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1 Introduction

I consider a model of contracting by a principal and an agent under asymmetric information.
There is adverse selection because the agent’s characteristics/types are not observable to the
principal (the distribution being known, however). The principal and the agent contract on
a product characteristic such as quality and quantity, and a monetary transfer. The agent’s
product choice can be described as a decision rule that assigns a product choice for each type.
The strategy space of the principal is a set of nonlinear price schedules. Each nonlinear pricing
schedule is considered a catalog of products and prices. The agent chooses a product so as to
maximize his utility from trade. I say that a decision rule is implementable via price schedule
if it is consistent with the agent’s type-dependence best responses for some price schedule. The
principal selects a price schedule so as to maximize his expected profit from trade, subject to
the implementability constraints and the participation constraints.

The standard approach to the screening problem is reformulating the principal’s strategy
space. If a decision rule is implementable by a nonlinear price schedule, then a transfer function
indexed by agent types is obtained as the composite function of the price schedule and the
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decision rule. By construction, such a direct revelation mechanism is incentive compatible in the
sense that it is optimal for the agent to announce the true value of his private information. This
is so-called the revelation principle.1 The principal’s problem is rewritten as an expected profit
maximization problem over a set of incentive compatible decisions and transfers satisfying the
participation constraints.

The use of the revelation principle has become widespread in the optimal contracts literature.
However, because of the intensive use of the revelation principle, the literature has focused on
analyzing the properties of contracts indexed by agent types, such as distortions and information
rents, rather than the properties of price schedules. The purpose of the paper is to establish
the converse of the revelation principle, that is, to construct an indirect mechanism or a price
schedule as a solution to the principal’s optimization problem that are flexible to applications.

I present the following example in order to illustrate the basic methodology in the literature,
and then I shall give my motivations in the present paper.2

Example 1 (Vertical Differentiation). The seminar article in the literature on nonlinear pric-
ing, Mussa and Rosen (1978), predict that the monopolist’s optimal quality allocation exhibits
no-distortion for the highest type and downward distortions for all other types when the partici-
pation constraints are deterministic and type-independent. Mussa and Rosen (1978) and Rochet
and Stole (2002) assume u(x, θ) = xθ. Let C(x) be a quadratic cost function of the principal
with C ′(x) = a+ bx for some a > 0 and b > 0. Taste θ is uniformly distributed over Θ = [θ, θ]

such that θ > a, and θ∗ = 1
2
(θ + a) > θ. The principal selects a price schedule or nonlinear

pricing t : X → R to solve

max
t(·)

∫ θ

θ

[t(x(θ))− C(x(θ))]f(θ)dθ subject to for every θ ∈ Θ,

x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X],

max[u(x, θ)− t(x) | x ∈ X] > 0.

The basic methodology in the literature reformulates the principal’s problem over incentive
compatible and individually rational direct revelation mechanism ⟨x(·), U(·)⟩, where U(θ) =

max[u(x, θ) − t(x) | x ∈ X]. As is well-known, such a direct revelation mechanism in this
context is incentive compatible if and only is U̇(θ) = uθ(x(θ), θ) and x(·) is non-decreasing.
Using the information rent U(θ) = u(x(θ), θ)−t(x(θ)), the variables in the principal’s problem
are transformed from t(·) to ⟨x(·), U(·)⟩:

1 For instance, see Laffont and Martimort (2002, Proposition 2.2).
2 Throughout the paper, I indicate derivatives taken with respect to θ with a “dot” superscript, while derivatives

with respect to x with “prime” superscript. Moreover, subscripts denote partial derivatives of the agent’s
utility function u(x, θ).
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max
⟨x(·),U(·)⟩

∫ θ

θ

[u(x(θ), θ)− C(x(θ))− U(θ)]f(θ)dθ subject to for every θ ∈ Θ,

U̇(θ) = uθ(x(θ), θ), ẋ(θ) > 0, and U(θ) > 0.

The literature has argued the optimal menu of tariffs ⟨x(·), U(·)⟩ consisting of a decision
rule and an information rent that maximizes the principal’s expected surplus. According to
Mussa and Rosen (1978), the principal’s optimal decision rule is given by

x(θ) =

{
0 for θ < θ∗

1
b
(2θ − (θ + a)) for θ > θ∗.

Consumers for whom θ < θ∗ are excluded from the market. The full-information decision rule
is given by x∗(θ) ∈ argmax[u(x, θ)−C(x) | x ∈ X], where u(x, θ)−C(x) is the social surplus

function. The first-order condition yields that x∗(θ) = 1
b
(θ − a) for all θ ∈ Θ. For the highest

type θ, x(θ) = 1
b
(θ− a) = x∗(θ). For any θ < θ, x(θ) = 1

b
(2θ− (θ+ a)) < 1

b
(2θ− (θ+ a)) =

1
b
(θ − a) = x∗(θ). In other words, the decision rule x(θ) exhibits no-distortion at the top and

downward distortions for all other types. Figure 1 shows the pattern of distortions and pooling
at x = 0. The existing analysis mainly focuses on distortion patterns due to the revelation
principle.

As shown, after applying the revelation principle, we have obtained an outcome ⟨x(·), U(·)⟩
or ⟨x(·), p(·)⟩. A natural question is how the optimal price schedule t : X → R looks like.
Denote by X = [x(θ), x(θ)], where x(θ) = 0, the corresponding product line. Consider the
following price schedule t : X → R shown in Figure 2:

t(x) = 1
4
bx2 + 1

2
(θ + a)x.

The corresponding marginal price schedule becomes t′(x) = 1
2
(bx + θ + a) > 0 and so, this

price schedule is increasing. Furthermore, the price schedule t(·) is strictly convex because
t′′(x) = b

2
> 0.

θ θ

θ
0

1

b
(θ − a)

x(·)

x(θ) = 1

b
(2θ − (θ + a))

x
∗(θ) = 1

b
(θ − a)

1

b
(θ − a)

θ
∗

pooling

Figure 1: Decision Rules x(·) and x∗(·)

x(θ) x(θ)
x0

t(·)

t(x)

1

4b
(3θ + a)(θ − a)

Figure 2: Price Schedule t(·)
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I can show that the price schedule t(·) actually implements the decision rule x(·), or equiv-
alently, it satisfies the implementability constraint x(θ) ∈ argmax[u(x, θ) − t(x) | x ∈ X] for

the above decision rule x(·). Since the price schedule t(·) is strictly convex, it follows that the
net utility u(x, θ) − t(x) is a strictly concave function in x. Consider, first, any θ > θ∗. The
first-order condition with respect to x is given by 0 = ux(x, θ)− t′(x) = θ−

(
1
2
bx+ 1

2
(θ + a)

)
,

and so x = 1
b
(2θ − (θ + a)) = x(θ) is the solution to utility maximization problem of type

θ > θ∗. Consider, next, any θ 6 θ∗. Similarly, ux(x, θ) − t′(x) = θ −
(
1
2
bx+ 1

2
(θ + a)

)
6

θ∗ − 1
2
bx − θ∗ = −1

2
bx 6 0 with equality at x = 0. Since the net utility is strictly concave

in x, it follows that x = 0 is the only solution to utility maximization problem of type θ 6 θ∗.
Therefore,

argmax[u(x, θ)− t(x) | x ∈ X] = {x(θ)}, ∀θ ∈ Θ.

To sum up, the decision rule x(·) is the unique solution to the utility maximization problem of
the agent of type θ under the nonlinear pricing t(x) = 1

4
bx2 + 1

2
(θ + a)x.

It is not difficult to construct a nonlinear price schedule implementing a given decision rule
when the decision rule exhibits no pooling (cf. Laffont and Martimort, 2002, Proposition 9.6).
The reservation utility is fixed to zero for all of types as in the above example. The usual method
obtains the optimal menu of contracts ⟨x(·), U(·)⟩ along the strictly convex price schedule in
the above example. My concern in Section 3 is how to construct such a price schedule in a more
general setting in which the reservation utility is type-specific. This means that it is not always
exclude a possibility of pooling. If there is a procedure to obtain a nonlinear price function from
any incentive compatible and individually rational direct revelation mechanism, then it means
to claim that, without loss of generality, we can restrict attention to a class of direct revelation
mechanisms. The character of nonlinear pricing including convexity/concavity with respect to
quality/quantity remains largely unexplored because of the intensive use of direct revelation
mechanisms. Theorem 2 in the paper establishes the implementability of any decision rules
possibly involving bunching in a general model of nonlinear pricing. Maggi and Rodriguez-
Clare (1995) consider a model where the reservation utility is deterministic but type-dependent.
They argue that when the reservation utility depends on the private information, the structure
of optimal contracts, in particular, the occurrence of pooling, crucially depends on the shape of
the reservation utility function. I introduce the notion of voluntary implementability, taking into
account the agent’s type-dependent reservation utility. Theorem 2, together with the revelation
principle, states that any pair of a decision rule and an information rent is incentive compat-
ible and individually rational if and only if it is voluntarily implementable by some indirect
mechanism (Theorem 3). The advantage of my construction is that there is no need to exclude
bunching in decision rules.

In Section 4, I explore the economic interpretations behind the constructed price schedule
in the previous section. It is shown that the inverse of a decision rule plays a crucial role in
constructing the optimal price schedule in my approach (Theorem 4). This is the reason that I
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refer to the methodology proposed in the present paper the duality approach to nonlinear pricing
schedules.

In Section 5.1, I discuss under what conditions, the optimal price schedule belongs to the
principal’s strategy space consisting of piecewise linear price schedules. Piecewise linear tariffs
are commonly used to public utilities. For instance, TEPCO (Tokyo Electric Power Company,
Inc) and Tokyo Gas Co., Ltd. use the following block tariffs for the use of electricity and gas
in 2012, respectively (see Figures 3 and 4 ). I show that a single equation is necessary and
sufficient condition for that the optimal price schedule constructed in the proof of Theorem 2
takes the form of a block tariff indeed (Theorem 6). Furthermore, the expression for the second-
derivative of the optimal price schedule can be used to check the optimality of quality premia
or quantity discounts.

kWh
0

(a) TEPCO (40A)

U109.2

120 300

U18.89

U25.19

U29.10

Figure 3: Increasing Block Tariff
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0

(b) Tokyo Gas

U724.5

20 800

U111.60
U118.95

U128.82

U152.97

U131.13

U133.65

20080 500

Figure 4: Declining Block Tariff

In Section 5.2, I will examine the deviation of the optimal price schedule deviates from
marginal cost pricing schedule under countervailing incentives. Maggi and Rodriguez-Clare
(1995) work on properties of optimal contracts (i.e., direct revelation mechanisms) under coun-
tervailing incentives such as (a) allocative distortion, and (b) the distribution of the agent’s
information rents with respect to the shape of the agent’s type-dependent reservation utility. On
the other hand, my primary concern is how the optimal price schedule for the principal deviates
from marginal cost pricing, where both price schedules are not direct revelation mechanisms.
The present paper provides a unified analysis of indirect mechanisms. I will discuss a rela-
tionship between the optimal marginal price and marginal cost, based on the steepness of the
agent’s type-dependent reservation utility. If the slope of the agent’s reservation utility takes
an intermediate value, then the decision rule involves pooling around a non-degenerate interval
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of types that earn zero information rents, and there is no distortion at both extremes of types
and an interior type. The optimal marginal price schedule is lower than marginal cost up to
the consumption level for that interior type, and higher than marginal cost from then on. A
combination of two concave price schedules can arise as the optimal price schedule if the prin-
cipal’s cost function is linear or strictly concave over the product line, as long as the sign of the
second-derivative of the optimal price schedule is constant over the product line. In contrast
with the case of concave cost functions, how the marginal price deviates from marginal cost is
indeterminate if the principal’s cost function is convex.

In Section 5.3, I build a theoretical model of firm competition via nonlinear pricing schemes.
I show that an equilibrium exists and any equilibrium outcome (specifying decision rules and
who sells to which markets) is implementable by a profile of price schedules constructed in
Section 3 (Theorem 8). Common agency is a mechanism design problem with multiple princi-
pals and an agent. The literature has been considering an environment with two principals for
simplicity. There are two distinct environments with common agency. In the context of intrinsic
common agency, the agent must choose between contracting with both principals or contracting
with neither. On the other hand, in the context of delegated common agency, the agent can
choose whether to contract with both, one, or none of the principals. There are several theoreti-
cal works in contract games that have largely restricted attention to intrinsic settings. However,
most competitive nonlinear pricing applications assume exclusive purchasing. In other words,
the agent chooses at most one of the principals. In the present paper, I consider such an extreme
case of delegated common agency in which the principals are perfectly substitutes. The price
schedules are modeled as a Nash equilibrium of the delegated common agency game.

There are several works on competing mechanisms under asymmetric information. Ivaldi
and Martimort (1994) solve for the equilibrium of intrinsic common agency games with non-
identical duopolists within the class of linear quadratic price functions. Contrary to Ivaldi and
Martimort (1994), I establish the competitive implementability (formally discussed in Section
5.3.1) without restricting attention to such a particular class of price functions. Rochet and Stole
(2002) solve for the equilibrium of delegated common agency games with identical duopolists
on a horizontal market segment when transportation cost is sufficiently small. Quality distor-
tions disappear completely, and thus the efficient equilibrium outcome is implementable by the
cost-plus-fixed fee price functions. However, they do not look for a Nash equilibrium in the
case that quality allocations are distorted. My concern is what sorts of nonlinear pricing sched-
ules emerge in an equilibrium. The proof of my competitive implementability shows how to
construct nonlinear pricing schedules.

In my setting, the reservation utility is the outside option determined endogenously as a
Nash equilibrium outcome. This complicates the analysis in delegated common agency games
(formally discussed in Section 5.3.2). The client set of each principal is defined as the set of
consumer types served by that principal, which is divided in two parts: the captive market over
which that principal is strictly dominant and the competitive market over which both principals
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are indifferent for consumers. The paper analyzes a market segmentation endogenously deter-
mined, without assuming a degenerate competitive market. The present paper also provides
results that are consistent with empirical evidences. McManus (2007) conducts an empirical
examination of distortions in product lines in an oligopolistic market for specialty coffee. The
estimated distortions are small at the top and the bottom, with larger distortion in between. His
interpretation is that the bottom of the product line is in closer competition with the outside
option than the top of the product line. The intuition seems to be that the competitive pressure
below makes quality allocations distorted less. Rochet and Stole (2002) mentioned above show
that when competition is sufficiently intense, there is no distortion everywhere. The present
paper shows that quality distortions disappear only at the top and the bottom of the client sets.

