcome-phase con�guarions fx; y; zg�fq; q0g
into two groups: terminal con�guarions f(x; q); (y; q); (z; q)g and transitory ones
f(x; q0); (y; q0); (z; q0)g: Let phase transitions from one con�guration to another be
determined as depicted in Figure 1.b: if the process moves away from a terminal
con�guration, then the phase changes from q to q0; and if the process moves away
from a transitory con�guration, then the state changes from q0 to q: Finally, let
the phase dependent process of coalition formation implement the outcome on the
table if the current con�guration is terminal, and let the process move to the next
con�guration by changing the outcome on the table if the current con�guration is
transitory.
The constructed history dependent process of coalition formation is e¢ cient in

the sense that no coalition bene�ts from a one-time deviation to the process. In
a terminal con�guration, say (x; q); a devition leads to implementation of y via a
transitory con�guration (y; q0). This change is not pro�table from the viewpoint of
the deviating coalition f2; 3g: In a transitory con�guration, say (y; q0); a deviation
would lead to implementation of y (and not continuing to (z; q)); instead of z.
Again, this change is not pro�table from the viewpoint of the deviating coalition
f1; 2g.
The underlying rationale for the existence of a history dependent equilibrium

process of coalition formation can be seen from Figures 1.a,b. The commuting
diagram in case (a) re�ects a deterministic one-state Markov process, resulting
in a cycle with even number of nodes. The second type (b) commuting diagram
can in turn be interpreted as a two-state Markov process. A particular feature
of a cycle with even number of nodes is that they are impossible to bipartition -
divide into two disjoint sets such that every edge connects a node in the �rst set to
one in the other. Bipartitioning is, however, possible when there are two phases.
They double the number of outcome-phase nodes as in Fig. 1.b. And it is such
bipartitioning on which one can build a (dynamic) equilibrium process of coalition
formation: implement outcomes in the �rst set of nodes and transit from the other
set to the �rst one.6 7

In this example, any outcome could be implemented within the constructed
coalition formation process depending on the initial outcome on the table. More

6Barberà and Gerber (2007) argue that there is no natural, well de�ned, internally consistent
solution. Their argument assumes history independent coalitional strategies.

7That history dependence enlarges signi�cantly possible bargaining outcomes is, of course,
well known (see e.g. Chatterjee et al., 1993).
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generally, however, the set of outcomes that are implementable in a dynamic equi-
librium process of coalition formation constitute only a small subset of the out-
comes - in fact, a subset of the largest consistent set of Chwe (1994).
There are two technical di¤erences to the way the solution is formulated in KR

(apart from history dependency). First, our focus is on properties of the solution
that re�ect coalitional optimality that is captured by the one-deviation principle.
This is why we only require weak coalitional preference for transition from the
current satus quo to the next one (as opposed to KR who require strict preference
when the status quo outcome is not an e¢ cient move for all coalitions). Second,
we evaluate the intertemporal payo¤s of the players by limit-of-the-means criterion
rather than discounting. In the modeling of KR, this case can interpreted as the
full farsightedness -benchmark. These di¤erences notwithstanding, the key aspects
of the solutions (i.e., the one-deviation principle) are the same and warrant, in our
view, common naming.
A problem with game theoretic solution concepts is often their computability.

This is a particular concern here since the basis of our solution - the set of all
�nite play paths - is typically in�nite. Hence it is not a priori clear whether
there is any procedure that identi�es an equilibrium in �nite time. We show that
this concern is not warranted. Our second key result is to construct an explicit
procedure that identi�es the outcomes that are implementable via any dynamic
equilibrium process of coalition formation. Importantly, this procedure terminates
in �nite (bounded) time.
Relatedly, we also show that there is essentially no loss of generality in assuming

that the processes of coalition formation are �nitistic in a sense that (i) they
have only �nite memory (they are �nite state Markov chains), and (ii) that they
implement outcomes in bounded time. Thus starting from any history, there is an
upper bound on the number rounds in which the outcome becomes implemented.
The Coase theorem famously asserts that, in absence of deadlines and other

barriers on negotoation,interaction between agents always leads to e¢ ciency. How-
ever, we demonstrate via an example that dynamic equilibrium processes of coali-
tion formation are not always e¢ cient (in our example every dynamic equilibrium
process of coalition formation induces only ine¢ cient outcomes).
There are interesting connections to other coalitional solutions concepts, in

particular to the largest consistent set of Chwe (1994), conservative stable standard
of behavior of Greenberg (1990) and Xue (1998), and full coalitional equilibrium of
Mariotti (1997). Formal discussion of the connections to this literature is relegated
to Section 4.
Section 2 de�ned the model and the solution concept. Section 3, which con-

tains the main part of the paper, characterizes dynamic equilibrium processes of
coalition formation, demonstrates its existence, and establishes a �nite procedure
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to compute it. Section 4 compares the solution to the aforementioned solutions
in the literature. Section 5 discusses the �nitistic aspects of the solution. Section
6 comments brie�y the e¢ ciency of the solution, and Section 7 concludes with
discussion.

2 Coalitional game

A coalitional game (see Rosenthal 1972, Greenberg 1990, Chwe 1994) is de�ned
by a list

� = hN;X; (FS)S�N ; (%i)i2Ni ;
where N is a �nite set of players, X is a nonempty �nite set of states or nodes
or outcomes, an choice set FS(x) � X [ f;g such that ; 2 FS(x) speci�es the set
of actions or e¤ectiveness relations FS(x) available to a coalition S � N at node
x 2 X:8 Each player i 2 N has a preference relation %i over the set of outcomes
X:
The game is played in the following manner: There is an initial status quo x0:

At period t = 0; 1; :::; coalition S can challenge the current status quo outcome xt

by demanding an outcome y 2 FS(xt). In such case, y becomes the new status quo
at period t + 1: If no coalition challenges xt, then x becomes implemented. Only
one coalition may be active at a time.
This model embodies several classic models, such as characteristic function

games, games in strategic form or majority voting games. But it can also encom-
pass games in partition function form (e.g. Ray and Vohra, 1997; Barberà and
Gerber, 2003; Diamantoudi and Xue, 2006) or networks (e.g. Jackson and Wolin-
sky, 1996; Dutta and Mutuswami, 1997; Jackson and van den Nouweland, 2005;
Page at al., 2006). For concrete examples of games falling into these categories,
see Chwe (1994) or Ray (2007). In its general abstract form, the game has been
analyzed by Chwe (1994), Xue (1997), and Konishi and Ray (2003). The origins of
this modeling tradition were laid down by Greenberg (1990) and Rosenthal (1972).
In the remainder, we make the following assumption which simpli�es the expo-

sition: For all x; y 2 X such that x 6= y; there is at most one coalition S such that
y 2 FS(x): Such a coalition is denoted by S(x; y): The only role of this assumption
is to reduce the notational burden: when moving from x to y we do not need to
specify which coalition induces the move.9 To see why the assumption is with-
out loss of generality, note that it actually only requires each outcome be indexed
by the coalition that brought the outcome on the table (and the initial outcome

8Chwe (1994) does not assume �nite outcome space.
9The assumption allows presenting the histories of play in terms of the nodes alone. Otherwise,

a history should also specify which coalitions have been active along the play path.
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is indexed by the empty set).10 Hence the assumption makes no restrictions on
the underlying physical structure. In particular, it does not a¤ect any of the our
results.11

Paths A path is a �nite sequence (x0; :::; xK) of outcomes such that xk+1 2
[SFS(xk), for all k = 0; :::; K. The length of the path (x0; :::; xK) is K: Denote by
Xk the k�fold Cartesian product of the set X; and denote the set of all paths by

X = [1k=1Xk:

Further, denote the set of paths that start from node y by

Xy = f(x0; :::; xK) 2 X : x0 = yg:
For any collection B � X of paths, denote the subcollection of paths that start
from node y by

By = B \ Xy:
A path is abbreviated by �x = (x0; :::; xK): By our expositional assumption, a path
�x also implicitly de�nes the coalitions that are active along the play. Denote the
�nal element xK of the path (x0; :::; xK) by

�[(x0; :::; xK)] = xK :

Process of coalition formation Denote the set of �nite histories by H :=
Xx0 : A deterministic process of coalition formation PCF � is a function � : H !
X [ f;g. The interpretation of a PCF is that if �(h; x) = y 2 X; then the
coalition S(x; y) changes the status quo from x to y; and if �(h; x) = ;; then no
coalition is active and x becomes implemented. Thus, a PCF speci�es which - if
any - coalition is active at the given history, and which outcome is the new status
quo.
Denote, in the usual way, by �t(h) the tth iteration of � starting from h; i.e.,

�0(h) = �(h) and �t(h) = �(h; �0(h); :::; �t�1(h)); for all t = 1; ::: : A PCF � is
terminating if, for any h 2 H there is Th < 1 such that �Th+1(h) = ;: That is;
after any history h, the process will implement the outcome �Th(h).

