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Abstract: We provide a Nash equilibrium existence theorem for games with discontinuous
payoffs whose hypotheses are in a number of ways weaker than those of the theorem of Reny
(1999). Our result subsumes prior existence results of Nishimura and Friedman (1981) and
Novshek (1985) that are not covered by his theorem.

1 Introduction

Many important and famous games in economics (e.g, the Hotelling location game,
Bertrand competition, Cournot competition with fixed costs, and various auction
models) have discontinuous payoffs, and consequently do not satisfy the hypotheses
of Nash’s existence proof or its infinite dimensional generalizations, but nonetheless
have a nonempty set of pure Nash equilibria. Using an argument that is quite
ingenious and involved, Reny (1999) establishes a result that explains equilibrium
existence for many such examples, and which has been applied in novel settings
many times since then. (See for example Monteiro and Page (2007) and Monteiro
and Page (2008).) His theorem’s hypotheses are simple and weak, and in many
cases easy to verify.

As Reny explains, many earlier results can be obtained as corollaries of his result.
However, he describes the results of Nishimura and Friedman (1981) and Roberts
and Sonnenschein (1976) as seemingly having a different character. In this paper
we provide a generalization of Reny’s theorem that implies both the Nishimura and
Friedman result and the two firm case of an existence result of Novshek (1985), which
is the most refined result asserting existence of Cournot equilibrium in the stream
of literature following Roberts and Sonnenschein. In both cases the arguments are
considerably simpler than those in the original papers. Our method of proof of our
main result is also novel, yielding a demonstration that is straightforward and brief,
at least in comparison with Reny’s.

The next section reviews Reny’s theorem and states a result whose hypotheses
are less restrictive than Reny’s, but more restrictive than Theorem 3.3, which suffices
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to imply the Nihimura-Friedman existence theorem. Section 3 states Theorem 3.3,
which is our main result. In Section 4 we show that Theorem 3.3 implies Novshek’s
result, that there in a pure Nash equilibrium in his variant of the Cournot model,
in the case of two firms. Section 5 gives the proof of Theorem 3.3.

2 Preliminaries: Reny and Nishimura-Friedman

Our system of notation is largely taken from Reny (1999). There is a fixed normal

form game with N players, which is a 2N -tuple

G = (X1, . . . ,XN , u1, . . . , uN )

where, for each i = 1, . . . , N , Xi is a non-empty set called the i-th player’s strategy

set and each ui is a function from the set of strategy profiles X =
∏N

i=1
Xi to R

called the i-th player’s payoff function. Let

u = (u1, . . . , uN ) : X → R
N .

We assume throughout that u is bounded. For x ∈ X let A(x) be the set of α ∈ R
n

such that (x, α) is in the closure of the graph of u. Since u is bounded, each A(x)
is compact.

We also assume throughout that each Xi is a nonempty compact convex subset
of a topological vector space, and X is endowed with the product topology. Unless
otherwise indicated, all topological notions refer to the relative topology of X. We
adopt the usual notation for “all players other than i.” Let X−i =

∏

j 6=iXj . If
x ∈ X is given, x−i denotes the projection of x on X−i. For each x−i ∈ X−i (or
x ∈ X) and yi ∈ Xi we write (yi, x−i) for the strategy profile z ∈ X satisfying
zi = yi and zj = xj if j 6= i. A Nash equilibrium of G is a point x∗ ∈ X satisfying
ui(x

∗) ≥ ui(yi, x
∗
−i) for all i and all yi ∈ Xi.

We now review Reny’s theorem, to provide a context for the conditions we
introduce. For each player i let Bi : X × R ։ Xi be the set valued mapping

Bi(x, αi) = {yi ∈ Xi : ui(yi, x−i) ≥ αi} .

Definition 2.1. A player i can secure a payoff αi ∈ R at x ∈ X if there is a
neighborhood U of x in X such that

⋂

z∈U

Bi(z, αi) 6= ∅.

