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Abstract

We propose a new measure of deviations from expected utility theory. For any

positive number e, we give a characterization of the datasets with a rationalization

that is within e (in beliefs, utility, or perceived prices) of expected utility theory. The

number e can then be used as a measure of how far the data is to expected utility

theory. We apply our methodology to three recent experiments. Many subjects in

those experiments are consistent with utility maximization, but not with expected

utility maximization. Our measure of distance to expected utility is correlated with

subjects’ demographic characteristics.
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1 Introduction

Since its beginning, revealed preference theory has dealt with the empirical content of gen-

eral utility maximization, but has more recently turned to the empirical content of specific

utility theories. Mostly the focus has been on expected utility: recent theoretical work seeks

to characterize the observable choice behaviors that are consistent with expected utility

maximization. At the same time, a number of recent empirical revealed-preference studies

use data on choices under risk and uncertainty. We seek to bridge the gap between the

theoretical understanding of expected utility theory, and the machinery needed to analyze

experimental data on choices under risk and uncertainty.1

Imagine an agent making economic decisions, choosing contingent consumption given

market prices and income. A long tradition in revealed preference theory studies the consis-

tency of such choices with utility maximization, and more recent literature has investigated

consistency with expected utility theory (EU). Consistency, however, is a black or white

question. The choices are either consistent with EU or they are not. Our contribution is to

describe the degree to which choices are consistent with EU. We propose a measure of the

degree of a dataset’s consistency with EU.

Revealed preference theory has developed measures of consistency with general utility

maximization. The most widely used measure is the Critical Cost Efficiency Index (CCEI)

proposed by Afriat (1972). The basic idea in the CCEI is to fictitiously decrease an agent’s

budget so that fewer options are revealed preferred to a given choice. The CCEI has been

widely used to analyze experimental data on choices under risk and uncertainty. See, for

example, Choi et al. (2007), Ahn et al. (2014), Choi et al. (2014), Carvalho et al. (2016), and

Carvalho and Silverman (2017). All of these experimental studies involve subjects making

decisions under risk or uncertainty, and CCEI was proposed as a measure of consistency with

general utility maximization, not EU, the most commonly-used theory to explain choices

under risk or uncertainty.

Of course, there is nothing wrong with studying general utility maximization in envi-

ronments with risk and uncertainty, but the data is ideally suited to studying theories of

choice under uncertainty, and it should be of great interest to evaluate EU using this data.

The experimental studies have used CCEI, but we shall argue (on both theoretical and em-

pirical grounds) that CCEI is not a good measure of consistency with EU. The authors of

1We analyze both objective expected utility theory for choice under risk, and subjective expected utility

theory for choice under uncertainty.
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the empirical studies have not had the proper tools to investigate consistency with EU. The

purpose of our paper is to provide such a tool.

Our main contribution is to propose a measure of how far a dataset is from being consis-

tent with EU. The measure is different from CCEI: we explain theoretically why our measure,

and not CCEI, best captures the distance of a dataset to EU theory. We also argue on em-

pirical grounds that our measure passes “smell tests” that CCEI fails. For example, CCEI

ignores the manifest violations of EU where subjects make first-order stochastically domi-

nated choices. And CCEI does not correlate well with the property of downward-sloping

demand, a property that is implied by EU maximization.2

In the sequel, we first explain why CCEI is not a good test of consistency with EU, and

give a high-level overview of our approach. After a theoretical discussion of our measure of

consistency (with objective EU discussed in Section 3 and subjective EU in Section 5), we

present an empirical application using data from experiments on choices under risk (Sec-

tion 4).

Our empirical application has two purposes. The first is to illustrate how our method

can be applied and to argue that our measure of distance to EU is useful and sensible.

The second is to offer new insights into existing data. We use data from three large-scale

experiments (Choi et al., 2014; Carvalho et al., 2016; Carvalho and Silverman, 2017), each

with over 1,000 subjects, that involve choices under risk. Using our methodology, the data

can be used to test EU theory, not just general utility maximization.

