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Abstract

We consider the dynamic trading strategies that minimize the expected
cost of trading a large block of securities over a fixed finite number of pe-
riods and the endogenously determined price impact function that yields
the execution prices for individual trades. This analysis is novel in that it
introduces market participants other than institutional investors and con-
structing a general equilibrium model. We find that institutional investors
are much more likely to speculate to exploit private informations and price
impact function changes over time, which has been left unnoticed in the
existing literature.

1 Introduction

We consider situations where an institutional investor has to execute large or-
ders. For example, investment trust funds may have to liquidate parts of their
positions when capital investors offer midterm cancellation. An investment bank
may persistently buy stocks to take control of a listed company. Exchange
Traded Funds have to adjust their allocation rates with stock name replace-
ment or changeover of the proportion of stock price indices. Whenever such
news is reported, stock prices swing wildly.

The market impact on prices has been analyzed both theoretically and em-
pirically. Institutional investors usually transact portfolios of considerable size
and thus incur permanent and temporary price impacts. The temporary im-
pact represents the transitory cost of demanding liquidity and only affects an
individual trade. On the contrary, the permanent component of the price im-
pact not only influences the price of the first round of trade but also the prices
of all subsequent rounds of trades of the institutional investor. Modelling this
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price dynamic explicitly enables us to derive cost-efficient execution strategies
for multi-trade orders.

In an early string of theoretical studies, Bertsimas and Lo [4] considered
situations where an institutional investor must execute a fixed share of secu-
rities in finite trade opportunities. They describe the price dynamic using a
linear impact function, which has a permanent effect. An institutional investor
minimizes the expected execution cost and evenly distributes shares between all
trade opportunities if he is risk neutral.

Almgren and Chriss [1] analyze a model where the impact function has both
permanent and temporary effects using a mean-variance objective function, and
obtain a similar result. Almgren [2] analyzes a model with the nonlinear impact
function. A discrete time setting is undesirable for such a problem. A natural
way to address this issue would be take a continuous time limit of the discrete
time formulation, but this leads to a degenerate situation in which the execution
cost becomes strategy-independent. That is, the execution cost has a constant
value under some circumstances no matter what the execution strategy may
be. By introducing an additional cost penalizing speedy trades, Huberman and
Stanzl [10] avoid this strange outcome in the continuous time limit. Obizhaeva
and Wang [11] expand the model of Almgren and Chriss [1] and show that the
optimal execution strategy involves both discrete and continuous trades when
trading times are endogenously chosen.

The simple price impact functions in the previous work are exogenously
specified and fail to capture the intertemporal nature of other market partici-
pants. It is interesting and important to take into consideration the fact that
many investors behave strategically in actual markets. So we analyze a model
with one risk-neutral institutional investor and risk-averse small investors. The
impact function of our model is endogenously determined and turns out to be
linear. We assume the small traders have constant absolute risk aversion and
endogenously derive the linear impact and the magnitude of the impact. As a
result, the equally divided selling order by the institutional investor does not
work out.

Within the optimal liquidation literature, most research was directed to
finding the optimal deterministic or statistic liquidation strategy. Some real-
world investors, however, prefer agressive in-the-money or passive in-the-money
strategies, which are provided by many sell side firms (see e.g., Kissell and
Malamut [5] and Kissell and Malamut [6]). Only recently, academic research
has started to investigate the optimization potential of agressive in-the-money
strategies in a mean-variance setting (Almgren and Lorenz [3]). By introducing
an endogenetic price impact, we can explain passive in-the-money strategies.

Prices have positive effect on future prices. We can identify it as “the per-
manent effect,” which impounds the value of carrying small traders’ inventory
positions into the future. That is, when there is heavy selling, the present price
is low and small traders are long inventory by a large margin. Then they will
prefer to sell, and place lower price at the next period. Many previous researches
investigate this issue. For example, Ho and Stoll [9] examine price setting in
a model with competitive dealers. However, their model does not include or-
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ders determined by strategic traders. Our study formulates the inventory model
under a general equilibrium setting.

2 Model

There are three types of traders in our model: one institutional investor (that
we call II in what follows), a lot of small investors (SI ), and a noise trader. They
can trade at times t = 0, 1, 2, · · · , T . II and the noise trader place market orders
and the SIs place limit orders. We can interpret the SIs as market makers. They
place the price after observing the amount of orders. This is the same setting
as the model in Kyle [7], where the market makers are completely competitive
and their expected profit must be zero in the equilibrium. We assume that
the competition among the SIs is imperfect, so that the prices are more erastic
compared to Kyle [7]’s model.