2 Principal-Agent Model in a Quasi-Linear Context

I consider a principal-agent model which can be described as follows. The principal is a Stackel-
berg leader of the two-player game with asymmetric information. In the first stage, the principal
chooses his strategy given the optimizing behavior of the agent in the second stage. The princi-
pal and the agent contract on two types of variables: a product characteristic x such as quality
or quantity, and a monetary transfer y. Both are observable to both players. Denote by X ⊆ R+

the product line that the principal can offer. A strategy of the principal is a nonlinear price
schedule t : X → R. The principal’s utility is y−C(x), where C : X → R is the cost function.

The agent chooses a product x sold at price y. His choice is made according to preferences
represented as a quasi-linear utility function u(x, θ) − y, where type θ is a one-dimensional
parameter that belongs to a compact set Θ = [θ, θ] ⊆ R++. There is adverse selection problem
because this parameter is known to the agent but unobservable to the principal. I assume that
ux(x, θ) > 0 and uxθ(x, θ) > 0.3 The latter condition is called the single-crossing property.
Given a price schedule t(·), a consumer of type θ maximizes his net utility u(x, θ) − t(x) over
X . Let πt(θ) = max[u(x, θ)− t(x) | x ∈ X] be the indirect utility function of type θ. Finally,
the agent of type θ may have an outside opportunity, from which he can derive a utility level
π̄(θ).

From the principal’s perspective, the agent’s type is continuously distributed over Θ with a
density function f(θ) > 0 for every θ ∈ Θ. The principal chooses a price schedule to solve the
following profit-maximization problem:

max
t(·)

∫
Θ

[t(x(θ))− C(x(θ))]f(θ)dθ

subject to the implementability constraints

x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X], ∀θ ∈ Θ

3 Throughout the paper, subscripts denote partial derivatives of the agent’s utility function u(x, θ). Moreover, I
indicate derivatives taken with respect to θ with a “dot” superscript, while derivatives with respect to x with
“prime” superscript.
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and the participation constraints

πt(θ) = max[u(x, θ)− t(x) | x ∈ X] > π̄(θ), ∀θ ∈ Θ.

The standard approach to the screening problem is reformulating the principal’s strategy
space. The participation constraints can be replaced by the system of inequalities, r(θ) =

πt(θ)− π̄(θ) > 0 for every θ ∈ Θ. Introducing the social surplus function v(x, θ) = u(x, θ)−
C(x), I rewrite profit margin as t(x(θ))−C(x(θ)) = u(x(θ), θ)−πt(θ)−C(x(θ)) = v(x(θ), θ)−
r(θ)− π̄(θ). Moreover, if x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X] holds under a price schedule

t(·), then it is the case θ ∈ argmax[u(x(θ̂), θ) − t(x(θ̂)) | θ̂ ∈ Θ]. Using the information

rent, the payment t(x(θ̂)) in this expression is written as t(x(θ̂)) = u(x(θ̂), θ̂) − πt(θ̂) =

u(x(θ̂), θ̂)− r(θ̂)− π̄(θ̂). To sum up, a profile ⟨x(·), r(·)⟩ of a decision rule and an information
rent is incentive compatible in the sense that θ ∈ argmax[u(x(θ̂), θ)−u(x(θ̂), θ̂)+r(θ̂)+ π̄(θ̂) |

θ̂ ∈ Θ] for every θ ∈ Θ. In what follows, such a profile ⟨x(·), r(·)⟩ is called a direct revelation
mechanism.

The principal’s problem can be written as

max
⟨x(·),r(·)⟩

∫
Θ

[v(x(θ), θ)− r(θ)− π̄(θ)]f(θ)dθ

subject to the incentive constraints

θ ∈ argmax[u(x(θ̂), θ)− u(x(θ̂), θ̂) + r(θ̂) + π̄(θ̂) | θ̂ ∈ Θ], ∀θ ∈ Θ,

and the participation constraints
r(θ) > 0, ∀θ ∈ Θ.

Finally, a direct revelation mechanism ⟨x(·), r(·)⟩ is individually rational if r(θ) > 0 for
every θ ∈ Θ. The monotonicity of the information rent r(·) is not guaranteed in general.

3 Voluntary Implementability via Price Schedule

In this section, I construct a price schedule under which any non-decreasing decision rule x :

Θ → X emerges as a solution to utility maximization problem of consumers. Without loss of
generality, I may assume that X = [x(θ), x(θ)], given a non-decreasing decision rule x(·).

The literature has been focused on the following incentive compatibility through a transfer
function defined over the type space.

Definition 1 (Rochet, 1987). A decision rule x(·) is said to be rationalizable or implementable
via transfer if there exists a transfer function p : Θ → R such that the direct revelation mecha-
nism ⟨x(·), p(·)⟩ induces truthful revelation: θ ∈ argmax[u(x(θ̂), θ) − p(θ̂) | θ̂ ∈ Θ] for every

θ ∈ Θ.
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On the other hand, my concern is the implementability in the following sense.

Definition 2. A decision rule x(·) is said to be implementable via price schedule if there exists
a price schedule t : X → R such that x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X] for every θ ∈ Θ.

When the reservation utility is not type-dependent, Rochet (1985, Principle 2) shows how
to recover the requirement (1) in the above definition. The participation constraints are incor-
porated into the implementability in the following manner.

Definition 3. A direct revelation mechanism ⟨x(·), r(·)⟩ is voluntarily implementable via price
schedule if there exists a price schedule t : X → R such that for every θ ∈ Θ,
(1) x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X],

(2) r(θ) = u(x(θ), θ)− t(x(θ))− π̄(θ) > 0.

The necessary conditions for the voluntary implementability are summarized as follows.

Theorem 1 (Revelation Principle). If a direct revelation mechanism ⟨x(·), r(·)⟩ is voluntarily
implementable, then it is incentive compatible and individually rational.

Proof. The revelation principle (cf. Laffont and Martimort, 2002, Proposition 2.2) states that
condition (1) in Definition 3 implies the incentive compatibility. The individual rationality is
trivially satisfied by condition (2) in Definition 3. This establishes the theorem.

In what follows, I shall explore the reverse of the revelation principle. My question is
whether it is possible to construct a nonlinear price schedule for any given incentive compatible
and individually rational direct revelation mechanism for the voluntary implementability.

Assumption 1. The reservation utility function π̄(·) is differentiable almost everywhere.

As is well-known, the incentive compatibility is characterized as follows.

Lemma 1. A direct revelation mechanism ⟨x(·), r(·)⟩ is incentive compatible if and only if x(·)
is non-decreasing and ṙ(θ) = uθ(x(θ), θ)− ˙̄π(θ) for every θ ∈ Θ.

The purpose of the paper is to show how to construct a price schedule satisfying the vol-
untary implementability for any feasible direct revelation mechanisms. The following theorem
states that the reverse of Theorem 1 actually holds.

Theorem 2 (Taxation Principle). If a direct revelation mechanism ⟨x(·), r(·)⟩ is incentive com-
patible and individually rational, then it is voluntarily implementable.

Proof. For each x ∈ X , define

t(x) = max [−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ].
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Step 1. x(θ) ∈ argmax[u(x, θ)− t(x) | x ∈ X] for every θ ∈ Θ.

Proof of Step 1. It suffices to show that πt(θ) = u(x(θ), θ)− t(x(θ)) for every θ ∈ Θ. Consider
any θ ∈ Θ.

Claim 1. u(x(θ), θ)− t(x(θ)) = r(θ) + π̄(θ).

Proof of Claim 1. Let h(x, θ̂) = u(x, θ̂)− (r(θ̂) + π̄(θ̂)). Using the envelope condition ṙ(θ) =

uθ(x(θ), θ)− ˙̄π(θ) in Lemma 1, I obtain hθ(x, θ̂) = uθ(x, θ̂)− uθ(x(θ̂), θ̂) =

∫ x

x(θ̂)

uxθ(z, θ̂)dz.

The first-order condition 0 = hθ(x(θ), θ̂) yields x(θ) = x(θ̂) by the single-crossing property.
The second-order condition at x = x(θ) is written as hθθ(x(θ), θ̂) = uθθ(x(θ), θ̂)−uxθ(x(θ̂), θ̂)·
ẋ(θ̂) − uθθ(x(θ̂), θ̂) = −uxθ(x(θ̂), θ̂) · ẋ(θ̂) 6 0 almost everywhere. Therefore, h(x(θ), θ̂) is
maximized at θ̂ = θ. Thus, t(x(θ)) = h(x(θ), θ) = u(x(θ), θ)− (r(θ)+ π̄(θ)). This establishes
the claim.

Claim 2. πt(θ) = r(θ) + π̄(θ).

Proof of Claim 2. Consider any x ∈ X . By the definition of t(x), I see that t(x) > −(r(θ) +

π̄(θ)) + u(x, θ), which implies that u(x, θ) − t(x) 6 r(θ) + π̄(θ). Since x was arbitrary, it
follows that πt(θ) 6 r(θ) + π̄(θ). It remains to show that πt(θ) > r(θ) + π̄(θ). I see that
πt(θ)− (r(θ)+ π̄(θ)) = max[u(x, θ)− t(x) | x ∈ X]− (r(θ)+ π̄(θ)) > u(x(θ), θ)− t(x(θ))−
(r(θ)+π̄(θ)) = 0, where the last equality follows from Claim 1. Therefore, πt(θ) > r(θ)+π̄(θ).
This establishes the claim.

By Claims 1 and 2, πt(θ) = u(x(θ), θ)− t(x(θ)). This establishes the step.

Step 2. r(θ) = πt(θ)− π̄(θ) > 0.

Proof of Step 2. The equality is immediate from Claim 2. By the individual rationality, r(θ) > 0

for every θ ∈ Θ. By Step 1, πt(θ) = u(x(θ), θ)−t(x(θ)) = r(θ)+π̄(θ) > π̄(θ). This establishes
the inequality and the step.

Steps 1 and 2 establish the theorem.

I have established the following characterization result.

Theorem 3. A direct revelation mechanism ⟨x(·), r(·)⟩ is incentive compatible and individually
rational if and only if it is voluntarily implementable.

Proof. Immediate from Theorems 1 and 2.

I have constructed a particular price schedule for voluntary implementation in the proof of
Theorem 2. The following remark states that, without loss of generality, I can restrict attention
to the price schedule t(x) = max [−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ], and is hereafter referred
to as the optimal price schedule.
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Proposition 1. If a price schedule voluntarily implements a direct revelation mechanism ⟨x(·), r(·)⟩,
then such a price schedule is uniquely determined over the range of the decision rule.

Proof. Suppose that t(·) and t̃(·) voluntarily implements x(·). Then, for every θ ∈ Θ, u(x(θ), θ)−
t(x(θ)) − π̄(θ) = r(θ) = u(x(θ), θ) − t̃(x(θ)) − π̄(θ), which yields that t(x(θ)) = t̃(x(θ)).
Therefore, t(x) = t̃(x) for every x ∈ [x(θ), x(θ)].

By the previous proposition, whenever I mention the optimal price schedule, it is of the
form: for each x ∈ [x(θ), x(θ)],

t(x) = −(r(ψ(x)) + π̄(ψ(x))) + u(x, ψ(x)),

where ψ(x) ∈ argmax[−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ].

To end this section, I want to summarize some properties of the optimal price schedule
constructed in the proof of Theorem 2.

Proposition 2. The optimal price schedule t(·) is continuous and increasing.

Proof. The optimal price schedule t(x) = max [−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ] is con-
tinuous by the maximum theorem because the type space is compact. It remains to show the
monotonicity of t(·). Let ψ(x) ∈ argmax[−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ]. If x > y, then

t(x)− t(y) > −(r(ψ(y)) + π̄(ψ(y))) + u(x, ψ(y))− [−(r(ψ(y)) + π̄(ψ(y))) + u(y, ψ(y))]

= u(x, ψ(y))− u(y, ψ(y)) =

∫ x

y

ux(z, ψ(y))dz > 0

because ux(x, θ) > 0.4 Hence, t(x) > t(y). This establishes the proposition.

Since the price schedule t(x) = max [−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ] is increasing
by Proposition 2, it is differentiable almost everywhere, and it has kinks at non-differentiable
points.

Theorem 4. The optimal price schedule t(·) satisfies the following envelope condition:

t′(x) = ux(x, ψ(x)),

where ψ(x) ∈ argmax[−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ].

Proof. Immediate from applying the envelope theorem to t(x) = max [−(r(θ̂) + π̄(θ̂)) +

u(x, θ̂) | θ̂ ∈ Θ].

4 This implies that the optimal price schedule t(·) is a flat rate tariff if ux(x, θ) = 0 for every x ∈ X and θ ∈ Θ.
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The standard approach to the screening problems (when the reservation utility is not type-
dependent) employs a non-decreasing decision rule x : Θ → X . Instead of using such a non-
decreasing decision rule x(·), Goldman et al. (1984) consider a dual problem as choosing a non-
decreasing type assignment function ψ : X → Θ for a Ramsey pricing problem. Nöldeke and
Samuelson (2007) reformulate principal-agent problems as choosing a non-decreasing function
ψ : X → Θ satisfying the envelope condition t′(x) = ux(x, ψ(x)) shown in the previous
proposition.

In addition, Maskin and Riley (1984, Proposition 3) also derive the optimal price schedule in
an extended framework of Mussa and Rosen (1978). Their result can be obtained as a corollary
of Theorem 2.

Example 2 (Bunching). Just for an illustration, I shall derive the optimal price function in the
monopoly case in which the reservation utility is zero for every type. Let θ > 5a > 0 and b > 0.
Let θ be distributed on [θ, θ], where θ = 1

2
(θ + a). Let θa = 1

4
(3θ − θ) and θb = 1

4
(5θ − 3θ).

Substituting θ = 1
2
(θ+ a), I see that θa = 1

8
(5θ− a) and θb = 1

8
(7θ− 3a). Then, θa < θb if and

only if θ > a. Consider the following decision rule depicted in Figure 5:

x(θ) =


1
b
(2θ − (θ + a)) for θ ∈ [θ, θa)
1
2b
(θ − 2a− θ) for θ ∈ [θa, θb]

1
2b
(4θ − (3θ + a)) for θ ∈ (θb, θ].

There is pooling at y = 1
2b
(θ−2a−θ). Figure 6 illustrates the optimal price schedule ⟨R+, t(·)⟩

that implements x(·). The corresponding marginal price function is given by

t′(x) =

{
1
2
(bx+ θ + a) for x 6 1

2b
(θ − 2a− θ)

1
4
(2bx+ 3θ + a) for x > 1

2b
(θ − 2a− θ).

