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Abstract

We consider the dynamic trading strategies that minimize the expected
cost of trading a large block of securities over a fixed finite number of pe-
riods and the endogenously determined price impact function that yields
the execution prices for individual trades. This analysis is novel in that it
introduces market participants other than institutional investors and con-
structing a general equilibrium model. We find that institutional investors
are much more likely to speculate to exploit private informations and price
impact function changes over time, which has been left unnoticed in the
existing literature.

1 Introduction

We consider situations where an institutional investor has to execute large or-
ders. For example, investment trust funds may have to liquidate parts of their
positions when capital investors offer midterm cancellation. An investment bank
may persistently buy stocks to take control of a listed company. Exchange
Traded Funds have to adjust their allocation rates with stock name replace-
ment or changeover of the proportion of stock price indices. Whenever such
news is reported, stock prices swing wildly.

The market impact on prices has been analyzed both theoretically and em-
pirically. Institutional investors usually transact portfolios of considerable size
and thus incur permanent and temporary price impacts. The temporary im-
pact represents the transitory cost of demanding liquidity and only affects an
individual trade. On the contrary, the permanent component of the price im-
pact not only influences the price of the first round of trade but also the prices
of all subsequent rounds of trades of the institutional investor. Modelling this
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price dynamic explicitly enables us to derive cost-efficient execution strategies
for multi-trade orders.

In an early string of theoretical studies, Bertsimas and Lo [4] considered
situations where an institutional investor must execute a fixed share of secu-
rities in finite trade opportunities. They describe the price dynamic using a
linear impact function, which has a permanent effect. An institutional investor
minimizes the expected execution cost and evenly distributes shares between all
trade opportunities if he is risk neutral.

Almgren and Chriss [1] analyze a model where the impact function has both
permanent and temporary effects using a mean-variance objective function, and
obtain a similar result. Almgren [2] analyzes a model with the nonlinear impact
function. A discrete time setting is undesirable for such a problem. A natural
way to address this issue would be take a continuous time limit of the discrete
time formulation, but this leads to a degenerate situation in which the execution
cost becomes strategy-independent. That is, the execution cost has a constant
value under some circumstances no matter what the execution strategy may
be. By introducing an additional cost penalizing speedy trades, Huberman and
Stanzl [10] avoid this strange outcome in the continuous time limit. Obizhaeva
and Wang [11] expand the model of Almgren and Chriss [1] and show that the
optimal execution strategy involves both discrete and continuous trades when
trading times are endogenously chosen.

The simple price impact functions in the previous work are exogenously
specified and fail to capture the intertemporal nature of other market partici-
pants. It is interesting and important to take into consideration the fact that
many investors behave strategically in actual markets. So we analyze a model
with one risk-neutral institutional investor and risk-averse small investors. The
impact function of our model is endogenously determined and turns out to be
linear. We assume the small traders have constant absolute risk aversion and
endogenously derive the linear impact and the magnitude of the impact. As a
result, the equally divided selling order by the institutional investor does not
work out.

Within the optimal liquidation literature, most research was directed to
finding the optimal deterministic or statistic liquidation strategy. Some real-
world investors, however, prefer agressive in-the-money or passive in-the-money
strategies, which are provided by many sell side firms (see e.g., Kissell and
Malamut [5] and Kissell and Malamut [6]). Only recently, academic research
has started to investigate the optimization potential of agressive in-the-money
strategies in a mean-variance setting (Almgren and Lorenz [3]). By introducing
an endogenetic price impact, we can explain passive in-the-money strategies.

Prices have positive effect on future prices. We can identify it as “the per-
manent effect,” which impounds the value of carrying small traders’ inventory
positions into the future. That is, when there is heavy selling, the present price
is low and small traders are long inventory by a large margin. Then they will
prefer to sell, and place lower price at the next period. Many previous researches
investigate this issue. For example, Ho and Stoll [9] examine price setting in
a model with competitive dealers. However, their model does not include or-



ders determined by strategic traders. Our study formulates the inventory model
under a general equilibrium setting.

2 Model

There are three types of traders in our model: one institutional investor (that
we call IT in what follows), a lot of small investors (ST), and a noise trader. They
can trade at times ¢t = 0,1,2,---,7T. II and the noise trader place market orders
and the SIs place limit orders. We can interpret the SIs as market makers. They
place the price after observing the amount of orders. This is the same setting
as the model in Kyle [7], where the market makers are completely competitive
and their expected profit must be zero in the equilibrium. We assume that
the competition among the Sls is imperfect, so that the prices are more erastic
compared to Kyle [7]’s model.