There are two main take-away messages from our empirical application. First, the data

confirms that CCEI is not a good indication of compliance with EU. Among subjects with

high CCEI, who are largely consistent with utility maximization, many subjects make choices

that violate monotonicity with respect to first-order stochastic dominance. Our measure

detects these violations of EU, where CCEI does not. Our measure correlates well with

the basic property of downward-sloping demand; CCEI does not. Moreover, the correlation

between closeness to EU and demographic characteristics yields intuitive results. We find

that younger subjects, those who have high cognitive abilities, and those who are working,

are closer to EU behavior than older, low cognitive ability, or non-working, subjects. For

some of the three experiments, we also find that highly educated, high-income, and male

subjects, are closer to EU.

2Roughly speaking, it says that prices and quantities must be inversely related, subject to certain quali-

fications.
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Figure 1: (A) A violation of WARP. (B) A violation of EU: xa2 > xa1 , xb1 > xb2, and pb1/p
b
2 < pa1/p

a
2 . (C) A

choice pattern consistent with EU.

1.1 How to Measure Deviations from EU

In the rest of the introduction, we lay out the theoretical arguments for why CCEI is inad-

equate to measure deviations from EU, and motivate our approach.

The CCEI is meant to test deviations from general utility maximization. If an agent’s

behavior is not consistent with utility maximization, then it cannot possibly be consistent

with EU maximization. Thus it stands to reason that if an agent’s behavior is far from being

rationalizable as measured by CCEI, then it is also far from being rationalizable with an EU

function. The problem is, of course, that an agent’s behavior may be rationalizable with a

general utility function but not with EU.

Broadly speaking, the CCEI proceeds by “amending” inconsistent choices through the

device of changing income. This works for general utility maximization, but it is the wrong

way to amend choices that are inconsistent with EU. Since EU is about getting marginal rates

of substitution right, prices, not incomes, need to be changed. The problem is illustrated

with a simple example in Figure 1.

Suppose that there are two states of the world, labeled 1 and 2. An agent purchases a

state-contingent asset x = (x1, x2), given Arrow-Debreu prices p = (p1, p2) and her income.

Prices and income define a budget set. In Figure 1A, we are given two choices for the agent,

xa and xb, for two different budgets. The choices in Figure 1A are inconsistent with utility

maximization: they violate the weak axiom of revealed preference (WARP). When xb (xa)

was chosen, xa (xb, respectively) was strictly inside of the budget set. This violation of

WARP can be resolved by shifting down the budget line associated with choice xb to the

dashed green line passing through xa. Alternatively, the violation can be resolved by shifting

down the budget line associated with choice xa to the dashed blue line passing through xb.
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Afriat’s CCEI is the smallest of the two shifts that are needed: the smallest proportion of

shifting down a budget line to resolve WARP violation. Therefore, the CCEI of this dataset

is given by the dashed green line passing through xa. That is, the CCEI is (pb · xa)/(pb · xb).
Now consider the example in Figure 1B. There are again two choices, xa and xb, for two

different budgets. These choices do not violate WARP, and CCEI = 1 indicates perfect com-

pliance with the theory of utility maximization. The choices in the panel are not, however,

compatible with EU. To see why, assume that the dataset were rationalized by an expected

utility: µ1u(xk1) + µ2u(xk2), where (µ1, µ2) are the probabilities of the two states, and u is

a (smooth) concave utility function over money. Note that the slope of a tangent line to

the indifference curve at a point xk is equal to the marginal rate of substitution (MRS):

µ1u
′(xk1)/µ2u

′(xk2). Moreover, at the 45-degree line (i.e., when xk1 = xk2), the slope must be

equal to µ1�
���u′(xk1)/µ2�

���u′(xk2) = µ1/µ2. This is a contradiction because in Figure 1B, the two

tangent lines (green dashed lines) associated with xa and xb cross each other. Figure 1C

shows an example of choices that are consistent with EU. Note that tangent lines at the

45-degree line are parallel in this case.

