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1 Introduction

D’Aspremont et al. (1983) have examined a price-leadership cartel model

in which the dominant cartel sets price at a level that maximizes the profits

of the member firms; moreover, each firm is assumed to be able to freely

enter or exit from the dominant cartel. They have also revealed that if the

number of firms is finite, there always exists a stable cartel such that once

it is formed, no member firm will wish to exit from it and no outside firm

will wish to enter it.

As pointed out by Diamantoudi (2005), the analysis by d’Aspremont et

al. (1983) exhibited a certain amount of inconsistency with respect to firms’

attitudes or perspectives toward other firms’ reactions. In the d’Aspremont

et al. model, it is assumed that a cartel firm contemplating an exit from the

current cartel compares its current profit (as a member of the cartel) with

the prospective profit (as a fringe firm) that can be gained from a new

price that is set by the new (smaller) cartel formed by the remaining car-

tel firms. Further, it assumes that the firm will actually deviate from the

current cartel if the latter is higher than the former. A similar argument

also applies to a fringe firm contemplating an entry into the current cartel.

In other words, in the d’Aspremont et al. model, each firm contemplating

a deviation (entry or exit) is assumed to possess the ability to recognize

the reaction of readjusting price by the members of the new cartel estab-

lished after its deviation; in a sense, each firm is assumed to be farsighted

to some extent. Despite this farsightedness, each firm in the d’Aspremont

et al. model ignores the possible reactions wherein entry/exit is contem-
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plated by other firms subsequent to its own deviation. Thus, firms are

assumed to be farsighted on one hand, but myopic on the other.

Diamantoudi (2005) has modified the d’Aspremont et al. model so that

each firm is sufficiently farsighted to be able to recognize not only the re-

action of readjusting price by the new cartel members but also the reac-

tions wherein an entry-exit is contemplated by other firms subsequent to

its own deviation. Moreover, by adopting (a variant of) the von Neumann-

Morgenstern stable set as the solution concept, she has proved the exis-

tence of a unique set of stable cartels.1 Her proof of the existence and

uniqueness of the stable set depends heavily on a well-known theorem

formulated by von Neumann and Morgenstern (1953), which states that

an abstract system with a strictly acyclic relation admits a unique stable

set. Her argument is essentially existential, and the characteristics of the

stable set for the price-leadership cartel model have not been fully investi-

gated.2

In this paper, we investigate the characteristics of the stable set for the

price-leadership cartel model. To this end, we first provide an alternative,

constructive proof for the existence of the stable set. The method of our

proof is based on an algorithm that determines and constructs the stable

1Kamijo and Muto (2007) and Kamijo and Nakanishi (2007) have modified the Dia-
mantoudi (2005) model in two different directions. Kamijo and Muto (2007) have exam-
ined the case in which coalitional entry/exit is allowed. Kamijo and Nakanishi (2007) have
examined the case in which the dominant cartel can set price at any (nonnegative) level
it desires (i.e., the dominant cartel adopts the flexible pricing policy). These studies have
demonstrated that in each model, every individually rational and Pareto-efficient cartel
structure constitutes a (farsighted) stable set.

2Diamantoudi (2005) has examined the relationship between the stable set of car-
tels and the myopic core of cartels and demonstrated that their intersection contains the
smallest cartel belonging to the stable set (Diamantoudi (2005), Theorem 5).
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set. Following this proof, we demonstrate that the stable set of cartels and

the set of Pareto-efficient cartels have a nonempty intersection; in partic-

ular, we establish that the largest cartel in the stable set is Pareto efficient.

Further, by using a simple example, we demonstrate that neither the stable

set nor the Pareto-efficient set can include the other as its subset.

2 Model

2.1 Price-leadership cartel

We consider an industry composed of n � 2 identical firms that produce a

homogeneous good. The demand for the good is represented by a contin-

uous, monotonically decreasing function d(p), where p is the price of the

good. Each firm has an identical cost function c(q), where q is the output

level of the firm.

When a firm does not participate in a cartel, it behaves competitively.

