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Abstract

We study the process of iterated elimination of (strictly) dominated strate-

gies and inessential players from a finite strategic game (abbreviated as the IEDS

process) A resulting (finite) sequence from this process is called a WIEDS, and the

IEDS is the WIEDS where at each step of the process, all the dominated strategies

and inessential players are eliminated. First, we show that any WIEDS preserves

Nash equilibrium. The second result, an extension of the order-independence theo-

rem, is that the IEDS sequence is the shortest and smallest WIEDS as well as that

the resulting end game is the same. We have the third result about necessary and

sufficient conditions for the possible sequences for the IEDS process. The conditions

indicate a great variety of sequences possibly sustained as IEDS sequences for some

games. We will interpret those results from the perspective of abstracting of social

situations.

Key Words: Finite Strategic Form Games, Dominated Strategies, Inessential Play-

ers, Iterated Elimination, Order-Independence

1. Introduction

The notion of eliminations of dominated strategies is basic in game theory, and its re-

lationships to other solution concepts such as rationalizability have been well discussed

(cf., Osborne-Rubinstein [14], and Maschler, et al. [7]). Its nature, however, differs from

other solution theories: It suggests negatively what would/should not be played, while
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other concepts suggest and predict what would/should be chosen in social/game situ-

ations. In this paper, we study eliminations of dominated strategies and of inessential

players whose unilateral changes do not affect any players’ payoffs including his owns.

First, we describe this elimination process, and second consider its implications from

the perspective of abstracting a social/game situation.

1.1. Elimination Process of Dominated Strategies and Inessential Players

We consider eliminations of (strictly) dominated strategies and inessential players in

finite strategic form games, as well as their iterations. Eliminations of dominated strate-

gies have a long history from Gale, et al. [3], but have studied extensively rather recently.

We should mention two results in the literature, which are relevant to this paper.

One is the preservation theorem that Nash equilibrium is faithfully preserved in the

elimination process, which is presented in Maschler, et al. [7], Theorem 4.35, p.109.

The other result is more known in the literature that the elimination process results

with the same endgame regardless of orders of eliminations of dominated strategies;

this order-independence theorem was a kind of a folk theorem in the literature (some

proofs are given in Gilboa et al. [4] and some others1), but now we find a comprehensive

treatment of this theorem in Apt [1]2 3. First, we will present generalizations of these

two results in our framework allowing eliminations of inessential players, which will be

given as Theorem 3.1 (preservation) and Theorem 5.1 (smallest and shortest).

Then, we will give another theorem on the IEDS process for the possible lengths

and shapes in Theorem 6.1, which we call the possible-shape theorem.

Let us describe our framework and these three theorems. Eliminations of inessen-

tial players are newly introduced in this paper: A player is inessential iff his unilateral

changes in strategies do not affect any players’ payoffs including his own. We con-

sider a possible (finite) sequence of games generated from the IEDS process. Such a

sequence is called aWIEDS (sequence), where one game to the next game is connected

by eliminations of dominated strategies and of inessential players; when we assume the

eliminations of all dominated strategies and of all inessential players for each step, the

WIEDS is called the IEDS (sequence). We are interested in the speed and shape of

such a sequence, in addition to the resulting outcomes.

We have a few possible choices of orders of applications of those eliminations, but it

will be shown in Lemma 2.3 that one order is more effective than the others. We take

the order of eliminations of dominated strategies and then of inessential players.

1A full proof was given around 1990 by several people including T. Börgers and M. Stegman (see

Apt [1] as well as Börgers [2]).
2Apt [1] treats iterated eliminations of various types of dominations, and can be read as a compre-

hensive survey of these subjects.
3 It is well known that this order-independence theorem does not hold in the case of weak dominance,

(cf., Myerson [12], p.60).
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The preservation result (Theorem 3.1) is simply obtained for any WIEDS. Our

smallest-shortest result (Theorem 5.1) states that from a given game, the IEDS is the

shortest and smallest among all WIEDS’s, and the resulting end games are the same.

The last part is the order-independence theorem mentioned above. Since our process in-

cludes eliminations of inessential players, we need to develop various concepts to discuss

the proof of this theorem.

The third result (Theorem 6.1) describes what shapes and lengths the IEDS se-

quences could have. First, we derive a certain set of necessary conditions for the IEDS

sequence, which may appear insubstantial and far from sufficient conditions for the

IEDS. However, when those conditions are given, we can construct a game so that the

IEDS sequence from this game meet those conditions. For the 2-person case, these con-

ditions give a specific information about the possible IEDS’s, but for the case with more

than 2 players, they do not give much restrictions. Hence, we have the implications that

we have a large variety of IEDS (and WIEDS) sequences.

1.2. Choices of Relevant Actions/Players in an Abstraction Process

A social situation is a complex system containing a lot of seemingly relevant and/or

irrelevant components. We, social scientists, focus on a target situation, by choosing

relevant components and eliminating irrelevant ones. The standard economics textbooks

start with this methodological view:

“... An economic model or theory is a simplified representation of how the economy,

or parts of the economy, behave under particular conditions. In building a model,

economists do not try to explain every detail of the real world. Rather, they focus

on the most important influences on behavior because the real world is so complex”

(Thompson [15], p.10).

An analysis in game theory/economic theory, however, starts after such an abstraction

is already done and given. Our study can be viewed as a trial of this abstraction process.

As described in Fig.1.1, our social world consists of many players, who are interde-

pendent upon each other. Some interdependences are significant but many are insignif-

icant. For example, the Battle of the Sexes is a 2-person game, while the corresponding

social situation may include other boys and girls. When we have the Battle of the Sexes

as an appropriate abstraction of the situation, we drop the other boys and girls. Let us

consider a 3-person extension of the Battle of the Sexes.

Example 1.1 (Battle of the Sexes with the 2nd Boy). Consider the Battle of the

Sexes situation including boy 1 girl 2 and another boy, 3 Let BS(1 2) be described

as Table 1.1. Following Luce-Raiffa [13], boy 1 and girl 2 date at the boxing arena

(s11 = s21) or the cinema (s12 = s22) but make decisions independently. Now, another

boy, player 3 enters to this scene: Player 2 can play another BS game with player 3
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Figure 1.1: Relevant and Irrelevant People

dating in a different arena or cinema, which is described by Table 1.2. Here, player 2

has two more strategies. When 1 and 2 are considering their date, they would be happy

even if they fail to meet, and player 3 does not enter to their minds at all. In this case,

the choice by 3 does not affect the payoffs for 1 and 2. The numbers in the parentheses

in Table 1.1 are 3’s payoffs; we assume that his action has no effects on his payoffs. The

dating situation for 3 and 2 is parallel to the situation for 1 and 2; only player 2 is much

less happy than dating with player 1 Table 1.2; BS(3 2) is also a Battle of the Sexes.