IT has to sell Wi units of security over this time period. Wj follows a normal
distribution that has a mean Wy and a variance o2. None of the traders other
than II knows the value W7, but they all know the distribution of it. Wj is
realized at the beginning of ¢ = 1, trades occur at ¢t = 1,2,--- T, and those
who have one unit of securities obtain dividends Fpyq at ¢t =T + 1.

t
Ft:FO+Z€u (t:17277T+1)7 (1)

where Fp is observed by all traders at t = 0. Each &, (t =1,2,---,T) follows a
normal distribution that has a mean 0 and a variance U%t at the beginning of
the period ¢ independently of each other. All traders observe &;.

IT places a market order S; at every period t = 1,2,--- ,T. We require
S S =Wy, We define Wyyy =W, — S, (t=1,2,---,T).

There are infinitely many SIs. They are uniformly distributed over [0, 1].
The measure of each dewarf is 0. SIs have no position at ¢ = 0. They can
borrow some money or securities and place limit orders at t = 1,2,--- ,T. They
face no liquidity constraint. The interest rate is 0 for simplicity. We denote the

quantity possessed by a representative SI' at the end of ¢ as B;. His utility is

T
U(By,-+,Br)=—exp |—p > _ (Piy1— P1) By|, (2)
t=1

where Priy = Fpyi. The trading volume of the representative SI is M By =
B; — B;_1 (where B_; = 0).

The noise trader randomly places a market order n; at t = 1,2,--- ,T. ny
follows a normal distribution that has a mean 0 and a variance o2 1ndependently
of each other and of the g, (u=1,2,---,T).

IWhen all dwarfs place the identical orders, the aggregate dwarfs’ order is the same as in
the case where one trader with the risk aversion p places his order. So we can call this virtual
tarder a “representative dwarf.”



The price P; is determined to conform the amount of all buy order to all sell
order at every t =1,2,--- ,T"

Sy = M By + ngy. (3)

At the end of period ¢, all traders observe the price P, and own trading volume
St - TLt.2

We define some notations. Ep![] and Var{[] are an expectation and a
variance conditional on events that the SIs can observe by the end of the period
t (i.e., after observing e; and before the trade at t) respectively. E[![] is a
conditional expectation on events that II can observe by the beginning of the
period ¢ (i.e., after the trade at t). Furthermore, we define

UIQJHI = Varf [Prt1], (4)

op = Varg [Wiga]. (5)

3 Equilibrium

An equilibrium is a tuple of prices and orders placed by all market participants
at every period, where for every t =1,2,--- ,T,

1. II maximizes his expected revenue:

T
Z P,S,

t=1

T
subject to ZSt =W,

max B!
Seo t=1

2. the SIs maximizes their expected utilities:

EST B (P)).--- .B+ (P d
B;nt(%?}t() t [U( 1( 1)3 ) T( T))]? an

3. the market must clear:
St = MBt + T¢.

There exists a unique equilibrium:

St = o Fy + By (veFyo1 — Peoq) + 6 W, + (tEffl (W], and
P =y Fy 4+ (wFi_1 — Po_y) + 0, Wy 4+ B (W] + oy,
fort=1,2,---,T,

where the parameters satisfy backward equations in Appendix.

2We will see that there is a one-to-one correspondence between the price P; and the trading
volume M By = St — nt. Therefore it is enough for the dwarfs to observe either one.



4 Result of Numerical Calculations

Now the number of equations equals the number of variables to be solved. How-
ever, it is difficult to study the equilibrium prices and volume analytically. We
see the result of the numerical calculations in the following.

We now examine in more detail the behavior of the parameters. We focus
mainly on the case where T = 5, p = 02 = 1, and O’%t = 0721,, = 0.5 (for all
t). While specific patterns may be vary with the parameter values chosen, the
qualitative features of those patterns are robust.