We denote the supply function of a (competitive) fringe firm by q f (p),

which is derived from the price-equal-marginal cost condition. If k � 1

firms decide to form a cartel, then the cartel becomes empowered to de-

termine the market price of the good; as in d’Aspremont et al. (1983) and

Diamantoudi (2005), we assume that there can only be one dominant car-

tel. We denote the cartel consisting of k firms as C(k) and the set of all

possible cartels as C ≡ {C(0), C(1), . . . , C(n)}.3 Although C(0) actually

represents the situation in which no cartel exists, we include C(0) in the

3In fact, C is the set of all possible cartel sizes (in terms of the number of firms).
We regard two different cartels of the same size as being identical. In this paper, as in
d’Aspremont et al. (1983) and Diamantoudi (2005), cartels are identified by their respec-
tive sizes.
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set of all possible cartels for notational convenience.

Taking account of the responses by the non-cartel firms, the firms in

C(k) derive the residual demand and divide it equally among them. Fur-

ther, the production per firm in C(k) can be written as a function of the

number of firms in the cartel, k, and the price, p: For k = 1, . . . , n,

r(k, p) ≡ max
{

d(p) − (n − k)q f (p), 0
}

k
. (1)

The optimal price for cartel C(k)—in terms of maximizing the joint profit

of its members—can be written as a function of k: for k = 1, . . . , n,

p∗(k) ≡ arg max
p�0

p · r(k, p) − c(r(k, p)). (2)

Next, the profits of a fringe firm and a cartel firm evaluated at the optimal

price p∗(k) can be written as functions of the cartel size k as follows:

π∗
f (k) ≡ p∗(k)q f (p∗(k)) − c(q f (p∗(k))), k = 1, . . . , n − 1, (fringe firm)

(3)

π∗
c (k) ≡ p∗(k)r(k, p∗(k)) − c(r(k, p∗(k))), k = 1, . . . , n. (cartel firm)

(4)

We assume that competitive equilibrium prevails if no actual cartel exists

(i.e., k = 0). We denote the competitive equilibrium price by pcomp, which

is derived from the market clearing condition d(p) = nq f (p). Therefore,

we have π∗
f (0) ≡ pcompq f (pcomp) − c(q f (pcomp)). Under certain regularity

conditions on the demand and cost functions, we can show the following

results.

Proposition 1. π∗
c and π∗

f satisfy the following properties:

(i) π∗
c (k) is increasing in k;
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(ii) π∗
c (k) > π∗

f (0) for all k = 1, . . . , n; and

(iii) π∗
f (k) > π∗

c (k) for all k = 1, . . . , n − 1.

We have omitted the proof of the above proposition (see d’Aspremont

et al., 1983). Property (i) indicates that the entry of a new cartel member

is beneficial to each incumbent cartel member. Property (ii) indicates that

the situation wherein no cartel exists is the worst situation for every firm.

Property (iii) indicates that for a given cartel size, it is more preferable for

a firm to remain outside the cartel than to join it.

Given a cartel C(k), we can specify (i) the members of the cartel (i.e., i ∈
C(k)), (ii) the fringe firms (i.e., j ∈ N \ C(k)), and (iii) the price level p∗(k)

set by the cartel (or the competitive price pcomp when k = 0). Therefore,

we can regard the cartel C(k) itself as a description of the current state

of the economy. With this understanding, we can state that “C(k) Pareto

dominates C(m)” if all firms’ profits under C(k) are not lower than under

C(m) and some firms’ profits are strictly higher under C(k) than under

C(m). A cartel C(k) is said to be Pareto efficient if there is no other cartel

C(m) that Pareto dominates C(k). Let P ⊂ C be the set of Pareto-efficient

cartels. The following proposition characterizes P.

Proposition 2. The set of Pareto-efficient cartels is characterized as follows:

P =
{

C(k) ∈ C

∣∣∣ C(k) = C(n) or π∗
f (k) > π∗

c (n)
}

. (5)

Proof. Let P′ be the set appearing on the right-hand side of Eq. (5). We first

demonstrate that P ⊃ P′. Let us consider C(n) ∈ P′ and take an arbitrary

cartel C(m); note that m < n by definition. Under C(n), all firms receive
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π∗
c (n). If C(m) �= ∅, the members of the cartel C(m) receive π∗

c (m). By

Proposition 1, we have π∗
c (m) < π∗

c (n). If C(m) = ∅, all firms receive

π∗
f (0). Again, by Proposition 1, π∗

f (0) < π∗
c (n). In this case, C(m) cannot

Pareto dominate C(n).

