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Abstract

The decision-maker who complies with Savage’s axioms can be regarded as evaluating
each act by solving a statistical inference problem, in which the estimation error is measured
by the squared-error loss function. However, it is more desirable to derive a loss function,
as well as the utility index and the subjective probability, from the decision-maker’s own
preference. We weaken Savage’s axioms to characterize the preference which is based on
the loss-minimization in the sense that the decision-maker evaluates each act by solving
a statistical inference problem, in which the estimation error is measured by some loss
function which may be different from the squared-error loss function. Our results build on
the representation theorem proved by Grant, Kajii and Polak (2000) which characterizes
the preferences which satisfy the betweenness property. Also, we provide two examples of
preferences which are based on the loss-minimization with the loss function more general
than the squared-error loss functions and we discuss conditional preferences for a class of
preferences considered in this paper.

∗e-mail address: ozaki@econ.keio.ac.jp

1



1

1. Introduction

A celebrated theorem of Savage (1954) has been underlying much of economic modeling

and analysis. It states that if a decision-maker (DM)’s preference relation complies with some set

of axioms, she behaves as if she chooses an act which maximizes the expected utility calculated

by means of some utility index and some subjective probability. As we will see closely in Section

2.4, such a behavior of the DM may be also described as that of evaluating each act by solving a

statistical inference problem where she estimates the “true” utility value without knowing which

state has actually occurred. Most importantly, in this inference problem, she is supposed to seek

the “best” estimate, which is the best in the sense of minimizing the estimation error measured

by the squared-error loss function. Savage’s theorem then claims that such a behavior of the

DM is rational in that it is completely characterized by some reasonable axioms.

While Savage’s theory certainly has an appeal as such, an analogy to an inference problem

reveals its limitation also. The theory takes it as granted that the DM uses the estimate which

is the best in the sense of minimizing the estimation error defined via the squared-error loss

function. However, the loss function may be naturally understood to measure her “psychological”

distance between the estimand and the estimate. Therefore, similarly to the utility index and the

subjective probability, the loss function itself is a part of her preference, and hence, it should

be derived from the axioms. Various loss functions are proposed in the statistics literature.1

Which of these or other loss functions will be employed by the DM should be determined from

her attitude toward uncertainty, rather than is assumed to be given from the very outset.

Thus motivated, this paper weakens Savage’s axioms (mainly, his sure-thing principle)

to derive a new class of preferences, which we call the preference based on the loss-minimization.

The DM with such a preference evaluates each act by solving a statistical inference problem

defined by means of the utility index, the subjective probability and the loss function which

are all derived from her own preference. It is quite often the case that an inference problem in

the statistics literature is described with a general loss function which may be different from

the squared-error loss function. Therefore, we may conclude that many inference problems in

1These includes the absolute-error loss function and the weighted squared-error loss function. For these and
others, see, for example, Lehmann and Casella (1998).
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the literature are relevant to the behavior of the DM whoes preference is based on the loss-

minimization.

In the next section, we first show that some set of axioms is sufficient for the DM’s

preference to be based on the loss-minimization, that is, the DM evaluates each act by solving

a statistical inference problem in which the estimation error is measured by some loss function.

We then show that its converse also holds under an additional condition on the loss function:

Any preference which is based on the loss-minimization must satisfies the above axioms. These

results constitute a main contribution of the paper. Our proofs builds on the representation

theorem proved by Grant, Kajii and Polak (2000), which characterizes the preferences under

uncertainty which satisfy the betweenness property.2

By allowing loss functions which differ from the squared-error loss function, our represen-

tation makes it possible to model some aspects of a preference which are difficult to be analyzed

within Savage’s framework of expected utility. Section 3 provides two examples of loss functions,

each of which defines a loss-minimization problem on which the preference is based in the abvoe

sense. The first example is the Lq-loss function, which, together with a subjective probability

µ and a utility index v, generates a one-parameter family of preferences. We argue that the

parameter determines whether the DM makes much of probability values governed by µ or util-

ity values governed by v. The second example is the asymmetric loss function, which, together

with µ and v, generates a two-parameter family of preferences. The asymmetric loss function

measures the estimation error asymmetrically between the underestimate and the overestimate.

We then argue that under some specification of parameter values, the preference in this family

could exhibit the disappointment aversion. The preferences in the both families violate Savage’s

sure-thing principle and thus are unable to be represented by the expected utility.

Section 4 turns to the inference problem with an observation opportunity. We argue

that solving such an inference problem leads to a natural definition of a class of conditional

preferences. When the inference problem is defined in terms of the squared-error loss function,

this procedure of updating ex-ante preference into a class of conditional preferences exactly

2The preferences under risk which satisfy the betweenness property were studied by Chew (1983, 1989) and
Dekel (1986).
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corresponds to updating the expected utility to the conditional expected utility with the prior

subjective probability revised according to Bayes’ rule. Therefore, we may argue that our

definition of conditional preferences substantially extends the conditional expected utility in

Savage’s framework because it is derived by solving statistical inference problems in which a loss

function may be quite different from the squared-error loss function.

Finally, Section 5 contains lemmas and proofs.