Importantly, the violation in Figure 1B cannot be resolved by shifting budget lines up or

down, or more generally by adjusting agents’ expenditures. The reason is that the empirical

content of expected utility is captured by the relation between prices and marginal rates of

substitution. The slope, not the level, of the budget line, is what matters. The basic insight

comes from the equality of marginal rates of substitution and relative prices:

µ1u
′(xk1)

µ2u′(xk2)
=
pk1
pk2
. (1)

Since marginal utility is decreasing, Equation (1) imposes a negative relation between prices

and quantities. The distance to EU is directly related to how far the data is to complying with

such a negative relation between prices and quantities. The formal connection is established

in Theorem 2. Empirically, as we shall see, the degree of compliance of a subject’s choices

with this “downward sloping demand” property, goes a long way to capturing the degree of

compliance of the subject’s choices with EU.

Our contribution is to propose a measure of how close data is to being consistent with

EU maximization. Our measure is based on the idea that marginal rates of substitution have

to conform to EU maximization: whether data conform to Equation (1). If one “perturbs”

marginal utility enough, then a dataset is always consistent with expected utility. Our

measure is simply a measure of how large of a perturbation is needed to rationalize the data.

Perturbations of marginal utility can be interpreted in three different, but equivalent, ways:
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as measurement error on prices, as random shocks to marginal utility in the fashion of random

utility theory (McFadden, 1974), or as perturbations to agents’ beliefs. For example, if the

data in Figure 1B is “e away” from being consistent with expected utility given a positive

number e, then one can find beliefs µa and µb, one for each observation, so that EU is

maximized for these observation-specific beliefs, and the degree of perturbation of beliefs is

bounded by e.

Our measure can be applied in settings where probabilities are known and objective, for

which we develop a theory in Section 3, and an application to experimental data in Section 4.

It can also be applied to settings where probabilities are not known, and therefore subjective

(Section 5).

Finally, we propose a statistical methodology for testing the null hypothesis of consistency

with EU (Section 4.3). Our test relies on a set of auxiliary assumptions. The test indicates

moderate levels of rejection of the EU hypothesis.

1.2 Related Literature

Revealed preference theory has developed tests for consistency with general utility maxi-

mization. The seminal papers include Samuelson (1938), Afriat (1967), and Varian (1982)

(see Chambers and Echenique (2016) for an exposition of the basic theory).

More recent work has explored the testable implications of EU theory. This work includes

Green and Srivastava (1986), Chambers et al. (2016), Kubler et al. (2014), Echenique and

Saito (2015), and Polisson et al. (2017). The first four papers focus, as we do here, on

rationalizability for risk-averse agents. Green and Srivastava (1986) and Chambers et al.

(2016) allow for many goods in each state, which our methodology cannot accommodate.

Polisson et al. (2017) present a test for EU in isolation, not jointly with risk aversion. Our

assumptions are the same as in Kubler et al. (2014) and Echenique and Saito (2015).

Compared to the existing revealed preference literature on EU, our focus is different. We

present a new measure of consistency with EU, not a new test. Our assumption of monetary

payoffs and risk aversion is restrictive but consistent with how EU theory has been used in

economics: many economic models assume risk aversion and monetary payoffs. Our results

speak directly to the empirical relevance of such models. By focusing on risk aversion, we

do not test EU in isolation, but the joint test of EU and risk aversion matters for many

economic applications. A further motivation for focusing on risk aversion is empirical: in

the data we have looked at, corner choices are very rare. This would rule out risk-seeking

behavior in the context of EU. Thus, arguably, EU and risk-loving behavior would not be a
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serious candidate explanation of the experimental data we present in our paper.

As mentioned, the CCEI was proposed by Afriat (1972). Varian (1990) proposes a mod-

ification, and Echenique et al. (2011) and Dean and Martin (2016) propose alternative mea-

sures. Dziewulski (2018) provides a foundation for CCEI based on the model in Dziewulski

(2016), which seeks to rationalize violations of utility-maximizing behavior with a model of

just-noticeable differences. Compared to the literature based on the CCEI, we present an

explicit model of the errors that would explain the deviation from EU. As a consequence,

our measure of consistency with EU is based on a “story” for why choices are inconsistent

with EU. And, as we have explained above, the nature of EU-consistent choices is poorly

reflected in the CCEI’s budget adjustments.