Next, let us consider a cartel C(k) ∈ P′ that satisfies π∗
f (k) > π∗

c (n).

Take an arbitrary cartel C(m) with m �= k. Similar to the above paragraph,

if m < k, C(m) cannot Pareto dominate C(k). Suppose m > k; in this

case, there must exist a firm that is a fringe firm under C(k) but a cartel

firm under C(m). Such a firm receives π∗
f (k) under C(k) and π∗

c (m) under

C(m). By assumption and by the monotonicity of π∗
c , we have π∗

f (k) >

π∗
c (n) � π∗

c (m). Consequently, C(m) cannot Pareto dominate C(k); hence,

P ⊃ P′.

Lastly, we show that P ⊂ P′. Take an arbitrary cartel C(m) that does

not belong to P′; that is, C(m) satisfies π∗
f (m) � π∗

c (n). By Proposition 1,

we have π∗
c (m) < π∗

f (m) if m �= 0 and π∗
f (0) < π∗

c (n) if m = 0. Thus, C(n)

Pareto dominates C(m) and C(m) /∈ P; hence, P ⊂ P′.

2.2 Diamantoudi model

A cartel is considered to be stable if once it is established, no member firm

wishes to exit from it and no fringe firm wishes to enter it. For example, let

us consider a cartel firm i belonging to C(m). As a member of C(m), firm i

receives profit π∗
c (m). If firm i exits from C(m), then the cartel changes to

C(m − 1) and firm i receives profit π∗
f (m − 1) as a fringe firm. A myopic

firm will actually exit from C(m) if π∗
f (m− 1) > π∗

c (m). On the other hand,

a farsighted firm, anticipating the reactions by the other firms subsequent
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to its own exit, may decide not to exit from C(m) even if π∗
f (m − 1) >

π∗
c (m). A farsighted firm looks forward, and it decides to deviate from the

current state only if the ultimate outcome can give rise to a higher profit.

To incorporate the farsightedness of firms into the model, Diamantoudi

(2005) has defined the following dominance relation, denoted by �, on C.

Definition 1 (Indirect domination). For C(k), C(m) ∈ C, we have C(k) �

C(m) if {
k > m and π∗

c (k) > π∗
f (m + j) ∀j = 0, . . . , k − 1 − m, or

k < m and π∗
f (k) > π∗

c (m − j) ∀j = 0, . . . ,−k − 1 + m.
(6)

The first line indicates that there is an increasing sequence of cartels—

C(m), C(m + 1),. . . , C(k − 1), C(k)—such that each entering firm will be

better-off as a member of the final cartel C(k). The second line indicates

that there is a decreasing sequence of cartels—C(m), C(m− 1),. . . , C(k +1),

C(k)—such that each exiting firm will be better-off as a fringe firm outside

the final cartel C(k). When C′
� C for C, C′ ∈ C, we can simply state

that “C′ indirectly dominates C.” The pair comprising the set of all pos-

sible cartels C and the binary relation � defines an abstract system that is

associated with the price-leadership cartel under the optimal pricing pol-

icy: (C, �). The dominance relation � on C is said to be strictly acyclic

if there is no infinite sequence of elements C, C′, C′′, · · · ∈ C such that

C � C′
� C′′

� · · · (ad infinitum).4

The von Neumann-Morgenstern stable set (hereafter, the stable set) for

(C, �) is defined as follows.

4For C, C′ ∈ C, we use C � C′ and C′
� C interchangeably.
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Definition 2 (The stable set). A set K ⊂ C is said to be a stable set for (C, �)

if it satisfies the following two conditions:

• for any C ∈ K, there does not exist C′ ∈ K such that C′
� C,

• for any C ∈ C \ K, there exists C′ ∈ K such that C′
� C.

These conditions are called “internal stability” and “external stability,” respec-

tively.