2. Axiomatization

The Introduction mentioned that the DM who complies with Savage’s axioms can be seen

as solving a suitably-defined inference problem, in which the estimation error is measured by the

squared-error loss function. This section weakens Savage’s axioms to those which are sufficient

for the DM’s preference to be based on the loss-minimization, in which the estimation error is

measured by some loss function which may be distinct from the squared-error loss function.

2.1. The Axioms

This subsection introduces a set of axioms. Following Savage’s framework, let S be the

set of states, let E ≡ 2S be the set of events and let X be the set of outcomes. Throughout

the paper, we assume that X is a compact metric space which is also connected. An act is a

function from S into X. We denote by F0 the set of all simple acts. Here, we say that an act

f is simple if the image of S under f , f(S) ≡ {x ∈ X | (∃s ∈ S) f(s) = x }, is a finite set. We

consider only simple acts in this paper, and call them “acts” without the adjective. We take as

the primitive the DM’s preference relation ≽ on F0, and axioms will be imposed on ≽.

To state the axioms, we introduce some notations, which are standard in the literature.

Derive the asymmetry part ≻ and the indifference part ∼ from ≽.3 An event E ∈ E is null

(with respect to ≽) if any pair of acts which differ only on E are indifferent to each other.

We use the same symbol, ≽, to denote the preference relation induced on X from ≽, that is,

(∀x, y ∈ X) x ≽ y if f ≽ g where f and g are constant acts such that (∀s) f(s) = x and g(s) = y.

3(∀f, g ∈ F0) f ≻ g ⇔ g � f ; f ∼ g ⇔ [f ≽ g and g ≽ f ].
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We thus identify an outcome with the constant act taking on that outcome. We frequently

employ the notation such as [
x on A

f on Ac

]
to denote the act which takes on x ∈ X on an event A and equals f ∈ F0 when restricted to Ac,

the complement of A in S. Similar notations apply in obvious manners.

The axioms we consider are as follows:

P1 (Ordering) The preference relation ≽ is complete and transitive.

P3 (Eventwise Monotonicity) For any outcome x and y, any non-null event E, and any

act f , [
x on E

f on Ec

]
≽

[
y on E

f on Ec

]
⇔ x ≽ y

P4c (Conditional Weak Comparative Probability) For any outcome x, x′, y, y′ such that

x ≻ x′ and y ≻ y′, any event A, B and T such that A ∪B ⊆ T , and any act g, x on A

x′ on T\A
g on T c

 ≽

 x on B

x′ on T\B
g on T c



⇔

 y on A

y′ on T\A
g on T c

 ≽

 y on B

y′ on T\B
g on T c


P5 (Nondegeneracy) There exist constant acts x and x′ such that x ≻ x′.

P6 (Small Event Continuity) For any act f and g such that f ≻ g and any outcome x,

there exists a finite partition of S, ⟨Ei⟩ni=1, such that

(∀i, j ∈ {1, 2, . . . , n}) f ≻
[
x on Ei

g on (Ei)
c

]
and

[
x on Ej

f on (Ej)
c

]
≻ g

A1 (Best and Worst Acts) There exist constant acts x∗ and x∗ such that (∀f ∈ F0) x
∗ ≽

f ≽ x∗.

A2 (Weak Decomposability) For any event A and any act f and g,[
g on A

f on Ac

]
≻ f and

[
f on A

g on Ac

]
≻ f ⇒ g ≻ f
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A3 (Continuity on X) For any outcome x, { y ∈ X | y ≽ x } and { y ∈ X |x ≽ y } are

closed.

Note that each of Axioms P1, P3, P5 and P6 is identical to each of Machina and Schmei-

dler’s (1992) axioms with the same name. Axiom P4c is introduced by Epstein and Le Breton

(1993) in the context of conditional preferences and dynamic consistency and it is closely related

to the axiom of strong comparative probability (so-called Axiom P4∗) by Machina and Schmei-

dler (1992). Axiom A1 postulates that there should exist the best and worst constant acts.

Axiom A2 is called weak decomposability and introduced by Grant, Kajii and Polak (2000).

Finally, Axiom A3 is a weak form of the continuity assumption and it only requires that ≽

restricted to X be continuous in the given topology on X.

2.2. Main Theorems

In this subsection, we characterize a class of preferences whose representation is given by

a unique solution to some suitably-defined (no-data) inference problem. We first define an error

function formally. That is, a function ϕ : [0, 1]× [0, 1] → R is an error function if it satisfies

E1. (∀u, v) ϕ(v, u) ≥ 0 ,

E2. (∀u, v) ϕ(v, u) = 0 ⇔ u = v ,

E3. (∀v) ϕ(v, ·) is continuously differentiable ,

E4. (∀u) ϕ2(·, u) is strictly decreasing and

E5. (∀v) ϕ2(v, v) = 0 ,

where ϕ2 denotes ϕ’s partial derivative with respect to its second argument. Intuitively, an error

function measures a distance between two numbers with zero distance occurring if and only if

two numbers coincide (E1 and E2). In this regard, it may be considered as an analogue of a

metric (in a metrizable topological space). We also impose on an error function three technical

assumptions (E3-E5).