10If Y is the underlying physical outcome space, then we may let X = Y � 2N such that
(y; S) 2 X if and only if y is the physical outcome on the table and S is the most recent active
coalition, and S = ; if y = x�.
11The only consequence of the assumption is that some of the outcomes may have multiple

representations in the set of outcomes. Since no restrictions are imposed on preferences over
outcomes, this does not a¤ect the characterization nor the existence results.
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Let ��(h) denote the sequence of status quos inX that is induced by the strategy
� from the history h onwards

��(h) = (�0(h); �1(h); :::):

If � is terminating, then ��(h) is �nite and �[��(h)] is well de�ned, for all h. Specif-
ically, for a terminating PCF �, if coalitional action a 2 X [ f;g is chosen at
history (h; x) 2 H, then

�[��(h; x; a)] =

�
�[��(h; x; y)]; if a = y 2 X;
x; if a = ;: (1)

In particular, �[��(h; �(h))] = �[��(h)]:

The solution Our primary question is whether equilibrium reasoning is com-
patible with the idea that a deterministic PCF is terminating. Our equilibrium
condition, which is amended version of the solution in KR, is de�ned next.
Use the following notation for group preferences. For any S � N; and x; y 2 X;

y �S x if y �i x; for all i 2 S;
y %S x if y %i x; for all i 2 S:

Take a PCF � and a history (h; x). We say that coalition S has a weakly preferred
move y 2 FS(x) from x if �[��(h; x; y)] %S x. Further, a move a 2 FS(x) is e¢ cient
for coalition S if there is no b 2 FS(x) such that �[��(h; x; b)] �S �[��(h; x; a)].

De�nition 1 (DEPCF) A deterministic terminating PCF � is a dynamic equi-
librium process of coalition formation (DEPCF) if, for all (h; x) 2 H,

1. �(h; x) 2 X implies that �(h; x) is an e¢ cient and weakly preferred move
from x for coalition S(x; �(h; x)):

2. �(h; x) = ; implies that ; is an e¢ cient move from x; for any coalition S.

Thus a coalition is allowed to change the current status quo only if all its
members agree on the move to the new status quo and cannot �nd any strictly
better alternative status quo, given that the PCF is followed ever after. Moreover,
if there is a strictly pro�table move for some coalition, then the status quo must
change.
Our solution re�ects one-deviation principle: there is not pro�table one-shot

deviation for any coalition. The equilibrium condition in KR is slightly more
stringent in that it requires that if there is a strictly pro�table move for some
coalition, then equilibrium move must also be strictly preferred for some (not
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necessarily the same) coalition.12 (Our condition only requires the move to be
weakly preferred). Discussion of the relation to KR and other solutions is relegated
to Section 4.

Inducible paths and implementable outcomes In the remainder of this
study, we characterize DEPCFs and verify their existence. Since the play path as
well as the eventually implemented outcome may be sensitive to the choice of the
initial status quo, which is usually somewhat arbitrary, it is natural to focus on
paths that are inducible in DEPCF independently of how their �rst element has
been reached. Our main interest is in outcomes that are implementable in DEPCF
after some initial history.
More formally, paths that are induced in a PCF � after some history of play

are
��(H) = f�x 2 X : ��(h) = �x and h 2 Hg:

Denoting the set of �nal outcomes of a collection paths B by �[B] = f�[�x] : �x 2 Bg;
the set of outcomes that are implementable in a terminating PCF � is written as

� [��(H)] = fx 2 X : �[�x] = x and �x 2 ��(H)g:

Any outcome in � [��(H)] � X - and nothing outside - can be implemented in a
PCF � by changing the initial history.

Simple recursive games In case there is only one potentially active coali-
tion of a single player under each status quo, the game structure speci�es a sim-
ple recursive game or, equivalently, a deterministic perfect information stochastic
game with absorbing states. In this class of games, the player in a decision mak-
ing turn faces the question of whether to stop the game or whether to move the
decision making turn to one of the other players in his choice set. The essential
problem is that of commitment : how to assign players a strategy that they all can
commit to. This is not a trivial problem since no a priori restrictions are put on
the players�preferences over possible outcomes.
When the game is equivalent to a simple recursive game, our equilibrium con-

cept reduces to the standard form of the one-deviation principle: no player should
bene�t, after any history, from making a single deviation to his pure strategy.13

Thus the dynamic equilibrium process of coalition formation can be seen as a
coalitional generalization of the one-deviation property.
To our knowledge, there are no prior results concerning pure strategy subgame

perfect equilibria in perfect in simple recursive games. Since a simple recursive

12That is, �[��(h; x)] �S x; for some S:
13See e.g. Osborne and Rubinstein (1994).
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game is a special case of a coalitional game á la Chwe (1994), our characterization
and existence results below imply directly corresponding results in this class of
stochastic games.

3 Characterization

The most primitive property of any equilibrium path (x0; :::; xK) 2 X is feasibility:

xK %S(xk+1;xk) xk;; for all k = 0; :::; K � 1: (2)

That is, a path is feasible if following the path is not worse for any member of
active coalitions than stopping the game, provided that the �nal outcome of the
path will be reached. Denote the set of feasible paths by F � X : Property 1 of
De�nition 1 hints that any coalitional equilibrium path is necessarily feasible. It
will be convenient to work directly in terms of feasible paths.
Now we characterize coalitional equilibria in terms of the primitive data alone,

i.e., in terms of walkable paths. To this end, we de�ne a dominance relation over
paths. Recall that Fy is the set of feasible paths that originate from node y:

De�nition 2 (Path Dominance) A path �y 2 F dominates a path �x 2 X at
the kth step, denoted by �y Bk �x; if y 2 FS(xk); �y 2 Fy; and �[�y] �S �[�x]; for
S = S(xk; xk+1):

That is, if outcome xk is reached along the path �x; then there is an active
coalition at xk that bene�ts from moving the play to path �y under the hypothesis
that the �nal element of �y is implemented reached rather than that of �x.