Now, player 2’s two strategies s23 and s24 are dominated by s21 and s22We eliminate

those dominated strategies, and the resulting game is still a 3-person game. However,

player 3 is inessential in the sense that 2 thinks only about dating with 1 and player

3’s choice does not affect the players’ payoffs at all. Thus, we can eliminate him as an

inessential player, and we have the Battle of the Sexes BS(1 2)

Table 1.1; BS(1 2) game Table 1.2; BS(3 2) game

1\2 (3) s21 s22
s11 15,10 (−10) 5,5 (−5)
s12 5,5 (−5) 10,15 (−10)

3\2 (1) s23 s24
s31 15,1 (−10) 0,0 (−5)
s32 0,0 (−5) 10,2 (−10)

Table 1.3; 3-person game

1 boy
BS(12)←→ 2, girl

BS(32)←→ 3, boy

Our study of the elimination process can be interpreted from the inside player’s view

as well as the outside scientist’s view; the former interpretation requires a player’s un-

derstanding of a situation, particularly, upon, experiential beliefs/knowledge on the sit-

uation, which can be understood from the viewpoint of inductive game theory (Kaneko-

Matsui [6], Kaneko-Kline [5]). However, this requires a lot of restrictions for a player’s

4



experiences and understanding about the situation. In this paper, we will not con-

sider such restrictions, but will take the outsider’s perspective, i.e., will consider no

restrictions on iterations of eliminations of dominated strategies and inessential players.

The preservation result (Theorem 3.1) has the implication that the eliminations of

dominated strategies and inessential players do not affect the Nash equilibrium analysis

after abstraction. The smallest-shortest result (Theorem 5.1) states that the iterated

eliminations of the all the dominated strategies and then that of inessential players are

the most efficient process. In Section 7, however, from the viewpoint of the number

of preference comparisons, this is not necessarily true. The third result (Theorem 6.1)

suggests that behind the abstracted game, there are vast possible social situations which

go to the same abstracted game.

The paper is organized as follows: Section 2 gives basic definitions of dominance,

an inessential player, and a few concepts of reductions of a game. Section 3 gives the

preservation theorem. Section 4 defines the IEDS process, WIEDS and IEDS sequences.

Section 5 gives and proves our version of the order-dependence theorem. Section 6 gives

and proves the possible-shape theorem, Theorem 6.1. In Section 7, we will return to our

original motivation stated above, and discuss the difficulties raised by our considerations

from the viewpoint of the outside observer and that of an inside player.

2. Eliminations of Dominated Strategies and Inessential Players

We define three types of reductions of a game by eliminations of dominated strategies

and inessential players, but we show that one type is more effective than the other two

types. When we eliminate some (inessential) players, the player set shrinks; the domain

of payoff functions for the remaining players change. Thus, we should be careful about

the definition of a reduction.

Let  = ( {}∈  {}∈ ) be a finite strategic game, where  is a finite set

of players,  is a finite (nonempty) set of strategies and  : Π∈ → R is a payoff
function for player  ∈  We allow  to be empty, in which case the game is the

empty game, denoted as ∅When we eliminate all the players in the IEDS process, the
resulting game is the empty game ∅

We use the following notation: Let  be a subset of  Then, we may denote

 ∈  := Π∈ as ( ; −) where  = {}∈ and − = {}∈−  When
 = {} we write − for −{} and (; −) for ( ; −)

Let  be given, and  
0
 ∈ . We say that 

0
 dominates  in  iff (

0
; −) 

(; −) for all − ∈ − When  is dominated by some 
0
 we say simply that  is

dominated in 

We say that  is an inessential player iff for all  ∈ 

(; −) = (
0
; −) for all  

0
 ∈  and − ∈ − (2.1)
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A choice by  does not affect any players’ payoffs including ’s own, provided the others’

strategies are arbitrarily fixed. We find a weaker version of this concept in Moulin [9];

he requires  to be  only. From the viewpoint of player ’s own decision making, once 

becomes inessential in this weak sense, he may stop thinking about his choice. However,

his choice may still affect the others’ payoffs; in this case, ’s choice is still relevant to

them Some examples of inessential players will be discussed below4.

As stated, we should be careful about the domains of the payoff functions when the

player set changes. In fact, (2.1) can be extended to an arbitrary set of inessential play-

ers, stated in the following lemma, which guarantees to have the meaningful restrictions

of payoff functions.

Lemma 2.1. Let  be a set of inessential players. Then, for all  ∈ 

( ; −) = (
0
 ; −) for all   

0
 ∈  and − ∈ −  (2.2)

Proof. Let  = {1  } and  = {1  } for  = 1   Also, let  0 ∈ 
be arbitrarily fixed. We prove ( ; −) = (

0

; −) by induction on  =

1   Since  0 ∈  are arbitrary, this for  =  implies (2.2). The base case,

i.e.., (1 ; −1) = (
0
1
; −1) is obtained from (2.1). Suppose ( ; −) =

(
0

; −) Since  = ( ; −) = (+1 ; −+1) we have (+1 ; −+1) =

( ; −)Applying (2.1) to (0 ; −) we have (
0

; −) = (

0
+1

; −+1)
Now, we have, by the induction hypothesis, (+1 ; −+1) = ( ; −) = (

0

; −)

= (
0
+1

; −+1) Thus, we have the assertion for + 1

Let  be a set of inessential players in ,  0 =  −  and let  be any player in  0.
By Lemma 2.1, we can talk about the restriction of the payoff function  : Π∈ → R
to the domain Π∈ 00 with ∅ 6= 0 ⊆  for  ∈  0 Then, the restriction, denoted by
0 of  to Π∈ 00 is defined by

0( 0) = ( 0 ; − 0) for all  0 ∈ 0 0 and − 0 ∈ − 0  (2.3)

The well-definedness of 0 is guaranteed by Lemma 2.1.
We say that a game 0 is a D-reduction of  iff the components of 0 satisfy:

DR1:  0 ⊆  and any  ∈  − 0 is an inessential player in ;

DR2: for all  ∈  0 0 ⊆  and any  ∈  − 0 is a dominated strategy in ;

DR3: 0 is the restriction of  to Π∈ 00 

4Also, the concept of an inessential player may look related to the condition on the payoff functions,

called the transference of decision maker indifference, due to Marx-Swinkels [8], p.5, which states that

if two strategies  
0
 for player  have unilaterally the same effects for − the others have the same

effects. This is relative to two strategies  
0
, and − while an inessential player  has no effects on

his and the others payoffs by his own unilateral changes.
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A D-reduction allows simultaneous eliminations of dominated strategies and inessential

players; both are relative to the initial game . It would be clearer to separate between

eliminations of dominated strategies and of inessential players.

First, we restrict a D-reduction as follows: Let  be a game, and 0 a D-reduction of
 When  0 =  holds in DR1 0 is called a ds-reduction of  denoted as → 

0
and furthermore, when  − 0 = { :  is a dominated strategy for  in } holds in
DR2 it is the strict ds-reduction of 

Returning to a D-reduction 0 of  when 0 =  for all  ∈  0 in DR2 0 is called
an ip-reduction of  denoted by  → 

0 and furthermore when  − 0 = { :  is
an inessential player in } holds in DR2 it is the strict ip-reduction of 

In this paper, we choose the application order of a ds-reduction and then an ip-

reduction. Hence, we have the following definition: We say that 0 is a DI -compound
reduction of  iff there is a game  such that →  and → 

0. We abbreviate
a DI -compound reduction simply as a DI -reduction

→ → 
0| {z }

-reduction

→ → 
0| {z }

-reduction

(2.4)

This still allows trivial cases, e.g.,  =  or  = 0 When  is the strict -reduction

of  and 0 is the strict -reduction of  we say that 0 is the strict DI -reduction
of . In this case, we have  6=  if  has some dominated strategies, and  6= 0 if
 has some inessential players. The game  will be called an interpolating game of a

DI-reduction.