There is a jump in the optimal marginal price function at y = 1
2b
(θ − 2a− θ): lim

x↑y
t′(x) = θa <

θb = lim
x↓y

t′(x) (see Figure 6). Moreover, lim
x↓0

t′(x) = θ.

x

θ
0

1

2b
(θ − a)

1

2b
(θ − 2a− θ)

θ θa θb θ

x(θ)

Figure 5: Pooling over [θa, θb]

t(·)

x
0

slope θb

slope θa

1

2b
(θ − 2a− θ)

slope θ

Figure 6: Kink at 1
2b
(θ − 2a− θ)
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The optimal price schedule t : X → R is anonymous. It is defined over the product line X ,
rather than over the type space Θ.

4 Duality Approach

In this section, I shall derive further properties of the optimal price schedule t(·). In Theorem
2, the optimal price schedule is obtained as t(x) = −(r(ψ(x)) + π̄(ψ(x))) + u(x, ψ(x)), where
ψ(x) ∈ argmax[−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ]. Let us call Γ (·) = argmax[−(r(θ̂) +

π̄(θ̂)) + u(·, θ̂) | θ̂ ∈ Θ] the price adjustment correspondence. It will be shown that a selection
ψ : X → Θ from Γ : X � Θ can be referred to as a type assignment function.

4.1 Price Adjustment Correspondence

Any non-decreasing decision rule x(·) is implementable by the optimal price schedule. Intu-
itively speaking, the optimal price schedule calculates the optimal marginal price or the optimal
targeted willingness to pay for each x ∈ X .

Definition 4. A decision rule x(·) has a bunch at y ∈ X if x(θ) = y over some [θ1, θ2] ⊆ Θ

with θ1 < θ2.

Lemma 2. Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational direct revelation
mechanism. Then,
(1) Γ (y) is a compact subset of Θ for every y ∈ X .
(2) the composite Γ ◦ x : Θ � Θ is self-belonging, that is, θ ∈ Γ (x(θ)) for every θ ∈ Θ.

(3) Γ (y) = argmax

[
u(y, θ̂)−

∫ θ̂

θ∗
uθ(x(s), s)ds | θ̂ ∈ Θ

]
− π̄(θ∗) where θ∗ ∈ Θ such that

r(θ∗) = 0 for every y ∈ X .

Proof. (1) Immediate from Berge’s maximum theorem.

(3) Since ṙ(θ) = uθ(x(θ), θ) − ˙̄π(θ), it follows that r(θ) =

∫ θ

θ∗
[uθ(x(s), s) − ˙̄π(s)]ds, where

θ∗ ∈ Θ such that r(θ∗) = 0. Recall that Γ (x) = argmax
[
−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ

]
.

The expression inside square brackets can be written as

−(r(θ̂) + π̄(θ̂)) + u(x, θ̂) = −
∫ θ̂

θ∗
[uθ(x(s), s)− π̇(s)]ds− π̄(θ̂) + u(x, θ̂)

= −
∫ θ̂

θ∗
uθ(x(s), s)ds+ [π̄(θ̂)− π̄(θ∗)]− π̄(θ̂) + u(x, θ̂)

= u(x, θ̂)−
∫ θ̂

θ∗
uθ(x(s), s)ds− π̄(θ∗),
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and hence,

Γ (x) = argmax

[
u(x, θ̂)−

∫ θ̂

θ∗
uθ(x(s), s)ds | θ̂ ∈ Θ

]
− π̄(θ∗).

(2) Suppose, by way of contradiction, that θ ̸∈ Γ (x(θ)). By definition, ψ(x(θ)) ∈ Γ (x(θ)).
Since θ ∈ Θ, it must be the case that

u(x(θ), ψ(x(θ)))−
∫ ψ(x(θ))

θ∗
uθ(x(s), s)ds > u(x(θ), θ)−

∫ θ

θ∗
uθ(x(s), s)ds.

There are two possible cases to be considered. If θ > ψ(x(θ)), then this inequality gives

0 >

∫ θ

ψ(x(θ))

uθ(x(θ), s)ds−
∫ θ

ψ(x(θ))

uθ(x(s), s)ds

>
∫ θ

ψ(x(θ))

uθ(x(θ), s)ds−
∫ θ

ψ(x(θ))

uθ(x(θ), s)ds = 0.

This is a contradiction. If θ 6 ψ(x(θ)), then the above inequality gives

0 >

∫ θ

ψ(x(θ))

uθ(x(θ), s)ds+

∫ ψ(x(θ))

θ

uθ(x(s), s)ds

> −
∫ ψ(x(θ))

θ

uθ(x(θ), s)ds+

∫ ψ(x(θ))

θ

uθ(x(θ), s)ds = 0.

This is a contradiction. Therefore, it must be the case θ ∈ Γ (x(θ)).

4.2 Type-Assignment Function

The following proposition states that the construction of the optimal price schedule actually
involves the inverse of decision rules.

Lemma 3. Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational direct revelation
mechanism. For every selection ψ(·) ∈ Γ (·),
(1) the composite x ◦ ψ : X → X is the identity.
(2) the composite ψ ◦ x : Θ → Θ is the identity at which x(·) has no bunch.

Proof. (1) Let y ∈ X . Any interior optimum ψ(y) yields the following first-order condition:

0 = −(ṙ(ψ(y)) + ˙̄π(ψ(y))) + uθ(y, ψ(y))

= −uθ(x(ψ(y)), ψ(y)) + uθ(y, ψ(y))

=

∫ y

x(ψ(y))

uxθ(z, ψ(y))dz,

and hence y = x(ψ(y)) = (x ◦ ψ)(y). This establishes the assertion.
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(2) Without loss of generality, I may choose ψ(x) = minΓ (x). Since θ ∈ Γ (x(θ)) and
ψ(x(θ)) ∈ Γ (x(θ)), it follows that ψ(x(θ)) 6 θ. It remains to show that this holds with
equality. Suppose, by way of contradiction, that θ > ψ(x(θ)). If x(·) has no bunch, then it is
strictly increasing. This yields that x(θ) > x(ψ(x(θ))) = (x◦ψ)(x(θ)) = x(θ), a contradiction.
Therefore, it must be the case ψ(x(θ)) = θ. This establishes the assertion.

The above observation holds regardless of the differentiability of t(·) at y.5

Theorem 5. Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational direct revela-
tion mechanism. Then, Γ (y) = {θ ∈ Θ | x(θ) = y} for every y ∈ X .

Proof. It suffices to consider y ∈ X at which x(·) has a bunch. Since x(·) is non-decreasing by
Proposition 1, it must be the case that {θ ∈ Θ | x(θ) = y} = [θ1, θ2] for some θ1, θ2 ∈ Θ with
θ1 < θ2. Since x(θ) = y for every θ ∈ [θ1, θ2], it follows from Lemma 2(2) that θ ∈ Γ (x(θ)) =

Γ (y), which implies that [θ1, θ2] ⊆ Γ (y). It remains to show that Γ (y) ⊆ [θ1, θ2]. Let θ ∈ Γ (y).
Then, θ = ψ(y) for some selection ψ(y) from Γ (y). Then, x(θ) = x(ψ(y)) = (x ◦ ψ)(y) = y,
where the last equality follows from Lemma 3(1). This implies that θ ∈ [θ1, θ2]. Therefore,
Γ (y) ⊆ [θ1, θ2]. This establishes the proposition.

Corollary 1. Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational direct revela-
tion mechanism. Then, Γ (y) = {x−1(y)} for every y ∈ X at which x(·) has no bunch.

5 Applications of the Analysis

5.1 Block Tariffs, Quality Premia, and Quantity Discounts

Block Tariffs are simple, but it is trivial that the principal could increase his expected profit
beyond that achievable with an optimal block tariff by choosing a more complex nonlinear
pricing scheme. A two-part tariff t(x) = px + q can be considered as a special case of a
block tariff. The current model corresponds to second-degree price discrimination due to Pigou
(1932). In the context of first-degree price discrimination, the use of two-part tariffs has been
discussed. However, the optimality of a two-part tariff or a block tariff in general has not been
explored in the context of second-degree price discrimination because of the intensive use of
direct revelation mechanisms.

Definition 5. A block tariff is a piecewise linear price schedule.

5 The second assertion can be proved, provided that the optimal price schedule t(·) is differentiable. Recall
that the implementability constraint is satisfied under the price schedule t(x) = max [−(r(θ̂) + π̄(θ̂)) +

u(x, θ̂) | θ̂ ∈ Θ], that is, x(θ) ∈ argmax[u(x, θ) − t(x) | x ∈ X]. The first-order condition is given by
0 = ux(x(θ), θ) − t′(x(θ)). By Theorem 4, t′(x) = ux(x, ψ(x)). Thus, ux(x(θ), θ) = ux(x(θ), ψ(x(θ))).
By the strict single-crossing property uxθ(x, θ) > 0, it must be the case θ = ψ(x(θ)) = (ψ ◦ x)(θ).
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The following theorem provides a necessary and sufficient condition for that the optimal
price schedule obtained in Theorem 2 takes the form of a block tariff indeed.

Theorem 6 (Block Tariff). Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational
direct revelation mechanism. Then, the following statements are equivalent:
(1) the optimal price schedule t(·) takes the form of a block tariff.
(2) d

dθ
ux(x(θ), θ) = 0 except at θ ∈ Θ where x(·) has no bunch at x(θ).

Proof. Recall the envelope condition t′(x) = ux(x, ψ(x)), where ψ(x) ∈ argmax[−(r(θ̂) +

π̄(θ̂)) + u(x, θ̂) | θ̂ ∈ Θ]. In addition, ψ(y) = x−1(y) if and only if x(·) has no bunch at y ∈ X

by Lemma 3. Differentiating t′(·) to obtain

t′′(y) = uxx(y, ψ(y)) + uxθ(y, ψ(y)) · ψ′(y)

= uxx(x(θ), θ) + uxθ(x(θ), θ) · 1
ẋ(θ)

= 1
ẋ(θ)

(uxx(x(θ), θ) · ẋ(θ) + uxθ(x(θ), θ))

= 1
ẋ(θ)

· d
dθ
ux(x(θ), θ).

This implies that for every x ∈ X where the price schedule is twice differentiable, it must be
the case that t′′(x) = 0 is equivalent to saying that d

dθ
ux(x(θ), θ) = 0, using the duality between

θ = ψ(x) and x = x(θ). This establishes the theorem.

As a conclusion of the previous theorem, the emergence of a block tariff as a solution to
principal-agent problems depends on the form of the utility function of the agent. In the fol-
lowing, I consider a commonly used utility function of the agent to check whether a block tariff
can realize a given decision rule.

Proposition 3. Let ⟨x(·), r(·)⟩ be an incentive compatible and individually rational direct reve-
lation mechanism. If the utiliy function of the agent takes of the form u(x, θ) = θv(x), where
v : X → R is strictly increasing and concave, then the optimal price schedule t(·) takes the
form of a block tariff if and only if d

dy
(ψ(y)v′(y)) = 0, where ψ(y) = x−1(y) except at bunching

points of x(·).

Proof. The expression of t′′(x) obtained in the proof of Theorem 6 can be written as

t′′(y) = uxx(y, ψ(y)) + uxθ(y, ψ(y)) · ψ′(y)

= ψ(y) · v′′(y) + v′(y) · ψ′(y)

= d
dy
(ψ(y)v′(y))

for every y ∈ X except at bunching points of x(·). The equivalence result is immediate from
Theorem 6.
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Recall that the following expression for the second-derivative of the optimal price schedule
shown in the proof of Theorem 6:

sign t′′(y) = sign [uxx(x(θ), θ) · ẋ(θ) + uxθ(x(θ), θ)], whenever x(θ) has no bunch at y.

This yields that the sign of t′′(y) is determined by the relationship between | uxx(y, θ) · ẋ(θ) |
and | uxθ(y, θ) |, where x(θ) = y. A few findings based on this observation can be stated as
follows.

Proposition 4 (Quality Premia or Quantity Discounts). Let ⟨x(·), r(·)⟩ be an incentive compat-
ible and individually rational direct revelation mechanism. Then,
(1) if the optimal price schedule t(·) is of the form of t(x) = px + q, then it must be the case
that uxx(x, θ) < 0 for every x and θ,
(2) if the optimal price schedule t(·) is strictly concave, then it must be the case that uxx(x, θ) <
0 for every x and θ,
(3) if uxx(x, θ) = 0 for every x and θ, then the optimal price schedule t(·) must be strictly
convex.

To end this subsection, I will show the optimality of a quantity discounts in a commonly
used framework.

Example 3 (Constant Elasticity). In what follows, for illustrative purposes, I assume that
π̄(θ) = π̄ (constant) for all θ ∈ Θ, and f(·) is the uniform distribution over a unit interval
[θ, θ]. When the reservation utility is not type-dependent, it is well-known that the principal’s
problem can be written as

max
x(·)

∫ θ

θ

ṽ(x(θ), θ)f(θ)dθ − π̄ subject to x(·) is non-decreasing,

where ṽ(x, θ) = u(x, θ) − C(x) − 1−F (θ)
f(θ)

uθ(x, θ) is the virtual surplus function. Under the
standard regularity conditions for the virtual surplus function (including uθ(x, θ) > 0), the
decision rule x(·) satisfying ṽx(x(θ), θ) = 0 solves the relaxed problem, and the resulting

transfer function is given as p(θ) = t(x(θ)) = u(x(θ), θ)−
(∫ θ

θ

uθ(x(s), s)ds+ π̄

)
.

Now, suppose u(x, θ) = θx1−η, where 0 < η < 1, and C ′(x) = a > 0. Assume θ > 1.6

Using distribution uniformity,

ṽx(x, θ) = θφ′(x)− a− (1− (θ − θ))φ′(x)

= (2θ − 1− θ)φ′(x)− a = (2θ − 1− θ)(1− η)x−η − a,

and thus, 0 = ṽx(x(θ), θ) yields x(θ) =
(
(2θ − 1 − θ)(1 − η)/a

)1/η. The corresponding type
assignment function is given by ψ(x) = 1

2

(
axη/(1 − η) + 1 + θ

)
. The expression for the

6 The virtual type θ − 1−F (θ)
f(θ) = θ − (1− (θ − θ)) = 2θ − 1− θ is positive for all θ ∈ Θ if θ > 1.
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second-derivative of the optimal price schedule in the proof of Proposition 3 can be written as

t′′(x) = d
dx

(
1
2

(
axη/(1− η) + 1 + θ

)
· (1− η)x−η

)
= d

dx

(
1
2
ax0 + 1

2
(1 + θ)(1− η)x−η

)
= 1

2
(1 + θ)(1− η)(−η)/x1+η < 0.

Therefore, it is optimal for the principal to offer a quantity discount price schedule rather than
a block tariff or a two-part tariff.