That is, there is some yi ∈ Xi such that ui(yi, z−i) ≥ αi for all z ∈ U . The game G
is better reply secure at x ∈ X if, for any α ∈ A(x), there is some player i and
ε > 0 such that player i can secure αi +ε at x. The game G is better reply secure

if it is better reply secure on every strategy profile that is not a Nash equilibrium.
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Theorem 2.2 (Reny (1999)). Suppose that for each i and each x−i ∈ X−i the func-

tion ui(·, x−i) : Xi → R is quasiconcave. If G is better reply secure, then it has a

Nash equilibrium.

To better understand Reny’s result in the context of this note we restate his
condition.

Definition 2.3. The game is A-secure at x ∈ X if there is α ∈ R
N and ε > 0 such

that:

(a) every player i can secure αi + ε at x;

(b) there is a neighborhood U of x such that for any z ∈ U there exists some
player i with ui(zi) < αi, i.e., zi /∈ Bi(z, αi).

Lemma 2.4. For x ∈ X the game is better reply secure at x if and only if it is

A-secure at x.

Proof. For each x ∈ X let τx be a neighborhood base of x. For each i define the
function ui : X → R as follows:

ui(x) = sup
U∈τx

inf
z∈U

ui(xi, z−i) .

This function is automatically lower semicontinuous as a function of the strategies
of the other players. For each i and x−i ∈ X−i let

δi(x−i) = sup
yi∈Xi

ui(yi, x−i) .

As the pointwise supremum of a collection of lower semicontinuous functions, δi is
lower semicontinuous. Notice that each αi < δi(x−i) can be strongly secured by
player i at x.

Fixing an x, assume that the game is better reply secure at x. Then for each
α ∈ A(x) there is some player i such that δi(x−i) > αi, which implies that δi(x−i) >
α′

i + ε hold for some ε > 0 and all α′ in some neighborhood of α. Since A(x) is
compact, it is covered by finitely many such neighborhoods so there is ε > 0 such
that whenever α ∈ A(x) there exists some player i such that δi(x−i) > αi + ε.

Let αi = δi(x−i)−ε/2 for all i. Each αi+ε/2 can be strongly secured by player i
at x. If (b) is false, then for each U ∈ τx there is some zU ∈ U such that ui(zU ) ≥ αi

for all i. Since τx is a directed set (ordered by reverse inclusion) the compactness
of the closure of the range of u implies that there is a convergent subnet, so there
is α′ ∈ A(x) such that α′

i ≥ αi = δi(x−i) − ε/2 for all i. This is impossible, so we
conclude that the game is A-secure at x.

Assume that the game is A-secure at x, with α, ε and U as in the definition.
If we replace α with α+ (ε/2, . . . , ε/2), then replace ε with ε/2, it will still be the
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case that each player can secure αi + ε, but now for each z ∈ U there is some i such
that ui(z) < αi − ε. For each α′ ∈ A(x) there is some i with α′

i ≤ αi − ε, and this i
can secure α′ + ε at x, so the game is better reply secure at x.

For each i let Ci : X × R ։ Xi be the set valued mapping

Ci(x, αi) = conBi(x, αi) .

Part (a) of the following definition is more easily satisfied than its analogue above.
On the other hand, in part (b) we replace Bi(z, αi) with Ci(z, αi), which makes
it harder to satisfy, but Bi(z, αi) = Ci(z, αi) when each ui(·, x−i) is quasiconcave,
so the net effect is to make the hypotheses of Proposition 2.6 below (which is a
relatively simple special case of Theorem 3.3) weaker than those of Theorem 2.2.

Definition 2.5. The game is B-secure at x ∈ X if there is α ∈ R
N such that:

(a) every player i can secure αi at x;

(b) there is a neighborhood U of x such that for any z ∈ U there exists some
player i with zi /∈ Ci(z, αi).