II has to sell W1 units of security over this time period. W1 follows a normal
distribution that has a mean W0 and a variance σ2

0 . None of the traders other
than II knows the value W1, but they all know the distribution of it. W1 is
realized at the beginning of t = 1, trades occur at t = 1, 2, · · · , T , and those
who have one unit of securities obtain dividends FT+1 at t = T + 1.

Ft = F0 +
t∑

u=1

εu. (t = 1, 2, · · · , T + 1) , (1)

where F0 is observed by all traders at t = 0. Each εt (t = 1, 2, · · · , T ) follows a
normal distribution that has a mean 0 and a variance σ2

Ft
at the beginning of

the period t independently of each other. All traders observe εt.
II places a market order St at every period t = 1, 2, · · · , T . We require∑T

t=1 St = W1. We define Wt+1 = Wt − St (t = 1, 2, · · · , T ).
There are infinitely many SIs. They are uniformly distributed over [0, 1].

The measure of each dewarf is 0. SIs have no position at t = 0. They can
borrow some money or securities and place limit orders at t = 1, 2, · · · , T . They
face no liquidity constraint. The interest rate is 0 for simplicity. We denote the
quantity possessed by a representative SI1 at the end of t as Bt. His utility is

U (B1, · · · , BT ) = − exp

[
−ρ

T∑
t=1

(Pt+1 − Pt) Bt

]
, (2)

where PT+1 = FT+1. The trading volume of the representative SI is MBt =
Bt − Bt−1 (where B−1 = 0).

The noise trader randomly places a market order nt at t = 1, 2, · · · , T . nt

follows a normal distribution that has a mean 0 and a variance σ2
nt

independently
of each other and of the εu (u = 1, 2, · · · , T ).

1When all dwarfs place the identical orders, the aggregate dwarfs’ order is the same as in
the case where one trader with the risk aversion ρ places his order. So we can call this virtual
tarder a “representative dwarf.”

3



The price Pt is determined to conform the amount of all buy order to all sell
order at every t = 1, 2, · · · , T :

St = MBt + nt. (3)

At the end of period t, all traders observe the price Pt and own trading volume
St − nt.

2

We define some notations. ESI
t [·] and V ard

t [·] are an expectation and a
variance conditional on events that the SIs can observe by the end of the period
t (i.e., after observing εt and before the trade at t) respectively. EII

t [·] is a
conditional expectation on events that II can observe by the beginning of the
period t (i.e., after the trade at t). Furthermore, we define

σ2
Pt+1

= V ard
t [Pt+1] , (4)

σ2
t = V ard

t [Wt+1] . (5)

3 Equilibrium

An equilibrium is a tuple of prices and orders placed by all market participants
at every period, where for every t = 1, 2, · · · , T ,

1. II maximizes his expected revenue:

max
St

EII
t

[
T∑

t=1

PtSt

]
subject to

T∑
t=1

St = W1,

2. the SIs maximizes their expected utilities:

max
Bt(Pt)

ESI
t [U (B1 (P1) , · · · , BT (PT ))] , and

3. the market must clear:
St = MBt + nt.

There exists a unique equilibrium:

St = αtFt + βt (γtFt−1 − Pt−1) + δtWt + ζtE
SI
t−1 [Wt] , and

Pt = γtFt + ηt (γtFt−1 − Pt−1) + θtWt + ιtE
SI
t−1 [Wt] + otnt,

for t = 1, 2, · · · , T,

where the parameters satisfy backward equations in Appendix.

2We will see that there is a one-to-one correspondence between the price Pt and the trading
volume MBt = St − nt. Therefore it is enough for the dwarfs to observe either one.
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4 Result of Numerical Calculations

Now the number of equations equals the number of variables to be solved. How-
ever, it is difficult to study the equilibrium prices and volume analytically. We
see the result of the numerical calculations in the following.

We now examine in more detail the behavior of the parameters. We focus
mainly on the case where T = 5, ρ = σ2

0 = 1, and σ2
Ft

= σ2
nt

= 0.5 (for all
t). While specific patterns may be vary with the parameter values chosen, the
qualitative features of those patterns are robust.