De�nition 3 (Consistent Path Structure) A collection of feasible paths C �
F is a consistent path structure (CPS) if,

(i) Cx is nonempty, for all x 2 X;

(ii) for any �x 2 C; there are no k and y such that �y Bk �x for all �y 2 Cy:

A consistent path structure can be given a "blocking" interpretation as follows.
(i) For any initial status quo node, there is a feasible path in the consistent path
structure that guides how the play evolves. (ii) If an active coalition along the play
path deviates from the path to a new node, then there is a path in the consistent
path structure that starts from the new status quo and ends in an outcome that
does not improve the payo¤s of the members of the deviating coalition relative to
what would be obtained if the original path is followed:
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We now claim that a consistent path structure features stability in the sense de-
scribed in the notion of dynamic equilibrium processes of coalition formation. The
core of the argument is that any path of a consistent path structure is sustainable
if any deviant coalition can be punished. But, by De�nition 3 (ii), punishment
is feasible if it is true that any path of a consistent path structure can be played.
Hence an element of a consistent path structure is robust against one-shot (�nitely
many) deviations in a consistent way.
Intuitively, a consistent path structure does not aim to rule out outcomes with

con�dence. Rather, the idea is to characterize precisely the outcomes and paths
that are consistent with equilibrium reasoning.
Now we verify the above argument formally, i.e., that for any consistent path

structure there exists a well de�ned PCF meeting the one-deviation property. Let
C be a consistent path structure. Identify a function � on C � N � X such that
�(�x; k; y) 2 Cy and �(�x; k; y) 7k �x; for all (�x; k; y) such that y 2 FS(xk;xk+1)(xk) n
fxkg: Since C satis�es De�nition 3, such function does exist.
We now construct a deterministic and terminating PCF �� : H ! X that is

based on the function �. It is convenient to describe �� as a deterministic Markov
chain (�� : Q; g; �x0); where Q is a set of states on which the process �� operates,
g is a transition function from Q�X to Q; and �x0 2 Cx0 is an initial path (which
exists by De�nition 3(i)): Later we shall argue that it without loss of generality to
assume that the set of states Q is �nite.
Let the set of states Q consist of pairs of paths and integers as follows:

Q = f(�x; k) : �x = (x0; :::; xK) 2 C and 0 � k � Kg: (3)

Start with the path �x0: Let the transition function g satisfy, for any �x = (x0; :::; xK) 2
C; for any k = 0; :::; K � 1; and for any y 2 X;

g((�x; k); y) =

�
(�x; k + 1); if y = xk+1;
(�(x; k; y); 0); if y 6= xk+1:

(4)

Proceeding recursively from x0; the set of histories H is partitioned by the set Q:
Let the PCF �� be conditional on the current state (�x; k) 2 Q; where �x =

(x0; :::; xK); such that:

��(�x; k) =

�
xk+1; if k < K;
;; if k = K:

(5)

That is, the PCF continues along the path �x = (x0; :::; xK) and implements xK
when the end of the path is reached.

Lemma 1 A (deterministic and terminating) PCF �� is a DEPCF.
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Proof. Termination: Take (q; y) 2 Q � X and let g(q; y) = (�x; k) 2 Q; where
�x = (x0; :::; xK): Then, applying (4) and (5) recursively, �� implements an outcome
in at most K � k steps. Since (q; y) was an arbitrary element of Q � X; �� is
terminating.
Equilibrium condition (1): Take any path �x = (x0; :::; xK) and state (�x; k) 2 Q:

Suppose that ��(�x; k) is not an e¢ cient move from xk for coalition S = S(xk+1; xk):
Then there is y 2 FS(xk)nfxk+1g that induces a path �(�x; k; y) such that �[�(�x; k; y)] �S
�[�x]: But by the de�nition of dominance, �(�x; k; y) Bk �x which contradicts part
(ii) of a de�nition of CPS C: Moreover, by construction, �x 2 F which implies that
also �[�x] %S xk:
Equilibrium condition (2) is now obtained by replacing k < K with k = K;

coalition S(xk+1; xk) with any coalition S; and y 2 FS(xk) n fxk+1g with y 2
FS(xK); and following the the �rst sentence of the proof of condition (1).

To fully characterize equilibrium strategies, consistent path structures need to
be completed in the following sense: A consistent path structure C is complete if
(x0; :::; xK) 2 C implies (xk; :::; xK) 2 C; for all k = 0; :::; K: That is, following a
path in a C is consistent with staying on a path in the C. Note that completion
is a purely expositional operation; existence of a complete C or its uniqueness is
never an issue once C is speci�ed.
Given a complete consistent path structure C and strategy �� de�ned on it; let

���(q) denote the path followed once q 2 Q has materialized: By construction;

���(�x; k) = (xk; :::; xK); for all (�x; k) 2 Q:

In particular, by the construction of ��;

���(�x; 0) 2 C:

Thus, by the de�nition of completeness of C;

���(�x; k) 2 C; for all (�x; k) 2 Q:

Thus ���(Q) � C: Moreover, since ���(�x; 0) = �x; for all �x 2 C; it follows that
C � ���(Q): We therefore have

���(Q) = C: (6)

That is, for any consistent path structure C, we can �nd an equilibrium strategy
that induces the corresponding complete C
Now we prove the converse of Lemma 1 - that a consistent path structure

characterizes behavior in any equilibrium, i.e., that any collection of equilibrium
paths is equivalent to a consistent path structure.
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Lemma 2 Let a (deterministic and terminating) PCF � be a DEPCF. Then there
is a complete CPS C � F such that ��(H) = C.

Proof. Take any (h; x) 2 H: Then a �nite path ��(h; x) exists since � is terminat-
ing. We check both the de�ning conditions of CPS.
(i). By construction, ��(h; x) 2 Xx: Since � is a DEPCF, ��(h; x) 2 F : Thus

��(h; x) 2 Fx:
(ii). Let ��(h; x0) = (x0; :::; xK) = �x: First, take any k < K and any y 2

FS(xk) n fxk+1g; for S = S(xk; xk+1): Since xk+1 is e¢ cient for S, it must be the
case that �[�y] 6�S �[�x], where ��(h; x0; :::; xk; y) = �y. That is, for any choice of k
and y there is �y 2 ��(H) \ Fy such that �y 7k �x:
Second, take k = K and any y 2 FS(xK); for S = S(xK ; y): Since ; is e¢ cient

for S, it must be the case that �[�y] 6�S �[�x] = xK , where ��(h; x0; :::; xk; y) = �y.
That is, for any choice of y there is �y 2 ��(H) \ Fy such that �y 7K �x:
Finally, we argue that the CPS is also complete. Let (x0; :::; xK) = ��(h). It

su¢ ces to show that (x1; :::; xK) = ��(h; x0): But this follows from the recursive
structure of ��(h; x0) = (�(h); x1; :::; xK).

One the one hand by Lemma 1 and condition (6), any consistent path structure
can be supported by a dynamic equilibrium process of coalition formation. On the
other hand, by Lemma 2, a dynamic equilibrium process of coalition formation
induces behavior consistent with a consistent path structure. We compound these
observations in the following characterization.

Theorem 1 A a (deterministic and terminating) PCF � is an DEPCF if and
only if there is a complete CPS C such that C = ��(H):

Theorem 1 permits us also to characterize the outcomes that are implementable
within an equilibrium. The set of outcomes that are implementable within a
consistent path structure C coincide with the set of outcomes that are inducible
via an equilibrium and, conversely, the set of outcomes that are implementable
within an equilibrium coincide with the set of outcomes that inducible within a C.
Summing these results gives a useful corollary.

Corollary 1 There is a DEPCF � such that �[��(H)] = B if and only if there is
a CPS C such that �[C] = B.

This result does not, however, say anything about the existence of a consistent
path structure nor how it can be identi�ed. The next section identi�es the maximal
consistent path structure, and shows that it always exists. This guarantees the
existence of a solution.
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3.1 Existence

The aim of this subsection is to prove that a consistent path structure and, hence,
that a well de�ned coalitional equilibrium does exist. To this end, we need to
de�ne the following relation between paths and nodes. The concept is inspired
by its cousin in the social choice literature (cf. Fishburn, 1977; Miller, 1980; and
Dutta, 1988. Laslier, 1991, is an in-depth survey).
Let B be a set of paths:

De�nition 4 Path �x 2 X is covered in B via node y if there is k such that �y Bk �x;
for all �y 2 By.