Proposition 2.6. If the game is B-secure at each x ∈ X that is not a Nash equilib-

rium, then G has a Nash equilibrium.

Nishimura and Friedman (1981) prove the existence of a Nash equilibrium when
each Xi is a nonempty, compact, convex subset of a Euclidean space, u is continuous
(but not necessarily quasiconcave) and for any x that is not a Nash equilibrium there
is an agent i, a coordinate index k, and an open nieghborhood U of x, such that

(y1
ik − x1

ik)(y
2
ik − x2

ik) > 0

whenever x1, x2 ∈ U and y1
i and y2

i are best responses for i to x1 and x2 respectively.
Using compactness, and the continuity of ui, it is not difficult to show that this is
equivalent to yik > xik for all best responses yi to x. A more general condition that
does not depend on the coordinate system is that there is a hyperplane that strictly
separates xi from the set of i’s best responses to x.

We now show that G satisfies the conditions of Proposition 2.6 when it satisfies
the hypotheses of Nishimura and Friedman’s result. Consider an x ∈ X that is not a
Nash equilibrium. For each j = 1, . . . , N let βj be the utility for j when other agents
play their components of x−j and j plays a best response to x. Since u is continuous,
for any ε > 0 player j can secure βj − ε at x by playing such a best response. For
any neighborhood V of Bi(x, βi) it is the case that Bi(x, βi − ε) ⊂ V when ε is
sufficiently small, and in turn it follows that there is a neighborhood U of x such
that Bi(z, βi − ε) ⊂ V for all z ∈ U . It follows that if there is a hyperplane strictly
separating xi from Bi(x, βi), then for sufficiently small ε > 0 and a sufficiently small
neighborhood U of x there is a hyperplane strictly separating zi and Bi(z, βi − ε)
for all z ∈ U , in which case zi /∈ Ci(z, βi). Setting α = (β1 − ε, . . . , βN − ε) gives
the required property.
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3 The Main Result

Roughly, the idea of Reny’s theorem is to exploit properties of the “better reply
correspondence.” The refinement that allows us to subsume Novshek’s theorem is
a matter of pointing out that it is enough if some subcorrespondence enjoys the
relevant properties.

For each i let Xi : X ։ Xi be a given set valued mapping and let X =
(X1, . . . ,XN ). We call X a restriction operator. We say that X is univer-

sal if Xi(x) = Xi for all x ∈ X. Fix a restriction operator X . For each i define the
set valued mappings BX

i : X × R ։ Xi and CX
i : X × R ։ Xi by setting

BX
i (x, αi) = {yi ∈ Xi(x) : ui(yi, x−i) ≥ αi} and CX

i (x, αi) = conBX
i (x, αi).

In addition to taking advantage of the restriction operator, the next definition
incorporates one more refinement of A-security: we allow a different strategy to be
used in response to each element of a finite closed cover of a neighborhood of the
given strategy.

Definition 3.1. Player i can X -secure a payoff αi ∈ R at x ∈ X if there is a
finite closed cover F 1, . . . , F J of a neighborhood of x such that for each j we have
⋂

z∈F j BX
i (z, αi) 6= ∅.

Definition 3.2. The game G is X -secure at x ∈ X if there is α ∈ R
N and a

neighborhood U of x such that

(1) Each player i can X -secure αi at x.

(2) For any z ∈ U there is some player i for whom zi /∈ C
X
i (z, αi).

As in Reny (1999) X need not be a Hausdorff space. Thus, for x ∈ X the set
{x} need not be closed, and we write [x] for the closure of {x}. The game G is
restrictionally secure if there is a restriction operator X such that the game is
X -secure at any x ∈ X such that [x] does not contain a Nash equilibrium. Our
main theorem is:

Theorem 3.3. The game G is restrictionally secure if and only if it has a Nash

equilibrium.