We have another compound reduction: We say that 0 is an ID-reduction of  iff

→ → 
0 for some Lemma 2.3 will show the equivalence betweenD-reductions

and ID-reductions.

The following lemma states that if a dominated strategy in  remains in a subgame

0 of  then it is still dominated in 0; and the parallel fact holds for an inessential
player. The third assertion states that eliminations of only inessential players do not

generate new dominated strategies. Example 2.2, however, shows that only eliminations

of inessential players may generate new inessential players.

Lemma 2.2. Let 0 = ( 0 {0}∈ 0  {0}∈ 0) be a D-reduction of 

(1): If  ∈ 0 ( ∈  0) is dominated in  so is in 0

(2): If  ∈  0 is an inessential player in  so is in 0

(3): Suppose that 0 =  for all  ∈  0 Let  ∈  and  ∈  0 Then, a strategy  is

dominated in  if and only if it is dominated in 0

Proof. We prove only (1); and (2) is similarly proved. Suppose that  is dominated

by 0 in  Then, (
0
; −{})  (; −{}) for all −{} ∈ −{}We can assume
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without loss of generality that 0 is not a dominated strategy in  Since 
0 is a subgame

of  we have, by (2.3), for all − 0 ∈ − 0  0(
0
;  0−{}) = (

0
;  0−{}; − 0)

 (;  0−{}; − 0) = 0(;  0−{}) for all  0−{} ∈ 0
 0−{} Thus,  is dominated

by 0 in 0

(3): (1) is the only-if part. Now, consider the if part. Suppose that  is domi-

nated by 0 in 0 Then, 0(
0
; 

0
 0−{})  0(; 

0
 0−{}) for all 

0
 0−{} ∈ 0

 0−{}
By the assumption, we have 0

 0−{} =  0−{} Let 0 0−{} be an arbitrary element in
0
 0−{} =  0−{} Since 0 is a subgame of  we have, by (2.3), for all − 0 ∈ − 0 

(
0
; 

0
 0−{}; − 0) = 0(

0
; 

0
 0−{})  0(; 

0
 0−{}) = (; 

0
 0−{}; − 0) for all

 0−{} ∈ 0
 0−{} Thus,  is dominated by 

0
 in  too

Although we decompose D-reductions into two parts and define compound reduc-

tions, the ID-reductions are equivalent to the D-reductions. However, the DI -reductions

are more effective than the others. The converse of (2) does not hold.

Lemma 2.3.(1): 0 is a D-reduction of  if and only if 0 is an ID-reduction of .

(2): If 0 is a D-reduction of  then 0 is a DI -reduction of 

Proof. (1):(Only-If): Let 0 is a D-reduction of  It follows from Lemma 2.2.(1) that

we can postpone and separate eliminations of dominated strategies from eliminations

inessential players. Hence, 0 can be an ID-reduction.
(If): Let 0 be an ID-reduction of  i.e., → → 

0 for some  Lemma 2.4.(3)
states that  has the same set of dominated strategies as  Hence, we can combine

these two reduction processes to one, which yields the D-reduction 0
(2): Let 0 be an ID-reduction of  Then, we have an interpolating  such that

 →  → 0 The game  may differ from  only with their player sets, i.e.,

 ⊆  By Lemma 2.2.(3), the dominated strategies in  are the same as those in 

Then, a set of dominated strategies  in  are eliminated and 0 results. Since  is a

set of dominated strategies in  we can eliminate them from  and we have  i.e.,

→  By Lemma 2.2.(2), the inessential players in  remain inessential. Hence, we

eliminate  − from  in . This game is the same as 0 and  → 
0 Hence, 0

is an DI -reduction.

This is illustrated in the following example.

Example 2.1 (Large and Small Stores). Consider the leftmost game of Figure 2.1,

which is interpreted as follows: 1 is a large supermarket, 2 is a small mart; and 1 ignores

2 Here, neither player is inessential, but s12 is dominated. By eliminating s12 we have

the second left table, where player 1 is inessential, and by eliminating him. Now, we

have the third table, where s22 is dominated, and goes to the fourth table. Finally, 2 is

eliminated, and we have the empty game ∅ The third table is a DI -reduction of the
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first, but not a D-reduction. Also, the last empty game is a DI -reduction of the third.

The fourth is a D-reduction of the second.⎛⎝ 1\2 s21 s22
s11 30,1 30,0

s12 20,0 20,1

→


1\2 s21 s22
s11 30,1 30,0

⎞⎠→


µ
2 s21 s22

1 0
→


2 s21
1

¶
→


∅

Fig.21

The fourth game is a ID-reduction of the second, and also is a D-reduction. This

equivalence will be shown in Lemma 2.3.(1).

In the above examples, eliminations of dominated strategies generate new inessen-

tial players. However, eliminations of inessential players may generate new inessential

players, too.

Example 2.2 (Elimination of Inessential Players, only). The leftmost 2-person

game has no dominated strategies, but player 1 is inessential. By eliminating 1, we have

the second 1-person game, and by eliminating 2, we have the empty game.

1\2 s21 s22
s11 4,6 2,6

s12 4,6 2,6

→


2 s21 s22
6 6

→


∅

Fig.22

3. Preservation of Nash Equilibria

As discussed in Section 1, we study eliminations of dominated strategies and inessential

players as negative criteria to eliminate irrelevant players as well as irrelevant actions

for some players. From the abstraction point of view, it could be required that such

eliminations should loose no essences in the target social situation. Here, we show that

this is the case with respect Nash equilibrium.

Let  be a finite nonempty game. We say that  ∈  is a Nash equilibrium in  iff

for all  ∈  () ≥ (
0
; −) for all 

0
 ∈  Let  be the null symbol, i.e., for any

 ∈  we stipulate (; ) =  and that the restriction of  to the empty game ∅ is the
null symbol  itself. Also, we stipulate that the null symbol  is the Nash equilibrium

in ∅.
Then, we have the following basic theorem, stating that eliminations of dominated

strategies and inessential players do not affect Nash equilibrium. In the case of elimi-

nations only of dominated strategies, the theorem is reduced to one given in Maschler,

et al. [7], Theorem 4.35, p.1095.

5Exactly speaking, their theorem states that Nash equilibrium remains in iterated eliminations of

dominated strategies. But this follows from Theorem 2.1.
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Theorem 3.1 (Preservation of Nash Equilibria). Let 0 be a D-reduction of 
Then

(1): if  is an NE in  then its restriction  0 to 0 is an NE in 0;

(2): if  0 is an NE in 0 ( 0 ; − 0) is an NE in  for any − 0 in Π∈− 0 

Proof. (1): Let  be an NE in  For any  ∈  we have (; −) ≥ (
0
; −) for any

0 ∈  Let  ∈  0 Then,  is not dominated in , and thus,  ∈ 0 Let 
0
 ∈ 0 Since

0 is a D-reduction, we have 0(;  0−{}) = (; −) ≥ (
0
; −) = 0(

0
;  0−{})

Thus,  0 is an NE in 0.