L [t=1 [ 2 E E [ 5
ar || O 0 0 0 0
B |0 ~0.01457002 | -0.0752485 | -0.19118447 | 0
v |1 1 1 i 1
5, || 0.001586576 | 0.01326256 | 0.105008597 | 0.3305576 | 1
¢, || 0.002650136 | 0.032676014 | 0.102255573 | 0.139709962 | 0
m || 0 -0.1144348 | -0.2125039 | -0.324649 | -0.4173298
0, || -2.2898848 | -1.9810515 | -1.5031667 | -0.9363194 | -0.5
|| 0.9770156 | 0.0473948 | 0.7297779 | 0.4428 0.2086649
or || 35.539782 | 7.357132 2.49821 1.094692 0.5
K, || 0.003168102 | 0.026081066 | 0.178545453 | 0.288735878 | 0
o2 |[0.9968243 | 0.9702186 | 0.7608741 | 0.2923727 | 0
%, || 637.2649704 | 31.4757968 | 5.812746 1.7662286 | 0.6980932

IT’s order is small and the order of noise trader almost fill the gross order earlier
on. The SIs avoid the risk of fluctuation of fundamentals 0%, the order of noise
trader o2, and II’s private information o2 ;. They do not place their limit order
so much, so that the market impact o, and the price variance al%t become large.
It is almost impossible to gather valuable data from the observation of gross
market order. Therefore their expectation about the amount of II’s execution
volume E2! [Wyy1] and o2 change very little. In other words, K; is vanishingly
low.

Since oy is 0 all of the time, the level of the fundamentals F; does not affect
II’s execution strategy.

¢ is 1 all of the time, so that we can regard (; as a sensitivity to the
dissociation of the price at ¢ — 1 and the fundamentals F;_;. Since 3; < 0, the
lower the last price is, the smaller the present sell order is. When the last price
is low, the present price has a tendency to be low. So II hesitates to sell.

0 rises dramatically, which is consistent with the intuition that the larger
the shares to execute is, the larger the execution earlier on.

Since 7y < 0, the lower the last price is, the lower the present price is. One
may think that the present price is likely to be higher on the surface because
the present sell order become small. But it’s just the contrary. The reasons
include the fact that the Sls are risk-averse and hate buildup of inventory. In
the case that there is heavy selling, the present price is low and small traders



are long inventory by a large margin. Then they will prefer to sell, and place
lower price at the next period.

0; is negative for every t. The larger the shares to execute is, the more the
price is on a declining trend.

Now let us consider market impacts. For instance, what kinds of effects
would one unit of sell order at period 1 have on behavior of each period?
It drives down the price at the period 1 by o7 ~ 35.5, which can be inter-
preted as the temporary effect. It makes an impact on the price at period 2
through 2 routes. It drives down the price by —o1m2 ~ 4.07 with the inven-
tory effect, and by Kjte ~ 0.0300 through the change of the SIs’ expectations.
There is a total of price down —o17m2 + Kijte ~ 4.07. Hereinafter, we have
— (—o1m2 + Kii2)n3 ~ 0.865 at the period 3, (—o1ma + Kit2) n3ng =~ 0.281 at
the period 4, and (—o1m2 + Kit2) n3nans ~ 0.117 at the period 5, respectively.
Thus, there is no simple-shaped “parmanent impact” assumed in the existing
literature, and we find “long-lived temporary impact” that attenuates gradually
in our model.

Now we try a variety of parameters. When the risk that the SIs face decreases
(0%,02, and 02 become smaller) or when SIs’ risk aversion decreases, then the
amount of the execution of an early period increases, and the market impact and
the variance of prices becomes smaller. Trading is going on increasing period
by period. The figures below plot the values of each parameters over time when
o3 changes in the 0.5 to 1.5 range. The horizontal axes represent the time. The
figure on the left of the first drawer is §;, to the right of §; is §;. Hereinafter,



we put the figures of i, 1y, 04, 14, 0¢, Ky, 02, and 0‘12;.t.
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When we explicate numerical calculations over a wider range of parameters,
can we obtain the result where II sells the securities equally-divided, or liquidates
longs at the early periods? The answer is partially yes. We show the case where