4 Novshek’s Cournot Model

We now explain the variant of the Cournot duopoly model considered in Novshek
(1985), for the case of two firms, and show that Theorem 3.3 implies that it has
an equilibrium. Consider the market for a single homogeneous good with inverse
demand function P : R → R+ and two firms with cost functions C1, C2 : R → R+.
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We assume that P is continuous and that C1, C2 are lower semicontinuous. The
payoff function of firm i is its profit:

ui(y) = P (y1 + y2)yi − Ci(yi).

This function is upper semicontinuous, and for a given yi it is continuous as a
function of y−i. A Nash equilibrium of this game is called a Cournot Equilibrium.

For each i the reaction mapping ri : R ։ R is the set valued mapping.

ri(y−i) = argmax
zi∈R

ui(zi, y−i) ,

The assumptions on C1, C2, and P imply that ri has a closed graph.
We assume that there is a number Q∗ such that setting yi = 0 gives a larger

payoff than playing any quantity greater than or equal to Q∗. It follows that for
each i andn y−i, ri(y−i) is nonempty and compact. Let

r+i (y) = max ri(y) and r−i = min ri(y) .

The key assumption is that if y−i < y′−i, then r−i (y−i) ≥ r+i (y′−i). Novshek (1985)
discusses assumptions on the cost and inverse demand functions that imply this.

Since our goal is to show that a Cournot equilibrium exists, there is no loss of
generality in assuming there are no Cournot equilibria in which one of the firms
produces nothing. What this means concretely is that 0 is not a best response
for either firm to the other firm’s maximal monopoly output: r−

2
(r+

1
(0)) > 0 and

r−
1

(r+
2

(0)) > 0.
We will say that (y1, y2) is a quasiequilibrium if r−

1
(y2) ≤ y1 ≤ r+

1
(y2) and

r−
2

(y1) ≤ y2 ≤ r+
2

(y1). For each i the correspondence mapping y−i to the convex hull
of ri(y−i) is upper semicontinuous with compact range, and the set of quasiequilibria
is compact because it is the intersection of the graphs of these two correspondences.
Kakutani’s fixed point theorem implies that this set is nonempty. If (y′1, y

′
2) is a

second quasiequilibrium with y′1 > y1, then y′2 ≤ y2 (if y′2 = y2, then r+
2

(y1) =
y2 = y′2 = r−

2
(y′1)) and this holds also with the two agents reversed, so there is a

quasiequilibrium y∗ such that y1 ≤ y∗1 and y2 ≥ y∗2 for all quasiequilibria (y1, y2).
Let

Ω = { y ∈ [0, Q∗]2 : y1 ≤ y∗1 or y2 ≥ y∗2 }.

Let Ωc = [0, Q∗]2 \ Ω be the complement of Ω, and let Ω◦ and ∂Ω be the interior
and the boundary of Ω, respectively, in the relative topology of [0, Q∗]2. We define
the restriction operator X = (X1,X2) by setting

X1(y) =











[r+
1

(y∗2), Q
∗] if y ∈ Ωc ,

(y1, Q
∗] if y ∈ Ω and y1 6= Q∗ ,

{Q∗} if y ∈ Ω and y1 = Q∗
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and

X2(y) =











[0, r−
2

(y∗1)] if y ∈ Ωc,

[0, y2) if y ∈ Ω and y2 6= 0,

{0} if y ∈ Ω and y2 = 0.

We now need to show that the game is X -secure. Fix y ∈ [0, Q∗]2, which we
assume is not a Nash equilibrium. First suppose that y ∈ Ω◦. Since Ω◦ is open we
can choose an open neighborhood U ⊂ Ω◦ of y. If α1 and α2 are lower bounds for
u1 and u2 on [0, Q∗]2, then each i can secure αi at y. In addition, (Q∗, 0) /∈ Ω, so
either y1 < Q∗, in which case z1 /∈ X1(z) = (z1, Q

∗] for all z ∈ U (proviided U is
sufficiently small) or y2 > 0, in which case z2 /∈ X2(z) = [0, z2) for all z ∈ U . Thus
the game is X -secure at y.