This is a well-known theorem formulated by von Neumann and Mor-

genstern (1953), which states that an abstract system with a strictly acyclic

dominance relation admits a unique stable set. Therefore, to prove the

existence and uniqueness of the stable set for (C, �), it suffices to demon-

strate that � is strictly acyclic. Diamantoudi (2005) has already established

this fact as follows.5

Fact 1 (Diamantoudi, 2005). The binary relation � on C is strictly acyclic.

Taken together, Fact 1 and the von Neumann-Morgenstern theorem di-

rectly imply the following theorem:

Theorem 1 (Diamantoudi, 2005). There exists a unique, non empty stable set

of cartels for (C, �).

Although the stable set for (C, �) is determined uniquely, this does not

imply that the stable set itself is a singleton; that is, the unique stable set

may contain several different cartel sizes. In this paper, we call a cartel in

the stable set for (C, �) as a “stable cartel under the optimal pricing.”

5In Diamantoudi (2005), Fact 1 is mentioned only in the proof of Theorem 3.
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Theorem 1 is essentially existential. Unfortunately, it does not provide

us with much information about the shape or characteristics of the stable

set. Since the von Neumann-Morgenstern theorem is very general, we are

unable to extract useful information from any specific model. In the next

section, we provide an alternative, constructive proof of Theorem 1. Based

on this proof, we can fully characterize the unique stable set of cartels

under the optimal pricing.

3 Results

Our alternative proof of Theorem 1 is both elementary and constructive;

it relies neither on Fact 1 nor on the von Neumann-Morgenstern theorem.

To prove the theorem, we first define an algorithm that determines a cer-

tain subset of cartels, which becomes a candidate for the stable set; subse-

quently, we demonstrate that this subset is actually the unique stable set

for (C, �).

Before stating our main results, we present a useful lemma.

Lemma 1. For C(k), C(m) ∈ C such that C(k) � C(m), we obtain the following

results:

(i) if k > m, then C(k) � C(�) for any � with k > � � m; and

(ii) if k < m, then C(k) � C(�) for any � with k < � � m.

Proof. Since a similar argument can also be applied to (ii), we only prove

(i). By definition, C(k) � C(m) implies π∗
f (m′) < π∗

c (k) for all m′ = m, m +

1, . . . , k − 1. In particular, because k > � � m, we have π∗
f (m′) < π∗

c (k) for

all m′ = �, � + 1, . . . , k − 1. Therefore, C(k) � C(�).
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3.1 Algorithm for constructing the stable set

Let us define a sequence of integers, h1, h2, . . . , recursively as follows:6

h1 ≡ 1,

hj+1 ≡ min
{

k ∈ Z
∣∣∣ π∗

c (k) � π∗
f (hj)

}
, j = 1, 2, . . . ,

(7)

where Z ≡ {1, 2, . . . , n}. Since π∗
f (k) > π∗

c (k) for all k = 1, . . . , n− 1 and π∗
c

is increasing, the above recursive procedure is defined clearly, and it deter-

mines a finite sequence of integers: h1, h2, . . . , hJ . Let H ≡ {h1, h2, . . . , hJ}
be the set of such integers. We can easily verify that hj < hj+1 for all

j = 1, 2, . . . , J − 1. Further, let us define a subset of cartels as follows:

D ≡ {C(k) ∈ C | k ∈ H } . (8)

By construction, we have C(hj)/�C(hj+1) for all j = 1, 2, . . . , J − 1. This

implies C(hr)/�C(hs) for any hr, hs ∈ H, with r < s. However, it is possible

to have C(hj) � C(hj+1) for some values of j.

Next, we construct a new subset of cartels by deleting certain elements

from D according to the following recursive deletion procedure:

• Let D(0) ≡ D.

• From D(0), delete all the cartels that are indirectly dominated by

C(hJ)—which is the largest cartel in D(0)—and let D(1) be the result-

ing set of cartels;

• From D(1), delete all the cartels that are indirectly dominated by the

second largest cartel in D(1) (the largest one is C(hJ)), and let D(2) be

the resulting set of cartels;
6An analogous technique has been utilized in Nakanishi (2007) to prove the existence

of a purely noncooperative farsighted stable set for an n-player prisoners’ dilemma.
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• In general, from D(�−1), delete all the cartels that are indirectly dom-

inated by the �th largest cartel in D(�−1), and let D(�) be the resulting

set of cartels.