t = 1 2 3 4 5
αt 0 0 0 0 0
βt 0 -0.01457002 -0.0752485 -0.19118447 0
γt 1 1 1 1 1
δt 0.001586576 0.01326256 0.105008597 0.3305576 1
ζt 0.002650136 0.032676014 0.102255573 0.139709962 0
ηt 0 -0.1144348 -0.2125039 -0.324649 -0.4173298
θt -2.2898848 -1.9810515 -1.5031667 -0.9363194 -0.5
ιt 0.9770156 0.9473948 0.7297779 0.4428 0.2086649
ot 35.539782 7.357132 2.49821 1.094692 0.5
Kt 0.003168102 0.026081066 0.178545453 0.288735878 0
σ2

t 0.9968243 0.9702186 0.7608741 0.2923727 0
σ2

Pt
637.2649704 31.4757968 5.812746 1.7662286 0.6980932

II’s order is small and the order of noise trader almost fill the gross order earlier
on. The SIs avoid the risk of fluctuation of fundamentals σ2

F , the order of noise
trader σ2

n, and II’s private information σ2
t−1. They do not place their limit order

so much, so that the market impact ot and the price variance σ2
Pt

become large.
It is almost impossible to gather valuable data from the observation of gross
market order. Therefore their expectation about the amount of II’s execution
volume ESI

t [Wt+1] and σ2
t change very little. In other words, Kt is vanishingly

low.
Since αt is 0 all of the time, the level of the fundamentals Ft does not affect

II’s execution strategy.
γt is 1 all of the time, so that we can regard βt as a sensitivity to the

dissociation of the price at t − 1 and the fundamentals Ft−1. Since βt < 0, the
lower the last price is, the smaller the present sell order is. When the last price
is low, the present price has a tendency to be low. So II hesitates to sell.

δt rises dramatically, which is consistent with the intuition that the larger
the shares to execute is, the larger the execution earlier on.

Since ηt < 0, the lower the last price is, the lower the present price is. One
may think that the present price is likely to be higher on the surface because
the present sell order become small. But it’s just the contrary. The reasons
include the fact that the SIs are risk-averse and hate buildup of inventory. In
the case that there is heavy selling, the present price is low and small traders
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are long inventory by a large margin. Then they will prefer to sell, and place
lower price at the next period.

θt is negative for every t. The larger the shares to execute is, the more the
price is on a declining trend.

Now let us consider market impacts. For instance, what kinds of effects
would one unit of sell order at period 1 have on behavior of each period?
It drives down the price at the period 1 by o1 ≅ 35.5, which can be inter-
preted as the temporary effect. It makes an impact on the price at period 2
through 2 routes. It drives down the price by −o1η2 ≅ 4.07 with the inven-
tory effect, and by K1ι2 ≅ 0.0300 through the change of the SIs’ expectations.
There is a total of price down −o1η2 + K1ι2 ≅ 4.07. Hereinafter, we have
− (−o1η2 + K1ι2) η3 ≅ 0.865 at the period 3, (−o1η2 + K1ι2) η3η4 ≅ 0.281 at
the period 4, and (−o1η2 + K1ι2) η3η4η5 ≅ 0.117 at the period 5, respectively.
Thus, there is no simple-shaped “parmanent impact” assumed in the existing
literature, and we find “long-lived temporary impact” that attenuates gradually
in our model.

Now we try a variety of parameters. When the risk that the SIs face decreases
(σ2

F , σ2
n, and σ2

0 become smaller) or when SIs’ risk aversion decreases, then the
amount of the execution of an early period increases, and the market impact and
the variance of prices becomes smaller. Trading is going on increasing period
by period. The figures below plot the values of each parameters over time when
σ2

0 changes in the 0.5 to 1.5 range. The horizontal axes represent the time. The
figure on the left of the first drawer is βt, to the right of βt is δt. Hereinafter,
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we put the figures of ζt, ηt, θt, ιt, ot, Kt, σ
2
t , and σ2

Pt
.

When we explicate numerical calculations over a wider range of parameters,
can we obtain the result where II sells the securities equally-divided, or liquidates
longs at the early periods? The answer is partially yes. We show the case where
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T = 3, ρ = σ2
0 = 1, σ2

F2
= σ2

F3
= 0, and σ2

F4
= σ2

nt
= 0.5 (for all t).3

t = 1 2 3
αt 0 0 0
βt 0 -0.3393326 0
γt 1 1 1
δt 0.7472907 0.3206204 1
ζt 0.07043507 0.23804079 0
ηt 0 -0.5525894 -0.4430819
θt -1.453488 -0.970087 -0.5
ιt 0.1207201 0.6562298 0.2215409
ot 1.211787 1.123264 0.5
Kt 0.17841983 0.0130615 0
σ2

t 0.03016787 0.01383835 0
σ2

Pt
0.7979475 0.6592508 0.6284596

We obtain the result that II sells a large portion of his shares at the period
1, and divides equally between the period 2 and 3. (Of course, it depends on
the SIs’ expectations and the selling amounts of the noise trader.) We assume
that there are no public information during the trading period, and the trade
of the noise trader is not so active.4 This result is consistent with Harris and
Gurel [8]. That is, on the first trading day after an addition to S&P 500 list is
announced, there is a large increase in volume, which is suggestive of a shift in
demand. On that day, there is also an economically and statistically significant
increase in price. Since the volume and price effects are not present in the first
years of the sample, it is unlikely that the announcements, by themselves, cause
the price changes observed in the latter years. Moreover, since the price increase
is consistently reversed, it is unlikely that new information is the cause of the
initial increase.