Next suppose that y ∈ Ωc. Since y is not a quasiequilibrium it must be the case
that y1 < r−

1
(y2), y1 > r+

1
(y2), y2 < r−

2
(y1), or y2 > r+

2
(y1). In each of the four

cases it is easy to choose an α such that each i can secure αi at y and for one i we
have zi /∈ Ci(z, αi) for all z in some neighborhood of y, so that the game is X -secure
at y.

The remaining case is that y ∈ ∂Ω. We may assume that y∗ is not a Nash equi-
librium, so either u1(y

∗) < u1(r
+
1

(y∗2), y
∗
2), in which case r+

1
(y∗2) > y∗1, or u2(y

∗) <
u(y∗1 , r

−
2

(y∗1)), in which case r−
2

(y∗1) < y∗2 . Suppose that u1(y
∗) < u1(r

+

1
(y∗2), y

∗
2).

(The argument in the other case is similar.)
First suppose that y1 < r+

1
(y∗2). Then we can choose α1 slightly below the payoff

agent 1 receives if she plays a best response to y2, but greater than u1(y), and agent
1 can X -secure α1 because r+

1
(y2) ∈ BX

1 (z, α1) for all z in some neighborhood U of
y. If U is small enough, then z1 /∈ CX

1 (z, α1) for all z ∈ U . If α2 is any utility that
player 2 can X -secure at y, then the game in (X , α, U)-secure at y.

Now suppose that y1 ≥ r+
1

(y∗2). Then y2 = y∗2 because y1 > y∗1. We must have
r−
2

(y1) > y∗2 because if y∗1 < y′1 ≤ r+
1

(y∗2) and r−
2

(y′1) = y∗1 , then (y′1, y
∗
2) would

be a quasiequilibrium, contrary to the definition of y∗. We can choose α2 slightly
below the payoff agent 2 receives if she plays a best response to y1, but greater than
u2(y), and agent 2 can X -secure α2 because r+

2
(y1) ∈ BX

2 (z, α2) for all z in some
neighborhood U of y. If U is small enough, then z2 /∈ CX

2 (z, α2) for all z ∈ U . If
α1 is any utility that player 1 can X -secure at y, then the game in (X , α, U)-secure
at y. This completes the proof that the game is X -secure at any y that is not an
equilibrium.

5 The Proof of Theorem 3.3

It is not hard to show that the game is directionally secure when it has a Nash
equilibrium, so we do this first. Recall that a topological space is regular if each
point has a neighborhood base of closed sets. Topological vector spaces are regular
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topological spaces, even if they are not Hausdorff (e.g., Schaefer (1971, Lemma 1.3,
p. 16)) and it is easy to see that any subspace of a regular space is regular. Suppose
x∗ ∈ X is a Nash equilibrium. For each i we define Xi : X → Xi by setting Xi(x) =
{x∗i }. Consider an x ∈ X such that [x] does not contain a Nash equilibrium. Then [x]
does not contain x∗ and regularity implies thatX\[x] contains a closed neighborhood
of x∗, so x /∈ [x∗]. Applying regularity again, there is a closed neighborhood U
of x that is disjoint from [x∗]. For each i let αi = infx′∈U ui(x

∗
i , x

′
−i), and let

α = (α1, . . . , αN ). Evidently each player i can X -secure αi at x. For each i and
z ∈ U we have BX

i (z, αi) = CX
i (z, αi) = {x∗i }, so zi /∈ CX

i (z, αi). We have shown
that the game is X -secure at x.

What this argument points to is that, in practice, the value of the result is
not that it gives conditions that are necessary and sufficient. Rather, it is useful
to the extent that one can find restriction operators that are easily seen to satisfy
the hypotheses even though the existence of equilibrium would not otherwise be
obvious.