That is, a path �x is covered via node y in set B of paths if, at some particular
node (the "kth") of �x; the members of the active coalition pro�t by directing the
play to node y rather than continuing along �x, no matter which paths in the set
B set is followed after the deviation (under the hypothesis that the �nal element
of played path is implemented).
Denote by uc(B) the subset of elements in B that are uncovered in B � X , i.e.,

uc(B) = f�x 2 B : �x is not covered in Bg:

By construction, uc(B) � X [ f;g:
We now strengthen the concept by iterating the uncovered-operator until no

paths are left to be covered. Set UC0 = F ; and let UCt+1 = uc(UCt) � F ; for all
t = 0; :::. The ultimate uncovered set UUC � F is then de�ned by UUC := UC1:
Our aim is to show that UUC is a consistent path structure. That is, in

addition to conditions stated in De�nition 3, we need to verify that UUC is is a
well de�ned concept. This automatcally the case if only �nitely many itearations
are needed.

Lemma 3 There is T <1 such that UCT = UUC:

Proof. Call a family of paths�
(x0; :::; xK) 2 X : f(xk; xk+1)gK�1k=0 = B and xK = y

	
a dominance class, parametrized by B � X � X and y 2 X: Since X is a �nite
set, the cardinality of distinct dominance classes is �nite, and they partition X .
A dominance class contains all the relevant information concerning dominance:

If two paths �x and �x0 belong to the same dominance class, then �x is covered in
UCt if and only if �x0 is covered in UCt; for any t: This follows directly from the
de�nitions of covering and dominance class. Since all paths in the same dominance
class become covered at the same covering round t, and since there are �nitely many
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dominance classes, the number of covering rounds to reach UUC must be �nite:

Now we proceed to verify that UUC meets part (i) of De�nition 3.

Lemma 4 UCtx is nonempty, for all x 2 X and for all t = 0; 1; :::.

Proof. Take any S � N , x 2 X; and t 2 f0; 1; :::g: Denote

CS(x; t) =
�
y 2 FS(x) : (x) is covered in UCt via y

	
:

Further, let DS(x; t) contain any y 2 CS(x; t) having the property that for any
�y 2 UCty and for any z 2 CS(x; t) there is �z 2 UCtz that is not preferred to �y for
all members of S :

DS(x; t) =
�
y 2 CS(x; t) : �y 2 UCty and z 2 CS(x; t) imply there is �z 2 UCtz s.t. �[�z] 6�S �[�y]

	
:

(7)
By the transitivity of %S, DS(x; t) = ; if and only if CS(x; t) = ;:
Claim 0: Let y 2 DS(x; t). Then (x; �y) is not covered at k = 0 in UCt; for any

�y 2 UCty:
Proof: If (x; �y) 2 UCty is covered at k = 0 in UCt; then there is z 2 FS(x;y)(x)

such that
�[�z] �S(x;y) �[�y]; for all �z 2 UCtz: (8)

Since y 2 DS(x;y)(x; t) � CS(x;y)(x; t) we have �[�y] �S(x;y) x: This means that (x)
is covered in UCt via z. But together with (8) this contradicts (7).�
Denote

G(x; t) = [SDS(x; t):

Claim 1: G(x; t) = ; if and only if (x) 2 UCt+1, for any x 2 X and for any
t = 0; 1; ::: :
Proof: By the de�nition of covering, if (xJ) is covered in UC� for any � � t;

then it is covered in UCt:

Call a path (x0; :::; xJ) a G�path under t if xj+1 2 G(xj; t) for all j = 0; :::; K�
1. If, moreover, G(xJ ; t) = ;; then (x0; :::; xJ) is a terminal G�path under t.
Claim 2: For any t = 0; 1; :::; if (x0; :::; xJ) is a terminal G�path under t, then

(x0; :::; xJ) 2 UCt+1.
Proof: Let (x0; :::; xJ) be a terminal G�path under t: By Claim 0, G(xJ ; t) = ;

implies that (xJ) 2 UCt+1: Since xj+1 2 G(xj; t); for all j = 0; :::; J�1, it follows by
using Claim 1 and iterating backwards on j = 1; :::; J that (x0; :::; xJ) 2 UCt+1:�
Claim 3: For any t = 0; 1; ::: and for any x 2 X; there is a terminal G�path

(y0; :::; yJ) under t such that y0 = x:
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Proof: By Claim 2, the claim implies that (y0; :::; yJ) 2 UCt+1: Let, on the
contrary of the claim, there be t that is the �rst stage in which the claim does not
hold: For any x; denote G0(x; t) = fxg; and de�ne recursively

Gn(x; t) =
�
z : z 2 G(y; t) and y 2 Gn�1(x; t)

	
; for any n = 1; ::: :

Since the claim does not hold in stage t, there is a particular x such thatG(z; t) 6= ;;
for all z 2 Gn(x; t); for all n: Viewing G as the support of a Markov process with
state spaceX, denote by V � X the ergodic set of this process, i.e., V is the unique
minimal subset of X in the sense of set inclusion such that V = [v2VG(v; t) and
Gn(x; t) � V for all n � nV for some nV . We now show a contradiction by proving
that V cannot exist.
Subclaim 3.1 : We �rst argue that (v) 62 UCt for all v 2 V: Suppose on the

contrary that (v) 2 UCt and v 2 V . By the de�nition of V; there is a G�path
(v0; :::; vL) under t such that v = v0 = vL: By using Claim 1 and iterating back-
wards on ` = 1; :::; L�1, it follows that (v1; :::; vL) 2 UCt: But then, since v0 = vJ ,
(v0) is not covered in UCt via v1; a contradiction.
Subclaim 3.2: Now we argue that the opposite of Subclaim 3.1 cannot be true

either. Suppose that (v) 62 UCt for all v 2 V: Take any element of V; say y0: Since
(y0) 62 UCt; we have G(y0; t � 1) 6= ;: By the maintained assumption, there is a
terminal G�path (y0; :::; yJ) under t� 1 such that, by Claim 2, (y0; :::; yJ) 2 UCt:
By Claim 1; y1 2 G(y0; t � 1) and �z 2 UCty1 � UCt�1y1

imply (y0; �z) 2 UCty0 :
By the de�nition of V; there is a G�path (v0; :::; vL) such that y0 = v0 = vL:
Thus by using Claim 1 and iterating backwards on ` = 0; :::; L� 1, it follows that
(v0; :::; vL�1; �z) 2 UCt+1y0

� UCty0 for all �z 2 UCty1 : This implies, since v1 2 G(y0; t);
that also y1 2 G(y0; t): By the de�nition of V; then, y1 2 V: Itarating this way on
j = 2; :::; J � 1 it follows that yJ 2 V: But by (y0; :::; yJ) 2 UCt it also follows that
(yJ) 2 UCt; and a contradiction is proved.�
Claims 2 and 3 now establish the proof.

Finally, we state our existence result: the ultimate uncovered set UUC is a
consistent path structure.14 For this, we need to show that UCTy is nonempty for
all y 2 X and that no element in UUC is covered in UUC.

Theorem 2 UUC is a CPS.

Proof. By construction, UUC � F . Thus it su¢ ces to check parts (i) and (ii) of
De�nition 3.
14Recently, and independently of this study, Flesch et al. (2008) achieve a closely related

existence result concerning subgame perfect Nash equilibria in perfect information stochastic
games.
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(i). By Lemma 3, UCTy = UUCy which is, by Lemma 4, nonempty, for all
y 2 X:
(ii). By the construction of UUC; uc(UUC) = UUC: Thus �x 2 UUC is not

covered in UUC; i.e., there is no y and k such that �y Bk �x; for all �y 2 UUCy:

The next result shows that UUC is the (unique) maximal consistent path
structure in the sense of set inclusion:

Theorem 3 UUC contains as a subset any CPS.