Apesteguia and Ballester (2015) propose a general method to measure the distance be-

tween theory and data in revealed preference settings. For each possible preference rela-

tion, they calculate the swaps index, which counts the number of alternatives that must be

swapped with the chosen alternative in order for the preference relation to rationalize the

data. Then, Apesteguia and Ballester (2015) consider the preference relation that minimizes

the total number of swaps in all the observations, weighted by their relative occurrence in the

data. Apesteguia and Ballester (2015) assume that there is a finite number of alternatives,

and thus a finite number of preference relations over the set of alternatives. Because of the

finiteness, they can calculate the swaps index for each preference relation and find the pref-

erence relation that minimizes the swaps index. This method by Apesteguia and Ballester

(2015) is not directly applicable to our setup because in our setup, a set of alternatives is a

budget set and contains infinitely many elements; moreover, the number of expected utility

preferences relation is infinite. 3

There are many other studies of revealed preference that are based on a notion of distance

between the theory and the data. For example, Halevy et al. (2018) uses such distances as a

guide in estimating parametric functional forms for the utility function. Polisson et al. (2017)

show that a dataset is rationalizable by a model if and only if one can fit a rationalizing

model to the observed data (importantly, their approach does not rely on risk aversion).

They use a version of CCEI to measure deviations from the theory. Finally, de Clippel and

Rozen (2019) measure consistency with general utility maximization (not EU) by way of

3In Appendix D.1 of Apesteguia and Ballester (2015), they consider the swaps index for expected utility

preferences while assuming the finiteness of the set of alternatives. In their Appendix D.3, without axiom-

atization, they consider the swaps index for an infinite set of alternatives using the Lebesgue measure to

“count” the number of swaps. However, they do not study the case where the number of alternatives is

infinite and the preference relations are expected utility.
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departures from first-order conditions, a similar approach to ours. Their work is independent

and contemporaneous to ours.

2 Model

Let S be a finite set of states. We occasionally use S to denote the number |S| of states. Let

∆++(S) = {µ ∈ RS
++ |

∑S
s=1 µs = 1} denote the set of strictly positive probability measures

on S. In our model, the objects of choice are state-contingent monetary payoffs, or monetary

acts. A monetary act is a vector in RS
+.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RS
+ ×RS

++.

The interpretation of a dataset (xk, pk)Kk=1 is that it describes K purchases of a state-

contingent payoff xk at some given vector of prices pk, and income pk · xk.
For any prices p ∈ RS

++ and positive number I > 0, the set

B(p, I) = {y ∈ RS
+ | p · y ≤ I}

is the budget set defined by p and I.

Expected utility theory requires a decision maker to solve the problem

max
x∈B(p,I)

∑
s∈S

µsu(xs), (2)

when faced with prices p ∈ RS
++ and income I > 0, where µ ∈ ∆++(S) is a belief and u is

a concave utility function over money. We are interested in concave u; an assumption that

corresponds to risk aversion.

The belief µ will have two interpretations in our model. First, in Section 3, we shall focus

on decisions taken under risk. The belief µ will be a known “objective” probability measure

µ∗ ∈ ∆++(S). Then, in Section 5, we study choice under uncertainty. Consequently, The

belief µ will be a subjective beliefs, which is unobservable to us as outside observers.

When imposed on a dataset, expected utility maximization (2) may be too demanding.

We are interested in situations where the model in (2) holds approximately. As a result,

we shall relax (2) by “perturbing” some elements of the model. The exercise will be to

see if a dataset is consistent with the model in which some elements have been perturbed.

Specifically, we shall perturb beliefs, utilities, or prices.

First, consider a perturbation of utility u. We allow u to depend on the choice problem

k and the realization of the state s. We suppose that the utility of consumption xs in state
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s is given by εksu(xs), with εks being a (multiplicative) perturbation in utility. To sum up,

given price p and income I, a decision maker solves the problem

max
x∈B(p,I)

∑
s∈S

µsε
k
su(xs),

when faced with prices p ∈ RS
++ and income I > 0. Here {εks} is a set of perturbations, and

u is, as before, a concave utility function over money.

In the second place, consider a perturbation of beliefs. We allow µ to be different for each

choice problem k. That is, given price p and income I, a decision maker solves the problem

max
x∈B(p,I)

∑
s∈S

µksu(xs), (3)

when faced with prices p ∈ RS
++ and income I > 0, where {µk} ⊂ ∆++(S) is a set of beliefs

and u is a concave utility function over money.