5.2 Deviation from Marginal Cost Pricing under Countervailing Incentives

I examine how the optimal price schedule for the principal deviates from marginal cost pricing
schedule. When the social surplus u(x, θ)−C(x) is strictly concave in x for all θ, the pointwise
maximization max [u(x, θ) − C(x) | x ∈ X] ensures that the welfare-optimal decision rule
x∗(θ) is uniquely determined. The strict concavity of u(x, θ) − C(x) in x, together with the
single-crossing property, shows that ẋ∗(θ) = −[uxx(x

∗(θ), θ) − C ′′(x∗(θ))]−1uxθ(x
∗(θ)) > 0

for every θ ∈ Θ. It will be discussed that the second-best marginal price schedules depend
crucially on the shape of the type-dependent reservation π̄(·). It will be discussed how the
departure of the optimal marginal price schedule from marginal cost crucially depends on the
steepness of the agent’s information rents.

An interesting situation arises when uθ(x, θ) and ˙̄π(·) intersect at some point (x, θ) ∈ X×Θ.
It will be discussed that the decision rule will be distorted except at both extremes.7 Consider a
simple case, in which π̄(θ) is linear in θ. Assume that uθθ(x, θ) = 0 and f(·) is uniform.

In the principal’s optimization problem, the Hamiltonian is

H(r, x, λ, θ) = [u(x, θ)− C(x)− r − π̄(θ)]f(θ) + λ[uθ(x, θ)− ˙̄π(θ)],

and the Lagrangian is
L(r, x, λ, τ, θ) = H(r, x, λ, θ) + τr.

To solve this problem, I make use of a set of sufficient conditions for optimality in the
optimal control problem with pure state constraints:
(a) there exists a function λ(·), which is piecewise continuous and piecewise continuously dif-
ferentiable with jump discontinuities at θ1, · · · , θm with θ1 < θ1 < · · · < θm 6 θ, and
(b) there exist a piecewise continuous function τ(·) and non-negative numbers β1, · · · , βm such
that the following conditions are satisfied:
(1) x(θ) ∈ argmax[H(r(θ), x, λ(θ), θ) | x ∈ X],

(2) τ(θ) > 0 and τ(θ)r(θ) = 0,

7 There are two extreme cases in which there is no bunching. When the slope of the reservation utility function
π̄(·) is sufficiently small so that uθ(x, θ) > π̇(θ) for every x ∈ X and θ ∈ Θ, the standard “no-distortion-at-
the-top” result holds, whereas when ˙̄π(·) is sufficiently high such that uθ(x, θ) < ˙̄π(θ) for every x ∈ X and
θ ∈ Θ, the ”no-distortion-at-the-bottom” result holds.
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(3) λ̇(θ) = −∂L
∂r
(r(θ), x(θ), λ(θ), τ(θ), θ), (the costate equation)

(4) λ(θ−k )− λ(θ+k ) = βk (Put λ(θ+k ) = λ(θ) if θm = θ),
(5) βk = 0 if either r(θk) > 0 or [θk ∈ int Θ, r(θk) = 0 and x(θ) is discontinuous at θk],
(6) λ(θ)r(θ) = 0 and λ(θ) 6 0, (the initial transversality condition)
(7) λ(θ)r(θ) = 0 and λ(θ) > 0, (the terminal transversality cond)
(8) Ĥ(r, λ(θ), θ) = max [H(r, x, λ(θ), θ) | x ∈ X] is concave in r,
(9) the pure state constraint r > 0 is quasi-concave in r.

For each x ∈ R and λ ∈ R, define

σ(x, λ, θ) = u(x, θ)− C(x) +
λ

f(θ)
uθ(x, θ).

To formulate the decision rule x(·), define the following decision rules commonly used in
the literature:

xσu(θ) ∈ argmax [σ(x, F (θ), θ) | x ∈ X] ,

xσd(θ) ∈ argmax [σ(x, F (θ)− 1, θ) | x ∈ X] .

Both decision rules xσu(θ) and xσd(θ) are uniquely determined by the strict concavity of u(x, θ)−
C(x) in x. Moreover, these are strictly increasing, ẋσu(·) > 0 and ẋσd(·) > 0, because the uniform
distribution satisfies the monotone hazard rate property. Since ˙̄π(·) takes intermediate values, I
may suppose that there exists θ0 ∈ int Θ such that uθ(x∗(θ), θ) = ˙̄π(θ) at θ = θ0. Also, there
exist θ1 and θ2 with θ1 6 θ0 < θ2 such that xσu(θ1) = x∗(θ0) = xσd(θ2) (see Figure 7).

The critical part of the proof is to construct the right solution for x(·), λ(·), and τ(·). Con-
sider the following decision rule:

x(θ) =


xσu(θ) for θ < θ1

x∗(θ0) for θ1 6 θ < θ2

xσd(θ) for θ2 6 θ.

The corresponding type-assignment function is shown in Figure 8. Because of the presence
of bunching at x = x∗(θ0), the jump from θ1 to θ2 occurs in the type-assignment function. I
shall verify the discontinuity of ψ(·) at x = x∗(θ0) after defining the information rent r(·).
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Figure 8: Type-Assignment Functions

It can be shown that the costate equation λ̇(θ) = −∂L
∂r

= f(θ)− τ(θ) is consistent with the
following pair λ(·) and τ(·):

λ(θ) =


F (θ) for θ < θ1

{λ ∈ R | σx(x∗(θ0), λ, θ) = 0} for θ1 6 θ < θ2

F (θ)− 1 for θ2 6 θ,

τ(θ) =


0 for θ < θ1

2f(θ) for θ1 6 θ < θ2

0 for θ2 6 θ.

The optimal contract ⟨x(·), r(·)⟩ involves a bunch at x(θ) = x∗(θ0) in [θ1, θ2].8 Since the
multiplier τ(·) of the participation constraints r(·) > 0 is positive in [θ1, θ2] ,all types in [θ1, θ2]

earn no information rents (see Figure 10).

8 This is the phenomenon discussed in Lewis and Sappington (1989a), Lewis and Sappington (1989b), and
Maggi and Rodriguez-Clare (1995).
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By construction, it is obvious that λ̇(θ) = f(θ) = f(θ) − τ(θ) for every θ ∈ [θ, θ1) ∪
[θ2, θ]. Let θ ∈ [θ1, θ2). In order for λ(θ) to satisfy the costate equation, I need to check
that λ̇(θ) = −f(θ). Solving the equation σx(x∗(θ0), λ(θ), θ) = 0 for λ(θ) to obtain λ(θ) =

−[uxθ(x
∗(θ0), θ)]

−1vx(x
∗(θ0), θ)f(θ), where v(x, θ) = u(x, θ) − C(x) is the surplus function.

This gives the expression for λ̇(θ) over the interval (θ1, θ2):

λ̇(θ) = −{vxθ(x∗(θ0), θ)f(θ) + vx(x
∗(θ0), θ)ḟ(θ)}uxθ(x∗(θ0), θ)− vx(x

∗(θ0), θ)uxθθ(x
∗(θ0), θ)f(θ)

[uxθ(x∗(θ0), θ)]2

= − [uxθ(x
∗(θ0), θ)]

2f(θ)

[uxθ(x∗(θ0), θ)]2
= −f(θ),

since I have assumed that ḟ(θ) = 0 and uθθ(x, θ) = 0.
I have shown that the sufficient conditions for optimality are satisfied. Given the optimal

contract ⟨x(·), r(·)⟩, the corresponding type-assignment function is not single-valued at x =

x∗(θ0). Since the type-assignment function maximizes −[r(θ̂ + π̄(θ))] + u(x, θ̂) with respect
to θ̂, the first-order condition at x = x∗(θ0) becomes 0 = −[ṙ(θ̂) + π̇(θ̂)] + uθ(x

∗(θ0), θ̂) =

−uθ(x(θ̂), θ̂) + uθ(x
∗(θ0), θ̂) by using the envelope condition ṙ(θ) = uθ(x, θ) − ˙̄π(θ). By the

single-crossing property, an optimal choice of θ̂ satisfies x(θ̂) = x∗(θ0). The second-order
condition is met at θ̂ ∈ [θ1, θ2]: −[r̈(θ̂) + ¨̄π(θ̂)] + uθθ(x

∗(θ0), θ̂) = uθθ(x
∗(θ0), θ̂) = 0 because

r̈(θ̂) = 0 in (θ1, θ2) by construction, and r̈(θ̂) = 0 = uθθ(x
∗(θ0), θ̂). To sum up, any type

θ̂ ∈ [θ1, θ2] is optimal at x = x∗(θ0): argmax
[

−[r(θ̂ + π̄(θ))] + u(x∗(θ0), θ̂) | θ̂ ∈ Θ] = [θ1, θ2].

In this case, set ψ(x∗(θ0)) = θ1 so that the type-assignment function is continuous from the left,
as shown in Figure 14.

The following propositions summarize the structure of marginal price schedules. The opti-
mal marginal price schedule t′(·) intersects C ′(·) only for the boundary points θ and θ.
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Proposition 5. Suppose uθ(x∗(θ0), θ0) = ˙̄π(θ0) for some interior type θ0. If (a) π̄(·) is linear,
(b) uθθ(x, θ) = 0 for every x ∈ X and θ ∈ Θ, and (c) f(θ) is uniform, then:
(1) the optimal price schedule has a kink at the interior point x(θ0).
(2) the optimal marginal price schedule deviates downward from marginal cost pricing schedule
up to x = x∗(θ0), whereas deviates upward from marginal cost pricing schedule beyond x =

x∗(θ0), except at the top and the bottom:

t′(x)

{
6 C ′(x) for x 6 x∗(θ0) with equality only at x = x∗(θ) = x(θ)

> C ′(x) for x > x∗(θ0) with equality only at x = x∗(θ) = x(θ).

(3) Moreover, assume the sign of t′′(·) is constant. Then the optimal price schedule is a combi-
nation of two concave price schedules for any concave cost function. On the other hand, if the
cost function is convex, then the optimal price schedule is a combination of either two concave
functions or two convex functions.

The shape of the optimal price schedule is indeterminate except that its marginal price jumps
upward at x(θ0) when the cost function is convex. Notice that if the sign of t′′(·) is constant,
then the convexities of the optimal price schedule and the cost function are inconsistent.
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Figure 11: Marginal Price Schedules
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Figure 12: Marginal Price Schedules
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Figure 14: Marginal Price Schedules

5.3 Delegated Common Agency Games

In this section, I consider economies with two principals and one agent. Two sellers compete
for an agent through nonlinear pricing schemes. As in the previous sections, one commodity
x is referred to as product quality and another commodity y is a monetary transfer. Denote by
(x, y) ∈ R2 the agent’s net trade. In what follows, for the sake of simplicity, I assume that
u(x, θ) = xθ. Throughout this section, I assume that taste for quality θ is uniformly distributed
over [θ, θ].9 Let X ⊆ R+ be a non-empty set, interpreted as the whole range of qualities that
principals can offer. A nonlinear price schedule for principal i is a pair ⟨Xi, ti(·)⟩ consisting
of a product line Xi ⊆ X and a price function ti : Xi → R+. For each xi ∈ Xi, principal i’s
profit margin is given by ti(xi) − Ci(xi) for some cost function Ci : Xi → R+. I do not allow
for common values. I consider environments in which the cost functions are linear-quadratic in
quality, that is, Ci(xi) = aixi+

bi
2
x2i for each principal i. I assume that the cost functions of the

principals are not identical, but the asymmetry is small: 0 < a1 < a2 and 0 < b1 = b2 = b.

Assumption 2. 0 < C ′
1(x) < C ′

2(x) and 0 < C ′′
1 (x) = C ′′

2 (x) for every x ∈ X .

Consider any principal i. For each type θ, define his demand correspondence and indirect
utility function from net trades by, respectively,

Xti(θ) = {xi ∈ Xi | u(xi, θ)− ti(xi) > u(x̃i, θ)− ti(x̃i) for every x̃i ∈ Xi}

and

πti(θ) = u(xi(θ), θ)− ti(xi(θ))

for each selection xi(θ) ∈ Xti(θ). The demand correspondence Xti(θ) might be set-valued
under nonlinear pricing schedules.

9 The uniformity is used only in the proof of Lemma 18.
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I introduce a principal-specific component ⟨α1, α2⟩. The net utility of type θ derived from
purchasing a product from principal i is assumed to be πti(θ) + αi. I assume that αi is observ-
able and independent of quality choice. The difference ∆αi = αj − αi is referred to as the
comparative advantage of principal j over principal i.

The social surplus vi(xi, θ)+αi = u(xi, θ)+αi−Ci(xi) is adjusted by αi. Since the social
surplus vi(xi, θ) is strictly concave in xi under Assumption 2, it follows that the full-information
decision scheme x∗i (θ) ∈ argmax[vi(xi, θ) | xi ∈ Xi] is uniquely determined. Going back to

the linear-quadratic environment, I obtain the following full-information outcome: for each
principal i,

x∗i (θ) =
1
b
(θ − ai) and vi(x∗i (θ), θ) =

1
2b
(θ − ai)

2.

Since the social surplus functions are linear in the comparative advantage parameters ⟨α1, α2⟩,
the full-information decision schemes ⟨x∗1(·), x∗2(·)⟩ won’t be affected by ⟨α1, α2⟩. Finally, I as-
sume that the production of the lowest quality is socially valuable when there is no asymmetry
of information.

Assumption 3. vi(x∗i (θ), θ) + αi > 0.

This assumption is rewritten as 1
2b
(θ − ai)

2 + αi > 0. To end this subsection, I summarize
properties of the full-information schemes.

Lemma 4. x∗1(θ) > x∗2(θ) and ẋ∗1(θ) = ẋ∗2(θ) > 0 for every θ ∈ Θ.

5.3.1 Competitive Implementability

I model strategic competition among the principals in a market with asymmetric information as
a non-cooperative game. The principals move first, choosing their price schedules simultane-
ously, given the distribution of types and the optimizing behavior of the agent. The agent moves
second, contracting with at most one principal. This is a situation of the delegated common
agency. Principal i’s payoff is determined by the price schedules offered by all the principals
and the induced demand correspondence. Denote the client set of principal i by

Θi = {θ ∈ Θ | πti(θ) + αi > max{0, πtj(θ) + αj}}.

Each principal i faces his own captive market Θi \ Θj and the competitive market Θi ∩ Θj .10

Principal i is strictly dominant in his captive market, while he is weakly dominant in the com-
petitive market. In what follows, without loss of generality, I may assume that πtj(·) + αj > 0,
and thus πti(·) + αi > max{0, πtj(·) + αj} = πtj(·) + αj .