(2): Let  0 be an NE in 0We choose any − 0 ∈ − . We let  = ( {0}∈ 
{}∈ ) where 0 =  for all  ∈  − 0 First, we show that this ( 0 ; − 0) is an

NE in 

Let  ∈  0 We have 0(
0
 0) = (

0
 0 ; − 0) for any 0 0 ∈ 0 0 by Lemma 2.1,

since the players in  −  0 are inessential in . Since  0 is a NE in 0 we have
(;  0−{}; − 0) = 0(;  0−{}) ≥ 0(

0
;  0−{}) = (

0
;  0−{}; − 0) for all

0 ∈ 0 Let  ∈  −  0 Then since  is inessential, we have  (;  0−{}; − 0) =

 (
0
;  0−{}; − 0) for all 0 ∈ 

  Hence, ( 0 ; − 0) is an NE in 

Suppose that  ∈  0 has a strategy 00 in  so that (
00
 ; −{})  (; −{}).

We can choose such an 00 giving the maximum (
00
 ; −{}) Then, this 

00
 is not

dominated in  Hence, 00 remains in 0 which contradicts that  0 is an NE in 0

Let () and (0) be the sets of Nash equilibria for  and 0 It follows from
Theorem 2.1 that the set of Nash equilibria for  is given as

() = Π∈− 0 ×(0) (3.1)

Hence, if (0) satisfies the interchangeability in the sense of Nash [11] that (0)
is expressed as the product of Nash strategies, then so does () and vice versa.

Thus, the above theorem implies not only the preservation of Nash equilibria, but also

preservation of the Nash noncooperative theory (in [11]). We can discuss preservations

of other solution concepts such as rationalizability.

When 0 is the empty game ∅ Theorem 3.1.(1) states that the resulting outcome

is the null symbol  and (2) states that any strategy profile  = (; ) in  is a Nash

equilibrium in  This will be used to make a comparison with d -solvability due to

Moulin [9], [10].

It follows from this theorem that in iterations of reductions such as - and -

reductions that the Nash equilibrium is preserved in both directions. Hence, as far as

Nash equilibrium is concerned as a positive decision criterion, eliminations of dominated

strategies and inessential players would be a right procedure of abstraction.
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4. The IEDS Process and Generated Sequences

Now, we define a sequence generated by the IEDS process in terms of DI -reductions.

There are the other two alternative manners to define this process using D-reductions

and ID-reductions. However, it suffices, by Lemma 2.3, to consider the IEDS process

in terms of DI -reductions.

Let  be a given finite game. We say that h0 1     i is a WIEDS sequence
from  = 0 iff

+1 is a DI-reduction of  and +1 6=  for each  = 0     − 1; (4.1)

 has no dominated strategies and no inessential players. (4.2)

We call  the length of Γ() We abbreviate a WIEDS sequence simply as a WIEDS.

We denote the set of all WIEDS’s from  by W()
In particular, a WIEDS Γ() = h0 1     i is said to be the IEDS sequence iff

+1 is the strict DI -reduction of  for all  = 0     − 1 (4.3)

A WIEDS may not be unique, but the IEDS is uniquely determined by a given . The

IEDS from  is denoted by Γ∗() = h∗0 ∗1     ∗∗i We will show that this is the
smallest and shortest WIEDS.

In Example 2.1, Fig.2.1 shows the unique WIEDS; a fortiori, it is the IEDS. It has

the length 2 and is described as the sequence h∗0 ∗1 ∗2i where ∗1 is the third
table and ∗2 = ∅ The second table (the right one in the leftmost parentheses) is the
interpolating game from ∗0 to ∗1 The other interpolating game is the second game
in the second parentheses.

In Example 2.2, the IEDS is given in Fig.2.2, which is the unique WIEDS. In this

sequence, only an elimination of an inessential player occurs twice. Here, no non-trivial

interpolating games occur.

Let us return to the 3-person  = ({1 2 3} {}3=1 {}3=1) of Example 1.1.
Example 1.1 (Continued). The IEDS is described as Fig.4.1. Player 2’s strategies

s23 and s24 are dominated by both s21 and s22 and by eliminating s23 and s24 we

have the second interpolating 3-person game. Now, players 1 and 2 concentrate on their

dating ignoring player 3 as inessential. By eliminating him, we have the 2-person battle

of the Sexes BS(1 2)

⎛⎝0 →


1\2\3 s21 s22
s11 15,10,−10 5,5,−5
s12 5,5,−5 10,15,−10

⎞⎠→


1\2 s21 s22
s11 15,10 5,5

s12 5,5 10,15

s31 or s32

Fig.4.1
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A WIEDS sequence may be partitioned into two segments, 0 1      and

+1      so that in the first segment, dominated strategies (and, maybe, inessential

players) are eliminated, and in the second, only inessential players are eliminated, which

is illustrated in (4.4).

Γ() = h0 1     | {z } +1  | {z }i (4.4)

However, we need one small restriction for this observation. We say that Γ() =

h0     i is proper iff if  has some dominated strategies, then +1 6= 0; and
if 0 has some inessential players, then 0 6= 00. The IEDS Γ∗() is proper.

We have the following theorem for any proper WIEDS.

Theorem 4.1 (Partition of a Proper WIEDS). Let Γ() = h0 1    i be a
proper WIEDS from 0 = . There is an  (0 ≤  ≤ ) such that

(i) for any  ≤  at least one dominated strategy is eliminated in the step from −1

to ;

(ii) for any    no dominated strategies are eliminated but at least one inessential

player is eliminated in the step from −1 to 

Proof. Suppose that  has no dominated strategies. Then, +1 is obtained from

 by eliminating inessential players. It follows from Lemma 2.2.(3) that +1 has no

dominated strategies. Hence, we choose the smallest  among such ’s for 

We call given by Theorem 4.1 the elimination divide. Example 2.2, where = 0

implies that the second segment may have a length greater than 1.

Let us apply Theorem 3.1 to a WIEDS Γ() = h0 1     i
Theorem 4.2 (Recovering Nash Equilibria from the Endgame). Let Γ() =

h01     i be a WIEDS from 0 = . Let  = (  {
}∈  {}∈) be the

interpolating game between  to +1 for  = 0  − 1 Then, (0) is given as

(0) = Π∈0−10 × · · · ×Π∈−1−−1
 ×() (4.5)

Proof. It follows from (3.1) that for each  = 0 − 1

() = () and () = Π∈−−+1
 ×(+1)

Repeating this decomposition from − 1, we have (4.5).

5. The Shortest and Smallest: the IEDS Sequence

It is the order-independence theorem that restricting the reduction steps to eliminations

of dominated strategies, any WIEDS sequence has the same endgame (cf., Gilboa et al.
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[4], and Apt [1]). Here, we extend this result, allowing eliminations of inessential players

too, that for any given finite game  the IEDS from  is the shortest and smallest

among the WIEDS’s with the same endgame. In Section 5.1, we formulate the theorem,

and in Section 5, we prove it.

5.1. The IEDS Sequence

To make comparisons between two finite games, we introduce the concept of a subgame:

We say that 0 = ( 0 {0}∈ 0  {0}∈ 0) is a subgame of  = ( {}∈  {}∈) iff
()  0 ⊆  ; () 0 ⊆  for all  ∈  0; and () for  ∈  0 0 : Π∈ 00 → R is given
by (2.3). For the purpose of references, we state the following immediate result.