Now suppose that G is restrictionally secure, so that there is a restriction op-
erator X such that G is X -secure at each x such that [x] does not contain a Nash
equilibrium. The remainder of this section presents the proof that G has a Nash
equilibrium. The following system of terminology will be useful.

Definition 5.1. If x ∈ X, U ⊂ X, and α ∈ R
N , then the game G is (X , α, U)-secure

at x if

(1) Each player i can X -secure αi at x.

(2) For any z ∈ U there is some player i for whom zi /∈ C
X
i (z, αi).

We say that the game is (X , α)-secure at x if the game is (X , α, U)-secure at x for
some neighborhood U of x.

In preparation for the main body of the argument we develop several lemmas.

Lemma 5.2. Suppose that α1, . . . , αℓ ∈ R
N and U1, . . . , Uℓ are neighborhoods of x,

and let α = supℓ
h=1

αh and U =
⋂ℓ

h=1
Uh. If, for each h = 1, . . . , ℓ, the game is

(X , αh, Uh)-secure at x for some αh ∈ R
N and some neighborhood Uh of x, then it

is (X , α, U)-secure at x.

Proof. For each h and z ∈ U there are closed sets F 1
h , . . . , F

Jh

h whose union contains
Uh such that for each i, j we have

⋂

z∈F
j
h

BX
i (z, αh

i ) 6= ∅. This condition continues

to hold with Uh replaced by U if each F 1
h , . . . , F

Jh

h is replaced with the collection

F 1, . . . , F J of all nonempty intersections of the form F j1
1

∩ . . . ∩ F jℓ

ℓ . In addition,
for each h and z ∈ U there is some i such that zi /∈ CX

i (z, αh
i ).
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We claim that for each j the game is (X , α, Fj)-secure at x. For any i there is
some h such that αi = αh

i , so for any j we have

⋂

z∈F j

BX
i (z, αi) =

⋂

z∈F j

BX
i (z, αh

i ) 6= ∅ .

Consider z ∈ U . For any h there is some i such that zi /∈ CX
i (z, αh

i ), andBX
i (z, αh

i ) ⊇
BX

i (z, αi), so CX
i (z, αh

i ) ⊇ CX
i (z, αi). Consequently zi /∈ CX

i (z, αi).

By definition a topological space is paracompact if every open cover has an open
locally finite refinement. It can be shown that every open cover of a paracompact
regular topological space has a closed locally finite refinement. (e.g., Kelley (1955,
Theorem 28, p. 156).) In particular, this holds for paracompact subsets of topolog-
ical vector spaces. We will say that a function f : X → R is locally finite valued

if each x ∈ X has a neighborhood V such that f(V ) has finite cardinality.

Lemma 5.3. Suppose that X is paracompact. If, for each x ∈ X, there is some αx ∈
R

N such that the game is (X , αx)-secure at x, then there is a function ψ : X → R
N ,

each of whose component functions ψi : X → R is locally finite valued and upper

semicontinuous, such that for each x the game is (X , ψ(x))-secure at each x ∈ X.

Proof. For each x ∈ X there is an open neighborhood Ux ⊂ X such that the game
is (X , αx)-secure at x. The open cover {Ux : x ∈ X} has a closed locally finite
refinements {Fβ}. That is, {Fβ} is a collection of closed sets whose union is X,
each Fβ is contained in some Ux, and for each point in X has a neighborhood Vx

for which the set {β : Fβ ∩ Vx 6= ∅} is finite. For each β let αβ = αx and Uβ = Ux

for some x such that Fβ ⊆ Ux. For each x ∈ X let

ψ(x) = sup
x∈Fβ

αβ .

Each component ψi : X → R of ψ is upper semicontinuous and locally finite valued
because {Fβ} is a closed locally finite cover of X. Notice that if x ∈ Fβ, then x ∈ Uβ

and the game is X -secure at x for αβ ∈ R
N over the neighborhood Uβ of x. By

Lemma 5.2 there is a neighborhood U of x such that the game is (X , ψ(x), U)-secure
at x.