Proof. Let C be a CPS. Take any �x 2 C:
1st iteration: Since �x satis�es De�nition 3(ii), and C � F ; it follows that �x is not

covered in UC0 = F : Hence �x 2 uc(F) = UC1: Since �x was arbitrary, C � UC1:
2nd iteration: Since �x satis�es De�nition 3(ii), and C � UC1; it follows that �x is

not covered in UC1: Hence �x 2 uc(UC1) = UC2: Since �x was arbitrary, C � UC2:
...
T th iteration: Since �x satis�es De�nition 3(ii), and C � UCT�1; it follows that

�x is not covered in UCT�1: Hence �x 2 uc(UCT�1) = UCT : Since �x was arbitrary,
C � UCT =: UUC:

Since the UUC is obtained via a well de�ned recursive process, there is no
question about its existence. By Theorems 2 and 1, one can construct a terminat-
ing equilibrium process of coalition formation on UUC. Hence we can conclude
that a dynamic equilibrium process of coalition formation is guaranteed to exist.

Corollary 2 There is a DEPCF � such that ��(H) = UUC:

By Theorem 3, we have also characterized outcomes that are implementable
with any equilibrium.

Corollary 3 The set of outcomes that are implementable via any DEPCF is con-
tained in �[UUC]:

3.2 Computational Considerations

The problem with game theoretic solution concepts is often their computability.
Such questions are particularly acute here since the set of paths X typically con-
tains in�nitely many elements. It should not be clear a priori whether coalitional
equilibria, or outcomes they implement, can be identi�ed via a procedure that
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terminates in �nite time. Applicability of such a solution would, of course, be
questionable.15

We now show that these concerns are unwarranted. A convenient algorithm for
computing the relevant elements of the ultimate uncovered set, i.e. the largest con-
sistent path structure, is provided. This algorithm, which terminates in �nite time,
thus generates a complete description of the outcomes that can be implemented
via a dynamic process of coalition formation.
In order to establish the desired results, we develop a notion that captures

the relavent information contained in a path in the simpliest possible form. We
say that �y = (y0; :::; yL) 2 X is a reduction of �x = (x0; :::; xK) 2 X if x0 = y0,
xK = yL; and f(yl; yl+1)L�1l=0 g � f(xk; xk+1)K�1k=0 g: Then �y is a full reduction of �x if
it is a reduction of �x and if the only reduction of �y is �y itself. That is, �y contains
a minimum amount of edges of �x that are needed to travel from x0 to xK . Note
that the reduction -relation is transitive. Since the paths contain at most �nitely
many distinct elements, each �x has a full reduction. However, a full reduction of
�x need not be unique.
For any set B of paths, denote by fr(B) the collection of all full reductions of

the elements in B; i.e., the elements of X that are full reductions of B. Note that
any path (x0; :::; xK) that contains a cycle such that xk = xl for some k < l; cannot
be a full reduction since (x0; :::; xk; xl+1; :::; xK) is a reduction of (x0; :::; xK) but
not vice versa. Thus, since any fully reduced path is acyclic and since X contains
�nitely many elements, the set of fully reduced paths fr(X ) can be identi�ed in
�nite time.
The full reduction -operation preserves two important aspects of consistent

paths structures: the initial status quo and the feasibility. More formally,

B � Fx implies fr(B) � Fx: (9)

The following observation is now easily deduced from (9).

Lemma 5 If C is a CPS meeting De�nition 3 then so is fr(C):

Thus, when identifying consistent path structures - or outcomes that can be
implemented via them - it is in general su¢ cient to focus on consistent path struc-
tures that are composed of fully reduced feasible paths fr(F): In particular, the
fully reduced form of the feasible ultimate uncovered set fr(UUC) is a consistent
path structure.
Now we describe a �nite procedure that identi�es the fully reduced ultimate

uncovered set fr(UUC): Identify fr(F): De�ne recursively the uncovered set and
its iterations on the set of fully reduced paths: UC0FR = fr(F) and UCj+1FR =

15See Dutta (1988) for a related and inspiring discussion.
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uc(UCjFR) for all j = 0; ::: . The fully reduced ultimate uncovered set is then
de�ned by UUCFR = UC1FR: Since, by the argument made in Lemma 3, only
�nitely many iterations are needed for UCtFR to converge; UUCFR can be identi�ed
in �nite time.
Thus UUCFR can be identi�ed in �nite time. Our aim is to show that UUCFR

is a CPS and contains as subsets all fully reduced CPSs. This implies that the
endpoints of the paths in UUCFR are the outcomes that are implementable in any
dynamic equilibrium process of coalition formation.
Our �rst task is to show that UUCFR coincides with fr(UUC) and is contained

in UUC:

Lemma 6 fr(UUC) = UUCFR � UUC:

Proof. Claim 1 : UCtFR � UCt; for all t:
Proof : Let t be the �rst stage in which �x 2 UCtFR n UCt; for some �x: Hence

UCt�1FR � UCt�1: But then, by the de�nition of covering, since �x is covered in
UCt�1; it must be covered in UCt�1FR : But this contradicts �x 2 UCtFR.�
Claim 2 : fr(UCt) � UCt; for all t:
Proof : Let t be the �rst stage in which there is �x 2 fr(UCt) n UCt: Since �x 2

fr(UCt), �x must be a full reduction of some �y 2 UCt. But by the de�nition of full
reduction, the assumption that �x is covered in UCt�1contradicts the assumption
that �y is not covered in UCt�1.�
Claim 3 : UCtFR = fr(UC

t) for all t:
Proof : Since the full reduction of a set of fully reduced paths is the set itself,

it follows by Claim 1 that UCtFR = fr(UC
t
FR) � fr(UCt); for all t: For the other

direction, let t be the �rst stage in which �x 2 fr(UCt)nUCtFR; for some �x: Hence,
fr(UCt�1) � UCt�1FR : But then, by the de�nition of covering, since �x is covered
in UCt�1FR it must be covered in fr(UCt�1): By the de�nition of full reduction, �x
is also covered in UCt�1: Hence �x 62 UCt: But then �x 2 fr(UCt) n UCt, which
contradicts Claim 2. Thus fr(UCt) � UCtFR; for all t:�
Claim 4 : fr(UUC) = UUCFR � UUC:
Proof : Combining Claims 1 and 3, we have fr(UCt) = UCtFR � UCt for all t:

The fact that only �nitely many iterations are needed gives the result.

From Lemmata 5 and 6 it now follows that also the largest consistent path
structure can be described directly in terms of fully reduced paths via the iterative
procedure that identi�es UUCFR.

Theorem 4 UUCFR is a CPS: Moreover, UUCFR contains as a subset any fully
reduced CPS.
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Proof. By Lemma 5, fr(UUC) is a CPS. By Lemma 6, fr(UUC) = UUCFR:
Thus UUCFR is a CPS.
By Theorem 2, UUC contains any CPS C as a subset: Thus, by Lemma 6,

UUCFR contains fr(C) as a subset.

Furthermore, since the �nal element of a path is invariant with respect to the
full reduction -operation, i.e., �[B] = �[fr(B)] for any B � X ; it follows that the
outcomes that can be implemented with UUC coincide with the outcomes that
can be implemented with UUCFR:

Theorem 5 The set of outcomes that are implementable via any DEPCF is con-
tained in �[UUCFR]:

Proof. By Corollary 3, Lemma 6, and since �[UUCFR] = �[UUC].

We have thus constructed a procedure that speci�es, in �nitely many steps,
the outcomes that can be implemented in any equilibrium process of coalition
formation. The collection of paths identi�ed by the procedure also contains the
reduced forms of all dynamic equilibrium processes of coalition formation and,
moreover, it constitutes itself a dynamic equilibrium process of coalition formation.
It is fair to say that the procedure provides all the information that is needed for
the analysis of coalitional behavior.