We say that a preference relation ≽ on F0 is based on the loss-minimization if there exist

a unique finitely-additive, non-atomic4 probability measure µ on (S,E), a continuous utility
4According to Machina and Schmeidler (p.751, footnote 12), we call a finitely-additive probability measure µ

non-atomic if (∀B ∈ E)(∀ρ ∈ [0, 1])(∃C ⊆ B) µ(C) = ρµ(B).
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index v : X → [0, 1] satisfying (∃x∗, x∗ ∈ X) v(x∗) = 1, v(x∗) = 0 and (∀x, x′ ∈ X) x ≽

x′ ⇔ v(x) ≥ v(x′) and an error function ϕ : [0, 1] × [0, 1] → R, that are altogether such that

(∀f, g ∈ F0) f ≽ g ⇔ U(f) ≥ U(g), where5

(∀f ∈ F0) U(f) = argmin
u∈[0,1]

∫
S
ϕ(v ◦ f(s), u) dµ(s) . (1)

We now claim that the next theorem holds.

Theorem 1 Suppose that a preference relation ≽ on F0 satisfies Axioms P1, P3, P4c, P5, P6,

A1, A2 and A3. Then, ≽ is based on the loss-minimization.

The theorem shows that a DM whose preference complies with the given set of axioms

evaluates each act by solving an inference problem in which estimation errors are measured by

the loss function which itself is derived from her own preference.

A “converse” of Theorem 1 is given by the next theorem, which is not exactly the converse

because the assumption E6 imposed on ϕ in the theorem is not derived in Theorem 1.

Theorem 2 Suppose that the preference relation ≽ on F0 is based on the loss-minimization

with an error function which satisfies

E6. (∀v) ϕ(v, ·) is strictly convex

as well as E1-E5. Then, ≽ satisfies P1, P3, P4c, P5, P6, A1, A2 and A3.

Consider a DM who, in evaluating an act f , solves a statistical inference problem com-

posed of a subjective probability µ, a utility index v and an error function ϕ, which are primitives

characterizing the DM’s preference. Also, suppose that ϕ satisfies E6. Then, Theorem 2 shows

that the DM’s behavior must be based upon a preference which complies with the given set

5Formally, the right-hand side of (1) is a set. When it is a singleton, we write as in the theorem, instead of
writing as

U(f) ∈ argmin
u∈[0,1]

∫
S

ϕ(v ◦ f(s), u) dµ(s) .

The same convention applies in what follows. The right-hand side of (1) may be suggestively written as
argminu∈[0,1] E

µ [ϕ (v ◦ f, u)].
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of axioms. Note that the strict convexity of an error function in its second argument is often

assumed in the statistics literature to guarantee the existence of estimators.6 We call an error

function satisfying E1-E6 a convex error function.

Both Theorems 1 and 2 show that the preference relation represented by the solution to

some statistical inference problem has a sound behavioral foundation based on the set of axioms

given in the theorems.

The proofs of our theorems build on the representation theorem proved by Grant, Kajii

and Polak (2000), which characterizes the preference under uncertainty which satisfies what is

called the betweenness property. We turn to this subject in the next subsection.

2.3. Betweenness-satisfying Preferences

We say that a preference relation ≽ on F0 is betweenness-satisfying if there exist a unique

finitely-additive, non-atomic probability measure µ on (S,E), a (not necessarily continuous)

utility index v : X → [0, 1] satisfying (∃x∗, x∗ ∈ X) v(x∗) = 1, v(x∗) = 0 and (∀x, x′ ∈ X) x ≽

x′ ⇔ v(x) ≥ v(x′), and a function φ : v(X)× [0, 1] → R satisfying

B1. (∀u ∈ [0, 1]) φ(·, u) is strictly increasing and

B2. (∀v ∈ v(X)) φ(v, ·) is continuous,

that are altogether such that (∀f, g ∈ F0) f ≽ g ⇔ U(f) ≥ U(g), where for any f ∈ F0,

u = U(f) is the unique solution to the following equation in u :∫
S
φ(v ◦ f(s), u) dµ(s) = 0 . (2)

A function φ which satisfies B1 and B2 in the definition is called a betweenness function.

The preferences under risk which satisfy the betweenness property are studied and axiomatized

by Chew (1983, 1989) and Dekel (1986). Grant, Kajii and Polak (2000) studied the betweenness-

satisfying preferences under uncertainty and proved the following representation theorem.

Theorem 3 (Grant, Kajii and Polak, 2000) A preference relation ≽ on F0 satisfies Ax-

ioms P1, P3, P4c, P5, P6, A1 and A2 if and only if it is betweenness-satisfying.
6For example, see Lehmann and Casella (1998, p.88, Theorem 1.11) which establishes the existence of the

uniform minimum variance unbiased (UMVU) estimator.
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Let ≽ be a preference based on the loss-minimization with a convex error function.

Then, ≽ satisfies all the axioms of Theorem 3 by Theorem 2, and hence, it is betweenness-

satisfying.7 Such a preference further specifies the betweenness-satisfying preference by imposing

an additional axiom of A3, the continuity of the preference on X.