5 Concluding Comments

We have considered a multiperiod model of securities trading with small in-
vestors. We show that the institutional investor who has to sell a fixed share
of securities within a fixed periods does not sell securities evenly even though
he is risk neutral. We leave the discussion of the case where II is risk averse for
future research.

3At heart, we would like to see the case where T = 5, but it is impossible to obtain
the solution to the equations with the problem of numerical calculation, when the values of
parameters are small. It has to be discussed continuously as a future issue.

4The latter is important. When we put σ2
nt

= 1 with the other parameters in status quo,
the outcome is waiting strategy as is the above case of T = 5.
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6 Appendix

We set up a strand of equation to obtain the equilibrium.

6.1 Decision Making of SIs

The conditional expectation and the conditional variance that the representative
SI has at t (t = 1, 2, · · · , T ) are

ESI
t

[
T∑

u=1

(Pu+1 − Pu)Bu

]
=

t−1∑
u=1

(Pu+1 − Pu) Bu +
(
ESI

t [Pt+1] − Pt

)
Bt

+ ESI
t

[
T∑

u=t+1

(Pu+1 − Pu) Bu

]
, and (6)

V ard
t

[
T∑

u=1

(Pu+1 − Pu)Bu

]
= σ2

Pt+1
B2

t + V ard
t

[
T∑

u=t+1

(Pu+1 − Pu)Bu

]
.

We consider a linear equilibrium in the followings. Since a linear combination of
variables that follow normal distributions also follows normal distributions, the
price Pt follows normal distributions. In addition, all observations follow normal
distributions, so that we can take it for granted that price Pt follows normal
distributions conditional on the events by the beginning of t for all traders.

SIs’ utility at t is

U (B1, · · · , BT ) = − exp

[
−ρ

T∑
t=1

(Pt+1 − Pt) Bt

]
. (7)

The first order condition is

∂ESI
t [U ]
∂Bt

= −ρ
(
ESI

t [Pt+1] − Pt − ρσ2
Pt+1

Bt

)
ESI

t [U ] = 0 (8)

⇒ Bt (Pt) =
ESI

t [Pt+1] − Pt

ρσ2
Pt+1

,

which is the limit order that the SIs place.

6.2 Decision Making of II

We consider II’s behavior by the inductive method.

6.2.1 Period T

By II’s sellout constraint ST = WT and by the market clearing condition (3),

PT = FT + ρσ2
FT+1

(nT − WT ) − σ2
FT+1

σ2
PT

(
ESI

T−1 [PT ] − PT−1

)
. (9)
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The variance conditional on the events by T − 1 is equal to

σ2
PT

= σ2
FT

+
(
ρσ2

FT+1

)2 (
σ2

nT
+ σ2

T−1

)
. (10)

Take the expectation of both sides conditional on the events by T−1, and obtain

ESI
T−1 [PT ] = FT−1 − ρσ2

FT+1
ESI

T−1 [WT ] − σ2
FT+1

σ2
PT

(
ESI

T−1 [PT ] − PT−1

)
⇐⇒ ESI

T−1 [PT ] − PT−1 (11)

=
σ2

PT

(
FT−1 − PT−1 − ρσ2

FT+1
ESI

T−1 [WT ]
)

σ2
PT

+ σ2
FT+1

.

Substituting (11) to (9), we obtain

PT = FT + ρσ2
FT+1

(nT − WT ) (12)

− σ2
FT+1

σ2
PT

+ σ2
FT+1

(
FT−1 − PT−1 − ρσ2

FT+1
ESI

T−1 [WT ]
)

.

Therefore the continuation selling amount is

VT

(
FT , FT−1, PT−1,WT , ESI

T−1 [WT ]
)

= FT WT + ρσ2
FT+1

(nT − WT ) WT (13)

− σ2
FT+1

σ2
PT

+ σ2
FT+1

(
FT−1 − PT−1 − ρσ2

FT+1
ESI

T−1 [WT ]
)

WT .