Given the price schedule ⟨Xj, tj(·)⟩ posted by his competitor, the problem of principal i is
to design his price schedule ⟨Xi, ti(·)⟩, so as to maximize his expected payoff defined by

Pi(ti) =

∫
Θi

[ti(xi(θ))− Ci(xi(θ))]f(θ)dθ

10 Notations on set operations: A \B = {a | a ∈ A and a ̸∈ B}, A ∩B = {a | a ∈ A and a ∈ B}.
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subject to the incentive constraints

xi(θ) ∈ argmax[u(xi, θ)− ti(xi) | xi ∈ Xi], ∀θ ∈ Θi.

The participation constraints are incorporated into the client set Θi. I assume that the agent
of type θ obediently follows principal i’s instruction on his decision xi(·) if the demand corre-
spondence is set-valued. Denote by Si the finite set of all possible price schedules for principal
i, and by si = ⟨Xi, ti(·)⟩ a generic element of Si. Denote the set of best responses for prin-
cipal i to the opponent’s strategy sj by Ni(sj) ⊆ Si. By construction, any strategy profile
(s1, s2) ∈ S1×S2 such that (s1, s2) ∈ N1(s2)×N2(s1) is a Nash equilibrium. The price sched-
ule ⟨Xi, ti(·)⟩ is the instrument chosen by principal i. Given the opponent’s strategy ⟨Xj, tj(·)⟩,
I shall transform principal i’s problem that consists in using a pair of an decision rule xi(·)
and an information rent ri(·) = πti(·) + αi − max{0, πtj(·) + αj}, rather than the payment
pi(·) = ti(xi(·)), as the instruments.

Principal i is weakly dominant over his client set Θi. The original participation constraints
depends on the opponent’s strategy ⟨Xj, tj(·)⟩ in a complex fashion. I replace the participation
constraints with the system of inequalities, ri(θ) = πti(θ)−πtj(θ)−∆αi > 0 for every θ ∈ Θi.
Then, profit margin is written as ti(xi(θ)) − Ci(xi(θ)) = u(xi(θ), θ) − πti(θ) − Ci(xi(θ)) =

vi(xi(θ), θ)−ri(θ)−πtj(θ)−∆αi. If xi(θ) ∈ argmax[u(xi, θ)−ti(xi) | xi ∈ Xi] holds for every

θ ∈ Θi under the price schedule ⟨Xi, ti(·)⟩, then it must be the case θ ∈ argmax[u(xi(θ̂), θ) −

ti(xi(θ̂)) | θ̂ ∈ Θi] for every θ ∈ Θi. Using the information rent ri(θ) = πti(θ)− πtj(θ)−∆αi,
the payment ti(xi(θ̂)) in this expression is written as ti(xi(θ̂)) = u(xi(θ̂), θ̂) − πti(θ̂) =

u(xi(θ̂), θ̂)− (ri(θ̂)+πtj(θ̂)+∆αi). Therefore, the pair {xi(θ), ri(θ)}θ∈Θi
is incentive compat-

ible in the sense that θ ∈ argmax[u(xi(θ̂), θ)− u(xi(θ̂), θ̂) + ri(θ̂) + πtj(θ̂) +∆αi | θ̂ ∈ Θi] for

every θ ∈ Θi. Given the opponent’s strategy ⟨Xj, tj(·)⟩, principal i’s problem can be written as

max
⟨xi(·),ri(·),Θi⟩

∫
Θi

[vi(xi(θ), θ)− ri(θ)− πtj(θ)−∆αi]f(θ)dθ

subject to the incentive constraints

θ ∈ argmax[u(xi(θ̂), θ)− u(xi(θ̂), θ̂) + ri(θ̂) + πtj(θ̂) + ∆αi | θ̂ ∈ Θi], ∀θ ∈ Θi,

and the participation constraints

ri(θ) > 0, ∀θ ∈ Θi.

The monotonicity of the information rent ri(·) is not guaranteed in general. I need to identify
the pattern of the information rent ri(·) over the client set Θi.

The following lemma shows the equivalence between the incentive constraints in terms of
⟨xi(·), ri(·)⟩ and the monotonicity of xi(·) together with the envelope condition of ri(·).
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Lemma 5. A direct revelation mechanism ⟨xi(·), ri(·)⟩ is incentive compatible if and only if
xi(·) is non-decreasing and ṙi(θ) = uθ(xi(θ), θ)− π̇tj(θ) for every θ ∈ Θi.

Proof. Similar to that of Lemma 1.

Since utility function u(x, θ) is linear in θ, the slope of the indirect utility function, at
which it is differentiable, is given the corresponding quality choice by the envelope theo-
rem. The envelope condition becomes ṙi(θ) = uθ(xi(θ), θ) − uθ(xj(θ), θ) for some xj(θ) ∈
argmax[u(xj, θ)− tj(xj) | xj ∈ Xj]. I have deleted the indirect utility function πti(·) from prin-

cipal i’s problem. In Section 5.3.3, I am going to guess and verity a Nash equilibrium outcome.
I provide a pair ⟨xi(·), xj(·)⟩ of decision rules including off-equilibrium components explicitly.
Using the sufficient conditions for an optimal control with pure state constraints, I verify that
the decision rule xi(·) is a solution to the problem of principal i against xj(·). I identify the
pattern of the information rents ⟨r1(·), r2(·)⟩ describing ⟨Θ1,Θ2⟩ as well. Once a Nash equi-
librium outcome ⟨Θi, xi(·)⟩ is obtained, my concern is whether I can associate nonlinear price
schedules that achieves the same outcome in the following definition. Not only the allocations
but also the market segmentation are preserved under a profile of nonlinear pricing schemes.

Definition 6. A profile ⟨Θi, xi(·)⟩ of client sets and decision rules is competitively imple-
mentable if there exists a profile ⟨Xi, ti(·)⟩ of price schedules such that for each principal i,
(1) xi(θ) ∈ argmax[u(xi, θ)− ti(xi) | xi ∈ Xi] for every θ ∈ Θi,

(2) πti(θ) + αi > πtj(θ) + αj for every θ ∈ Θi.

The competitive implementability tells that given any profile of price schedules, there ex-
ists a profile of price schedules which generates the same decision rules and the same market
segmentation. There is no need to exclude bunching in decision rules.

Theorem 7. Let ⟨Θi, xi(·)⟩ be any Nash equilibrium outcome. If xi(·) is non-decreasing, then
the outcome is competitively implementable by some profile ⟨Xi, ti(·)⟩, where the price sched-
ule ti(·) is of the form ti(xi) = ai(xi) + bi(xi)xi for each xi ∈ Xi.

Proof. Since ⟨Θi, xi(·)⟩ is a Nash equilibrium outcome, it is voluntarily implemented by a
profile ⟨Xi, t̃i(·)⟩ of price schedules. For each xi ∈ Xi, define

ti(xi) = max [−(ri(θ̂) + πt̃j(θ̂) + ∆αi) + u(xi, θ̂) | θ̂ ∈ Θ].

For each θ̂ ∈ Θ, denote Ui(θ̂) = ri(θ̂) + πt̃j(θ̂) + ∆αi. The convexity follows the fact that
ti(·) is the maximum of a collection of affine functions because of the linearity of u(xi, θ) in θ.
Furthermore, ti(xi) = −(ri(ψi(xi)) + πt̃j(ψi(xi)) + ∆αi) + u(xi, ψi(xi)) = ai(xi) + bi(xi)xi,
where ψi(xi) ∈ argmax[−(ri(θ̂) + πt̃j(θ̂) + ∆αi) + u(xi, θ̂) | θ̂ ∈ Θ]. The fact that the price

schedule ti(·) implements xi(·) is immediate from the proof of Step 1 in Theorem 2. It remains
to show that the market segmentation is actually preserved under ⟨t1(·), t2(·)⟩. It suffices to
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show that Θi = Θ∗
i , where Θ∗

i = {θ ∈ Θ | πt̃i(θ) + αi > πt̃j(θ) + αj}. Note that for
every θ ∈ Θi, πti(θ) = Ui(θ) = ri(θ) + πt̃j(θ) + ∆αi = πt̃i(θ). This implies that for every
θ ∈ Θi, πt̃i(θ) + αi = πti(θ) + αi > πtj(θ) + αj = πt̃j(θ) + αj , which implies that θ ∈ Θ∗

i .
Therefore, Θi ⊆ Θ∗

i . The proof of the converse inclusion Θ∗
i ⊆ Θi is similar. This establishes

the theorem.

5.3.2 Endogenous Market Segmentation

In this subsection, I argue how the participation constraints are determined endogenously. In
order to examine the participation constraints, I summarize properties of the indirect utility
function in this setting.

Lemma 6. The indirect utility function πti(θ) = max[u(xi, θ) − ti(xi) | xi ∈ Xi] is convex,
non-decreasing and continuous.

Proof. See Appendix 1.

If the difference πti(·)+αi−(πtj(·)+αj) is strictly increasing, there exists at most one θ̂ ∈ Θ

such that the set of consumers splits in two closed and convex intervals: πtj(θ)+αj > πti(θ)+αi

for θ ∈ [ θ, θ̂ ] and πti(θ) + αi > πtj(θ) + αj for θ ∈ [ θ̂, θ ], where equalities hold only at taste
θ̂ of the unique indifferent consumer. That is, Θi ∩ Θj = {θ̂}. However, there is no reason
for neither that the client sets are closed and convex intervals nor that the competitive market in
which agents are indifferent between the two principals is degenerate. It is not appropriate to as-
sume a particular market segmentation for the analysis because the participation constraints are
determined endogenously as a Nash equilibrium outcome. More precisely, the slopes of πti(·)
and πtj(·) are given by xi(·) ∈ Xti(·) and xj(·) ∈ Xtj(·), respectively. The relative steepness
between indirect utility functions are determined by the profile ⟨t1(·), t2(·)⟩ of price functions.
The following figure depicts the situation in which there is a re-switching of domination.

θ

πt1
(θ) + α1πt2

(θ) + α2

Θ1

Θ2

πti
(·) + αi

Figure 15: Re-switching of domination
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It is easy to guess that if there is no asymmetry between the two principals, then both client
sets ⟨Θ1,Θ2⟩ are equal to the entire type space Θ. The following lemma shows that the market
is fully covered under Assumption 3 in any Nash equilibrium.

Lemma 7. There is no exclusion in equilibrium: Θ1 ∪Θ2 = Θ.

Proof. See Appendix 2.

The following lemma claims that a non-degenerate competitive market is not excluded.
Because of the presence of asymmetric cost structures, principal 1 gets high types, whereas
principal 2 gets low types.

Lemma 8. Θ1 = [ θ1, θ ] and Θ2 = [ θ, θ2 ] with θ1 6 θ2.

Proof. See Appendix 3.

Lemma 8 in Section 5.3.2 states that the market segmentation ⟨Θ1,Θ2⟩ is parameterized by
two parameters, θ1 and θ2. Lemma 10 below states that how both boundaries θ1 and θ2 are
determined in a particular Nash equilibrium outcome.

5.3.3 Oligopolistic Competition

In this subsection, I shall construct a particular Nash equilibrium outcome ⟨Θi, xi(·)⟩. For each
xi ∈ R and λi ∈ R, define

σi(xi, λi, θ) = vi(xi, θ) +
λi
f(θ)

uθ(xi, θ).

Denote by xσ1 (θ) is the solution to

0 = Dxv1(x1, θ)−
1− F (θ)

f(θ)
uxθ(x1, θ).

Similarly, xσ2 (θ) is the solution to

0 = Dxv2(x2, θ) +
F (θ)

f(θ)
uxθ(x2, θ).

Note that both xσ1 (·) and x2(·) are determined uniquely by the strict concavity of vi(xi, θ) in
xi.

I need to specify a rule for determining which principal wins the tie.11

Assumption 4. Tie-breaking is determined by an efficiency rule: the principal that makes higher
profit wins.

11 Monteiro and Page (2008) argue that a choice of tie-breaking rules is crucial to guarantee the existence of a
Nash equilibrium in mixed strategies over catalogs which are closely related nonlinear prices.
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The following lemma characterizes the bunching allocation in terms of the comparative
advantage ∆α1 of principal 2.

Lemma 9. If the competitive market, Θ1 ∩ Θ2 = [θ1, θ2], is a non-degenerate interval, then it
must be the case that the product lines are overlapping and there is pooling: x1(θ) = z(∆α1) =

x2(θ) for every θ ∈ Θ1 ∩ Θ2, where C1(z(∆α1)) + ∆α1 = C2(z(∆α1)) and z(α1) = ∆α1

a2−a1 .
Moreover, ż(∆α1) > 0.

Proof. See Appendix 4.

The parameter ∆α1 = α2 − α1 measures the comparative advantage of principal 2 from
view point of the agent. I can incorporate the comparative advantage in the cost structure as
well. Decompose the cost function of principal i as Ci(xi) = γi + Cv

i (xi), where Cv
i (xi)

is the variable cost function and γi is the fixed cost. Denote ∆γ1 = γ2 − γ1. The quality
allocation in the pooling region is implicitly determined byCv

1 (z(∆α1−∆γ1))+(∆α1−∆γ1) =

Cv
2 (z(∆α1 −∆γ1)). Not ambiguously, the higher ∆α1 −∆γ1, principal 2 has the comparative

advantage. I can replace ∆α1 by ∆α1 − ∆γ1. In particular, if cost functions are of the form
Ci(xi) = γi + aixi +

bi
2
x2i for each principal i, then it must be the case that ∆α1 −∆γ1 > 0.12

For simplicity, I say that ∆α1 > 0 summarizes all of components for the comparative advantage
of principal 2.

In order to identify a Nash equilibrium outcome, I make use of sufficient conditions in
Seierstad and Sydsæeter (1987, Chapter 5, Theorem 1) for an optimal control problem with
pure state constraints. Principal 1 is weakly dominant over his client set Θ1 = [θ1, θ]. It was
shown that, given the client set Θ1 = [θ1, θ], principal 1’s problem can be written as

max
⟨x1(·),r1(·)⟩

∫ θ

θ1

[v1(x1(θ), θ)− r1(θ)− πt2(θ)−∆α1]f(θ)dθ

subject to the incentive constraints ẋ1(θ) > 0 and ṙ1(θ) = uθ(x1(θ), θ) − π̇t2(θ) for every
θ ∈ Θi, and the participation constraints r1(θ) > 0 for every θ ∈ Θi. Define the Hamiltonian
and the Lagrangian by, respectively:

H1(r1, x1, λ1, θ) = [v1(x1, θ)− r1 − πt2(θ)−∆α1]f(θ) + λ1[uθ(x1, θ)− π̇t2(θ)]

and

L1(r1, x1, λ1, τ1, θ) = H1(r1, x1, λ1, θ) + τ1r1.