_ 2 2
I'=3,p=05=1, op, =05, =

2

2 _
0, and o3, =0

2

n

t

=0.5 (for all t).2

L Jt=1 2 |3 |

a || 0 0 0

B, [0 20.3393326 | 0

v |1 1 1

5 || 0.7472907 | 0.3206204 | 1

¢ | 0.07043507 | 0.23804079 | 0

e || 0 20.5525894 | -0.4430819
0, || -1.453488 | -0.970087 | -0.5

o || 0.1207201 | 0.6562298 | 0.2215409
o, || 1211787 | 1.123264 | 0.5

K, || 0.17841983 | 0.0130615 | 0

oZ |[0.03016787 | 0.01383835 | 0

0%, || 07979475 | 0.6592508 | 0.6284596

We obtain the result that II sells a large portion of his shares at the period
1, and divides equally between the period 2 and 3. (Of course, it depends on
the SIs’ expectations and the selling amounts of the noise trader.) We assume
that there are no public information during the trading period, and the trade
of the noise trader is not so active.* This result is consistent with Harris and
Gurel [8]. That is, on the first trading day after an addition to S&P 500 list is
announced, there is a large increase in volume, which is suggestive of a shift in
demand. On that day, there is also an economically and statistically significant
increase in price. Since the volume and price effects are not present in the first
years of the sample, it is unlikely that the announcements, by themselves, cause
the price changes observed in the latter years. Moreover, since the price increase
is consistently reversed, it is unlikely that new information is the cause of the
initial increase.

5 Concluding Comments

We have considered a multiperiod model of securities trading with small in-
vestors. We show that the institutional investor who has to sell a fixed share
of securities within a fixed periods does not sell securities evenly even though
he is risk neutral. We leave the discussion of the case where II is risk averse for
future research.

3At heart, we would like to see the case where T' = 5, but it is impossible to obtain
the solution to the equations with the problem of numerical calculation, when the values of
parameters are small. It has to be discussed continuously as a future issue.

4The latter is important. When we put U,,%t = 1 with the other parameters in status quo,
the outcome is waiting strategy as is the above case of T' = 5.



6 Appendix
We set up a strand of equation to obtain the equilibrium.

6.1 Decision Making of SIs

The conditional expectation and the conditional variance that the representative
SThasatt (t=1,2,---,T) are

T t—1
B Y (P — P, =" (Pus1 — P.) Bu+ (ES [Pa] — P) By
u=1 u=1
T
+EST | > (Puyr— Pu) By, and (6)
u=t+1
T T
Vard Z w1 — B,| = ‘7129t+1Bt2 + Var} Z (Py+1 — Pu) By

u=1 u=t+1

We consider a linear equilibrium in the followings. Since a linear combination of

variables that follow normal distributions also follows normal distributions, the

price P; follows normal distributions. In addition, all observations follow normal

distributions, so that we can take it for granted that price P; follows normal

distributions conditional on the events by the beginning of ¢ for all traders.
SIs’ utility at t is

T
U(B17"‘7BT):_eXpl pY  (Pip1—P) B
t=1

The first order condition is

IE]! U] SI 2 SI
—oB, - —p (Et [Pr1] — P — PUPtHBt) E;7UI=0 (8)
EST [P, — P,
= B, (P) = f[pof;l]t
Piq1

which is the limit order that the SIs place.

6.2 Decision Making of II
We consider II’s behavior by the inductive method.

6.2.1 Period T

By II’s sellout constraint S7 = W and by the market clearing condition (3),

o2

OFri1
Pr = Fr+pot, , (np —Wr) — —5+ (B2, [Pr] — Pr_1). (9)
PT




The variance conditional on the events by T'— 1 is equal to

2
0'12;T = U%T + (pa%ﬂl) (JZT + U%,l) . (10)

Take the expectation of both sides conditional on the events by 7'—1, and obtain

2
OF
EPL | [Pr] = Fr_y — pot,, E3" [Wr] — T;“ (B2, [Pr] — Pr_y)
Pr

— E7L, [Pr]— Pr (11)

0P, (FTA —Pr1— ,oa%THE%{l [WT])

2 2
Opr + JFT+1

Substituting (11) to (9), we obtain

Pr = Fp+ poy, ., (no —Wr) (12)

2

g
FT+1 2 ST
ﬁ (FT—l — PT—l — pUFT+1ET—1 [WT] .
9pr T OFryy

Therefore the continuation selling amount is

Vr (Fr, Fr_1, Pr—_1,Wr,E3L, [Wr]) = FrWr + PU%TH (np — W)Wy (13)

2
ok 2 SI

— 3 _:;; (FT—I —Pro1—pop,  Ep_, [WT]) Wr.