6.2.2 Induction Hypothesis of Period t + 1 (t = T − 1, T − 2, · · · , 2)

We hypothesize the followings:

St+1 = αt+1Ft+1 + βt+1 (γt+1Ft − Pt) + δt+1Wt+1 + ζt+1E
SI
t [Wt+1] , (14)

Pt+1 = γt+1Ft+1 + ηt+1 (γt+1Ft − Pt) + θt+1Wt+1 + ιt+1E
SI
t [Wt+1] + ot+1nt+1, and

(15)

Vt+1

(
Ft+1, Ft, Pt,Wt+1, E

SI
t [Wt+1]

)
= κt+1Ft+1 (γt+1Ft − Pt) + λt+1Ft+1Wt+1 + µt+1Ft+1E

SI
t [Wt+1] (16)

+ νt+1 (γt+1Ft − Pt)
2 + ξt+1 (γt+1Ft − Pt)Wt+1 + πt+1 (γt+1Ft − Pt) ESI

t [Wt+1]

+ φt+1W
2
t+1 + χt+1Wt+1E

SI
t [Wt+1] + ωt+1

(
ESI

t [Wt+1]
)2

+ (expressions irrelevant to St) .

6.2.3 Period t

By the market clearing condition (3),

Pt = γt+1Ft +
θt+1

1 + ηt+1
Wt+1 +

ιt+1

1 + ηt+1
ESI

t [Wt+1] (17)

− 1
1 + ηt+1

σ2
Pt+1

σ2
Pt

(
ESI

t−1 [Pt] − Pt−1

)
+

ρσ2
Pt+1

1 + ηt+1
(nt − St) .
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SIs expect the execution shares by the Kalman Filter:

ESI
t [Wt+1] = KtSt + (expressions irrelevant to St) . (18)

On the equilibrium path, we have

ESI
t [Wt+1] = δt (1 + Kt)Wt + (1 − δt − δtKt)ESI

t−1 [Wt] (19)
− St − Ktnt.

The transition of the amount of securities that II must sell from t + 1 on is

Wt+1 = Wt − St. (20)

The continuation revenue just after placing order at t is

Vt (Ft, Ft−1, Pt−1,Wt)

= max
St

[EII
t [Pt]St

+ κt+1Ft

(
γt+1Ft − EII

t [Pt]
)

+ λt+1FtWt+1 + µt+1FtE
SI
t [Wt+1] (21)

+ νt+1E
II
t

[
(γt+1Ft − Pt)

2
]

+ ξt+1

(
γt+1Ft − EII

t [Pt]
)
Wt+1

+ πt+1E
II
t

[
(γt+1Ft − Pt)ESI

t [Wt+1]
]

+ φt+1W
2
t+1 + χt+1Wt+1E

SI
t [Wt+1] + ωt+1

(
ESI

t [Wt+1]
)2

+ (expressions irrelevant to St)].

Substituting (17), (18), and (20) to (21), we have the first order condition:(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
St + EII

t [Pt]

− κt+1Ft

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− λt+1Ft

+ µt+1FtKt

+ 2νt+1

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

) (
EII

t [Pt] − γt+1Ft

)
(22)

+ ξt+1

{
−

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
Wt+1 −

(
γt+1Ft − EII

t [Pt]
)}

+ πt+1

{
−

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
EII

t

[
ESI

t [Wt+1]
]
+ Kt

(
γt+1Ft − EII

t [Pt]
)}

− 2φt+1Wt+1

+ χt+1

(−EII
t

[
ESI

t [Wt+1]
]
+ KtWt+1

)
+ 2ωt+1KtE

II
t

[
ESI

t [Wt+1]
]

= 0.

11



Substituting (17), (19), and (20), we obtain

St = CSt,F Ft + CSt,EP

σ2
Pt+1

σ2
Pt

(
ESI

t−1 [Pt] − Pt−1

)
(23)

+ CSt,W Wt + CSt,EW (1 − δt − δtKt)ESI
t−1 [Wt] ,

where

CSt,S =

(
−ξt+1 − πt+1 − 1 − 2νt+1

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

))

·
(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− 2φt+1 − χt+1 + χt+1Kt + 2ωt+1Kt

+

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

)
(−ξt+1 + πt+1Kt − 1) , (24)

CSt,F =

{
−κt+1

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− λt+1 + µt+1Kt + γt+1

}
/CSt,S ,

(25)

CSt,EP =

{
−2νt+1

(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− ξt+1 + πt+1Kt − 1

}
1

1 + ηt+1
/CSt,S ,

(26)

CSt,W = {
(
−ξt+1 − πt+1δt (1 + Kt) + 2νt+1

(
θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
δt (1 + Kt)