Finally, consider a perturbation of prices. Our consumer faces perturbed prices p̃ks = εksp
k
s ,

with a perturbation εks that depends on the choice problem k and the state s. Given price p

and income I, a decision maker solves the problem

max
x∈B(p̃,I)

∑
s∈S

µsu(xs),

when faced with income I > 0 and the perturbed prices p̃ks = εksp
k
s for each k ∈ K and s ∈ S.

Observe that our three sources of perturbations have different interpretations, each can

be traced back to a long-standing tradition for how errors are introduced in economic models.

Perturbed prices can be thought of a prices subject to measurement error, measurement error

being a very common source of perturbations in econometrics (Griliches, 1986). Perturbed

utility is an instance of random utility models (McFadden, 1974). Finally, perturbations

of beliefs can be thought of as a kind of random utility, or as an inability to exactly use

probabilities. Note that we perturb one source at a time and do not consider combinations

of perturbations.

3 Perturbed Objective Expected Utility

In this section, we discuss choice under risk: there exists a known “objective” belief µ∗ ∈
∆++(S) that determines the realization of states. The experiments we discuss in Section 4

are all on choice under risk.

9



As mentioned above, we go through each of the sources of perturbation: beliefs, utility,

and prices. We seek to understand how large a perturbation has to be in order to rationalize

a dataset. It turns out that, for this purpose, all sources of perturbations are equivalent.

3.1 Belief Perturbation

Deviations from EU are accommodated by allowing a different belief at each observation. So

we assume a belief µk for each choice k, and allow µk to differ from the objective µ∗. We seek

to understand how much the belief µk deviates from the objective belief µ∗ by evaluating

how far the ratio,
µks/µ

k
t

µ∗s/µ
∗
t

,

where s 6= t, differs from 1. If the ratio is larger (smaller) than one, then it means that in

choice k, the decision maker believes the relative likelihood of state s with respect to state

t is larger (smaller, respectively) than what he should believe, given the objective belief µ∗.

Given a non-negative number e, we say that a dataset is e-belief-perturbed objective

expected utility (OEU) rational, if it can be rationalized using expected utility with per-

turbed beliefs for which the relative likelihood ratios do not differ by more than e from their

objective equivalents. Formally:

Definition 2. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed OEU rational if there

exist µk ∈ ∆++ for each k ∈ K, and a concave and strictly increasing function u : R+ → R,

such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(xks).

and for each k ∈ K and s, t ∈ S,

1

1 + e
≤ µks/µ

k
t

µ∗s/µ
∗
t

≤ 1 + e. (4)

When e = 0, e-belief-perturbed OEU rationality requires that µks = µ∗s for all s and k, so

the case of exact consistency with expected utility is obtained with a zero bound of belief

perturbations. Moreover, it is easy to see that by taking e to be large enough, any dataset

can be e-belief-perturbed rationalizable.

We should note that e bounds belief perturbations for all states and observations. As

such, it is sensitive to extreme observations and outliers (the CCEI is also subject to this
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critique: see Echenique et al., 2011). In our empirical application, we carry out a robustness

analysis to account for such sensitivity (see Appendix E.2).

Finally, we mention a potential relationship with models of nonexpected utility. One

could think of rank-dependent utility, for example, as a way of allowing agent’s beliefs to

adapt to his observed choices. However, unlike e-belief-perturbed OEU, the nonexpected

utility theory requires some consistencies on the dependency. For example, for the case of

rank-dependent utility, the agent’s belief over the states is affected by the ranking of the

outcomes across states.

3.2 Price Perturbation

We now turn to perturbed prices: think of them as prices measured with error. The pertur-

bation is a multiplicative noise term εks to the Arrow-Debreu state price pks . Thus, perturbed

state prices are εksp
k
s . Note that if εks = εkt for all s, t, then introducing the noise does not

affect anything because it only changes the scale of prices. In other words, what matters is

how perturbations affect relative prices, that is εks/ε
k
t .

We can measure how much the noise εk perturbs relative prices by evaluating how much

the ratio,
εks
εkt
,

where s 6= t, differs from 1.