4 Finitistic Equilibria

We have assumed that the processes of coalition formation are history dependent
and implement an outcome in �nite time. These assumptions problematic if (a)
the process has to have in�nite memory, (b) there is no upper bound on how long
will it take to implement an outcome. In this section we collect the results of the
previous sections to argue that neither of these concerns is warranted.
Recall that the dynamic process of coalition formation �� used in Lemma 1 uses

a state space Q that has the same cardinality as the consistent path structure C on
which it is built. By Lemma 5, a full reduction fr(C) of C is also a consistent path
structure. In terms of real consequences, however, fr(C) and C are equivalent, i.e.,
�[fr(C)] = �[C]. Since fully reduced paths are necessarily acyclic, it follows that
fr(C) contains �nitely many elements. Since, by Theorem 1, any consistent paths
structure can be identi�ed with a dynamic equilibrium processes of coalition for-
mation, we can conclude that, in terms real consequences (implemented outcomes)
it is without loss of generality to assume that the process is �nite state Markov
chains:
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Corollary 4 There is a DEPCF that is a �nite state Markov chain. Moreover,
for any DEPCF there is another DEPCF, equivalent in terms of real consequences,
that is a �nite state Markov chain.

Moreover, ince dynamic equilibrium processes of coalition formation can be
identi�ed with consistent path structures, any property of paths in a consistent
path structure translated directly to an observation concerning equlibria. Since
fr(C) contains �nitely many paths that are, at most, �nitely long, �nal element of
any path in fr(C) can be reached in �nitely many steps. Hence Theorem 1 implies
the following corollary.

Corollary 5 There is a DEPCF that that implements an outcome in uniformly
bounded time after any history. Moreover, for any DEPCF there is another DE-
PCF, equivalent in terms of real consequences, that implements an outcome in
uniformly bounded time after any history.

5 Relation to Other Models

In this section, we relate our solution to some existing equilibrium notions of
coalition formation.

5.1 Blocking in Real Time

In this section we relate our one-shot coalitional game to the model of real time
blocking of KR (Konishi and Ray, 2003) (see also Ray, 2007).16 Now X is is
interpreted as a set of states and ui is a utility function of player i 2 N over X.
Analogously to the model above, FS(x) � X is the set of states achievable by a
one-step coalitional move in state x by a coalition S. It assumed that x 2 \SFS(x)
to guarantee that staying in x - once reached - is possible.
Let H be the set of all histories of states (x0; :::; xt) such that x0 = x�. A

deterministic process of coalition formation PCF is now a function p : H ! X,
capturing transitions from one state to another. Letting p0(h) = p(h) and pt(h) =
p(h; p0(h); :::; pt�1(h)); for all t = 1; ::: , denote by �p(h) = (p0(h); p1(h); :::) the
chain of states that will materialize along the PCF p; starting from history h: All
walkable chains are denoted by �p(H) = f�p(h) : h 2 Hg: A PCF p is absorbing:17

16Hyndman and Ray (2007) and Gomez and Jehiel (2005) are other papers with real time
coalitional negotiation. However, there the negotiation is noncooperative, based on a protocol.
17Equivalently, we assume that p is an absorbing (deterministic) Markov chain with �nite state

space.
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if for any history h there is an integer Th <1 such that there is x 2 X such that

pt(h) = x; for all t > T: (10)

The absorbing state of the PCF p starting from history h, denoted by �[�p(h)]; is
then well de�ned for all h:
We evaluate the players�intertemporal payo¤s by the limit-of-the-means crite-

rion:

Vi(h) = lim
T!1

PT
t=0 ui(p

t(h))

T
:

Such payo¤ exists whenever PCF p is absorbing:

Vi(h) = ui(�[�p(h)]); for all h 2 H:

Pro�table moves and e¢ ciency concepts are de�ned analogously to the one-shot
game discussed before. That is, given an absorbing PCF p and a history (h; x),
coalition S has a weakly preferred move y 2 FS(x) from x if Vi(h; x; y) � ui(x)
for all i 2 S. Further, a move y 2 FS(x) is e¢ cient for coalition S if there is no
z 2 FS(x) such that Vi(h; x; z) > Vi(h; x; y) for all i 2 S.
Given these notions, we may now de�ne a modifed version of the equilibrium

criterion of KR. A dynamic, deterministic, absorbing PCF p forms an equilibrium
if the following two conditions hold, for any (h; x) 2 H :

1. If p(h; x) 2 Xnfxg, then p(h; x) is an e¢ cient and weakly preferred move
from x for S(x; p(h; x)):

2. If p(h; x) = x; then x is an e¢ cient move from x for all S:

Given this equilibrium criterion, it is now clear that this version of dynamic
equilibrium process of coalition formation is equivalent with the one de�ned for
terminating processes. That is, the set of states that are absorbing after some
history in some equilibrium of the KR model of real time blocking coincides with
the set of outcomes that are implementable after some history in a corresponding
equilibrium of the one-shot game.
However, as hinted above, our solution di¤ers from KR in two ways (apart from

allowing the process to be history dependent). First, part 2 of the condition in KR
is slightly stronger as it requires that if the status quo state x is not e¢ cient for
some coalition, then the equilibrium move must be e¢ cient and strictly preferred
move from x for some coalition (we only demand weak preference, by part 1 of
the condition).18 This additional desideratum would a¤ect the su¢ ciency but not

18The motivation for this weakening is our focus on properties of the solution that stem from
the one-deviation principle.
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the necessity of the characterization in Theorem 1. Second, in the original formu-
lation of KR, intertemporal preferences are captured by the discounting criterion.
Formally, given a discount factor � 2 (0; 1), player i�s value function V �i is derived
as the solution to the recursive expression (see Ray, 2007)

V �i (h; x) = (1� �)ui(x) + �V �i (h; x; p(h; x)): (11)

KR de�ne the coalitional preferences and e¢ ciency criteria and, a fortiori, the
solution vis-a-vís the these value functions.19

We should add that there are games in which the way intertemporal payo¤s
are evaluated (even in the limit) does make a di¤erence. An example is given in
Appendix A.

5.2 Largest Consistent Set

Rosenthal (1972) and Chwe (1994) de�ne a general framework of coalitiuon forma-
tion used in this work. Chwe�s (1994) aim is to rule out outcomes whose stability
could never be an issue. His solution, the largest consistent set, always exists and
is one of the most frequently used solutions in applications. We demonstrate that
the set of outcomes that are implementable via any dynamic equilibrium process
of coalition formation is a subset (sometimes strict) of the largest consistent set.
The now we develop Chwe�s (1994) solution. To this end, an outcome y 2 X

indirectly dominates x if there is a feasible path (x0; :::; xK) 2 F such that x0 = x;
y = xK (recall our the de�nition (2) of a feasible path):20 Set C � X is a consistent
set if C consists of all x for which the following holds: if z 2 FS(x); then there
is y 2 C such that either y = z or y indirectly dominates z and y 6�S x. Chwe
showed that a consistent set exists and the largest (in the sense of set inclusion)
consistent set is unique.
We show that, in terms of implementable outcomes, dynamic equilibrium process

of coalition formation is a re�nement of the largest consistent set. We do this by
�rst showing that the ultimate uncovered set implements a consistent set of out-
comes.

Proposition 1 �[UUC] is a subset of the largest consistent set.