))
·
(
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− 2φt+1 + χt+1Kt + δt (1 + Kt) (−χt+1 + 2ωt+1Kt) , and

+
(

θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
δt (1 + Kt)

)
(ξt+1 − πt+1Kt + 1)}/CSt,S (27)

CSt,EW = {
(
−πt+1 + 2νt+1

ιt+1

1 + ηt+1

) (
− θt+1

1 + ηt+1
+

ιt+1

1 + ηt+1
Kt −

ρσ2
Pt+1

1 + ηt+1

)
− χt+1 + 2ωt+1Kt +

ιt+1

1 + ηt+1
(ξt+1 − πt+1Kt + 1)}/CSt,S . (28)

Substituting these equations to (17), we obtain

Pt = CPt,F Ft + CPt,EP

σ2
Pt+1

σ2
Pt

(
ESI

t−1 [Pt] − Pt−1

)
+ CPt,W Wt + CPt,EW (1 − δt − δtKt)ESI

t−1 [Wt] (29)
+ CPt,nnt,
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where

CPt,F =

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

)
CSt,F + γt+1, (30)

CPt,EP =

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

)
CSt,EP − 1

1 + ηt+1
, (31)

CPt,W =

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

)
CSt,W +

ιt+1

1 + ηt+1
δt (1 + Kt) +

θt+1

1 + ηt+1
,

(32)

CPt,EW =

(
− θt+1

1 + ηt+1
− ιt+1

1 + ηt+1
− ρσ2

Pt+1

1 + ηt+1

)
CSt,EW +

ιt+1

1 + ηt+1
, and

(33)

CPt,n = − ιt+1

1 + ηt+1
Kt +

ρσ2
Pt+1

1 + ηt+1
. (34)

The variance conditional on the events by t − 1 is equal to

σ2
Pt

= C2
Pt,F σ2

Ft
+ C2

Pt,W σ2
t−1 + C2

Pt,nσ2
nt

. (35)

Take the expectation of both sides conditional on the events by t−1, and obtain

ESI
t−1 [Pt] − Pt−1

=
1

1 − CPt,EP

σ2
Pt+1

σ2
Pt

{(CPt,F Ft−1 − Pt−1) (36)

+ (CPt,W + CPt,EW (1 − δt − δtKt))ESI
t−1 [Wt]}.

Substituting (36) to(23) and (29), we obtain

St = αtFt + βt (γtFt−1 − Pt−1) + δtWt + ζtE
SI
t−1 [Wt] , and (37)

Pt = γtFt + ηt (γtFt−1 − Pt−1) + θtWt + ιtE
SI
t−1 [Wt] + otnt, (38)

13



where

αt = CSt,F , (39)

βt =
CSt,EP

σ2
Pt+1

σ2
Pt

1 − CPt,EP

σ2
Pt+1

σ2
Pt

, (40)

γt = CPt,F , (41)
δt = CSt,W , (42)
ζt = CSt,EW (1 − δt − δtKt)

+
CSt,EP

σ2
Pt+1

σ2
Pt

1 − CPt,EP

σ2
Pt+1

σ2
Pt

·

(CPt,W + CPt,EW (1 − δt − δtKt)) , (43)

ηt =
CPt,EP

σ2
Pt+1

σ2
Pt

1 − CPt,EP

σ2
Pt+1

σ2
Pt

, (44)

θt = CPt,W , (45)
ιt = CPt,EW (1 − δt − δtKt)

+
CPt,EP

σ2
Pt+1

σ2
Pt

1 − CPt,EP

σ2
Pt+1

σ2
Pt

· (CPt,W + CPt,EW (1 − δt − δtKt)) , and (46)
ot = CPt,n. (47)

Therefore the continuation revenue is

Vt (Ft, Ft−1, Pt−1,Wt)

= κtFt (γtFt−1 − Pt−1) + λtFtWt + µtFtE
SI
t−1 [Wt]

+ νt (γtFt−1 − Pt−1)
2 + ξt (γtFt−1 − Pt−1) Wt (48)

+ πt (γtFt − Pt)ESI
t−1 [Wt]

+ φtW
2
t + χtWtE

SI
t−1 [Wt] + ωt

(
ESI

t−1 [Wt]
)2

+ (expressions irrelevant to St) ,

where

14



κt = αtηt + βtγt − ηtκt+1 − βtλt+1 − βtµt+1 − 2 (γt+1 − γt) ηtνt+1

− βt (γt+1 − γt) ξt+1 + αtηtξt+1 − βt (γt+1 − γt) πt+1 + αtηtπt+1

+ 2αtβtφt+1 + αtβtχt+1 + αtβtχt+1 + 2αtβtωt+1, (49)
λt = αtθt + γtδt − θtκt+1 + (1 − δt)λt+1 + δtµt+1Kt − 2 (γt+1 − γt) θtνt+1