Since the set of cartels is finite, the above procedure will end after a finite

number of steps. We denote the final set obtained from the above proce-

dure as D∗. By construction, C(hJ) is never deleted and must remain in

D∗. Accordingly, D∗ is non empty. We represent the subset of H that cor-

responds to D∗ as H∗ ≡ {h∗
1, . . . , h∗t , . . . , h∗T}. Without loss of generality,

we can set h∗1 < h∗2 < · · · < h∗T. By definition, we have hJ = h∗T , T � J, and

h1 � h∗1 (it is possible to have h1 < h∗1; this implies that h1 has been deleted

in the above deletion procedure). In the following, we prove that D∗ is the

unique stable set for (C, �).

3.2 Alternative proof of Theorem 1

[External Stability]: Take an arbitrary cartel C(k) ∈ C \ D∗. Consider the

case where k < h∗1. We show that C(k) is dominated by C(h∗1). If k = 0,

we have π∗
f (k) = π∗

f (0) < π∗
c (1) � π∗

c (h∗1) by Property 1; moreover, if

h1 = 1 � k < h∗1, we have C(h1) � C(h∗1) from the construction of h∗1, which

implies C(k) � C(h∗1) by Lemma 1. In any case, we obtain C(k) � C(h∗
1) ∈

D∗.

Next, let us consider the case where h∗t < k < h∗t+1 for some h∗t ∈ H∗ (or

h∗T < k). Note that h∗t = hr for some hr ∈ H. We distinguish the following

two subcases: (a) h∗t = hr < k < hr+1 and (b) hr+1 � k < h∗t+1. In subcase

(a), we have π∗
f (h∗t ) = π∗

f (hr) > π∗
c (k) from the definition of hr+1. Since

π∗
c is increasing, we have π∗

f (ht) > π∗
c (k) > π∗

c (k − 1) > · · · > π∗
c (ht + 1).
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Therefore, C(k) � C(h∗t ) ∈ D∗. In subcase (b), we should have C(hr+1) �

C(h∗
s ) for some s, with s � t + 1 by definition (note that C(hr+1) had been

deleted before C(h∗
t ) was reached in the recursive deletion procedure). If

s > t + 1, C(hr+1) � C(h∗
s ) implies C(h∗

t+1) � C(h∗s ) by Lemma 1. This

contradicts the definition of C(h∗
t+1). Thus, we have s = t + 1. In turn,

C(hr+1) � C(h∗t+1) implies C(k) � C(h∗t+1) ∈ D∗ by Lemma 1. Hence, D∗ is

externally stable.

[Internal Stability]: Take arbitrary h∗t , h∗s ∈ H∗, with t < s. Note that

we have h∗t = hr for some hr ∈ H. However, by the definition of hr+1,

we cannot have C(hr) � C(hr+1). Thus, a fortiori, we cannot have C(h∗
t ) =

C(hr) � C(h∗
s ); otherwise, Lemma 1 will be violated. Further, by definition,

we cannot have C(h∗t ) � C(h∗
s ). Hence, D∗ is internally stable.

[Uniqueness]: We first demonstrate that there is no cartel that indirectly

dominates C(h∗1); this means that C(h∗1) is in the core of (C, �).7 Suppose,

in negation, that there exists a cartel C(k) that indirectly dominates C(h∗
1).

Since we have k /∈ H∗ due to the internal stability of D∗, we are only

required to distinguish the following three cases: case 1, where k < h∗1;

case 2, where h∗s < k and C(h∗s ) � C(k) for some s � 1; and case 3, where

k < h∗s and C(k) � C(h∗
s ) for some s � 2.

Case 1. Similar to the first part of the proof for external stability, we

have C(k) � C(h∗1), which implies π∗
f (k) < π∗

c (h∗1). Therefore, C(k) � C(h∗1)

cannot be true.