Definition 3. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-price-perturbed OEU rational if there

exists a concave and strictly increasing function u : R+ → R, and εk ∈ RS
+ for each k ∈ K

such that, for all k,

y ∈ B(p̃k, p̃k · xk) =⇒
∑
s∈S

µ∗su(ys) ≤
∑
s∈S

µ∗su(xks),

where for each k ∈ K and s ∈ S
p̃ks = pksε

k
s

and for each k ∈ K and s, t ∈ S

1

1 + e
≤ εks
εkt
≤ 1 + e. (5)

It is without loss of generality to add an additional restriction that p̃k · xk = pk · xk for

each k ∈ K because what matters are the relative prices.
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Figure 2: (A-C) Illustration of perturbed budget sets with e ∈ {0.25, 0.5, 1}. (C) Example of price-perturbed

OEU rationalization.

The idea is illustrated in Figure 2A-D. The figure shows how the perturbations to rel-

ative prices affect budget lines, under the assumption that |S| = 2. For each value of

e ∈ {0.25, 0.5, 1} and k ∈ K, the blue area is the set {x ∈ RS
+ | x · p̃k = xk · p̃k and (5)} of

perturbed budget lines. The dataset in the figure is the same as in Figure 1B, which is not

rationalizable with any expected utility function.

Figure 2C illustrates how we rationalize the dataset in Figure 1B. The blue bold lines

are perturbed budget lines and the green bold curves are (fixed) indifference curves passing

through each of the xk in the data. The blue shaded areas are the sets of perturbed budget

lines bounded by e = 1. Perturbed budget lines needed to rationalize the choices are indicated

with blue bold lines. Since these are inside the shaded areas, the dataset is price-perturbed

OEU rational with e = 1.

3.3 Utility Perturbation

Finally, we turn to perturbed utility. As explained above, perturbations are multiplicative

and take the form εksu(xks). It is easy to see that this method is equivalent to belief pertur-

bation.4 As for price perturbations, we seek to measure how much the εk perturbs utilities

at choice problem k by evaluating how much the ratio,

εks
εkt
,

where s 6= t, differs from 1.

Definition 4. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed OEU rational if there

exists a concave and strictly increasing function u : R+ → R and εk ∈ RS
+ for each k ∈ K

4We consider state-contingent perturbations. As such, perturbed utilities fall outside of the domain of

EU theory. We thank Jose Apestegúıa and Miguel Ballester for pointing this out to us.
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such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µ∗sε
k
su(ys) ≤

∑
s∈S

µ∗sε
k
su(xks),

and for each k ∈ K and s, t ∈ S
1

1 + e
≤ εks
εkt
≤ 1 + e. (6)

3.4 Equivalence of Belief, Price, and Utility Perturbations

The first observation we make is that the three sources of perturbations are equivalent, in the

sense that for any e a dataset is e-perturbed rationalizable according to one of the sources

if and only if it is also rationalizable according to any of the other sources with the same e.

By virtue of this result, we can interpret our measure of deviations from OEU in any of the

ways we have introduced.

Theorem 1. Let e ∈ R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational;

• D is e-price-perturbed OEU rational;

• D is e-utility-perturbed OEU rational.

The proof appears in Section 6. In light of Theorem 1, we shall simply say that a dataset is

e-perturbed OEU rational if it is e-belief-perturbed OEU rational, and this will be equivalent

to being e-price-perturbed OEU rational, and e-utility-perturbed OEU rational.

3.5 Characterizations

We proceed to give a characterization of the dataset that are e-perturbed OEU rational.

Specifically, given e ∈ R+, we propose a revealed preference axiom and prove that a dataset

satisfies the axiom if and only if it is e-perturbed OEU rational.

Before we state the axiom, we need to introduce some additional notation. In the current

model, where µ∗ is known and objective, what matters to an expected utility maximizer is

not the state price itself, but instead the risk-neutral price.

Definition 5. For any dataset (pk, xk)Kk=1, the risk neutral price ρks ∈ RS
++ in choice problem

k at state s is defined by

ρks =
pks
µ∗s
.
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As in Echenique and Saito (2015), the axiom we propose involves a sequence (xkisi , x
k′i
s′i

)ni=1

of pairs satisfying certain conditions.