Pr Fryq

6.2.2 Induction Hypothesis of Period t+1 (t=T7-1,T—-2,---,2)

We hypothesize the followings:

Siv1 = ary1Fir1 + Bevr (o1 Fy — P) + 60 Wigr + Ce1 EXT [Wiga] (14)
P = vep1Fop1 + i1 (1 Fy — P) + 00 Wi + Lt+1E£91 (Wig1] + orp1meq1, and
(15)

Vet (Fists By Py Wit BPY [Wita])

= k1 Fir1 (e Fr — Po) + M1 Fan Wi + pp1 Fr BPT (Wi (16)

+ vy (Ve Fr — Pt)2 + &1 (Ve 1 Fr — P) Wigr + T (Ve By — Pr) EtSI (Wig1]

+ b1 W,i_l + Xt+1Wt+1EfI Wit1] + wirr (EtSI [I/VH_l])2 + (expressions irrelevant to Sy) .

6.2.3 Period ¢

By the market clearing condition (3),

9t+1 Lt+1 ST
P, = Fr+ — Wi+ ———E7 (W, 17
t = Vt+14't 1+ e t+1 1+ e t [ t+1] ( )
2 2
1 UPt+1 ST pO-P“rl
- (B2 [P = Piq) + ——————(ny — S¢) .
1+n41 0, (B 1P = Prea) 1+77t+1( £ =5

10



SIs expect the execution shares by the Kalman Filter:

EST Wy i1] = K S; + (expressions irrelevant to Sy) . (18)
On the equilibrium path, we have
EPN Wisa] = 6 (1+ Ko) Wi + (1 = 6, — 6:1,) EPY [W] (19)
- St - Ktnt.

The transition of the amount of securities that IT must sell from ¢ 4+ 1 on is
Wip1 =W, — S;. (20)
The continuation revenue just after placing order at t is
Vi (Fy, Fy—1, Py, Wi)
— ms%x[E{ TP S
+ ke By (e By — B [B) + Mea Wiy + s BEST (W] (21)
+ Vt+1EtII |:('7t+1Ft - Pt)Q] + &1 (’)’t+1Ft - EtH [Pt]) Wit
+ w1 B (41 Fr — Po) YT (Wi

2
+ G Wi + Xet Wit YT W] + win (BPT W)
+ (expressions irrelevant to Sy)].

Substituting (17), (18), and (20) to (21), we have the first order condition:

bur1 Wit g PP \g | prip
- + Dt g4
1+m41 1T+ma K 1441 i £t

0 po?
— K1 Fy <_ g Ky PHI)

T4 mg1  L4men - T4
— A1y
+ w1 Fr K
Ot 11 Li41 PUJQD 1 II
+ o | — + K, — 2 ) (B[R] =y F 22
t+1< Tt T e o " Toma (BT [P) = ye41 F) (22)

041 L1 pop, 1 IT
+ —| - + K, ———|W - F,— E;° | P
§t+1{ ( 1+ st 1+ s t 1+ s t+1 (’Yt+1 t t [ t])

0 L ﬂUQt
+ T {_ ( t+1 + t41 K, P+1> ng [Eisl [Wt+1H + K, (’VtJrlFt _ Eg[ [Pt])}

Ll Lhmegn | T4
= 20111 Wit
+ Xes1 (B [EP W] + KiWiga)
+ 2w 1 G BT [EPT (W]
= 0.

11



Substituting (17), (19), and (20), we obtain

2
JPt+1

Sy =Cs,,rFi 4+ Cs, gp 2 (B! [P — Pioy) (23)
Py

+ Cs, wWi + Cs, gw (1 — 8 — 6:K4) EtSf1 (W],

where

Or 41 Lt41 pU%
Csis = | o1 —mp1 —1— 201 | — - — P
Se ( Sta1 = T o ( T+mer 1+mer 14+m

2
N 011 n Li41 K, — Pop,
T+n4r 14+mn 1+ 04

— 241 — X1 + Xep1 K 4 2011 K

B 011 2 pal%tﬂ
I+ 14+myr 1+mn

) (=&e1 + M1 K — 1), (24)

0 L PU%
Cs, r= {—Ht+1 <— o K; — -~ ) — A1+ pe K+ ’7t+1} /Cs,.s,

T+n41 1T4+m4a 1+ ne
(25)
0141 Lt41 po?, 1
Co mp =4 2w [ - + K= 2P ) e K -1 ——/C s,
S, ,EP { t+1( T I R &1 t+1 5 1+T)t+1/ S,
(26)