7Note that C(h∗1) is the smallest cartel in D∗; hence, this result corresponds to Theo-
rem 5 in Diamantoudi (2005).
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Case 2. C(k) � C(h∗
1) implies π∗

f (m) < π∗
c (k) for all m = h∗1, h∗1 +

1, . . . , k. In particular, we have π∗
f (h∗s ) < π∗

c (k). This contradicts C(h∗
s ) �

C(k). Therefore, we cannot have C(k) � C(h∗1).

Case 3. C(k)� C(h∗s ) implies π∗
f (m) < π∗

c (h∗s ) for all m = k, k +1, . . . , h∗s −
1. If C(h∗1) � C(k), then π∗

f (m) < π∗
c (k) for all m = h∗1, h∗1 + 1, . . . , k − 1.

These facts together imply C(h∗1) � C(h∗
s ). This, however, contradicts the

construction of h∗1. Again, C(k) � C(h∗
1) cannot hold. Since none of the

above three cases can be true, we obtain the desired result.

Next, let K be an arbitrary stable set for (C, �). In order to prove its

uniqueness, it suffices to show that K = D∗. Note that based on the above

result, it is necessary to have C(h∗1) ∈ K; otherwise, the external stability of

K will be violated. Moreover, note that by applying an argument similar

to that in case 1, we have C(k) /∈ K for all k < h∗1; otherwise, the internal

stability of K will be violated. The remainder of the proof is divided into

several steps. In step 1, we demonstrate that any cartel C(k) such that

h∗1 < k < h∗2 cannot belong to K; in step 2, we prove that C(h∗
2) ∈ K; finally,

in step 3, by repeatedly applying the same arguments as those in steps 1

and 2, we demonstrate that any cartel C(k) such that h∗j < k < h∗j+1 or

h∗T < k cannot belong to K and that C(h∗j ) ∈ K for j = 1, . . . , T.

Step 1. Note that h∗1 = hr for some r. We can distinguish the following

two cases: case 1, where h∗1 = hr < k < hr+1 � h∗2, and case 2, where

hr+1 � k < h∗2. Suppose, in negation, that C(k) ∈ K.

Case 1. Since by the definitions of hr and hr+1, C(h∗
1) ∈ K indirectly

dominates C(k), the internal stability of K is violated. Therefore, case 1 is
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not possible.

Case 2. Since C(h∗2) � C(hr+1) by definition, we have C(h∗2) � C(k) by

Lemma 1. Due to the internal stability of K, C(h∗
2) cannot belong to K. Fur-

thermore, due to the external stability of K, there exists a cartel C(m) ∈ K

that indirectly dominates C(h∗2). We consider the following three subcases:

(i) h∗1 < m < k, (ii) hr+1 � k < m < h∗2, and (iii) h∗2 < m.

In case 2-(i), C(m) � C(h∗2) implies C(m) � C(k) by Lemma 1; however,

this violates the internal stability of K.

In case 2-(ii), because C(h∗2) � C(hr+1) by definition, we have C(h∗
2) �

C(m) by Lemma 1. Further, we have π∗
f (m) < π∗

c (h∗2). This contradicts

C(m) � C(h∗2).

In case 2-(iii), C(m) not only indirectly dominates C(h∗
2) but also Pareto

dominates C(h∗2). Moreover, by simply linking the sequence realizing C(m)�

C(h∗
2) with the one realizing C(h∗2) � C(k), we obtain an appropriate se-

quence that realizes C(m) � C(k), which contradicts the internal stability

of K. Therefore, case 2 is also not possible. As a result, we can conclude

that C(k) /∈ K for any k with h∗1 < k < h∗2.

Step 2. Suppose, in negation, that C(h∗
2) /∈ K. Consequently, due to the

external stability of K, there should exist a cartel C(m) ∈ K that indirectly

dominates C(h∗
2). Based on the results obtained in step 1, it is necessary to

have m > h∗2.8 We can distinguish the following four cases: case 1, where

m = h∗j > h∗2 for some j; case 2, where h∗2 � h∗j � hs < m < hs+1 � h∗j+1 for

some j and s; case 3, where h∗2 � h∗j < hs = m < h∗j+1 for some j and s; and

8Recall that by definition, C(h∗1) cannot indirectly dominate C(h∗2) and that C(k) /∈ K
for any k with k < h∗1 or h∗1 < k < h∗2.
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case 4, where h∗2 � h∗T < m.