+ (γt+1 − γt) (1 − δt) ξt+1 + αtθtξt+1 + δt (γt+1 − γt) πt+1Kt + αtθtπt+1

− 2αt (1 − δt)φt+1 − αtδtχt+1Kt − αt (1 − δt)χt+1 − 2αtδtωt+1Kt, (50)
µt = αtιt + γtζt − ιtκt+1 − ζtλt+1 + (1 − ζt − δt − δtKt)µt+1 − 2 (γt+1 − γt) ιtνt+1

− (γt+1 − γt) ζtξt+1 + αtιtξt+1 + (γt+1 − γt) (1 − ζt − δt − δtKt)πt+1 + αtιtπt+1

+ 2αtζtφt+1 − αt (1 − ζt − δt − δtKt)χt+1 + αtζtχt+1 − 2αt (1 − ζt − δt − δtKt) ωt+1,
(51)

νt = βtηt + η2
t νt+1 + βtηtξt+1 + βtηtπt+1 + β2

t φt+1 + β2
t χt+1 + β2

t ωt+1, (52)
ξt = βtθt + δtηt + 2ηtθtνt+1 − (1 − δt) ηtξt+1 + βtθtξt+1 − δtηtπt+1Kt + βtθtπt+1

− 2βt (1 − δt)φt+1 − βtδtχt+1Kt − βt (1 − δt) χt+1 − 2βtδtωt+1Kt, (53)
πt = βtιt + ζtηt + 2ηtιtνt+1 + ζtηtξt+1 + βtιtξt+1 − ηt (1 − ζt − δt − δtKt)πt+1 + βtιtπt+1

+ 2βtζtφt+1 − βt (1 − ζt − δt − δtKt)χt+1 + βtζtχt+1 − 2βt (1 − ζt − δt − δtKt)ωt+1,
(54)

φt = δtθt + θ2
t νt+1 − (1 − δt) θtξt+1 − δtθtπt+1Kt + (1 − δt)

2
φt+1 + δt (1 − δt)χt+1Kt + δ2

t K2
t ωt+1,

(55)

χt = δtιt + ζtθt + 2θtιtνt+1 + ζtθtξt+1 − (1 − δt) ιtξt+1 − θt (1 − ζt − δt − δtKt) πt+1 − δtιtπt+1Kt

− 2 (1 − δt) ζtφt+1 + (1 − δt) (1 − ζt − δt − δtKt)χt+1

− δtζtχt+1Kt + 2δt (1 − ζt − δt − δtKt) ωt+1Kt, and (56)

ωt = ζtιt + ι2t νt+1 + ζtιtξt+1 − (1 − ζt − δt − δtKt) ιtπt+1

+ ζ2
t φt+1 − (1 − ζt − δt − δtKt) ζtχt+1 + (1 − ζt − δt − δtKt)

2
ωt+1. (57)

6.2.4 Period 1

By the market clearing condition (3),

P1 = γ2F1 +
θ2

1 + η2
W2 +

ι2
1 + η2

ESI
1 [W2] +

ρσ2
P2

1 + η2
(n1 − S1) . (58)
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The continuation revenue is

V1 (F1, F0, P0,W1)

= max
S1

EII
1 [P1S1 + V2 (F2, F1, P1,W2)]

= max
S1

EII
1 [

(
γ2F1 +

θ2

1 + η2
W2 +

ι2
1 + η2

ESI
1 [W2] +

ρσ2
P2

1 + η2
(n1 − S1)

)
S1

(59)

+ κ2F2 (γ2F1 − P1) + λ2F2W2 + µ2F2E
SI
1 [W2]

ν2 (γ2F1 − P1)
2 + ξ2 (γ2F1 − P1) W2 + π2 (γ2F1 − P1) ESI

1 [W2]

φ2W
2
2 + χ2W2E

SI
1 [W2] + ω2

(
ESI

1 [W2]
)2

+ (expressions irrelevant to S1)].