I have one state variable r1(·), one control variable x1(·) and one pure state constraint r1(·) > 0.
The multipliers associated with the envelope condition and the participation constraint are λ1(·)
and τ1(·), respectively. I shall show that

12 By Lemma 9, this is immediate from the fact that ∆α1 − ∆γ1 = (a2 − a1)z(∆α1 − ∆γ1) > 0 because
a2 > a1 > 0 and b1 = b2.
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(a) there exists a function λ1(·), which is piecewise continuous and piecewise continuously
differentiable with jump discontinuities at θ1, · · · , θm with θ1 < θ1 < · · · < θm 6 θ, and
(b) there exist a piecewise continuous function τ1(·) and non-negative numbers β1, · · · , βm
such that the following conditions are satisfied:
(1) x1(θ) ∈ argmax[H1(r1(θ), x1, λ1(θ), θ) | x1 ∈ X1],

(2) τ1(θ) > 0 and τ1(θ)r1(θ) = 0,
(3) λ̇1(θ) = −∂L1

∂r1
(r1(θ), x1(θ), λ1(θ), τ1(θ), θ), (the costate equation)

(4) λ1(θ−k )− λ1(θ
+
k ) = βk (Put λ(θ+k ) = λ(θ) if θm = θ),

(5) βk = 0 if either r1(θk) > 0 or [θk ∈ int Θ1, r1(θk) = 0 and x1(θ) is discontinuous at θk],
(6) λ1(θ1)r1(θ1) = 0 and λ1(θ1) 6 0, (the initial transversality condition)
(7) λ1(θ)r1(θ) = 0 and λ1(θ) > 0, (the terminal transversality condition)
(8) Ĥ1(r1, λ1(θ), θ) = max [H1(r1, x1, λ1(θ), θ) | x1 ∈ X1] is concave in r1,
(9) the pure state constraint r1 > 0 is quasi-concave in r1.

I shall construct a profile ⟨x1(·), x2(·)⟩ of decision rules including off-equilibrium com-
ponents, not only realized consumptions xi(·) over Θi. This is because the slope of ri(·) is
given by ṙi(θ) = d

dθ
{πti(θ) − πtj(θ) − ∆αi} = uθ(xi(θ), θ) − uθ(xj(θ), θ) for some xk(θ) ∈

argmax[u(xk, θ)− tk(xk) | xk ∈ Xk], k = i, j. For each type θ ∈ Θi \Θj in the captive market

for principal i, xj(θ) was not realized. My conjecture is as follows. For each decision rule x2(·),
define

x1(θ) =


x∗1(θ) for θ < θ1
x2(θ) for θ ∈ [θ1, θ̂1)

xσ1 (θ) for θ > θ̂1

and

λ1(θ) =

{
{λ1 ∈ R | Dxσ1(x2(θ), λ1, θ) = 0} for θ ∈ [θ1, θ̂1)

−(1− F (θ)) for θ > θ̂1

where θ̂1 = max{θ1, {θ ∈ Θ | −Dxv1(x2(θ), θ)f(θ) = −(1 − F (θ))}}. I see that for every
θ ∈ [θ1, θ̂1), λ1(θ) = −Dxv1(x2(θ), θ)f(θ), which is uniquely determined. Both x1(·) and λ1(·)
are single-valued over Θ1. Notice that 0 = Dxσ1(x1(θ), λ1(θ), θ) for every θ ∈ Θ1.

The costate equation becomes λ̇1(θ) = f(θ)− τ1(θ). I need to define λ1(·) and τ1(·) jointly.
The crucial step is to construct the right functions to λ1(·) and τ1(·). Define

τ1(θ) =


2f(θ) for θ ∈ [θ1, θ2)

f(θ) for θ ∈ [θ2, θ̂1)

0 for θ ∈ [θ̂1, θ1].

As mentioned above, the envelope condition ṙ1(θ) = uθ(x1(θ), θ)−π̇t2(θ) contains π̇t2(θ) =
uθ(x2(θ), θ) for some x2(θ) ∈ argmax[u(x2, θ) − t2(x2) | x2 ∈ X2]. I provide my conjecture
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on x2(·). It will be shown that both x1(·) and x2(·) are non-decreasing, continuous and differ-
entiable almost everywhere. Define

x2(θ) =


xσ2 (θ) for θ < θ̂2

x∗1(θ) for θ ∈ [θ̂2, θ1)

z(∆α1) for θ ∈ [θ1, θ2)

x∗2(θ) for θ > θ2

where θ̂2 = min{θ2, {θ ∈ Θ | −Dxv2(x1(θ), θ)f(θ) = F (θ)}}. Then, x2(·) is single-valued.
The decision rule x1(·) is continuous at θ̂1 because xσ1 (θ̂1) = x2(θ̂1) = x∗2(θ̂1). Similarly, x2(·)
is continuous at θ̂2. On the other hand, the continuity of x1(·) at θ1 and θ2 is not straightforward.
It suffices to show that x∗1(θ1) = z(∆α1) = x∗2(θ2).

Lemma 10. If the competitive market, Θ1 ∩Θ2 = [θ1, θ2], is a non-degenerate interval, then it
must be the case that x∗1(θ1) = z(∆α1) = x∗2(θ2). Both θ1 and θ2 are uniquely determined with
respect to ∆α1:

θ1 =
b(a2 − a1)

∆α1

+ a1 and θ2 =
b(a2 − a1)

∆α1

+ a2.

Proof. See Appendix 5.

Lemma 11. If the competitive market, Θ1 ∩Θ2 = [θ1, θ2], is a non-degenerate interval, then it
must be θ2 6 θ̂1 and θ̂2 6 θ1 under the outcome ⟨x1(·), x2(·)⟩, where

θ̂1 = θ − (a2 − a1) and θ̂2 = θ + (a2 − a1).

Proof. See Appendix 6.

Proposition 6. The sufficient conditions for optimality in the optimal control problem of prin-
cipal 1 are satisfied. The decision rule x1(·) exhibits pooling in the competitive market [θ1, θ2]
and downward distortions except at the top and bottom over his client set (see Figure 16 ):

x1(θ) =


1
b
(θ − a1) for θ < θ1
∆α1

a2−a1 for θ ∈ [θ1, θ2)
1
b
(θ − a2) for θ ∈ [θ2, θ̂1)

1
b
(2θ − θ − a1) for θ > θ̂1.

Proof. Immediate from Lemmas 12 to 20 in Appendix 7.

The best response of principal 2 can be obtained in a similar way.

Proposition 7. The sufficient conditions for optimality in the optimal control problem of prin-
cipal 2 are satisfied. The decision rule x2(·) exhibits pooling in the competitive market [θ1, θ2]
and upward distortions except at the top and bottom over his client set (see Figure 17 ):

x2(θ) =


1
b
(2θ − θ − a2) for θ < θ̂2

1
b
(θ − a1) for θ ∈ [θ̂2, θ1)
∆α1

a2−a1 for θ ∈ [θ2, θ̂1)
1
b
(θ − a2) for θ > θ̂1.
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θ

x
∗

1
(θ)

x
∗

2
(θ)

θ θ̂2 θ
1 θ2 θ̂1 θ

Θ1

x1(·)x1(·)

x1(θ)

Figure 16: No distortion at θ1 and θ

θ

x
∗

1
(θ)

x
∗

2
(θ)

z(∆α1)

θ θ̂2 θ
1 θ2 θ̂1 θ

Θ2

x2(·)

x2(θ)

Figure 17: No distortion at θ and θ2

A Nash equilibrium outcome with the competitive market of positive measure is summarized
below.

Theorem 8. There exists a Nash equilibrium outcome in which the competitive market is non-
degenerate. The corresponding quality allocation of each principal is distorted everywhere,
except at the top and the bottom of his client set. There is pooling in the competitive mar-
ket. Moreover, such equilibrium outcome can be competitively implementable by convex price
schedules.

To end this subsection, I want to summarize the resulting information rents in the Nash
equilibrium in Theorem 8 (Figures 18 and 19). Integrating the envelope condition in Lemma 1,
the information rents are given as

r1(θ) =

∫ θ

θ1

[uθ(x1(s), s)− uθ(x2(s), s)]ds =

{
0 for θ < θ̂1
1
2b
(θ − θ − (a2 − a1))

2 for θ > θ̂1,

r2(θ) =

∫ θ2

θ

[uθ(x2(s), s)− uθ(x1(s), s)]ds =

{
1
2b
(θ − θ − (a2 − a1))

2 for θ 6 θ̂2

0 for θ > θ̂2.
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θ

θ θ̂2 θ̂1 θ

Θ1 \Θ2

r1(·)

(a2−a1)
2

2b

θ1 θ2

Θ1 ∩Θ2

Figure 18: Information rent r1(·)

θ

Θ2 \Θ1

r2(·)

(a2−a1)
2

2b

θ θ̂2 θ̂1 θθ1 θ2

Θ1 ∩Θ2

Figure 19: Information rent r2(·)

6 Discussion: Beyond Quasi-Linear Context

This section deals with the derivation of the price schedule as an indirect mechanism in a context
with income effects. Roberts (1979) considers the optimal pricing schedule of a public utility
subject to a profit constraint. In the economy, there are two commodities; a good x subject to
nonlinear pricing t(·), and the composite good y. The agent with income θ maximizes u(x, y)
with ∇u(x, y) ≫ 0 subject to the budget constraint x+ t(x) 6 y.

The method developed in the present paper can be applied to obtain the optimal price sched-
ule for the government. Let ⟨x(·), p(·)⟩ be incentive compatible direct revelation mechanism
consisting of a decision rule and a transfer function, and U(θ) = u(x(θ), θ−p(θ)). By the strict
monotonicity of u(x, y) with respect to y, there is a unique ϕ(x, θ̂) such that u(x, θ−ϕ(x, θ̂)) =
U(θ̂) for each x ∈ X and θ̂ ∈ Θ. Define t(x) = max[ϕ(x, θ̂) | θ̂ ∈ Θ] for each x ∈ X . A simi-
lar procedure in the proof of Theorem 2 will show that x(θ) ∈ argmax[u(x, θ − t(x)) | x ∈ X]

for every θ ∈ Θ indeed.

7 Appendices

Appendix 1: Proof of Lemma 6

Proof. The convexity follows the fact that πti(θ) is the maximum of a collection of affine func-
tions. Consider any pair (θ, θ̃) ∈ Θ × Θ with θ < θ̃. For every selection xi(θ) ∈ Xti(θ), I
see that πti(θ̃) − πti(θ) > u(xi(θ), θ̃) − ti(xi(θ)) − πti(θ) = u(xi(θ), θ̃) − u(xi(θ), θ) > 0

since uθ(x, θ) > 0. Therefore, πti(θ) is non-decreasing.13 Regarding the continuity, sup-
pose, by way of contradiction, that πti(θ) is not continuous at θ. There exists some ε1 >

0 such that no matter what δ1 > 0, there is some θ̃ ∈ Θ with | θ − θ̃ |< δ1 such that

13 Notice that πti(·) is strictly increasing if xi(·) is positive.
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| πti(θ) − πti(θ̃) |> ε1. Since u(x, θ) is continuous in θ, it follows that for every ε2 > 0,
there exists δ2 > 0 such that | u(x, θ) − u(x, θ̂) |< ε2

2
whenever | θ − θ̂ |< δ2. There

are two possibilities to be considered. Suppose first that πti(θ) − πti(θ̃) 6 −ε1. Then,
u(xi(θ̃), θ) − ti(xi(θ̃)) > u(xi(θ̃), θ̃) − ti(xi(θ̃)) − ε2

2
= πti(θ̃) − ε2

2
, where | θ − θ̃ |< δ2 and

| πti(θ)−πti(θ̃) |> ε1. Since ε2 was arbitrary, letting ε2 < 2ε1 to obtain u(xi(θ̃), θ)−ti(xi(θ̃)) >
πti(θ) + ε1 − ε2

2
> πti(θ), a contradiction. Suppose next that πti(θ) − πti(θ̃) > ε1. Then,

u(xi(θ), θ̃)− ti(xi(θ)) > u(xi(θ), θ)− ti(xi(θ))− ε2
2
= πti(θ)− ε2

2
> πti(θ̃)+ε1− ε2

2
> πti(θ̃),

a contradiction. Thus, πti(θ) is continuous. This establishes the lemma.

Appendix 2: Proof of Lemma 7

Proof. Suppose, by way of contradiction, that there exists θ ∈ Θ\(Θ1∪Θ2). Then, max{πt1(θ)+
α1, πt2(θ) + α2} < 0. Each principal i makes zero profit, so it is weakly optimal to offer xi(θ)
such that ti(xi(θ), θ)− Ci(xi(θ)) = 0. The agent of type θ gets u(xi(θ), θ) + αi − ti(xi(θ)) =

vi(xi(θ), θ) + αi, which is maximized at the full-information scheme x∗i (θ). Without loss of
generality, I may assume that both principals could not attract type θ even they offer the full-
information surplus vi(x∗i (θ), θ)+αi. It follows that πti(θ)+αi = vi(x

∗
i (θ), θ)+αi < 0, which

contradicts that 0 6 vi(x
∗
i (θ), θ) + αi 6 vi(x

∗
i (θ), θ) + αi because the full-information surplus

is non-decreasing: d
dθ
vi(x

∗
i (θ), θ) = uθ(x

∗
i (θ), θ) > 0 by the envelope theorem. This establishes

the lemma.

Appendix 3: Proof of Lemma 8

Proof. Firstly, I shall show that both client sets are convex: Θ1 = [(θ1, θ ] and Θ2 = [ θ, θ2)]

with θ1 6 θ2, where the boundaries θ1 and θ2 may or may not belong to the intervals.

Recall that, by Lemma 7, the market is fully covered in the sense that Θ1 ∪ Θ2 = Θ. I
first consider the case that the client sets of the two principals are convex subsets of Θ, and
then I verify this conjecture later.14 Let Θ1 = [(θ1, θ1)] and Θ2 = [(θ2, θ2)], where the notation
[(a, b)] indicates that the end points may or may not belong to the interval. By the convexity
of the client sets, there is no re-switching of domination in the sense that there is no triplet
{θ1, θ2, θ3} ⊆ Θ with θ1 < θ2 < θ3 such that one principal weakly dominates at θ1 and θ3 and
the other principal strictly dominates at θ2. Denote by xi(θ+) and xi(θ−) the right-hand limit
of xi(·) at θ and the left-hand limit of xi(·) at θ, respectively. Let {xi(θ), πti(θ) + αi}θ∈Θ be an
equilibrium outcome, including off-equilibrium components.