Case 1. C(m) = C(h∗j ) � C(h∗
2) contradicts the definition of H∗.

Case 2. C(m) � C(h∗
2) implies C(m) � C(hs) by Lemma 1. On the

other hand, by the definition of hs+1 and the monotonicity of π∗
c , we have

π∗
f (hs) > π∗

c (m); therefore, C(m) cannot indirectly dominate C(hs). This is

a contradiction.

Case 3. From the construction of H∗, C(h∗j+1) indirectly dominates

C(m) (= C(hs)). In addition, by construction, C(h∗
j+1) Pareto dominates

C(m). Thus, similar to case 2-(iii) in step 1, we have C(h∗
2) � C(h∗

j+1). This

contradicts the definition of H∗.

Case 4. C(m) � C(h∗
2) implies C(m) � C(h∗

T) by Lemma 1. However,

by the definition of h∗T (= hJ), we have π∗
f (h∗T) > π∗

c (m); therefore, C(m)

cannot indirectly dominate C(h∗
T). This is a contradiction. Since all the

above four cases in step 2 are not possible, we have C(h∗2) ∈ K.

Step 3. By repeatedly applying the same arguments as those in steps 1

and 2, we can prove that that any cartel C(k) wherein h∗j−1 < k < h∗j or

h∗T < k cannot belong to K and that C(h∗j ) ∈ K for j = 1, . . . , T. Hence, we

can conclude that K = D∗.

3.3 Characterization of the stable set

The stable set for (C, �) is in fact D∗, which is obtained through the al-

gorithm we have presented. With this result, we can effectively conduct

comparisons between the set of stable cartels under the optimal pricing

and the set of Pareto-efficient cartels.
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Theorem 2. The set of stable cartels under the optimal pricing and the set of

Pareto-efficient cartels have a non empty intersection. In particular, the largest

cartel in the set of stable cartels under the optimal pricing is Pareto efficient, that

is,

C(h∗T) ∈ D∗ ∩ P.

Proof. From the definition of the recursive deletion procedure, we have

C(h∗
T) = C(hJ) ∈ D∗. However, it must still be proven that C(h∗

T) =

C(hJ) ∈ P. Recall that hJ is the last and the largest integer to be gener-

ated from the recursive equation (Eq. (7)). If hJ = n, then the proof ends.

Suppose that hJ < n and, in negation, that C(hJ) /∈ P. From Proposition 2

and the properties of π∗
f and π∗

c , we have π∗
c (n) � π∗

f (hJ) > π∗
c (hJ). Thus,

another integer, hJ+1, must be generated after hJ by Eq. (7). This is a con-

tradiction. Hence, C(hJ) ∈ P.

4 Example

Theorem 2 includes all the characteristics of the relationship between the

set of stable cartels under the optimal pricing and the set of Pareto-efficient

cartels that can be specified in a general setting. To gain further insight, we

construct a concrete example. Through this example, we demonstrate that

neither D∗ nor P can contain the other as a subset.

We specify the demand and cost functions as follows:

d(p) ≡ a − bp, a, b > 0, (9)

c(q) ≡ q2

2
. (10)
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Based on the above, the supply function of a fringe firm becomes q f (p) ≡
p. The competitive equilibrium price pcomp can be derived from d(p) =

nq f (p). Next, the per-firm residual demand for a cartel firm becomes the

following:

r(k, p) ≡ a − (b + n − k)p
k

. (11)

Further, the profits of a fringe firm and a cartel firm can be written as

functions of p and k as follows:

π f (p) ≡ p2

2
, (12)

πc(k, p) ≡ pr(k, p) − 1
2
{r(k, p)}2 . (13)

By applying a usual procedure, we obtain the following optimal price for

a cartel of size k:

p∗(k) ≡ a(b + n)
(b + n)2 − k2 , k = 1, 2, . . . , n. (14)