Proof. It su¢ ces to show that [UUC] is a consistent set. Suppose, on the contrary,
that this is not the case. Then there is an x 2 �[UUC]; an S; and a z 2 FS(x)
19In KR, a history dependent version of weak preference reads V �i (h; x; y) � V �i (h; x) for all

i and for all S: However, given the de�nition of V �i ; this is equivalent to V
�
i (h; x; y) � ui(x) for

all i and for all S:
20As Konishi and Ray (2003) and Ray (2007), we appeal to the weaker version of Chwe�s (1994)

notion of indirect dominance. The original one requires strict preference.
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such that �[�y] �S x; for all �y 2 Fz \ UUC: But since there is �x 2 UUC such that
�[�x] = x; this contradicts the assumption that UUC = uc(UUC): That is, that �x
is not covered in UUC:

Importantly, �[UUC] need not coincide with the largest consistent set. We now
show via an example that �[UUC] can be a strict subset of the largest consistent
set. Consider the game depicted in Figure 2.

a

b

c

d

{1} {2}

{3}

{3}

Figure 2

Here N = f1; 2; 3g, X = fa; b; c; dg: Numerical payo¤s (in the order of player
indices) from choices a; b; c; and d are, respectively, (0; 0; 1); (0; 1; 0); (1; 0; 0);
and (2; 2; 2): The largest consistent set is fa; b; dg: However, the largest consistent
path structure UUC consists the paths f(a; b; c; d); (b; c; d); (c; d); (d)g; and hence
�[UUC] = fdg:
KR show that all absorbing states of stationary absorbing deterministic equili-

brum processes that have the Markovian property lie in the largest consistent set.
Our results thus indicate that this property holds even without the Markovian
restriction.

5.3 Stable Standard of Behavior and a Full Coalitional
Equilibrium

Mariotti (1997) and Xue (1998) are motivated by considerations that are closely
related to this paper (see also Mariotti and Xue, 2003). In this section, we discuss
their solutions, full coalitional equilibrium and stable standard of behavior, respec-
tively, from the viewpoint of dynamic equilibrium processes of coalition formation.
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Xue (1998), arguing that the largest consistent set is too permissive, imposes a
consistency criterion on paths rather than on outcomes. His starting point is the
observation that - since in a dynamic environment play can move in equilibrium
from one status quo to another before an outcome is implemented - what is crucial
is the stability of paths rather than that of the outcomes. Xue (1998) uses Green-
berg�s (1991) foundational Theory of Social Situations to identify paths that are
robust against deviations. This theory is based on the von Neumann-Morgenstern
stable set approach. This solution concept bears similarity to the consistent path
structure, the reduced form characterization of our solution. The di¤erence be-
tween Xue�s (1998) solution and ours is that the former permits deviations also
by inactive coalitions. This property has concequences on the existence of the
solution.
To interpret our results in the framework of Xue (1998), let us lay down the

key ingredients of his model.21 Assume that the alternative x 2 X is the current
status quo. Consider a path �x and some of its node xk. Assume that a coalition S
can replace xk by some alternative y 6= xk+1. In doing so, S is aware of that the set
of feasible paths from y is Fy: In contemplating such a deviation from y, however,
members of S base their decision on comparing paths that might be followed by
rational and farsighted individuals at y. Let SB(y) � Fy denote this standard of
behavior.
The following de�nition, which is adopted from Xue (1998), describes in our

notation the conservative approach to stable standard of behavior.

De�nition 5 A standard of behavior SB is conservatively stable if it is
Internally stable: for all x 2 X; if �x 2 SB(x); then there is no y, coalition S;

and k such that y 2 FS(xk) n fxk+1g; and �[�y] �S �[�x]; for all �y 2 SB(y),
Externally stable: for all x 2 X; if �x 2 Fx n SB(x); then there is y, coalition

S; and k such that y 2 FS(xk) n fxk+1g; and �[�y] �S �[�x]; for all �y 2 SB(y):

To see most transparently the relationship between our solution concept and
the conservatively stable standard of behavior of Xue (1998), let us spell out the
key features of the feasible ultimate uncovered set in the language of internal and
external stability.

Remark 1 The ultimate uncovered set UUC satis�es
Internal stability: if �x 2 UUC; then there is no y and k such that y 2 FS(xk)n

fxk+1g and �[�y] �S �[�x]; for S = S(xk+1; xk); and for all �y 2 Fy \ UUC:
External stability: if �x 2 F n UUC; then there is y and k such that y 2

FS(xk) n fxk+1g and �[�y] �S �[�x]; for S = S(xk+1; xk); and for all �y 2 Fy \UUC:
21Referring to Greenberg�s (1991) Theory of Social Situations.
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Internal stability follows from the de�nition of consistent path structure. Ex-
ternal stability, in turn, is a consequence of the construction of UUC; every path
outside UUC is covered in UUC: It is easy to see that the key di¤erence between
the solution concepts is that the notion of stable standard of behavior requires sta-
bility against arbitrary coalitional deviations whereas the ultimate uncovered set
only with respect to the active coalition. Since the restriction a¤ects both internal
and external stability but to the di¤erent directions, there is no straightforward
relationship between the concepts.
From these de�nitions it is clear that the notions of stable standard of behavior

and the feasible ultimate uncovered set coincide in games where the collection of
possibly active coalitions is singleton, i.e., where only one coalition may change
the status quo at a time. Roughly, this corresponds to the scenarios where the
coalitional game can be exhibited in the form of a simple recursive game (vis-a-vis
interpreting coalitional preferences as a single individual�s preferences).
The more stringent requirement for acceptable deviations prevent pathological

blocking relationships and guarantees the existence of an ultimate uncovered set.
Conversely, the leeway provided by arbitrary coalitional deviations in the context
of stable standard of behavior is the reason for the occasional emptiness of the
solution, as is the case in the following example (due to Xue, 1998):

a

c

b
{1}

{2}

Figure 3

where payo¤s from a; b and c are, respectively, (0; 0); (2; 1); and (1; 2): The unique
conservative standard of behavior is empty. However, the ultimate uncovered set
contains both the arcs: Fa \ UUC = f(a; b); (a; c)g and hence �[UUC] = fb; cg.
To the best of our knowledge, Mariotti (1997) is the only paper in the literature

that explicitly models history dependent coalitional strategies. Although his set up
is di¤erent from this paper, there are notable similarities in how strategic behavior
is modeled. In fact, we argue that all conditions imposed on his full coalitional
equilibrium -solution are also satis�ed by our solution. Hence, our existence result
can also be applied to Mariotti�s set up.
Let us sketch Mariotti�s (1997) model, where players seek to form an agreement

of how to play a strategic form game. The game is de�ned by sets Ai of actions

27



for each player i. Preferences are de�ned over the set of all pro�les of possible
actions AN = �i2NAi: The play proceeds by coalitions S proposing a pro�le of
actions in AS = �i2SAi: If coalition S serves a the proposer, then the choices of
the complementary coalition �S are herited from the current status quo pro�le:
Hence, the set of feasible outcomes of coalition S; given the status quo pro�le
x 2 X := AN ; is obtained by

FS(x) = f(yS; x�S) : yS 2 ASg � X:

Now we can apply De�nition 1 to specify conditions under which an agreement in
reached.
The key features of Mariotti�s (1997) novel approach bear similarity to ours:

The strategies are assumed history dependent and the focus is, at the outset, on
strategies that implement an outcome in �nite time. Also a version of the one-
deviation property is used as the equilibrium criterion. While Mariotti�s solution,
full coalitional equilibrium, is richer in a sense that it allows the coalitions to
disagree on how the play will evolve in the future, it is apparent the solution
also permits the agents to agree on how the play proceeds. This is our basic
assumption: the strategy speci�es a unique future play path that is known by
all players. Therefore we conclude that, in the case of a strategic form games, a
dynamic equilibrium process of coalition formation is a particular case of a full
coalitional equilibrium of Mariotti (1997). By Corollary 2 it then follows that also
a full coalitional equilibrium exists.22 However, of there may well be many full
coalitional equilibria of which our characterization cannot say much.