SIs expect the execution shares by the Kalman Filter:

ESI
1 [W2] = K1S1 + (expressions irrelevant to S1) (60)

On the equilibrium path, we have

ESI
1 [W2] = δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0 − n1) . (61)

The transition of the amount of securities that II must sell from 2 on is

W2 = W1 − S1. (62)
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Substituting (58), (60), and (62) to (59), we have the first order condition:(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
S1

+ γ2F1 +
θ2

1 + η2
(W1 − S1) +

ι2
1 + η2

(δ1W1 + (1 − δ1)W0 − S1 + K1 (δ1W1 − δ1W0)) −
ρσ2

P2

1 + η2
S1

+
(

θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
κ2F1 − λ2F1 + µ2K1F1

+ 2ν2

(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
·
(

θ2

1 + η2
(W1 − S1) +

ι2
1 + η2

(δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0)) −
ρσ2

P2

1 + η2
S1

)
+ ξ2

(
θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
(W1 − S1)

− ξ2

(
− θ2

1 + η2
(W1 − S1) − ι2

1 + η2
(δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0)) +

ρσ2
P2

1 + η2
S1

)
(63)

+ π2

(
θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
(δ1W1 + (1 − δ1)W0 − S1 + K1 (δ1W1 − δ1W0))

+ π2K1

(
− θ2

1 + η2
(W1 − S1) − ι2

1 + η2
(δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0)) +

ρσ2
P2

1 + η2
S1

)
− 2φ2 (W1 − S1)
− χ2 (δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0)) + χ2K1 (W1 − S1)
+ 2ω2K1 (δ1W1 + (1 − δ1) W0 − S1 + K1 (δ1W1 − δ1W0))
= 0.

Substituting (58), (61), and (62), we obtain

S1 = α1F1 + δ1W1 + ζ1W0, (64)

17



where

CS1,S = (−1 − ξ2 − π2)
(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
+

(
1 + 2ν2

(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
+ ξ2 − π2K1

)(
θ2 + ι2
1 + η2

+
ρσ2

P2

1 + η2

)
− 2φ2 − χ2 + χ2K1 + 2ω2K1, (65)

α1 =
(

γ2 +
(

θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
κ2 − λ2 + µ2K1

)
/CS1,S , (66)

δ1 = {
(

1 + 2ν2

(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
+ ξ2 − π2K1

)
θ2 + ι2δ1 (1 + K1)

1 + η2

+ (ξ2 + π2δ1 (1 + K1))
(

θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
− 2φ2

+ (−χ2 + 2ω2K1) δ1 (1 + K1) + χ2K1}/CS1,S , and (67)

ζ1 = {
(

1 + 2ν2

(
− θ2

1 + η2
+

ι2
1 + η2

K1 −
ρσ2

P2

1 + η2

)
+ ξ2 − π2K1

)
ι2

1 + η2
(1 − δ1 − K1δ1)

+ π2 (1 − δ1 − K1δ1)
(

θ2

1 + η2
− ι2

1 + η2
K1 +

ρσ2
P2

1 + η2

)
+ (−χ2 + 2ω2K1) (1 − δ1 − K1δ1)}/CS1,S . (68)

The price is
P1 = γ1F1 + θ1W1 + ι1W0 + o1n1, (69)

where

γ1 = γ2 − α1

θ2 + ι2 + ρσ2
P2

1 + η2
, (70)

θ1 =
θ2

1 + η2
+ δ1

ι2
1 + η2

(1 + K1) − δ1

θ2 + ι2 + ρσ2
P2

1 + η2
, (71)

ι1 =
ι2

1 + η2
(1 − δ1 − δ1K1) − ζ1

θ2 + ι2 + ρσ2
P2

1 + η2
, and (72)

o1 = − ι2
1 + η2

K1 +
ρσ2

P2

1 + η2
. (73)

6.3 Expectation of SIs

What SIs can observe from the outcome at t are

y1 ≡ δtWt − nt, where (74)

−nt ∼ N
(
0, σ2

nt

)
. (75)

The transition of the state variable is

Wt+1 + αtFt + βt (γtFt−1 − Pt−1) + ζtE
SI
t−1 [Wt] = (1 − δt)Wt. (76)
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By the Kalman filter,

ESI
t [Wt+1] = (1 − δt) ESI

t−1 [Wt] + αtFt + βt (γtFt−1 + Pt−1) + ζtE
SI
t−1 [Wt]

+ Kt

(
δt

(
Wt − ESI

t−1 [Wt]
) − nt

)
= δtWt + (1 − δt)ESI

t−1 [Wt] − St + Kt

(
δtWt − δtE

SI
t−1 [Wt] − nt

)
, (77)

V ard
t

[
Wt+1 + αtFt + βt (γtFt−1 − Pt−1) + ζtE

SI
t−1 [Wt]

]
= σ2

t

= (1 − δt)σ2
t−1 (1 − δt − Ktδt) , and (78)

Kt =
(1 − δt) δtσ

2
t−1

δ2
t σ2

t−1 + σ2
nt

. (79)
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