14 The following proof is similar to the proofs of Lemmas 4 and 5 in Biglaiser and Mezzetti (1993). They
analyze competition in a labor market model. As far as I know, Biglaiser and Mezzetti (1993) is the only
work for a delegated common agency with non-identical principals. They analyze competition between two
non-identical firms for a worker in a labor market model. Contracts are compensation schemes associated
with output targets.
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Step 1. Θ1 = [(θ1, θ ] and Θ2 = [ θ, θ2)]. In other words, principal 1 gets high types, whereas
principal 2 gets low types.

Proof of Step 1. I first show that θ2 = θ. Suppose, by way of contradiction, that θ < θ2. Since
there is no re-switching of domination, it must be the case that principal 1 captures low types
and principal 1 is strictly dominant up to θ2 (See Figure 20). Then, x1(θ−2 ) 6 x2(θ

+
2 ) (see Figure

21). Recall that πti(θ) is continuous, convex and non-decreasing in θ. Since π̇ti(θ) = xi(θ) for
some xi(θ) ∈ argmax[u(xi, θ) − ti(xi) | xi ∈ Xi] at which πti(θ) is differentiable, it follows
that xi(θ−) 6 xi(θ) 6 xi(θ

+).

θ
θ

πt1
(θ) + α1

πt2
(θ) + α2

πt2
(θ) + α2

πt1
(θ) + α1

θ

πti
(·) + αi

Θ1

Θ2

θ
2 θ1

Figure 20: Market segmentation

θ
θ

x1(θ)

x2(θ)

x1(θ)

x2(θ)

θ

π̇ti
(·) = xi(·)

θ
2 θ1

Figure 21: π̇ti(θ) around [θ2, θ1]

Consider the following menu of principal 2:

(x̂2(θ), π̂t2(θ) + α2) =

{
(x1(θ), πt1(θ) + α1) for θ < θ2
(x2(θ), πt2(θ) + α2) for θ > θ2.

Obviously, the decision rule x̂2(θ) is non-decreasing. Let r̂2(θ) = π̂t2(θ)+α2−(πt1(θ)+α1) =

π̂t2(θ) − πt1(θ) − ∆α2 be the corresponding information rent. By construction, r̂2(θ) > 0 for
every θ ∈ Θ, which yields that the corresponding client set becomes Θ̂2 = Θ. Now, any type
θ < θ2 is indifferent between the two principals. Then, r̂2(θ) satisfies the envelope condition:
For θ < θ2, uθ(x̂2(θ), θ)− π̇t1(θ)− d

dθ
r̂2(θ) = uθ(x1(θ), θ)− π̇t1(θ)− 0 = x1(θ)− x1(θ) = 0.

For θ > θ2, uθ(x̂2(θ), θ) − π̇t1(θ) − d
dθ
r̂2(θ) = uθ(x2(θ), θ) − π̇t1(θ) − ṙ2(θ) = 0. Therefore,

d
dθ
r̂2(θ) = uθ(x̂2(θ), θ) − π̇t1(θ) for every θ ∈ Θ̂2. By Lemma 5, the pair ⟨x̂2(·), π̂t2(·) + α2⟩

is incentive compatible. Therefore, principal 2 can imitate principal 1 over Θ1 \Θ2 by offering
the menu ⟨x̂2(·), π̂t2(·) + α2⟩, without violating the incentive constraints. In equilibrium, this
feasible deviation cannot be profitable for principal 2. Under any efficient tie-breaking rule, it
must be the case that for every ε > 0 sufficiently small, v1(x1(θ2 − ε), θ2 − ε)− πt1(θ2 − ε) >

v2(x1(θ2 − ε), θ2 − ε)− (πt1(θ2 − ε)−∆α1). This implies that C2(x1(θ2 − ε)) > C1(x1(θ2 −
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ε)) +∆α1. Similarly, principal 1 can imitate principal 2 over Θ2 \Θ1 by offering the following
menu, without violating the incentive constraints:

(x̂1(θ), π̂t1(θ) + α1) =

{
(x1(θ), πt1(θ) + α1) for θ < θ2
(x2(θ), πt2(θ) + α2) for θ > θ2.

The corresponding client set becomes Θ̂1 = Θ. In equilibrium, it must be the case that for
every ε > 0 sufficiently small, v2(x2(θ2 + ε), θ2 + ε)− πt2(θ2 + ε) > v1(x2(θ2 + ε), θ2 + ε)−
(πt2(θ2 + ε) + ∆α1). This implies that C1(x2(θ2 + ε)) + ∆α1 > C2(x2(θ2 + ε)). Therefore,
C2(x1(θ2 − ε)) − C1(x1(θ2 − ε)) > ∆α1 > C2(x2(θ2 + ε)) − C1(x2(θ2 + ε)). I conclude
that C1(x2(θ2 + ε)) − C1(x1(θ2 − ε)) > C2(x2(θ2 + ε)) − C2(x1(θ2 − ε)). However, under
Assumption 2, it follows from x1(θ2− ε) 6 x2(θ2+ ε) that C2(x2(θ2+ ε))−C2(x1(θ2− ε)) =∫ x2(θ2+ε)

x1(θ2−ε)
C ′

2(y)dy >
∫ x2(θ2+ε)

x1(θ2−ε)
C ′

1(y)dy = C1(x2(θ2 + ε))− C1(x1(θ2 − ε)), a contradiction.

Hence, it must be θ2 = θ. Similarly, θ1 = θ. This establishes the step.

It remains to verify the hypothesis.

Step 2. Θ1 = [(θ1, θ1)] and Θ2 = [(θ2, θ2)]. In other words, both client sets are convex.

Proof of Step 2. Suppose, by way of contradiction, that there is a triplet {θ1, θ2, θ3} ⊆ Θ with
θ1 < θ2 < θ3 such that principal i weakly dominates at θ1 and θ3 and principal j strictly
dominates at θ2. Let Ai = {θ ∈ [θ1, θ3] | πti(θ) + αi > πtj(θ) + αj} and Aj = {θ ∈ [θ1, θ3] |
πtj(θ) + αj > πti(θ) + αi}. Then, Ai is non-empty because {θ1, θ3} ⊆ Ai and Aj is non-
empty because θ2 ∈ Aj . If there exists some θ ∈ Ai ∩ Aj , it follows from the fact θ ∈ Ai that
πti(θ) + αi > πtj(θ) + αj , which contradicts the fact that θ ∈ Aj . Therefore, Ai ∩Aj = ∅. It is
obvious thatAi∪Aj = [θ1, θ3]. Therefore, ⟨Ai, Aj⟩ is a partition of [θ1, θ3]. LetBi = Ai∩[θ1, θ2]
and Bj = Aj ∩ [supBi, θ2]. Then, Bi is non-empty because θ1 ∈ Bi and Bj is non-empty
because θ2 ∈ Bj . Moreover, Bi and Bj are disjoint because Ai ∩ Aj = ∅. In other words,
supBi is the boundary of the two disjoint and adjacent subsets of [θ1, θ2]. Let θ̂i = supBi.
By the convexity of the indirect utility functions, xi(θ̂−i ) 6 xj(θ̂

+
i ) (see Figure 22). Repeating

a similar argument, I consider a boundary of two disjoint and adjacent subsets of [θ2, θ3]. Let
Di = Ai ∩ [θ2, θ3] and Dj = Aj ∩ [θ2, infDi]. Let θ̃i = infDi. Then, xj(θ̃−i ) 6 xi(θ̃

+
i ) (see

Figure 23).
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θ
θ1 supBi = θ̂i

πti(θ) + αi

πtj (θ) + αj

πtj (θ) + αj

πti(θ) + αi

θ2

πtk(·) + αk

Bi Bj

Figure 22: xi(θ̂−i ) 6 xj(θ̂
+
i )

θ

θ2 infDi = θ̃i

πtj (θ) + αj

πti(θ) + αi

πti(θ) + αi

πtj (θ) + αj

θ3

πtk(·) + αk

Dj Di

Figure 23: xj(θ̃−i ) 6 xi(θ̃
+
i )

Principal i can imitate principal j in Bj ∪ Dj by offering the menu ⟨xj(·), πtj(·) + ∆αi⟩,
without violating the incentive constraints. Analogously, principal j can imitate principal i in
Bi ∪Di by offering the menu ⟨xi(·), πti(·) + ∆αj⟩, without violating the incentive constraints.
In equilibrium, principal i must not generate a profit greater than principal j in Bj so that for
every ε > 0 sufficiently small, vj(xj(θ̂i + ε), θ̂i + ε) − πtj(θ̂i + ε) > vi(xj(θ̂i + ε), θ̂i + ε) −
(πtj(θ̂i + ε) + ∆αi). On the other hand, since principal i is weakly dominant in Bi, it follows
that vi(xi(θ̂i − ε), θ̂i − ε)− πti(θ̂i − ε) > vj(xi(θ̂i − ε), θ̂i − ε)− (πti(θ̂i − ε) + ∆αj). Then,
I see that Ci(xj(θ̂i + ε)) − Cj(xj(θ̂i + ε)) > −∆αi = ∆αj > Ci(xi(θ̂i − ε)) − Cj(xi(θ̂i −
ε)), and hence Ci(xj(θ̂i + ε)) − Ci(xi(θ̂i − ε)) > Cj(xj(θ̂i + ε)) − Cj(xi(θ̂i − ε)). This

yields that 0 <

∫ xj(θ̂i+ε)

xi(θ̂i−ε)
[C ′

i(y) − C ′
j(y)]dy. It must be that C ′

i(y) > C ′
j(y) for every y ∈

[xi(θ̂i − ε), xj(θ̂i + ε)] with strict inequality for some y ∈ [xi(θ̂i − ε), xj(θ̂i + ε)]. Similarly,
using the facts that principal j is strictly dominant in Dj and principal i is weakly dominant in
Di, I obtain vj(xj(θ̃i−ε), θ̃i−ε)−πtj(θ̃i−ε) > vi(xj(θ̃i−ε), θ̃i−ε)− (πtj(θ̃i−ε)+∆αi) and
vi(xi(θ̃i+ε), θ̃i+ε)−πti(θ̃i+ε) > vj(xi(θ̃i+ε), θ̃i+ε)− (πti(θ̃i+ε)+∆αj). These yield that
Cj(xi(θ̃i+ε))−Ci(xi(θ̃i+ε)) > −∆αj = ∆αi > Cj(xj(θ̃i−ε))−Ci(xj(θ̃i−ε)), and hence 0 <∫ xi(θ̃i+ε)

xj(θ̃i−ε)
[C ′

j(z) − C ′
i(z)]dz. Therefore, C ′

j(z) > C ′
i(z) for every z ∈ [xj(θ̃i − ε), xi(θ̃i + ε)]

with strict inequality for some z ∈ [xj(θ̃i − ε), xi(θ̃i + ε)]. Therefore, C ′
i(y) > C ′

j(y) and
C ′
j(z) > C ′

i(z) for some {y, z} ⊆ X . But this contradicts Assumption 2.

It remains to show that the boundaries θ1 and θ2 belong to the client sets Θ1 and Θ2, re-
spectively. The proof is similar to that of Lemma 7 in Biglaiser and Mezzetti (1993). This
establishes the step and the lemma.
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Appendix 4: Proof of Lemma 9

Proof. Recall that client sets are given by Θ1 = {θ ∈ Θ | πt1(θ) > πt2(θ) + ∆α1} and
Θ2 = {θ ∈ Θ | πt2(θ) > πt1(θ) + ∆α2}, where ∆α1 +∆α2 = 0. Consider any θ ∈ Θ1 ∩ Θ2.
Then, πt1(θ) > πt2(θ)+∆α1 > πt1(θ)+∆α2+∆α1 = πt1(θ), and hence πt1(θ) = πt2(θ)+∆α1.
In other words, agent of type θ gets the same utility from both principals. This implies that
r1(θ) = πt1(θ)−πt2(θ)−∆α1 = 0 and r2(θ) = πt2(θ)−πt1(θ)−∆α2 = 0. Since θ was arbitrary,
it follows that r1(θ) = r2(θ) over the competitive market. If Θ1 ∩ Θ2 is an interval, I conclude
that ṙt1(θ) = ṙt2(θ) in the competitive market, where ṙt1(θ) = uθ(x1(θ), θ) − uθ(x2(θ), θ) and
ṙt2(θ) = uθ(x2(θ), θ) − uθ(x1(θ), θ). Therefore, x1(θ) = x2(θ). The first assertion is obvious,
that is, it must be the case that X1 ∩X2 is non-empty. Denote by z(θ) the common value.

It remains to show that z(θ) is independent of θ. It is necessary that both principals make the
same profit under any efficient tie-breaking rules. Thus, v1(x1(θ), θ)− r1(θ)− πt2(θ)−∆α1 =

v2(x2(θ), θ)− r2(θ)− πt1(θ)−∆α2. Substituting x1(θ) = z(θ) = x2(θ) and πt1(θ) = πt2(θ) +

∆α1 to obtain u(z(θ), θ)−C1(z(θ))− (πt2(θ)+∆α1) = u(z(θ), θ)−C2(z(θ))−πt2(θ), which
implies that C1(z(θ)) + ∆α1 = C2(z(θ)). It is obvious that z(θ) is uniquely determined by the
implicit function theorem and the value of z(θ) is independent of θ: ż(∆α1) = −[C ′

1(z(∆α1))−
C ′

2(z(∆α1))]
−1 > 0 where the inequality follows from Assumption 2 (i). Denote the unique

value by z(∆α1) rather than z(θ). This establishes the lemma.

Appendix 5: Proof of Lemma 10

Proof. I shall show that in any equilibrium associated with non-decreasing information rents,
the optimal boundaries θ1 and θ2 must satisfy x∗1(θ1) = z(∆α1) = x∗2(θ2). Notice that if
x∗1(θ1) = z(∆α1) = x∗2(θ2) holds, then x1(θ) > x2(θ) for every θ ∈ Θ1 by construction, and
then the information rent r1(θ) is actually non-decreasing.15 Substituting the information rent
r1(θ) in Lemma 17 below, the expected profit for principal 1 becomes∫ θ

θ1

(
v1(x1(θ), θ)− πt2(θ)−∆α1 −

∫ θ

θ1

[uθ(x1(s), s)− uθ(x2(s), s)]ds

)
f(θ)dθ.