To see the role played by Axiom A3, suppose that all the axioms in Theorem 3 are

satisfied. Then, a seemingly mild axiom of A3 guarantees the existence of a betweenness function

which satisfies the condition B3:

B3. (∀u, v) φ(v, u) = 0 ⇔ u = v

as well as B1 and B2 (Lemma 1 in Section 5), which in turn allows us to construct an error

function satisfying E1-E5 (see the proof of Theorem 1 in Section 5).

It follows from (2) (see also the equation (9) in the Appendix) that the DM’s preference

over the probability measures induced on X by µ and f is the same as the one axiomatized by

Chew (1983, 1989) and Dekel (1986) in the framework of risk. They relax the independence

axiom of von Neumann-Morgenstern’s expected-utility theory and only require that the indiffer-

ence sets be convex, the so-called betweenness property . It is well-known that such a preference

admits Allais-type behavior.

2.4. The Squared-error Loss Function: Savage’s Theory Revisited

Consider the following axioms which are introduced by Savage (1954).

P2 (Sure-thing Principle) For any act f, f ′, g, g′ and any event A,[
f on A

g on Ac

]
≽

[
f ′ on A

g on Ac

]
⇔

[
f on A

g′ on Ac

]
≽

[
f ′ on A

g′ on Ac

]

P4 (Weak Comparative Probability) For any outcome x, x′, y, y′ such that x ≻ x′ and

y ≻ y′ and any event A and B,[
x on A

x′ on Ac

]
≽

[
x on B

x′ on Bc

]
⇔

[
y on A

y′ on Ac

]
≽

[
y on B

y′ on Bc

]
7There may exist a preference which is based on the loss-minimization with a non-convex error function and

is not betweenness-satisfying.
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Savage (1954) proved essentially the following result (also, see Fishburn, 1970):

Theorem 4 (Savage, 1954) A preference relation ≽ on F0 satisfies Axioms P1, P2, P3, P4,

P5, P6, A1 and A3 if and only if there exist a unique finitely-additive, non-atomic probability

measure µ on (S,E) and a continuous utility index v : X → [0, 1] satisfying (∃x∗, x∗ ∈ X) v(x∗) =

1 and v(x∗) = 0 such that f ≽ g ⇔ U(f) ≥ U(g), where

(∀f ∈ F0) U(f) = argmin
u∈[0,1]

∫
S
(v ◦ f(s)− u)2 dµ(s) . (3)

The minimization problem (3) can be explicitly solved for u to obtain

(∀f ∈ F0) U(f) =

∫
S
v ◦ f(s) dµ(s) . (4)

Therefore, the representation in Theorem 4 turns out to be equivalent to the one by the expected

utility , which gives a more familiar form of Savage’s theorem.

Theorem 4 provides a further specification of the representation in Theorems 1 and 2 since

it specifies the error function ϕ in those theorems by ϕ2, which is defined by (∀u, v) ϕ2(v, u) ≡ (v−

u)2. Note that ϕ2 satisfies E6 as well as E1-E5. Savage’s theorem (Theorem 4) thus characterizes

the DM’s behavior who, in evaluating each act, solves a statistical inference problem by using

the squared-error loss function.

The preference based on the loss-minimization characterized by Theorems 1 and 2 sub-

stantially extends the expected utility characterized by Theorem 4. Since the requirement that

(∀x, x′ ∈ X) x ≽ x′ ⇔ v(x) ≥ v(x′) holds because (∀x) v(x) = U(x) by (4), the preference rep-

resented by the expected utility is based on the loss-minimization by definition. On the other

hand, the next section provides some examples of preferences based on the loss-minimization

which do not satisfy the sure-thing principle (Axiom P2). Therefore, the preferences based on

the loss-minimization define a strictly larger class of preferences than the expected utility, each

of which can be described in terms of statistical inference problems defined with some (not

necessarily squared-error) loss function.

3. Examples
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This section considers some preferences based on the loss-minimization which violate the

sure-thing principle. They are defined by means of loss functions which are different from the

squared-error loss function and seem to be interesting in that they make it possible to model

some aspects of preferences which are difficult to be analyzed within the framework of expected

utilities.

3.1. The Lq-Error Function

Let µ be a finitely-additive, non-atomic probability measure on (S,E) and let v : X →

[0, 1] be a continuous function such that (∃x∗, x∗ ∈ X) v(x∗) = 1 and v(x∗) = 0. For any

q ∈ (1,+∞), define the Lq-error function ϕq : [0, 1] × [0, 1] → R by (∀u, v) ϕq(v, u) = |v − u|q.

Note that ϕq satisfies E1-E6.

Now, define the preference relation ≽q on F0 by (∀f, g) f ≽q g ⇔ U(f) ≥ U(g), where

for any f ∈ F0, U(f) is defined as a unique solution u to

min
u∈[0,1]

∫
S
ϕq (v ◦ f(s), u) dµ(s) . (5)

Since U(f) is well-defined and the requirement that (∀x, x′ ∈ X) x ≽q x′ ⇔ v(x) ≥ v(x′) holds

because (∀x) v(x) = U(x), ≽q is well-defined and based on the loss-minimization by definition.

When q = 2, ≽q (=≽2) satisfies Axiom P2 and it is represented by the expected utility.

However, ≽q need not satisfy P2 unless q = 2 as shown by the next example.