Lemma 5.1. If 0 is a D-reduction of  then 0 is a subgame of 

The D-reduction relation may not be transitive, while we drop the reasons for a re-

duction for a subgame. This allows the subgame relation to be partial ordering, which

enables us to make meaningful comparisons between games.

Lemma 5.2 (Partial Ordering). The subgame relation is a partial ordering over the

set of all finite games.

Proof. The subgame relation is reflexive, anti-symmetric, and transitive. Consider

transitivity. Let 0, 00 be subgames of 0 respectively. It suffices to show that

00 ( 00) = ( 00 ; − 00) for all  00 ∈ 00 0 and − 00 ∈ − 00  Let  be an arbi-

trary strategy profile in   By the supposition, we have 
00
 ( 00) = 0( 00 ;  0− 00) =

0( 0) = ( 0 ; − 0) = ( 00 ; − 00) The first and third equalities are due to

(2.3) for 0 and 00 and for  and 0 The second and fourth are simply changes of
expressions.

By those lemmas, we have the following.

Lemma 5.3 (Monotonicity). Let Γ() = h0 1    i be a WIEDS sequence.
For any   = 0   if    then  is a subgame of 

The following theorem states that the IEDS sequence is the smallest and shortest in

W() as well as its endgame is the same as that of any WIEDS sequence. The theorem
will be proved in Section 5.2.

Theorem 5.1 (the IEDS; Shortest and Smallest). Let  be a finite game, and

let Γ∗() = h∗0 ∗1     ∗∗i be the IEDS from  Then, for any WIEDS Γ() =

h01     i ∈W()
(1): ∗ ≤ ;

(2): for each  ≤ ∗ 
∗ is a subgame of ;

(3): ∗ = 
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Thus, the IEDS Γ∗() is the shortest and smallest inW() In this sense, the IEDS
sequence is the benchmark case. Furthermore, since a D-reduction and an ID-reduction

are DI -reductions by Lemma 2.3, Theorem 5.1 covers all the sequences defined by D-

reductions or ID-reductions. We should still be careful about a DI -reduction, which

is a compound reduction consisting of a ds-reduction and a ip-reduction. Since these

reductions are different, it would be natural to reach each DI -reduction as one step.

Theorem 5.1 would hold without eliminations of inessential players: The order-

independence theorem is obtained by focussing on a WIEDS with an elimination of

one strategy at a time and showing that any WIEDS has the same endgame with

such a sequence. See Apt [1] for comprehensive discussions on this as well as order-

independence theorems for various types of dominance relations. The “shortest” part

follows this theorem.

It follows from Theorem 4.2 that if ∗ has a Nash equilibrium, then so does If∗

is the empty game, which has the Nash equilibrium  then  has a Nash equilibrium.

It follows Theorem 5.1 that these do not depend upon a choice of a WIEDS from 

Hence, it is a consequence that the decomposition given in (4.5) is independent upon

the choice of a WIEDS.

This is related to Moulin’s [9], [10] -solvability: We say that a game  is -solvable

iff there is a sequence h0  i with 0 =  −1 → 
 for  = 1  − 1 and for

all  ∈ 

(; −) = (
0
; −) for all  

0
 ∈  and − ∈ − (5.1)

As stated, this requires the constant payoffs for each player  with his unilateral de-

viation, while (2.1) requires for all the players’ payoffs. Now, we have the following

corollary.

Corollary 5.2. If a game  has a WIEDS Γ() = h0 1     i with  = ∅
then  is -solvable.

Proof. By Theorem 5.1, we can assume that it is the IEDS Γ∗() = h∗0∗1     ∗∗i
with ∗ = ∅ Then, each ∗ is obtained from ∗(−1) so that ∗(−1) → 

(−1) →

∗ for some interpolating game 0(−1) After the elimination divide 0 only → is

applied to ∗. Therefore, for the definition of a sequence for -solvability, we consider
h∗0 ∗1    ∗∗i up to 0

Then, we define a sequence h01    0i as follows: (1) 0 = ∗0 = ;

and (2) for  = 1 0 
 is obtained from −1 by eliminating all the dominated

strategies that are eliminated in ∗(−1) → 
(−1) Then, each  has the full set of

players  but  −∗ is a set of inessential players, and the payoff functions for the
player in  are the same as those for ∗ with the domains of different dimension.

Since ∗
∗
= ∅ ∗0 has only inessential players if 0   Hence, in 0  all the

players in  are inessential, a fortiori, (5.1) holds.
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The converse of Corollary 5.2 may not hold: Table 5.1, given in Moulin [10], is

d-solvable, but this does not generate a WIEDS to the empty game.

Table 51

1\2 s21 s22
s11 1,1 0,1

s12 1,0 0,0

5.2. Proof of Theorem 5.1

Now, let Γ() = h0    i be any WIEDS from  and Γ∗() = h∗0     ∗∗i the
IEDS form  We take two steps of the entire proof.

Lemma 5.4.  is a subgame of ∗
∗


Proof. For any  ≤ ∗ − 1 we let ∗ → 
 → 

∗(+1) Let ∗ be the set of all
dominated strategies in ∗ and ∗ the set of all inessential players in We prove by

induction that for each  = 0  ∗ − 1 all strategies in ∗ and all inessential players
in ∗ are eliminated before  in Γ() = h0    i Equivalently, the remaining
components of  are still in ∗

∗
 which implies that  is a subgame of ∗

∗


Let  = 0 All strategies in ∗0 are dominated in 0 =  Therefore, it follows

from Lemma 2.2.(1) that any of them remains dominated in  if it is a strategy in 

Hence, all strategies in ∗0 are eventually eliminated in Γ() = h0     i since 

has no dominated strategies by (4.2). Also, all the players in ∗0 are also eliminated
eventually. We let 0 be the first game where ∗0 and ∗0 are all eliminated. Then,
0 is a subgame of ∗1

Now, we make the induction hypothesis that  is the first game where ∗0 ∗

and ∗0  ∗ are all eliminated. This  is a subgame of ∗(+1) If ∗(+1) and
∗(+1) are already all eliminated in  , then we let +1 =  Suppose that some in

∗(+1) or ∗(+1) still remain in   Hence, strategies in ∗(+1) are dominated in
 if they remain in  ; and players in ∗(+1) are inessential in  if they remain.

Hence, we can find the first +1 so that ∗(+1) and ∗(+1) are all eliminated.

The next step for the proof of Theorem 5.1 is to show that Γ∗() is the shortest and
smallest in the senses of (1) and (2) of the theorem. In Particular, transforming Γ()

by eliminating dominated strategies and inessential players, step by step, we construct

a sequence of WIEDS’s Θ0() = Γ()  Θ∗() = Γ∗() showing the relationships
(1) and (2) between Γ() and Γ∗()

For such transformations, we need to consider the following lemma.