15 There is no need to assume that both information rents are monotone. For any decision rule x2(θ) 6 x∗1(θ)
for every θ ∈ Θ1, if x1(θ) is a solution to the optimal control problem for principal 1, then it must be the case
that x1(θ) > x2(θ) for every θ ∈ Θ1. This yields the monotonicity of the information rent r1(θ).
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By an integration by parts,∫ θ

θ1

(∫ θ

θ1

[uθ(x1(s), s)− uθ(x2(s), s)]ds

)
f(θ)dθ

=

(∫ θ

θ1

[uθ(x1(s), s)− uθ(x2(s), s)]ds

)
F (θ)

∣∣∣θ
θ1

−
∫ θ

θ1

F (θ)[uθ(x1(θ), θ)− uθ(x2(θ), θ)]dθ

=

∫ θ

θ1

[uθ(x1(s), s)− uθ(x2(s), s)]ds−
∫ θ

θ1

F (θ)[uθ(x1(θ), θ)− uθ(x2(θ), θ)]dθ

=

∫ θ

θ1

(
1− F (θ)

f(θ)
[uθ(x1(θ), θ)− uθ(x2(θ), θ)]

)
f(θ)dθ.

Therefore, the objective for principal 1 is written as∫ θ

θ1

(
v1(x1(θ), θ)− πt2(θ)−∆α1 −

1− F (θ)

f(θ)
[uθ(x1(θ), θ)− uθ(x2(θ), θ)]

)
f(θ)dθ.

Differentiating the objective for principal 1 with respect to θ1, (assuming that the second-order
condition with respect to θ1 is satisfied) to obtain:

v1(x1(θ1), θ1)− πt2(θ1)−∆α1 =
1− F (θ1)

f(θ1)
[uθ(x1(θ1), θ1)− uθ(x2(θ1), θ1)] = 0,

where the last equality holds because x1(θ1) = z(∆α1) = x2(θ1) by Lemma 6. Using
πt1(θ1) = πt2(θ1)+∆α1, I obtain v1(z(∆α1), θ1) = πt1(θ1). Recall that πt1(θ1) = v1(x

∗
1(θ1), θ1).

By the strict concavity of v1(x1, θ1), it is maximized only at x∗1(θ1). Therefore, it must be
z(∆α1) = x∗1(θ1). Since the full-information scheme x∗1(θ) is strictly increasing by Lemma 4,
it follows that the value of θ1 is uniquely determined with respect to z(∆α1), and so is with
respect to ∆α1 because ż(∆α1) > 0.

Similarly, the expected profit for principal 2 is written as∫ θ2

θ

(
v2(x2(θ), θ)− πt1(θ)−∆α2 +

F (θ)

f(θ)
[uθ(x2(θ), θ)− uθ(x1(θ), θ)]

)
f(θ)dθ.

For principal 2, the information rent r2(θ) is non-increasing over Θ2 by construction. The first-
order condition respect to θ2 becomes:

v2(x2(θ2), θ2)− πt1(θ2)−∆α2 = −F (θ2)
f(θ2)

[uθ(x2(θ2), θ2)− uθ(x1(θ2), θ2)].

Similarly, this yields that x∗2(θ2) = z(∆α1). This establishes the lemma.

Appendix 6: Proof of Lemma 11

Proof. Suppose, by way of contradiction, that θ̂1 < θ2. In the region [θ̂1, θ2], x1(θ) = xσ1 (θ),
which is strictly increasing (see the proof of Lemma 9). However, Lemma 6 tells that x1(θ) =
z(∆α1) in the region [θ̂1, θ2], a contradiction. Similarly, θ̂2 6 θ1. This establishes the lemma.
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Appendix 7: Statements and Proofs of Lemmas 12 – 20

Lemma 12. x1(·) is non-decreasing over Θ1.

Proof. By construction, ẋ1(θ) > 0 for every θ < θ̂1 at which x1(θ) is differentiable. It remains
to show that x1(θ̃) > x1(θ) for every θ̃ > θ > θ̂1. By the log-concavity of 1−F (θ), d

dθ
f(θ)

1−F (θ)
>

0. I see that Dxσ1(x1(θ̃),−(1 − F (θ̃)), θ̃) = 0 = Dxσ1(x1(θ),−(1 − F (θ)), θ), which im-
plies that Dxv1(x1(θ̃), θ̃) = 1−F (θ̃)

f(θ̃)
6 1−F (θ)

f(θ)
= Dxv1(x1(θ), θ). Then, θ̃ − C ′

1(x1(θ̃)) 6
θ − C ′

1(x1(θ)). This yields that 0 < θ̃ − θ 6 C ′
1(x1(θ̃)) − C ′

1(x1(θ)), and hence C ′
1(x1(θ)) <

C ′
1(x1(θ̃)). By the strict convexity of C1(x), it must be x1(θ) < x1(θ̃). This establishes the

lemma.

Lemma 13. Condition (1) is satisfied.

Proof. I see thatDxH1(r1, x1, λ1, θ) = Dxv1(x1, θ)f(θ)+λ1uxθ(x1, θ) = Dxσ1(x1, λ1, θ)f(θ).
The Hamiltonian is strictly concave in x1 since DxxH1(r1, x1, λ1, θ) = Dxxv1(x1, θ)f(θ) <

0. By construction, 0 = Dxσ1(x1(θ), λ1(θ), θ) for every θ ∈ Θ1. Therefore, the first-order
condition 0 = DxH1(r1(θ), x1(θ), λ1(θ), θ) is sufficient for condition (1). This establishes the
lemma.

Lemma 14. Conditions (8) and (9) is satisfied.

Proof. By Lemma 10, x1(θ) maximizes H1(r1(θ), x1, λ1(θ), θ) over x1 ∈ X1. Consider any
θ ∈ Θ1. The first-order condition of H1(r1, x1, λ1(θ), θ) with respect to x1 is independent of
r1, and so that I can replace r1(θ) in H1(r1(θ), x1, λ1(θ), θ) by any r1 ∈ R. Thus, x1(θ) maxi-
mizes H1(r1, x1, λ1(θ), θ) over x1 ∈ X1 as well, and Ĥ1(r1, λ1(θ), θ) = H1(r1, x1(θ), λ1(θ), θ),
which is linear in r1. Therefore, condition (8) is satisfied. Condition (9) is trivial because the
pure state constraint is linear in r1. This establishes the lemma.

Lemma 15. The value of θ̂1 is well-defined:

{θ ∈ Θ | −Dxv1(x2(θ), θ)f(θ) = −(1− F (θ))} = {θ̂1}

whenever it is non-empty.

Proof. Consider any θ ∈ Θ such that −Dxv1(x2(θ), θ)f(θ) = −(1−F (θ)). Suppose, by way of
contradiction, that there exists a distinct element θ̃ ∈ Θ such that −Dxv1(x2(θ̃), θ̃)f(θ̃) = −(1−
F (θ̃)). Without loss of generality, I may assume that θ > θ̃. Let η(θ) = −Dxv1(x2(θ), θ)f(θ)

and η(θ̃) = −Dxv1(x2(θ̃), θ̃)f(θ̃). For every θ ∈ [θ1, θ̂1), I have 0 = Dxv1(x1(θ), θ) +
η(θ)
f(θ)

uxθ(x1(θ), θ) by the definition of x1(θ), and hence η(θ)
f(θ)

= −Dxv1(x1(θ), θ). Since 1−F (θ)

is log-concave, it follows that − η(θ)
f(θ)

= 1−F (θ)
f(θ)

6 1−F (θ̃)

f(θ̃)
= − η(θ̃)

f(θ̃)
. Then, 0 6 η(θ)

f(θ)
− η(θ̃)

f(θ̃)
=

Dxv1(x1(θ̃), θ̃) − Dxv1(x1(θ), θ), and hence Dxv1(x1(θ), θ) 6 Dxv1(x1(θ̃), θ̃). On the other
hand, by construction, x2(θ) 6 x∗1(θ). Since x1(θ̃) 6 x1(θ) = x2(θ) 6 x∗1(θ), it follows that
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Dxv1(x1(θ), θ)−Dxv1(x1(θ̃), θ̃) > Dxv1(x1(θ̃), θ)−Dxv1(x1(θ̃), θ̃) = θ − C ′
1(x1(θ̃))− (θ̃ −

C ′
1(x1(θ̃))) = θ − θ̃ > 0, where the first inequality follows the strict concavity of v1(x, θ) in

x, and hence Dxv1(x1(θ), θ) > Dxv1(x1(θ̃), θ̃), a contradiction. Therefore, the value of θ̂1 is
well-defined. This establishes the lemma.

Lemma 16. The value of θ̂2 is well-defined:

{θ ∈ Θ | −Dxv2(x1(θ), θ)f(θ) = F (θ)} = {θ̂2}

whenever it is non-empty.

Proof. Similar to that of Lemma 15.

Lemma 17. Conditions (4) and (5) are satisfied.

Proof. Immediate from the continuity of λ1(·).

Lemma 18. Condition (3) is satisfied. Moreover, λ1(θ) 6 0 for every θ ∈ Θ1.

Proof. It is obvious that λ̇1(θ) = f(θ) and λ1(θ) 6 0 for every θ > θ̂1. Consider any θ < θ̂1. By
Lemma 8, it was shown that θ1 6 θ2. There are two possibilities to be considered. If θ1 = θ2,
then x1(θ) = x∗2(θ). If θ1 < θ2 and θ2 = θ̂1, then x1(θ) = z(∆α). Finally, if θ1 < θ2 and
θ2 < θ̂1, then x1(θ) = z(∆α) for θ < θ2 and x1(θ) = x∗2(θ) for θ ∈ [θ2, θ̂1).

Case 1. If x1(θ) = x∗2(θ) then λ1(θ) 6 0 and λ̇1(θ) = 0.

Proof of Case 1. Under Assumption 2, C ′
1(x

∗
2(θ)) < C ′

2(x
∗
2(θ)) = θ, and hence θ > C ′

1(x
∗
2(θ)).

This implies that λ1(θ) = −Dxv1(x
∗
2(θ), θ)f(θ) = −[θ − C ′

1(x
∗
2(θ))]f(θ) < 0. Differentiating

λ1(θ) = −[θ − C ′
1(x

∗
2(θ))]f(θ) with respect to θ to obtain

λ̇1(θ) = −[f(θ) + θf ′(θ)− C ′′
1 (x

∗
2(θ))ẋ

∗
2(θ)f(θ)− C ′

1(x
∗
2(θ))f

′(θ)]

= −[f(θ) + θf ′(θ)] + C ′′
1 (x

∗
2(θ))ẋ

∗
2(θ)f(θ) + C ′

1(x
∗
2(θ))f

′(θ).

Since it was shown that ẋ∗2(θ) = [C ′′
2 (x

∗
2(θ))]

−1 in the proof of Lemma 4 and C ′′
1 (x

∗
2(θ)) =

C ′′
2 (x

∗
2(θ)), it follows that C ′′

1 (x
∗
2(θ))ẋ

∗
2(θ)f(θ) = f(θ). Using distribution uniformity, λ̇1(θ) =

−f(θ) + f(θ) = 0. Therefore, λ1(θ) 6 0 and λ̇1(θ) = 0 for every θ < θ̂1. This establishes the
case.

Case 2. If x1(θ) = z(∆α1) then λ1(θ) 6 0 and λ̇1(θ) = −f(θ).
Proof of Case 2. By the definition, λ1(θ) = −Dxv1(x1(θ), θ)f(θ) = −[θ − C ′

1(x1(θ))]f(θ) =

−[θ − C ′
1(z(∆α1))]f(θ). Recall that x1(θ) 6 x∗1(θ) by construction. Then, θ = C ′

1(x
∗
1(θ)) >

C ′
1(x1(θ)) = C ′

1(z(∆α1)). Therefore, λ1(θ) 6 0. Moreover, using distribution uniformity,

λ̇1(θ) = −[(1− C ′′
1 (z(∆α1))

d

dθ
z(∆α1))f(θ) + (θ − C ′

1(z(∆α1)))f
′(θ)]

= −[f(θ) + θf ′(θ)− C ′
1(z(∆α1))f

′(θ)] = −f(θ).



REFERENCES 43

Therefore, λ1(θ) 6 0 and λ̇1(θ) = −f(θ) for every θ < θ̂1. This establishes the case.

To sum up,

λ̇1(θ) =

{
0 if θ1 = θ2 or θ ∈ [θ2, θ̂1)

−f(θ) if θ1 < θ2 = θ̂1 or θ ̸∈ [θ2, θ̂1).

On the other hand, by the definition,

τ1(θ) =

{
f(θ) if θ1 = θ2 or θ ∈ [θ2, θ̂1)

2f(θ) if θ1 < θ2 = θ̂1 or θ ̸∈ [θ2, θ̂1).

I am ready to verify condition (3). Recall that the costate condition is written as λ̇1(θ) =

−[−f(θ) + τ1(θ)] = f(θ) − τ1(θ). Therefore, I conclude that λ̇1(θ) + τ1(θ) = f(θ). This
establishes the lemma.

Lemma 19. Conditions (6) and (7) are satisfied.

Proof. By construction, ṙ1(θ) = uθ(x1(θ), θ) − uθ(x2(θ), θ) = x1(θ) − x2(θ) > 0, and hence
the information rent r1(θ) must be non-decreasing. Then, r1(θ1) = 0 for sure, and the pure
state constraint r1(θ) > 0 will be binding in the left part of the distribution. That is, r1(θ1) = 0

is fixed and r1(θ) is free. By Lemma 18, λ1(θ) 6 0 for every θ ∈ Θ1. Since λ1(θ1) 6 0

and r1(θ1) = 0, it follows that λ1(θ1)r1(θ1) = 0. Therefore, the initial transversality condition
is satisfied. Since λ1(θ) = 0 by construction and r1(θ) > 0, it follows that λ1(θ1)r1(θ1) =

λ1(θ)r1(θ) = 0. Therefore, the terminal transversality condition is satisfied. This establishes
the lemma.

Lemma 20. Condition (2) is satisfied. Moreover, r1(θ) =

∫ θ

θ1

[uθ(x1(s), s) − uθ(x2(s), s)]ds

for every θ > θ1.

Proof. Recall the multiplier τ1(θ) > 0: τ1(θ) > 0 for every θ < θ̂1 and τ1(θ) = 0 for every
θ > θ̂1 by construction. In the proof of Lemma 19, it was shown that r1(θ1) = 0 and ṙ1(θ) = 0

for every θ < θ̂1, which implies that r1(θ) = 0 for every θ < θ̂1. Moreover, since r1(θ) is
non-decreasing, it follows that r1(θ) > 0 for every θ > θ̂1. Therefore, τ1(θ)r1(θ) = 0 for every
θ ∈ Θ1. Moreover, the envelope condition ṙ1(θ) and the boundary condition r1(θ1) = 0 yields
the integrability condition. This establishes the lemma.
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