Unlike Kakutani’s fixed point theorem and its various infinite dimensional ex-
tensions, the following fixed point theorem holds true in topological vector spaces
that are neither Hausdorff nor locally convex.

Lemma 5.4. Let X be a nonempty compact convex subset of a topological vector

space and let P : X ։ X be a set valued mapping. If there is a finite closed cover

G1, . . . , Gm of X such that
⋂

z∈Gj
P (z) 6= ∅ for all j = 1, . . . ,m, then there exists

x∗ ∈ X such that x∗ ∈ conP (x∗).
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Proof. For each j = 1, . . . ,m pick yj ∈
⋂

z∈Gj
P (z). Define the correspondence

Q : X ։ X by Q(x) = con{yj : x ∈ Gj}. For each x ∈ X we have x ∈ Gj for some
j, so

∅ 6= {yj : x ∈ Gj} ⊂
⋃

j:x∈Gj

(

⋂

z∈Gj

P (z)
)

⊂ P (x)

and ∅ 6= Q(x) ⊂ conP (x). Let X̃ be the convex hull of y1, . . . , ym and let τ be
the subspace topology on X̃ induced by the unique Hausdorff linear topology on
the affine hull of X̃. This is at least as fine as the subspace topology of X̃, so each
Gj ∩ X̃ is τ -closed, which implies that Q|X̃ is upper semicontinuous. On the other

hand X̃ is the convex hull of a finite set, so it is τ -compact. Applying the Kakutani
fixed point theorem to Q|X̃ gives x∗ ∈ Q(x∗) ⊆ conP (x∗).

We now have the tools we need to complete the proof of our theorem.

Proof of Theorem 3.3. We have already shown that (b) implies (a), so it remains
to show that (a) implies (b). For each i and x let Pi(x) = BX

i (x, ψi(x)), and let
P (x) = P1(x) × · · · × PN (x).

Suppose by way of contradiction that there is no Nash equilibrium. Lemma 5.3
gives a function ψ : X → R

N , each of whose component functions is finite valued
(because X is compact) and upper semicontinuous, such that each x is X -secure for
ψ(x) over some neighborhood of x. Consider a particular x ∈ X and i = 1, . . . , N .
There is a closed neighborhood U and a finite collection of closed sets F1, . . . , Fm

whose union contains U such that for each j we have
⋂

z∈Fj
BX

i (z, ψi(x)) 6= ∅.

Replacing U with a smaller neighborhood of need be, we may assume (because ψi

is upper semicontinuous and finite valued) that ψi(z) ≤ ψi(x) for all z ∈ U . We
conclude for any Fj we have

⋂

z∈Fj

Pi(z) =
⋂

z∈Fj

BX
i (z, ψi(z)) ⊇

⋂

z∈Fj

BX
i (z, ψi(x)) 6= ∅ .

Since X is compact, there is a finite set of pairs (x1, U1), . . . , (xk, Uk) such that U1∪
. . .∪Uk = X and, for each j, U j is a neighborhood of xj satisfying this description.
Thus, for each i, X has a finite closed cover Gi

1, . . . , G
i
mi

with
⋂

z∈Gi
h
Pi(z) 6=

∅ for each h. If we let G1, . . . , Gm be the nonempty intersections of the form
G1

j1
∩ . . . ,∩GN

jn
, then

⋂

z∈Gh
P (z) 6= ∅ for each h.

We see that the hypotheses of Lemma 5.4 are satisfied by P : X ։ X. This
implies that there is x∗ ∈ X satisfying x∗ ∈ conP (x∗). In turn, this implies that
x∗i ∈ CX

i (x∗, ψi(x
∗)) for all i. But the game is X -secure at x∗ for ψ(x∗), so for

some i we have x∗i /∈ CX
i (x∗, ψi(x

∗)). This is a contradiction, so the game has an
equilibrium.
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