Lemma 5.5. Let  →  → 0 where the strategies in 0 are eliminated in
→  and the players in  0 are eliminated in → 
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(1): Let  be any set of dominated strategies in  and let    0 be obtained by
eliminating  from from   0 Then,  →  → 

0 This is illustrated in Fig.
51

(2): Let  any set of inessential players in and let   0 be obtained by eliminating
 from from   0 Then,  →  → 

0 See Fig. 52

 →(0)  →(0) 0

↓ ↓ ↓
 →(0−)  →(0)  0

 →(0)  →(0) 0

↓ ↓ ↓
 →(0)  →(0−)  0

Fig.51 Fig.52

Proof. (1): The games  and  are obtained by eliminating  from  and 

respectively The dominated strategies 0− remain in  Hence, by eliminating these

from  we have  This means  →  Then,  0 is obtained from 0 by eliminating
−0 and  0 differs from  only with eliminations of the inessential players  0. Thus,
 → 

0

(2): Since  is a set of inessential players in  the elimination of  from  and  do not

affect the elimination of dominated strategies from  to  by Lemma 2.2.(3). Hence,

 →  Let  → 
0 holds with eliminations of inessential players  0 Now,  0 − 

remains inessential in  by Lemma 2.2.(2). We eliminate  0 −  from  to obtain  0
Thus,  → 

00

Now, we prove the theorem.

Proof of Theorem 5.1. Let Γ() = h0 1     i be any WIEDS in W()
and Γ∗() = h∗0 ∗1     ∗∗i the IEDS By induction, we construct the following
sequence of WIEDS’s:

Θ() = h01    i  = −1 0  ∗

We will show that the last WIEDS Θ∗() = h∗0∗1    ∗∗ i coincides with
Γ∗() = h∗0 ∗1     ∗∗i and will derive the properties (1), (2) and (3) of the
theorem.

Now, let Θ−1() = Θ0() = Γ() Let  be a natural number with 0 ≤   ∗. We
suppose the induction hypothesis that Θ() = h01    i is a WIEDS from
 satisfies

 = ∗ for  = 0  ; (5.2)

 ≤ −1; (5.3)

 is a subgame of (−1) for  = 0   (5.4)
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For  = 0 these three conditions hold since Θ−1() = Θ0() = Γ() Now, we define
a WIEDS Θ+1() = h(+1)0(+1)1    (+1)+1i from Θ() and show that it

satisfies (5.2), (5.3) and (5.4) for  + 1

We denote the set of dominated strategies in  = ∗ by ∗ and the set of
inessential players in the interpolating ∗ with ∗ → 

∗ → 
∗(+1) by ∗ Since

  ∗ we have ∗ 6= ∅ or ∗ 6= ∅
First, we eliminate∗ from(+1)      and obtain the sequence 0(+1)    

 0  where each  0 is a subgame of  for  =   . By Lemma 5.5.(1), it holds

that

 0 → 
0(+1) for all  =    − 1 (5.5)

Thus, the sequence h 0(+1)     0i may have already a repetition. We will take
care of such repetitions later.

Then, we delete the players in ∗ from h 0(+1)     0i, and obtain the se-
quence h 00(+1)      00i and by Lemma 5.5.(2), we have

 00 → 
00(+1) for all  =    − 1 (5.6)

Now, the entire sequence h01     00(+1)     00i may be a WIEDS,
but it may contain some repetitions of the same game in  00(+1)     00 . In this
case, we take one game for each repetition as a representative The resulting sequence

denoted by

Θ+1() = h(+1)0(+1)1    (+1)+1i
= h01    (+1)(+1)    (+1)+1i

is a WIEDS since it satisfies (5.6). Also, +1 ≤  i.e., (5.3), since the length of

the latter part may be the same or shorter than the  −  because of the deletion of

the repetitions. By definition, (+1)(+1) = ∗(+1) which together with (5.2) for 
implies (5.2) for  + 1

We can see (5.4) for +1 in the following manner. Let    Recall that (+1) is

 000 for some 0 ≥  because of compressing each repetition to one game. Since  000

is a subgame of 0 and 0 is a subgame of  (+1) =  000 is a subgame of
 by Lemma 5.5.

Finally, we should show that the length ∗ of Θ
∗() = h∗0∗1    ∗∗ i

coincides with ∗ By the above induction proof, we have ∗ ≤ ∗ and ∗∗ = ∗
∗


This implies that if ∗  ∗  then ∗∗ → ∗(∗+1) implies ∗∗ = ∗(∗+1)

which is impossible, since Θ∗() is a WIEDS. Thus, ∗ = ∗ By (5.3), we have 
∗ ≤ 

By the construction of Θ()  = −1 0  ∗ (+1)+1 is a subgame of  for

all  = 0  ∗ − 1 By Lemma 5.5, ∗∗ = ∗
∗
is a subgame of  It follows from

this and Lemma 5.4 that ∗
∗
coincides with 
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Figure 6.1: Start with the Final Game

6. Possible Shapes of IEDS Sequences

In Sections 2 to 5, we have studied the IDES and WIEDS sequences from a given game.

In this section, we reverse the focus: We consider possible IEDS sequences to the given

final game. Fig.6.1 describes both viewpoints: In the below,  is the given final game,

and what IEDS sequences are possible to go toWe give necessary and sufficient condi-

tions with respect to the player set and the set of players having dominated strategies for

such a sequence. Our results imply that sequences of quite arbitrary lengths and shapes

can be sustained as the IEDS’s from some games. Throughout this section, we consider

only the IEDS’; thus we drop the asterisk ∗ for the IEDS, i.e., Γ() = h0 1    i
is the IEDS from 0 = 

6.1. Possible Shapes of IEDS Sequences

Consider the IEDS sequence Γ() = h0 1     i where  = (  {
}∈ 

{}∈) for  = 0   Then, for each  = 0   we let

  := { ∈   : player  has a dominated strategy in } (6.1)

We call   the D-group in . Let us recall the elimination divide  given by Theorem

4.1, i.e.,   6= ∅ if    and   = ∅ if  ≥  Then, we call
£
(0  0)     (   )

¤
the player-configuration of Γ().

The player configuration
£
(0  0)     (   )

¤
of Γ() represents the structure

of changes in players in Γ() We focus only on the changes in the players, and drop
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the other information. However, this is enough for our consideration of possible lengths

and shapes for IEDS sequences.

The following lemma gives simple observations, which turn out also to be sufficient

conditions to sustain the IEDS sequence for some game .

Lemma 6.1(Necessary Conditions). Let Γ() = h0 1    i be the IEDS-
sequence with its elimination divide0 and player-configuration [(

0  0)     (   )]

Then,

PC0:   ⊆   for  = 0  ;

PC1: 0 ⊇  ⊇  ) +1 )  )   with
¯̄
 
¯̄
6= 1;

PC2: for  = 1  if | −1| = 1 then  −1 ∩   = ∅;
PC3:  = +1 =    =   = ∅
Proof. PC0 follows (6.1), and PC3 follows the definition of 

PC1: Up to  eliminations of inessential players may not occur; thus, we have weak

inclusion relations up to After some inessential players are eliminated, and thus,

we have strict inclusion relations after 

PC2: Let
¯̄
 −1¯̄ = 1 i.e.,  −1 = {} Then game  is the strict DI -reduction of

−1 If  ∈   then  ∈   a fortiori,  −1 ∩   = ∅ Suppose  ∈   Then, let

−1 → 
−1 → 

 Then, all the dominated strategies for player  in −1 are elim-
inated in −1 By Lemma 2.2.(3), player  has no dominated strategies in  Hence,

 −1 ∩   = ∅
Let us apply this lemma to a 2-person game . Then, we have the following:

Corollary 6.2. Let  be a 2-person game, and Γ() = h0 1    i the IEDS with
its elimination divide 0 and player-configuration

£
(0  0)     (   )

¤
 Then,

(1): − ≤ 2;
(2): 0 =  = −2 = {1 2};
and there is some  ≤  − 2 such that
(3):   = {1 2} if  ≤ ; and

¯̄
 
¯̄
= 1 if  =  + 1  − 1;

(4):   ∩  +1 = ∅ for  =  + 1  − 1
0 · · ·  +1 +2 · · · −1  +1

() · · · () ( {}) ( {}) · · · ( {}) ({} ∅) (∅ ∅)
Fig.6.2

Thus, up to  the D-group remains the same as   =  = {1 2} but it starts
alternating at +1 up to −1. Then, the process continues for possibly two more
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steps, but may stop at  . Fig.6.2 describes one possiblity. This kind of monotonicity

is observed only for the 2-person case. The following is a 3-person game, where  0 is a

singleton, but  2 becomes the entire set.