6 E¢ ciency

A recurrent theme in coalitional analysis is e¢ ciency. A classic argument that
goes under the name of the Coase theorem says that an outcome that results from
unrestricted bargaining will always be e¢ cient: otherwise it would be blocked by
another outcome that all players prefer. This intuition is not su¢ cient in the
current framwork.
Rosenthal�s centipede game is an example of a game in which the dynamic

equilibrium process of coalition formation does not implement an e¢ cient out-
come (in �nite games of perfect information, the equilibrium coincides with the
backwards induction -solution). But the centipede game is not a good example
since the Coase theorem appeals to the coalitions�inability to commit to a bad
outcome. This implicitly assumes that coalitional moves do not have irrecoverable

22There are minor di¤erences in the de�ning inequalities of the two solutions concepts. How-
ever, such di¤erences do not a¤ect the qualitative nature of the results
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consequences. This desideratum is met for example by games that are irreducible
in a sense that from any node there is a path to any other node.
It turns out that irreducibility is not su¢ cient for e¢ ciency. Consider the

following anarchistic economy. There are two players 1 and 2: Assume that initial
utility allocation is unequal, say 4 to player 1; and 1 to player 2. The worse o¤
player, in this case 2, can pillage utility units from the other player, in this case
from player 1 (cf. Jordan, 2005). Pillaging is costly so that 2 receives only one half
of what he pillages. After pillaging, the players can increase, by common e¤ort,
both of their payo¤s by one unit. This results in payo¤s 1 and 4 for players 1 and
2; respectively.23 Then the roles of the players are reversed in a sense that now the
worse o¤player is 1 and he may pillage player 2�s utility units. The game is depicted
in Figure 4 where the directed edges re�ect potential coalitional moves (numbers
inside the nodes re�ects the payo¤s). The graph constitutes a circuit. Nodes (3; 0)
and (0; 3) are Pareto dominated by the next nodes in the circuit. Nevertheless the
largest consistent set, and hence �[UUC] by Proposition 1, consists only of the
low payo¤ nodes (3; 0) and (0; 3). Thus every dynamic equilibrium process of
coalition formation implements only Pareto dominated outcomes.

3,0

0,31,4

4,1
{1,2}

{2}{1}

{1,2}

Figure 4

One can argue that the ine¢ ciency here is due to arti�cially restricted blocking
relationships. A stronger requirement than irreducibility is completeness: for any
y and x there is S such that y 2 FS(x). But again, there are irreducible and
complete games where �[UUC] contains only Pareto-dominated outcomes. An
example is depicted in Appendix B.
A third, yet stronger condition on the graph would be that FS(x) = X for all

S; so that at each node all coalitions can move the play to any node. In such case

23Pillaging by 2 is not possible when payo¤s are (3; 0) since pillaging itself requires some
resources.
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there would be no a priori restrictions on what a coalition can achieve. It is easy
to show that this restriction would not preclude any Pareto-optimal outcome from
being in �[UUC]: However, Pareto-optimality is still not guaranteed. Modify, for
example the game depicted in Figure 4 by allowing each coalition f1g; f2g; and
f1; 2g induce any outcome from any outcome. Then �[UUC] would contain all the
outcomes but there would also be a consistent path structure C such that �[C] =
f(3; 0); (0; 3)g: Hence the correponding equiliubrium process could only implement
Pareto dominated outcomes. We therefore have to conclude that there is nothing
inconsistent in the idea that an ine¢ cient outcome becomes implemented, even if
bargaining opportunities are unrestricted.24

7 Discussion

We have showed that a dynamic version of the absorbing, deterministic equilibrium
process of coalition formation of Konishi and Ray (2003) always exists. The crucial
assumption is that the process may now depend on history of the play. Another
important assumption is that only one coalition may be active in blocking the
underlying status quo. This assumption may, of course, be criticized.
Consider a following example due to Xue (1998):

a

b

d

c

{1}

{2}

{1,2}

Figure 5

Now N = f1; 2g, X = fa; b; c; dg; and numerical payo¤s (in the order of players�

indices) from a; b; c; and d are, respectively, (6; 0); (7; 4); (5; 10); (10; 5): The largest

24Konishi and Ray (2003) establish conditions on strategies under which Pareto-optimality is
guaranteed.
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consistent picks the same set of outcomes fa; c; dg that is implemented by the
dynamic equilibrium processes of coalition formation: However, as Xue (1998)
argues, this set is too large since d should not ever be chosen: when a is the status
quo, the "predicted" outcomes are fa; dg; the latter when the coalition f1; 2g
induces d: But once the coalition f1; 2g is about to form, player 2 would renege
the contract and choose the option c instead. Hence, d should not be considered
as a good prediction.
This is a valid argument in many circumstances. A way to cope with the

criticism is to require robustness against nested coalitional deviations.25 Then
part 1 of De�nition 1 would read,

1�. �(h; x) 2 X implies �(h; x) is an e¢ cient and weakly preferred move from
x for all coalitions S � S(x; y):

To recover the key results with nested deviations, one would only need to de�ne
a new path dominance operator, B�; this time with respect to all subsets of the
active coalition:

A path �y 2 F ��dominates a path �x 2 X at the kth step, denoted by �y B�k �x; if
�[�y] �S �[�x]; for all �y 2 Fy; for some y 2 FS(xk); for some S � S(xk; xk+1):

By replacing "B " with "B� " in the de�nition of a consistent path structure
and the property "S = S(xk; xk+1)" with "for any S � S(xk; xk+1)" in the proofs,
the existence of a solution would be obtained along the same avenues as in the
current version. The new solution would again implement a set of outcomes that
is a re�nement of the largest consistent set.
But even if one wants to incorporate the idea of nested deviations into the

framework, it is not clear why one should do it through the solution concept.
An alternative - and perhaps cleaner - way to model this is to assume that the
game form � itself re�ects nested deviations. This would be more in line with
the standard position in game theory that all (relevant) behavioral opportunities
should be speci�ed through the game form (and not by the solution concept).26 In
the coalitional set up, this principle implies that the solution concept should only
describe optimal behavior of a single behavioral unit, a coalition.
More formally, to amend nested deviations into the game form, think of forming

a derived game �0 from the original one � that has two kinds of nodes, physical
X (as in the game �) and transitional Z (in the present framework, transitional

25Some nestedness assumption is often used to guarantee the existence. The classic papers
in the �eld, Hart and Kurz 1983, Bernheim et al. 1987, and Ray and Vohra 1997, are cases in
point.
26See e.g. Osborne and Rubinstein (1994).
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nodes could be modeled as "bad" outcomes). The derived game �0 would now have
the property that if y 2 FS(x); then there are a transitional nodes z0; :::; zjSj+1
such that z0 = x and zjSj+1 = y, for some indexing j of the subsets of S, and
such that Sj � S would be the only potentially active coalition under zj with
F 0Sj(zj) = FS0(x)[fzj+1g; for all j = 0; :::; jSj : Then the derived game would o¤er
each subset of the original game�s active coalition a chance to redirect the play
to the direction it prefers, if it does not like the choice made by the originally
active coalition. By nestedness of Sj and S, such derived game could clearly be
constructed. In a dynamic equilibrium process of coalition formation, this would
guarantee that no subset of the original active coalition would not want to deviate
further.
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A Appendix

Consider the game depicted in Figure 6.

Figure 6

HereN = f1; 2g, X = fa; bg; and x S�! y denotes the relation y 2 FS(x) for y 6= x:
Payo¤s (in the order of player indices) from the states a and b are, respectively,
(0; 1) and (1; 0): Under discounting, there is no determinstic, absorbing equilibrium
process of coalition formation. However, as Corollary 2 argues, under limit-of-the-
means criterion such equilibrium PCF does exist.

B Appendix

Consider the three players/six alternatives game, depicted in Figure 7. The di-
rected graph describes the possible coalitional blockings between the nodes. The
graph is complete but, for simplicity, we only depict blockings to one direction,
i.e., (3; 1; 2) !f2g (1; 2; 0) means that also (1; 2; 0) !f1;3g (3; 1; 2); etc.. Again,
�[UUC] consists of the shaded nodes as any Pareto-optimal, non-shaded node is
covered via a shaded node.
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