9t+1 L1
C = — — 0 (1 + K 2 0 (1 + K,
S, W {( &1 — me10t (1 4+ Ky) 4+ 20449 <1+77t+1 + T~ t (1+ Ky)

2
. Or 41 n Li41 K, — Pop,
T+n41 1+mn 1+ met1
— 20441 + Xe41 Kt + 0¢ (14 Kt) (—xe41 + 2w K) , and

0111 bi41
1+ K —m1 K+ 1 2
- (1 + N4 * 1+ MNt+1 5t ( * t) (§t+1 Te4148e + )}/CS“S( 7)

Lty Ot 11 L1l p0123t+1
Cs,.5w = {| —mTt41 + 20441 - + K —

1+ N+ T+npr  1+me 1+ N4
L
— X1 + 201 K+ — T (1 — T Ky +1)}/Cs, . (28)
1+ ne4a

Substituting these equations to (17), we obtain

2
UPt+1

P, =Cp, pFy + Cp, pp— (Etsfl [P] — Pi_q)

O’Pt
+ CPhWWt + CP,,,E'W (1 - (5,5 - 5th) Eig_jl [Wt] (29)
+ CPt,nnta

12



CPt,n = -

Cs,

2
L s T
T+m1 1+mer  14+mn
2
e D
T+m1 1+mer  1+mn
B 0141 s PUJZDHI
T+ 1T4+mr 1T+ mg
2
b wr PR,
T+ 1T4+mpr 1T+ ma
2
Lt41 pUPt+1
1+ mi41 1+ ne1

)
)
Jour
)°

Sy, EW + ——

Cs,.r + Vit1,

The variance conditional on the events by ¢t — 1 is equal to

Take the expectation of both sides conditional on the events by ¢t —1, and obtain

UPt CPt FUFt + CP WUt 1 +CPt,n et

EY [P - Py

1

1— Cp, pp Lttt
P, EP 3

Py

(30)
1
31
TR (81)
Lt41
—% (1 + K,
1 + Nt41 ( 0+
(32)
2 , and
1+ m41’
(33)
(34)
; (35)

{(Cp, pFi—1— Pi_1)

+ (Cp,.w +Cp, gw (1 — 0 —

Substituting (36) to(23) and (29), we obtain

Sy = arFy + By (ViFi—1 — Pi1) + Wi + G B (W], and

Py=yky+ e (b1 — Poo1) + 0, W + LtEtS_Il (We] + ony,

13

61 K+))

EX Wi}

(36)

(37)
(38)

Or+1

1+ ni41’



where

oy =Cs, F,
2
IPy
Cs, Ep—5
By =
=
02Pt+l ’
1= Cp,pP—z
t
7% =Cp, F,
0y = Cs,w,
G =Cs, mw (1 — 6 — 0:K%)
2
op
Cs,.mp—3-
T
Pyyq

1-Cp, EP I

(Cp.,w + Cp, pw (1 = 0; — 0:Ky))

2
C OPiyq
P,,EP 53

— Pt
= 2 )

B
1-Cp,EP

t
2
UPt

0t - CPt,Wa
Lt = CPt,EW (1 — 0 — 5th)

2
g
Piy1

Cp, EP -2
t
+ e
t41
1-Cp, Ep—5"
Py

. (CPhW + CPhEW (1 — 515 — 51»Kf)) y and

Oy = CPt,'m
Therefore the continuation revenue is

‘/t (Ft»Ft—laPt—hWt)

= w1 Fy (e Fom1 — Poo1) + MEW, + e FyEPY (W]
+ v (e F—1 — Pt71)2 + & (wFio1 — P) Wy

+ 7 (v Fy — Py) EXTL (W)
2
+ oW+ WL EST (W] + wy (EPT, (W)