By substituting p∗(k) and pcomp into π f and πc, we obtain π∗
f and π∗

c as

follows:

π∗
f (k) ≡ a2(b + n)2

2 {(b + n)2 − k2}2 , k = 0, 1, . . . , n − 1, (15)

π∗
c (k) ≡ a2

2 {(b + n)2 − k2} , k = 1, 2, . . . , n. (16)

Both π∗
f and π∗

c are monotonically increasing in k. Clearly, we have

π∗
f (k) =

(b + n)2

(b + n)2 − k2 · π∗
c (k), k = 1, . . . , n. (17)

For all k � 1, the multiplier of π∗
c on the right-hand side of the above

equation is greater than unity. Therefore, we have π∗
f (k) > π∗

c (k) for all
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k � 1. By simple calculation, we can show that

π∗
c (k + 1) � π∗

f (k) ⇔ k4 � (b + n)2(k2 − 2k − 1). (18)

In addition, assuming that (b + n) is sufficiently large, we can obtain the

following facts:

π∗
c (k + 1) > π∗

f (k), k = 0, 1, 2, (19)

π∗
c (k + 1) < π∗

f (k), k = 3, 4, . . . , n. (20)

These facts imply that C(k) � C(k + 1) for k = 0, 1, 2 and that C(k − 1) �

C(k) for k = 4, 5, . . . , n.

Now, let us construct the set D. For more concrete results, we hence-

forth assume that b = 1 and n = 20. Given hj, the integer hj+1 is the

minimum integer k satisfying π∗
f (hj) � π∗

c (k). By simple calculation, we

can show that

π∗
f (hj) � π∗

c (k) ⇔
[

2(b + n)2(hj)2 − (hj)4

(b + n)2

]1/2

� k. (21)

By definition, h1 = 1. Further, by repeatedly applying the above equation,

we obtain the following results:

h1 = 1, h2 = 2, h3 = 3, h4 = 5, h5 = 7, h6 = 10, h7 = 14, h8 = 18. (22)

That is, J = 8. Hence,

D = {C(1), C(2), C(3), C(5), C(7), C(10), C(14), C(18)} . (23)

Next, let us consider the recursive deletion procedure and construct

D∗. Let D(0) = D. The largest cartel in D(0) is C(18); however, it does not
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indirectly dominate any other cartel in D(0), and therefore, D(1) = D(0).

The second largest cartel in D(1) is C(14); however, it does not indirectly

dominate any other cartel in D(1), and therefore, D(2) = D(1). Similarly,

we have D(0) = D(1) = · · · = D(5). The sixth largest cartel in D(5) is C(3).

In this case, C(3) indirectly dominates both C(1) and C(2). By deleting

C(1) and C(2) from D(5), we obtain D(6) = D(5) \ {C(1), C(2)}, following

which the deletion procedure ends. Consequently, we have

D∗ = D(6) = {C(3), C(5), C(7), C(10), C(14), C(18)} . (24)

In this case, we have h∗1 = h3 = 3, h∗2 = h4 = 5, h∗3 = h5 = 7, h∗4 = h6 = 10,

h∗5 = h7 = 14, and h∗6 = h8 = 18 (i.e., T = 6).

Let us examine the set P of Pareto-efficient cartels. Clearly, we have

C(n) = C(20) ∈ P. For C(k) with k �= n to be included in P, it is necessary

to have π∗
f (k) > π∗

c (n). By simple calculation, we obtain the following

necessary-sufficient condition for this inequality:

k >

[
(b + n)2 −

[
(b + n)2

{
(b + n)2 − n2

}]1/2
]1/2

. (25)

By substituting b = 1 and n = 20, we obtain k > 17.508 . . . Hence,

P = {C(18), C(19), C(20)} . (26)

As Theorem 2 indicates, we have C(18) ∈ D∗ ∩ P. In fact, in this spe-

cific example, C(18) is the only stable cartel belonging to both D∗ and P.

Furthermore, we have both D∗ \ P �= ∅ and P \ D∗ �= ∅. Therefore, neither

D∗ ⊂ P nor P ⊂ D∗ can be true.
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