Example 1 Let q > 1, let z ∈ X be an outcome such that v(z) = 1/2 and let ⟨E1, E2, E3⟩ be

a partition of S such that µ(E1) = µ(E2) = 1/4 and µ(E3) = 1/2. Define an act f by

f =

[
x∗ on E1

x∗ on E2 ∪ E3

]
.

Then, it follows that [
z on E1 ∪ E2

z on E3

]
∼q

[
f on E1 ∪ E2

z on E3

]
and that

g1 ≡
[
z on E1 ∪ E2

x∗ on E3

]
≻q

[
f on E1 ∪ E2

x∗ on E3

]
≡ g2 ⇔ q > 2 .

Thus, Axiom P2 is violated whenever q ̸= 2.



11

In this example, the act g2 is “better” than the act g1 in the sense that g2 has a higher

probability of getting the best outcome than g1. On the other hand, g2 is “worse” than g1 in

the sense that g2 contains in its range the worst outcome while g1 does not. This suggests that

the parameter q determines whether the DM makes much of probability values governed by µ

or utility values governed by v. When q becomes smaller and closer to 1, the probability values

become relatively more important to her, and hence g2 becomes more preferred to g1. On the

contrary, when q becomes larger and closer to +∞, the utility values become relatively more

important, and hence g2 becomes less preferred to g1.

The point made in the previous paragraph will be highlighted if we consider an extreme

case. Let ⟨E1, E2⟩ be a partition of S such that (∀i) µ(Ei) > 0, let x1, x2 ∈ X be outcomes, let

f be an act defined by

f =

[
x1 on E1

x2 on E2

]
,

and let U be a representation of ≽q as defined by (5). Then, when q = 1, U(f) = v(xi), where

i = argmaxj=1,2 µ(Ej), and the probability values are decisive in evaluating the act.8 On the

other hand, when q = +∞, U(f) = (v(x1)+v(x2))/2 regardless of µ(Ei)’s, and the utility values

are decisive in it.9

3.2. The Asymmetric Error Function

Let µ be a finitely-additive, non-atomic probability measure on (S,E) and let v : X →

[0, 1] be a function such that (∃x∗, x∗ ∈ X) v(x∗) = 1 and v(x∗) = 0. For any q ∈ (1,+∞) and

any γ > 0, define the asymmetric error function ϕq,γ : [0, 1]× [0, 1] → R by

(∀u, v) ϕq,γ(v, u) =

{
γ|v − u|q if v ≥ u

|v − u|q if v < u .

Note that ϕq,γ satisfies E1-E6.

8When µ(E1) = µ(E2), the solution to (5) could be any number between v(x1) and v(x2), and hence, ≽q is not
well-defined. This is why we exclude the case where q = 1 at the outset. Hence, the argument in this paragraph
stands only heuristically.

9When q = +∞, we think of (5) as

min
u∈[0,1]

lim
q→+∞

(∫
S

|v ◦ f(s)− u|q dµ(s)
)1/q

.

Again, the argument remains only to be heuristic.
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Now, define the preference relation ≽q,γ on F0 by (∀f, g) f ≽q,γ g ⇔ U(f) ≥ U(g),

where for any f ∈ F0, U(f) is defined as a unique solution u to

min
u∈[0,1]

∫
S
ϕq,γ (v ◦ f(s), u) dµ(s) .

Since U(f) is well-defined and the requirement that (∀x, x′ ∈ X) x ≽q,γ x′ ⇔ v(x) ≥ v(x′) holds

because (∀x) v(x) = U(x), ≽q,γ is well-defined and based on the loss-minimization by definition.

When γ = 1, ϕq,γ is reduced to ϕq in the previous subsection. Otherwise, ϕq,γ treats

an underestimate (u < v) and an overestimate (u > v) asymmetrically. When γ < 1, an

overestimate is more penalized than an underestimate since the error caused by the latter is

tolerated by γ while the error caused by the former is not. On the other hand, when γ > 1, the

underestimate is more penalized than the overestimate.

When γ = 1 and q = 2, ≽q,γ (=≽2,1=≽2) satisfies Axiom P2 and it is represented by

the expected utility. However, ≽q,γ need not satisfy P2 unless γ = 1, even if q = 2, as shown

by the next example.

Example 2 Let γ > 0, let z ∈ X be an outcome such that v(z) = γ/(1+γ) and let ⟨E1, E2, E3⟩

be a partition of S such that µ(E1) = µ(E2) = 1/4 and µ(E3) = 1/2. Define an act f by

f =

[
x∗ on E1

x∗ on E2 ∪ E3

]
.

Then, it follows that [
z on E1 ∪ E2

z on E3

]
∼2,γ

[
f on E1 ∪ E2

z on E3

]
and that

g1 ≡
[
z on E1 ∪ E2

x∗ on E3

]
≻2,γ

[
f on E1 ∪ E2

x∗ on E3

]
≡ g2 ⇔ γ > 1 .

Thus, Axiom P2 is violated whenever γ ̸= 1, even if q = 2.