+ (expressions irrelevant to S;),

where
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Kt = gl + Beye — Mekiey1r — Bederr — Befberr — 2 (Vo1 — ) MVera
= B (1 — ) o1+ ameberr — B (V1 — W) Te1 + e
+ 2048 Prr1 + arBeXir1 + aBixir1 + 20 Brwita, (49)
At = iy + Y0t — Oprieir + (1 — 6) Ae1 + Oepuer1 Ko — 2 (i1 — ) Orvea
+ (Vi1 = ve) (1= 61) Ee1 + @ebi&err + ¢ (Vo1 — ) T K + ulpmign
— 204 (1 - 5t) ¢t+1 - Olttht-i-th — Oy (1 - 5t) Xt+1 — zatfstwt-i-lKh (50)
pe = gty + %G — ke — GeAerr + (L= G — 0p — 0:Kt) prepr — 2 (Vo1 — 78) Leves
— (Yer1 = 7e) Gbogr + a1 + (Vepr — ve) (1= G — 6 — 00 Ky) Top1 + gty
+ 204G pep1 — oy (1 — G — 0 — 64 By) Xeg1 + @eCexer — 200 (1 — G — 0y — 0. Ky ) wiy,
(51)
v = B + i vis1 + Bimeerr + Bimeigr + Bidee1 + Bixe1 + Brwir,  (52)
§ = Bi0r + 0eme + 200w i1 — (1 — 6) me&irr + Beb0i&err — dememep1 Ko + Bi0pmia
— 204 (1 - 5t) bt41 — Beoexer1 Ky — B (1 - 5t) X1 — 2B¢01w 1Ky, (53)
e = Bete + Cene + 20eteVer + Gneber + Beeeber — e (1 — G — 0 — 6 K¢) meq1 + Betemeqa
+2B81Cepry1 — Be (1 — G — ¢ — 0eKt) X1 + BeCeXer — 268t (1 — G — 6 — 0 Ky) wiga,
(54)
¢r = 0.0, + 9,52Vt+1 — (1= 0¢) 01441 — 00y K + (1 — 5t)2 b1 + 0 (1 — 6¢) xe1 Kt + 5t2Kt2wt+17
(55)
Xt = Opts + GOy + 2010501 + GO:&eq1 — (1= 0¢) 1261 — 0 (1 — (¢ — 0 — 0:K¢) M1 — Ogtame 1 K
= 2(1=0¢) Gerrr + (1= 0¢) (1 — G — ¢ — 6. K) X1
—0:Cexer1 K + 20, (1 — & — 6 — 01 K) w1 Ky, and (56)
wy = Gty + LEVH-I + Gty — (1 — G — 0p — 04 ;) 14741
+Gbern — (1= G — 0 — 0, Ky) Gexern + (1= G — 0 — 0,Ky)* wrys. (57)

6.2.4 Period 1
By the market clearing condition (3),

P L2 §7 pod,
Py = F + Wo + By [Wo| + 2 (n1 —S1). 58
1 =724 1+ 2 1+, 1 [ 2] 1+772( 1 1) ( )
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The continuation revenue is

Vl (Fl,FOaP()le)
= I%&XE{I [P1S1 + Vo (Fy, Fy, Py, Wa)]
1

P L2 poy,
:maxEH( Fi+——Wy+ EST [Wo] + 2 (ny—81)) S
e 1[ Y2t 1+ 2 1+ 1 [ 2] 1+772(1 1) 1

+ Ko Fy ("/2F1 - Pl) + A By Wy + ;UfQF?ElSI [WQ]
vy (12F1 = P1)* + & (v Fy — P1) Wa + ma (o Py — P1) EY (W)
P W2 4+ xoaWo EST [Wy] + wo (Efl [WQ])2 + (expressions irrelevant to S7)].

SIs expect the execution shares by the Kalman Filter:
EPT (W] = K1 S; + (expressions irrelevant to S;) (60)
On the equilibrium path, we have
EXT Wy = 6,Wy 4+ (1 — 61) Wy — S1 + K1 (5, W — 61 Wo —nq) . (61)
The transition of the amount of securities that IT must sell from 2 on is

Wy = Wy — Si. (62)
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Substituting (58), (60), and (62) to (59), we have the first order condition:

2
) Lt Ky — POp,
I+m 14+ 14m2

2

0o Lo pPOP,
+ v+ —— W —=S1)+——— (0 W1+ (1 —=6) Wy =51+ Ky (6:Wy — 6 Wy)) — 2.9
Y2 F1 1+772( 1—51) 1+772(1 1+ ( 1) Wo — 51 1 (01 W1 — 61 W) T