Definition 6. A sequence of pairs (xkisi , x
k′i
s′i

)ni=1 is called a test sequence if

(i) xkisi > x
k′i
s′i

for all i;

(ii) each k appears as ki (on the left of the pair) the same number of times it appears as

k′i (on the right).

Echenique and Saito (2015) provide an axiom for OEU rationalization, termed the Strong

Axiom for Revealed Objective Expected Utility (SAROEU), which states that for any test

sequence (xkisi , x
k′i
s′i

)ni=1, we have
n∏
i=1

ρkisi

ρ
k′i
s′i

≤ 1. (7)

SAROEU is equivalent to the axiom provided by Kubler et al. (2014).

It is easy to see why SAROEU is necessary for OEU rationalization. Assuming (for

simplicity of exposition) that u is differentiable, the first-order condition of the maximization

problem (2) for choice problem k is

λkpks = µ∗su
′(xks), or equivalently, ρks =

u′(xks)

λk
,

where λk > 0 is a Lagrange multiplier.

By substituting this equation on the left hand side of (7), we have

n∏
i=1

ρkisi

ρ
k′i
s′i

=
n∏
i=1

λk
′
i

λki
·
n∏
i=1

u′(xkisi )

u′(x
k′i
s′i

)
≤ 1.

To see that this term is smaller than 1, note that the first term of the product of the λ-ratios

is equal to one because of the condition (ii) of the test sequence: all λk must cancel out. The

second term of the product of u′-ratio is less than one because of the concavity of u, and the

condition (i) of the test sequence (i.e., u′(xkisi )/u
′(x

k′i
s′i

) ≤ 1). Thus, SAROEU is implied. It is

more complicated to show that SAROEU is sufficient (see Echenique and Saito, 2015).

Now, e-perturbed OEU rationality allows the decision maker to use different beliefs µk ∈
∆++(S) for each choice problem k. Consequently, SAROEU is not necessary for e-perturbed

OEU rationality. To see that SAROEU can be violated, note that the first-order condition
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of the maximization (3) for choice k is as follows: there exists a positive number (Lagrange

multiplier) λk such that for each s ∈ S,

λkpks = µksu
′(xks), or equivalently, ρks =

µks
µ∗s

u′(xks)

λk
.

Suppose that xks > xkt . Then (xks , x
k
t ) is a test sequence (of length one) according to

Definition 6. We have

ρks
ρkt

=

(
µks
µ∗s

u′(xks)

λk

)/(
µkt
µ∗t

u′(xkt )

λk

)
=
u′(xks)

u′(xkt )

µks/µ
k
t

µ∗s/µ
∗
t

.

Even though xks > xkt implies the first term of the ratio of u′ is less than one, the second

term can be strictly larger than one. When xks is close enough to xkt , the first term is almost

one while the second term can be strictly larger than one. Consequently, SAROEU can be

violated.

However, by (4), we know that the second term is bounded by 1 + e. So we must have

ρks
ρkt
≤ 1 + e.

In general, for a sequence (xkisi , x
k′i
s′i

)ni=1 of pairs, one may suspect that the bound is calculated

as (1 + e)n. This is not true because if xks appears both as xkisi for some i (on the left of the

pair) and as x
k′j
s′j

for some j (on the right of the pair), then all µks can be canceled out. What

matters is the number of times xks appears without being canceled out. This number can be

defined as follows.

Definition 7. Consider any sequence (xkisi , x
k′i
s′i

)ni=1 of pairs. Let (xkisi , x
k′i
s′i

)ni=1 ≡ σ. For any

k ∈ K and s ∈ S,

d(σ, k, s) = #{i | xks = xkisi} −#{i | xks = x
k′i
s′i
},

and

m(σ) =
∑
s∈S

∑
k∈K:d(σ,k,s)>0

d(σ, k, s).

Note that, if d(σ, k, s) is positive, then d(σ, k, s) is the number of times µks appears as

a numerator without being canceled out. If it is negative, then d(σ, k, s) is the number

of times µks appears as a denominator without being canceled out. So m(σ) is the “net”

number of terms such as µks/µ
k
t that are present in the numerator. Thus the relevant bound

is (1 + e)m(σ).