Given the act g1, the DM would be “disappointed” with a probability 1/2 if she expected

any utility value between two utility values v ◦ g1 might assume. Similarly, given the act g2, she

would be “disappointed” with a probability 1/4 if she expected any utility value between two
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utility values v ◦ g2 might assume. When γ < 1, she prefers the act under which she incurs a

disappointment with a less probability. Therefore, the example suggests that when γ < 1, ≽2,γ

exhibits a disappointment aversion (also, see Gul, 1991).

4. Conditional Preferences

The discussion in Section 2 leads us to a natural definition of conditional preferences.

Formally, let ⟨Ti⟩ni=1 be a finite partition of S and let an estimator be a function from S into [0, 1]

which is ⟨Ti⟩i-measurable.10 We denote the set of all estimators by B(⟨Ti⟩i) and its generic ele-

ment by û. Suppose that the DM’s (unconditional) preference is based on the loss-minimization

with some µ, v and ϕ such that (∀i) µ(Ti) > 0 (as is characterized by Theorem 1). When the

DM observes an event Ti, the preference after observing it is called a conditional preference

and denoted by ≽Ti . We define a class of conditional preferences, ⟨≽Ti⟩ni=1, as follows. Let

Û(f) = (U1(f), . . . , Un(f)) be such that

Û(f) = argmin
û∈B(⟨Ti⟩i)

∫
S
ϕ(v ◦ f(s), û(s)) dµ(s) . (6)

Here, f is an act to be evaluated and the minimum is assumed to exist uniquely.11 Then, for

each i, define ≽Ti by f ≽Ti g ⇔ Ui(f) ≥ Ui(g).
12

The problem (6) can be decomposed into sub-problems, which is formally stated in the

next theorem.

Theorem 5 Let Û(f) be the unique solution to the problem (6). Then, for each i,

Ui(f) = argmin
ui∈[0,1]

∫
S
ϕ(v ◦ f(s), ui) dµTi(s) , (7)

where µTi is a probability measure on (S,E) which is derived from µ according to Bayes’ rule:

(∀E) µTi(E) = µ(Ti ∩ E)/µ(Ti).

In the theorem, µTi is well-defined by the assumption that (∀i) µ(Ti) > 0. We may

naturally think of (7) to correspond the inference problem in which the DM estimates the utility
10We say that a function is ⟨Ti⟩i-measurable if it is measurable with respect to the algebra generated by ⟨Ti⟩i.
11For the unique existence, it suffices to assume that ϕ satisfies E6.
12For an axiomatic treatment of conditional preferences, see Epstein and Le Breton (1993).
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value after observing the occurrence of Ti with µ updated into µTi . In particular, the DM

minimizes the error function which defines her original (or unconditional) preference.

When the error function is specified by ϕ2, it turns out that the solution Û(f) to (6)

equals the conditional expectation of v ◦ f with respect to the probability measure µ given

the information partition ⟨Ti⟩i and that the solution Ui(f) to (7) equals the expectation of

v ◦ f with respect to the posterior probability measure µTi . Hence, we may suggestively write

as Û(f) = Eµ[ v ◦ f | ⟨Ti⟩i ] and Ui(f) = EµTi [ v ◦ f ] in such a case. It is well-known that

in Savage’s framework the preference represented by the expected utility is naturally revised

to the conditional preferences represented by the conditional expected utilities with the prior

belief updated according to Bayes’ rule (Kreps, 1988, Chapter 10; Ghirardato, 2002). Hence,

the conditional preferences defined through (6) (or (7)), as well as the unconditional preference

defined through (1), extend Savage’s framework by replacing the squared-error loss function by

a more general loss function in corresponding inference problems.

5. Lemmas and Proofs

In order to prove Theorem 1, we first prove a couple of lemmas.

Lemma 1 Suppose that the preference relation ≽ on F0 satisfies all the axioms in Theorem

3 and hence that it is betweenness-satisfying. Also, assume that ≽ satisfies Axiom A3 as well.

Then, the utility index v is continuous and v(X) = [0, 1]. Furthermore, the betweenness function

φ can be taken so as to satisfy

B3. (∀u, v ∈ [0, 1]) φ(v, u) = 0 ⇔ u = v .

Proof Let v be a utility index and let φ be a betweenness function. Their existence is guar-

anteed under Axioms P1, P3, P4c, P5, P6, A1 and A2 by Theorem 3. Also, for each f ∈ F0, let

U(f) denote a unique solution to (2). The continuity of v follows from A3 and the fact that v

represents ≽ restricted to X. The continuity of v and the assumption that X is connected imply

that v(X) is connected (Munkres, 1975, p.149, Theorem 1.5), which shows that v(X) = [0, 1] by

v(x∗) = 1 and v(x∗) = 0. In the rest of proof, we show the existence of a betweenness function
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φ̂ which satisfies B3. First, note that

(∀x, x′ ∈ X) v(x) ≥ v(x′) ⇔ x ≽ x′ ⇔ U(x) ≥ U(x′) , (8)

which implies that there exists a strictly increasing function g : [0, 1] → R such that (∀x ∈

X) U(x) = g ◦ v(x). Since U is continuous on X by A3 and (8), U(X) is connected. Hence, the

strict increase of g implies that g is continuous. Define φ̂ : [0, 1]× [0, 1] → R by (∀û, v) φ̂(v, û) =