Example 6.1 (Nonmonotonicity). Consider the following 3-person game  where

each player has three strategies and the payoffs are described by the three tables. Each

table has the PD game in the northwest corner for players 1 and 2.

Table 6.1, s31 Table 6.2, s32

1\2 s21 s22 s23
s11 5,5,2 1,6,2 3,0,1

s12 6,1,2 3,3,2 1,0,1

s13 0,3,2 0,1,1 0,0,2

1\2 s21 s22 s23
s11 5,5,0 1,6,0 3,0,2

s12 6,1,0 3,3,0 1,0,1

s13 0,3,1 0,1,1 0,0,2

Table 6.3, s33

1\2 s21 s22 s23
s11 5,5,0 1,6,0 3,9,0

s12 6,1,0 3,3,0 1,9,0

s13 9,3,0 9,1,0 9,9,0

The IEDS from this game is as follows: In the game 0 = , player 3 has the dominated

strategy s33, and in the resulting game 
1 from the elimination of s33 players 1 and

2 have dominated strategies s13 and s23 Here, the game 2 obtained from 1 by

eliminating s13 and s23 has still three players, each of whom has 2 strategies. Game

2 is expressed by the northwest corner of each table, where each has a dominated

strategy. Here, the player-configuration is
£
(0  0)     (3  3)

¤
 where 0 = 1 =

2 = {1 2 3} 3 = ∅  0 = {3}  1 = {1 2}  2 = {1 2 3}  3 = ∅ and  = 3 This

is described by Fig.6.3.

(0 {1})→ (1 {1 2})→ (2 {1 2 3})→ (∅ ∅)
Fig.6.3

Lemma 6.1 gives four conditions for the player-configuration of the IDES Γ().

Now, we reverse this statement. That is, for a given sequence
£
(0  0)     (   )

¤
satisfying PC0-PC3, do we find a game  so that [(0  0)     (   )] is the player-

configuration of Γ()?We give an affirmative answer to this queation. Thus, the possible

shapes of the payer-configurations of the IEDS’s are characterized by PC0-PC3.

Theorem 6.1 (Possible Shapes): Let  = (  {
 }∈  { }∈ ) be a game

with no dominated strategies and no inessential players. Let [(0  0)     (   )] be

any sequence satisfying PC0-PC3 with   =  . Then, there exists a game  with
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the IEDS Γ() = h0 1    i from  such that

(a):  = ;

(b): [(0  0)     (   )] is the player-configuration of Γ().

After all, PC0-PC3 form a sufficient condition to have a game  that its IEDS

Γ() has the suggested player-configuration Since PC0-PC3 are not really restrictive,

the assertion of the theorem is interpreted as meaning that the IEDS sequences have a

great variety of lengths and shapes. Corollary 6.2 is now interpreted as implying that

any player-configuration having (1)-(4) is sustained as the IEDS from some 2-person

game , and that we cannot restrict them any further

6.2. Proof of Theorem 6.1

Consider a sequence [(0  0)     (   )] and  = (  {
 }∈  { }∈ )

given in the theorem We construct a sequence  −1     0 from  =  along

(   )  (0  0) It will be shown that for each  =  − 1  0 +1 must be the

strict DI -reduction of ; thus, h0  i is the IEDS from 0 Now, we construct a

game  from +1 in the backward manner.

 →  → +1

(   ) ⇐=(construction) ⇐=(construction) ( +1  +1)

Lemmas 6.3, 6.4 Lemma 6.2

Fig.6.4

Lemma 6.2 is for the construction of the interpolating  from +1 in Fig.6.4.

Lemma 6.2. Let  = ( {}∈  {}∈ ) be a game with || ≥ 2 for all  ∈  and

let  0 be a nonempty set of new players Then, there is a 0 = ( 0 {0}∈ 0  {0}∈ 0)

such that

(1):  0 =  ∪  0;
(2): |0| ≥ 2 for all  ∈  0;

(3):  is the strict -reduction of 0

Proof. We choose the strategy sets   ∈  0 so that 0 =  for all  ∈  and

0 = { } for all  ∈  0 Then, we define the payoff functions {0}∈ 0 so that the

players in  0 are inessential in 0 but no players in  are inessential in 0. Let  be the
set of inessential players in  For each  ∈  we choose a specific strategy s1 from 

Then, we define {0}∈ 0 as follows:

(a): for any  ∈  0 0( 0) = |{ ∈  :  = s1}| for  0 ∈  0 ;
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(b): for any  ∈  0( 0) = ( ) for  0 ∈  0 

For any  ∈  0 ’s strategy  is nominal in (a) and (b) in the sense that  does not

appear substantially in 0 for any  ∈  ∪  Hence, the players in  0 are all inessential
in 0. On the other hand, each  ∈  as far as such a player exists in  affects ’s

payoffs for  ∈  0 because of (a) and || ≥ 2 Hence, any  ∈  is not inessential in 0.
Also, any  ∈  −  is not inessential in 0 by (b). Hence, only the players in  0 are
inessential. Hence,  is the strict is-reduction of 0

Now, we consider the step from  to  in Fig.6.4. For this construction, we need to

show the following lemma: It is the backward argument that the dominated strategies

in  are not dominated in the constructed  Let  be a game, which is supposed to

be  In the following, we write  dom 0 iff  dominates 
0
 in  We want 0 not

to be dominated in the newly constructed game.

Lemma 6.3. Let  = ( {}∈  {}∈) be an -person game, and  ∈  a fixed

player There are real numbers {()}∈ such that

()  0 for all  ∈  ; (6.2)

if  dom 0  then ()  (
0
) (6.3)

Proof : We write dom simply as dom. This relation dom is transitive and asymmetric.