) Lo pop,
+ — Ki+ 2 ) ko By — Ao F1 + uo K4 F°
<1+772 1+ 7 1 111 211 o' T 2l

2 L2 PU?D
+ 25 | — + Ky — 2
2( 1+mn9 1419 ! 1+772>

0 o2
. ( 2 (Wl - Sl) + L2 (51W1 =+ (]_ — (51) WO — Sl _|_K1 (51W1 _ 51W0)) _ P Py Sl)

1+mn 1+n 1+n

2 L2 ,0022

+& (1+172 B 1+772K1 + 1+P7]2> (Wl _Sl)

—& ( b2 (Wi — S1) — —2 (5, Wy + (1 — 81) Wo — S1 + K1 (5.W1 — 6. Wo)) + PP, Sl)
1+m2 14 m2 147

(63)
+ T2 < 2 - K+ P0'1232 > ((51W1 + (1 — (51) Wo—S1 + K3 ((51W1 — (51W0))
14+m 14n 1+

0 . po,
+ MoKy (— . jnz (Wi = 51) = 1 me (61W1 + (1= 61) Wo = S1 + K1 (51 W7 — 6:W0)) + 5 +Pn2 51>

— 2¢2 (W1 — S1)

—x2 (1W1 + (1 —01) Wo — S1 + K1 (61W1 — 61 Wh)) + x2 K1 (W — S1)
+ 2w Ky ((51W1 + (1 — (51) Wy — 51+ K3 ((51W1 — (51W0))

=0.

Substituting (58), (61), and (62), we obtain

S1 = F1 + 0 Wi + G W, (64)
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where

2
- b2 + ‘2 K - o, )
14+m 1+m 1+m

Csy5 = (=1 =& —m2) (

02 L2 POP, > ><92+L2
+ | 14+2v (- + K, — ) + & - mK +
< 2( L+  14m 0 14 Sz = mek 1+ 2

—2¢2 — X2 + X2 K1 + 2w K71,
9

) Lo pPop, > >
o= 7+ - K+ 2 ) ky — Ao+ oKy ) /Cs, s,
1 <’Yz (1‘1'772 1+ 1 1 1+ 2 2 T M2 / S1,S

(66)

1+m 14+ n9 _1+772

14+ n9

4 o7 Os + 1560, (1 + K
51={<1+2V2<— 2 4+ 2 K pP2)+§2—7T2K1) 2 + 0201 ( )

0 L pot
—+ (52 —+ 7T251 (1 =+ Kl)) (1 +2772 - 1 +2772K1 + 1 +F;;2) - 2¢2

+ (_X2 + 2WQK1) 51 (1 + Kl) + X2K1}/C,5‘1,Sy and
2

02 Lo pUp) ) L2
={(1420 (- K- )|+ & -mK
G {< 2( T+ 14m 0 14 Sz~ mka 1+ mn2
02 Lo pop, )
+ a9 (1 —6; — K16 — + 2
2 ! 11)<1+772 147 ! 1472

+ (—x2 + 2w K1) (1 — 6y — K161)}/Cs, 5.
The price is
Pr=vF +0W1 +uWy+o1nq,
where

92+L2+p0'1232
M =Y2 -0

)

1+m

02 Lo 92+L2+p0123
01 = +46 1+K)—-0———m——2
P 11+772( )-& 1+

Lo 92—|—L2—|—p0’12—_>
1 = 1-6—0Ky)—(G—————=, and
1 1+772( 1 1K1) — G T+

L2 p0'1232

01 = — Kl .
1+mn 1+mn

6.3 Expectation of Sls
What SIs can observe from the outcome at t are
Yy = (StWt — Ny, Where
—nNg ~ N (0,0’72”) .

The transition of the state variable is

Wisr + uFy + B (e F—1 — Pooy) + GEPT (W] = (1 — 6;) W

18

(67)

(1—6, — K161

(74)
(75)

(76)



By the Kalman filter,

EFT (W] = (1= 6) EPL (W] + o Fy + By (wFy1 + Poo1) + GEPT (W]
—+ Kt ((St (Wt — Effl [Wt]) — nt)

= 5tWt —+ (1 — (St) Ef_ll [Wt] — St + Kt ((StWt — 5tEtS_Il [Wt] — ’flt) y (77)
Var [Wt+1 +aFy + By (i Fro1 — Po1) + CtEtS_I1 [Wt]]
= 0—152
= (175t) O'tz_l (1*5t*Kt5t)a and (78)
(1 — 5,5) 6tat2—1
K =-—55"——"—. 79
R o, ™
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