φ(v, g(û)). Then, φ̂ satisfies B1 since φ satisfies B1 and it satisfies B2 since g is continuous

and φ satisfies B2. Furthermore, both φ̂ and φ generate the identical betweenness-satisfying

preference by the strict increase of g. Finally, we show that φ̂ satisfies B3. To show (⇐), let

v̄ ∈ [0, 1] be arbitrary and let x ∈ X be such that v(x) = v̄. Then, φ̂(v̄, v̄) = φ(v̄, g(v̄)) =

φ(v(x), g ◦ v(x)) = φ(v(x), U(x)) = 0, where the last equality holds by (2). To show (⇒), it

suffices to note that (∀v̄) φ̂(v̄, v̄) = 0 (just proven) and φ̂ satisfies B1. �

Let P0(X) be the set of all simple probability measures on X. Here, we say that a proba-

bility measure p onX is simple if it has a finite support. Given an act f and a probability measure

µ on (S,E), define the simple probability measure pf ∈ P0(X) by (∀x) pf (x) = µ(f−1({x})).

Note that with this notation, the equation (2) can be rewritten as∫
X
φ(v(x), u) dpf (x) = 0 . (9)

Lemma 2 Let µ be a finitely-additive, non-atomic probability measure, let v be a utility index,

let φ be a betweenness function and for each f ∈ F0, let U(f) be a unique solution to (2).

Define a map V : P0(X) → R by (∀p) V (p) = U(f), where f is such that p = pf . Then, V is

well-defined and, for any p, q ∈ P0(X), the map defined by

λ 7→ V (λp+ (1− λ)q) ,

is continuous on [0, 1].

Proof (Well-definition) First, note that for any p ∈ P0(X), there exists an act f such that

p = pf by the non-atomicity of µ. Second, suppose that pf = pg for some pair of acts, f, g ∈ F0.

Then, U(f) = U(g) since both are the unique solution to (9).13 Hence, V (p) does not depend
13This property is called probabilistic sophistication according to Machina and Schmeidler (1992).
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on the choice of f ∈ F0 such that p = pf .

(Continuity) Let p, q ∈ P0(X) and let ⟨λn⟩∞n=1 ⊆ [0, 1] converge to λ0. We show that

limn→∞ V (λnp + (1 − λn)q) = V (λ0p + (1 − λ0)q), which completes the proof. In the rest of

proof, V (λnp+ (1− λn)q) is abbreviated as Vn for each n. Note that it follows from (9) that

(∀n ≥ 1) λn

∫
X
φ(v(x), Vn) dp(x) + (1− λn)

∫
X
φ(v(x), Vn) dq(x) = 0 . (10)

Let ⟨λni⟩∞i=1 be a subsequence of ⟨λn⟩∞n=1 such that ⟨Vni⟩∞i=1 converges to limn→∞ Vn. Then,

(10), the dominated convergence theorem and B2 imply

0 = lim
i→∞

λni

∫
X
φ(v(x), Vni) dp(x) + lim

i→∞
(1− λni)

∫
X
φ(v(x), Vni) dq(x)

= λ0

∫
X

lim
i→∞

φ(v(x), Vni) dp(x) + (1− λ0)

∫
X

lim
i→∞

φ(v(x), Vni) dq(x)

= λ0

∫
X
φ(v(x), lim

n→∞
Vn) dp(x) + (1− λ0)

∫
X
φ(v(x), lim

n→∞
Vn) dq(x) .

By a symmetric argument, it also holds that

λ0

∫
X
φ(v(x), lim

n→∞
Vn) dp(x) + (1− λ0)

∫
X
φ(v(x), lim

n→∞
Vn) dq(x) = 0 .

Therefore, we conclude that V (λ0p + (1 − λ0)q) = limn→∞ Vn = limn→∞ Vn, and hence, that

V (λ0p+ (1− λ0)q) = limn→∞ Vn. �

Proof of Theorem 1 Suppose that the preference relation ≽ on F0 satisfies Axioms P1, P3,

P4c, P5, P6, A1, A2 and A3. Then, Theorem 3 shows that ≽ is betweenness-satisfying with some

finitely-additive, non-atomic probability measure µ, some utility index v and some betweenness

function φ. In particular, we may assume that φ satisfies B1, B2 and B3 by Lemma 1. Define

a map ϕ : [0, 1]× [0, 1] → R by

(∀u, v) ϕ(v, u) =

∫ v

0
φ(v, t) dt−

∫ u

0
φ(v, t) dt .

Note that ϕ is well-defined by B2. Also, note that φ(v, u) > 0 if u < v. To see this, suppose that

φ(v, u) ≤ 0 and u < v. Then, it follows that φ(u, u) < 0 by B1, which contradicts B3. Similarly,

it holds that φ(v, u) < 0 if u > v. These properties show that ϕ thus constructed satisfies E1
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and E2. Furthermore, ϕ satisfies E3, E4 and E5 by B2, B1 and B3, respectively. Therefore, ϕ

is an error function.

For each f ∈ F0, let U(f) denote a unique solution to (2). Then, define a map ξ :

F0 × [0, 1] → R by

(∀f, u) ξ(f, u) = −
∫
S
φ(v ◦ f(s), u) dµ(s) .