We call a sequence {1    } a descending chain from 1 to  iff  dom +1 for

 = 1 −1 For any given   0 ∈   there may be no or multiple descending chains

from  to 
0
 

We say that  is maximal in ( , dom) iff there is no 0 ∈  such that 
0
 dom

  Let 
0
   


 be the list of maximal elements in ( dom) Then, we define the sets

(0 )  (

 ) recursively by

(0 ) = {0} ∪ { ∈  : 
0
 dom }; (6.4)

() = {} ∪ { ∈  −∪−1=0(

) : 


 dom } for  ≤  (6.5)

That is, we classify each  ∈  − {0   } to the first () with  dom   which

implies

if  dom  and  ∈ (
0
 ) then 0 ≤  (6.6)

Thus, these sets (0 )  (

 ) form a partition of  

Now, we define {()}∈ as follows: for  ∈ () and  = 0  

() = − | |+   (6.7)
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where  is the maximum length of a descending chain from  to  6=   and is 0 if

 =  When  = 0  may be equal to | |  but when   0  is smaller than | | 
Now, we show (6.3). Let   

0
 ∈  and  dom 0  Also, let  ∈ () and

0 ∈ (
0
 ) Since 


 dom   we have 


 dom 0  which implies 

0 ≤  by (6.6). Now, we

consider two cases: 0 =  and 0   Suppose that  = 0. Let   0 be, respectively,
the maximal lengths of descending chains from  to  and 

0
  Since  dom 0  we have

  0  Thus, () = − | | +   (
0
) = − | | + 0  Suppose 

0   Since

| |    0 as remarked above we have (
0
)−() = −0 | |+0−(− | |+ ) =

(− 0) | |+ (0 −  )  0

This {()}∈ does not satisfy (6.2), but adding some constant to () uni-

formly, we have also (6.2).

Now, we go to the step from  to  in Fig.6.4. The following lemma is to show

the construction of  from , and will be used in the main proof of Theorem 6.1.

Lemma 6.4. Let  = ( {}∈  {}∈ ) be a game with  , and let  ⊆ 

satisfying the following condition:

if  = {} then there are no  0 ∈  with  dom 0 (6.8)

Then, there is a game 0 = ( {0}∈  {}∈) such that  is the strict -reduction

of 0 with the D-group 

Proof. Without loss of generality, we can assume that  satisfies the condition:

()  0 for all  ∈  and  ∈  (6.9)

First, let  be a new strategy symbol for each  ∈ We define {0}∈ as follows:

0 =

⎧⎨⎩
 ∪ {} if  ∈ 

 if  ∈  − 

(6.10)

Then we extend  to 
0
 : Π∈

0
 → R for  ∈  so that the restriction of 0 to Π∈

is  itself and  is the strict -reduction of 0
To be more precise, we take a few steps to define the payoff functions {0}∈  Let

 ∈  First, 0 is the same as  over Π∈ i.e.,

0() = () if  ∈ Π∈ (6.11)

For any  ∈ 0 −  if  ∈  −  then

0() = (); where () is given in Lemma 6.3, (6.12)
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and if  ∈  then

0() =

⎧⎨⎩
() if  6= 

0 if  =  

(6.13)

First, let  ∈  −  , and let   
0
 ∈  = 0  Suppose  dom 0  Then, there are

 0 ∈ 0− such that the -th components of  and 0 are  and 0  Hence, by (6.12),
0() = ()  (

0
) = 0(

0) Thus, Hence,  does not dominate  in 0 Hence, 
has no dominated strategies in 0

Second, let  ∈ We choose an ∗ ∈  with 
∗
 6=   By (6.13) and (6.2), we have,

for any − ∈ − 
0( ; −) = 0  (

∗
 ) = 0(

∗
 ; −)

This does not depend upon − ; thus, ∗ dom0   By these two paragraphs, we showed

that  is the D-group in 0
It remains to show that  dom0 

0
 does not hold for any   

0
 ∈  = 0 − {}

and  ∈  . If  dom 0 does not hold, then  dom0 
0
 does not hold either. Now,

we suppose  dom 0  By (6.8), we have | |  1 This guarantees that the existences
of  0 ∈ 0− such that their -th components are  and 0  Then, by (6.13), we have
0() = ()  (

0
) = 0(

0) Hence, it is not the case that  dom0 
0
 

Thus, we have shown that  is the strict -reduction of 0

Now, we can prove the Theorem.

Proof of Theorem 61: Let  =  Since  has no dominated strategies and no

inessential players, condition (4.2) holds.

Suppose that +1 is already defined with
¯̄
+1


¯̄
≥ 2 for all  ∈  +1 Condition

PC2 guarantees condition (6.8). By Lemma 6.2, we find an interpolating game  so

that +1 is the strict -reduction of  with its player set   and
¯̄



¯̄
≥ 2 for all

 ∈   By Lemma 6.4, we find another game  so that  is the strict -reduction

of  with its D-group   and satisfying
¯̄



¯̄
≥ 2 for all  ∈  

Now, we have an IEDS sequence Γ∗() =

∗0  ∗

®
such that [(0  0)     (   )]

is the player-configulation of Γ∗()

7. Conclusions

We have considered the process of iterated eliminations of (strictly) dominated strategies

and inessential players (the IEDS process). Eliminations of inessential players are newly

introduced in this paper, and get along well to eliminations of dominated strategies.

Here, first, we give a summary of our technical contributions, and then we consider their

implications for negative criteria for the abstraction process, i.e., from the perspective

of modelling social situations.
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The three main results in this paper are: Theorem 3.1 (Preservation), Theorem

4.1 (IEDS: Smallest/Shortest) and Theorem 6.1 (Possible Lengths and Shapes). The

preservation theorem is a direct extension of one result given in Maschler, et al. [7], and

leads to the recovering theorem (Theorem 4.2) about Nash equilibria. These results are

important from the perspective of the abstraction process.

The second theorem is an extension of the order-independence theorem, which states

that any sequences generated from the IEDS process ends up with the same game. In

addition to this order-independence result, our theorem states that the IEDS sequence

is the shortest and smallest among the WIEDS’s from a given game  To prove this

theorem, we needed a lot of conceptual and technical developments. From them, we

have learned a lot, for example, eliminations of dominated strategies and inessential

players are quite parallel, but not completely symmetric, which is observed in Lemma

2.2 and from which we have the partition theorem (Theorem 4.1).

The third theorem is new. It gives necessary and sufficient conditions for possible

shapes of the IEDS sequences. The theorem implies that the IEDS sequences have a

vast variety of lengths and shapes. When we start with a given 2-person or 3-person

game, it still suggests a variety of lengths and shapes of generated sequences.

What we have not touched upon this paper is to consider the required preference

comparisons to calculate the IEDS sequence or a WIEDS sequence. The development

given in this paper facilitates this consideration. In fact, we have some example of

a game where the IEDS sequence is not the smallest from the viewpoint of preference

comparions; some WIEDS sequence can be calculated by a smaller number of preference

comparisons. This will be discussed in a separate paper.

Finally, we return to the perspective of abstracting social situations. The preserva-

tion theorem is relevant for this. That is, Nash equilibrium is a positive criterion for

decision making by a player and/or prediction by an outside theorist. In inductive game

theory (cf., Kaneko-Matsui [6], Kaneko-Kline [5]), an inside player takes this perspec-

tive. In either case, eliminations of dominated strategies and inessential players help to

consider the process of choices of relevant components from a social situation.

From this perspective, we find an apparent restriction: The definition of an inessen-

tial player is too stringent to have no effects on the entire players. There are two

directions to weaken this restriction. One is to consider one player’s effects on some

players, and the other is to introduce -effects. The presentation of payoffs in terms of

real numbers leads to this problem. It may be possible to start with one’s preference

relation to be a partial ordering, which may be derived by taking only -effects. Those

relaxations of basic concepts may lead to a better understanding of the abstraction

process on social situations.
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