It follows by definition that ξ(f, u) = 0 if and only if u = U(f). The rest of this paragraph proves

(a) ξ(f, u) < 0 if u < U(f) and (b) ξ(f, u) > 0 if u > U(f). To prove (a), suppose that f and u

are such that 0 ≤ u < U(f). Define a map V : P0(X) → R by (∀p) V (p) = U(g), where g is such

that p = pg. The well-definition of V is among the conclusions of Lemma 2. Then, it follows

that U(f) = V (pf ) and that 0 = V (δx∗) because V (δx∗) = U(x∗) = v(x∗) = 0, where the second

equality holds by (2) and B3. Therefore, we have V (δx∗) ≤ u < V (pf ). Then, Lemma 2 and the

intermediate value theorem imply that there exists λ ∈ (0, 1] such that V (λδx∗ +(1−λ)pf ) = u.

Therefore, it turns out that

0 = −
∫
X
φ(v(x), u) d[λδx∗ + (1− λ)pf ](x)

= −λφ(v(x∗), u)− (1− λ)

∫
X
φ(v(x), u) dpf (x)

> −
∫
X
φ(v(x), u) dpf (x) = ξ(f, u) ,

where the first and last equalities hold by (9) and the strict inequality follows from λ ̸= 0 and

the fact that

φ(v(x∗), u) <

∫
X
φ(v(x), u) dpf (x) . (11)

To see (11), note that pf assigns a positive probability to some x′ ∈ X such that x′ ≻ x∗ since

otherwise (11) would hold with an equality for all u because v represents ≽ restricted to X and

x∗ is the worst outcome, which would contradict the assumption that V (δx∗) < V (pf ). This,

that v represents ≽ restricted to X and B1 show (11), which completes the proof of (a). By a

symmetric argument which uses x∗, (b) can be also established.

Let f ∈ F0. By the definition of ϕ, u ∈ [0, 1] minimizes∫
S
ϕ(v ◦ f(s), u) dµ(s) (12)
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if and only if it minimizes ∫
S

(
−
∫ u

0
φ(v ◦ f(s), t) dt

)
dµ(s)

=

∫ u

0

(
−
∫
S
φ(v ◦ f(s), t) dµ(s)

)
dt

=

∫ u

0
ξ(f, t) dt

where the first equality holds by Fubini’s theorem and the second equality holds by the definition

of ξ. The previous paragraph ((a) and (b)) shows that u = U(f) uniquely minimizes the last

expression, and hence, it also uniquely minimizes (12), which completes the proof. �

Proof of Theorem 2 Axiom A3 follows immediately by the assumption that v is continuous

on X and it represents ≽ restricted to X. We show that the preference based on the loss-

minimization with a convex error function is betweenness-satisfying, which completes the proof

by Theorem 3.

To show that ≽ is betweenness-satisfying, let f be an act and suppose that u∗ = U(f)

solves

min
u∈[0,1]

∫
S
ϕ(v ◦ f(s), u) dµ(s) .

First, assume that u∗ ∈ (0, 1). Then, by E3, it must hold that∫
S
ϕ2(v ◦ f(s), u∗) dµ(s) = 0 , (13)

where ϕ2 denotes ∂ϕ/∂u. Next, assume that u∗ = 0. Then, by E3, it must hold that∫
S
ϕ2(v ◦ f(s), u∗) dµ(s) ≥ 0 . (14)

Note that (∀s) v ◦ f(s) ≥ u∗ by the fact that u∗ = 0 and v(X) ⊆ [0, 1]. Hence, the inequality

in the opposite direction also holds in (14) by E4 and E5, which shows that the equation (13)

holds even when u∗ = 0. A symmetric argument shows that the equation (13) holds also when

u∗ = 1. Note that any other u except for u∗ does not satisfy (13) by E6. Therefore, if we set

φ = −ϕ2, u
∗ = U(f) will be a unique solution to the equation (2). Furthermore, φ thus defined

satisfies B1 by E4 and it satisfies B2 by E3. �
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Proof of Theorem 5 Let p(i|s) be the probability that Ti occurs given that the true state is

s. Then, (∀s)
∑n

i=1 p(i|s) = 1. Therefore, for any f ∈ F0 and any û ∈ B(⟨Ti⟩i), it holds that∫
S
ϕ(v ◦ f(s), û(s)) dµ(s) =

∫
S
ϕ(v ◦ f(s), û(s))

n∑
i=1

p(i|s) dµ(s)

=

n∑
i=1

∫
S
ϕ(v ◦ f(s), û(s))p(i|s) dµ(s)

=

n∑
i=1

∫
S
ϕ(v ◦ f(s), û(s))p(i|s)dµ(s)

µ(Ti)
· µ(Ti)

=
n∑

i=1

∫
S
ϕ(v ◦ f(s), û(s))µ(Ti ∩ ds)

µ(Ti)
· µ(Ti)

=
n∑

i=1

∫
S
ϕ(v ◦ f(s), û(s)) dµTi(s) · µ(Ti) .

Since û is constant over each Ti and the integrals in the last line can be minimized one by one,

the proof is complete. �
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