Given the discussion above, it is easy to see that the following axiom is necessary for

e-perturbed OEU rationality.
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Axiom 1 (e-Perturbed Strong Axiom for Revealed Objective Expected Utility (e-PSAROEU)).

For any test sequence of pairs (xkisi , x
k′i
s′i

)ni=1 ≡ σ, we have

n∏
i=1

ρkisi

ρ
k′i
s′i

≤ (1 + e)m(σ).

The main result of this section is to show that the axiom is also sufficient.

Theorem 2. Given e ∈ R+, and let D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational.

• D satisfies e-PSAROEU.

The proof appears in Section 6.

Axioms like e-PSAROEU can be interpreted as a statement about downward-sloping

demand (see Echenique et al., 2016). For example (xks , x
k
s′) with xks > xks′ is a test sequence.

If risk neutral prices satisfy ρks > ρks′ , then the dataset violates downward-sloping demand.

Now e-PSAROEU measures the extent of the violation by controlling the size of ρks/ρ
k
s′ .

In its connection to downward-sloping demand, Theorem 2 formalizes the idea of testing

OEU through the correlation of risk-neutral prices and quantities: see Friedman et al. (2018)

and our discussion in Section 4.2. Theorem 2 and the axiom e-PSAROEU give the precise

form that the downward-sloping demand property takes in order to characterize OEU, and

provide a non-parametric justification to the practice of analyzing the correlation of prices

and quantities.

As mentioned, 0-PSAROEU is equivalent to SAROEU. When e = ∞, the e-PSAROEU

always holds because (1 + e)m(σ) =∞.

Given a dataset, we shall calculate the smallest e for which the dataset satisfies e-

PSAROEU. It is easy to see that such a minimal level of e exists. 5 We explain in Ap-

pendices B and C how it is calculated in practice.

Definition 8. Minimal e, denoted e∗, is the smallest e′ ≥ 0 for which the data satisfies

e′-PSAROEU.

The number e∗ is a crucial component of our empirical analysis. Importantly, it is the

basis of a statistical procedure for testing the null hypothesis of OEU rationality.

5In Appendix B, we show that e∗ can be obtained as a solution of minimization of a continuous function

on a compact space. So the minimum exists.
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As mentioned above, e∗ is a bound that has to hold across all observations, and therefore

may be sensitive to extreme outliers. It is, however, easy to check the sensitivity of the

calculated e∗ to an extreme observation. One can, for example, re-calculate e∗ after dropping

one or two observations, and look for large changes.

Finally, e∗ depends on the prices and the objective probability which a decision maker

faces. In particular, it is clear from e-PSAROEU that 1 + e is bounded by the maximum

ratio of risk-neutral prices (i.e., maxk,k′∈K,s,s′∈S ρ
k
s/ρ

k′

s′ ).

We should mention that Theorem 2 is similar in spirit to some of the results in Allen

and Rehbeck (2018), who consider approximate rationalizability of quasilinear utility. They

present a revealed preference characterization with a measure of error “built in” to the axiom,

similar to ours, which they then use as an input to a statistical test. The two papers were

developed independently, and since the models in question are very different, the results are

unrelated.

4 Testing (Objective) Expected Utility

We apply our methodology to data from three large-scale online experiments. The exper-

iments were implemented through representative surveys, and involved objective risk, not

uncertainty. The data are taken from Choi et al. (2014, hereafter CKMS), Carvalho et al.

(2016, hereafter CMW), and Carvalho and Silverman (2017, hereafter CS). All three exper-

iments share a common experimental structure, the portfolio allocation task introduced by

Loomes (1991) and Choi et al. (2007).

It is worth mentioning again that the three studies focus on CCEI as a measure of

violation of basic rationality. We shall instead look at OEU, and use e∗ as our measure of

violations of OEU. Our procedure for calculating e∗ is explained in Appendices B and C.

4.1 Datasets

In the experiments, subjects were presented with a sequence of decision problems under risk

in a graphical illustration of a two-dimensional budget line. They were then asked to select

a point (x1, x2), an “allocation,” by clicking on the budget line (subjects were therefore

forced to exhaust the income). The coordinates of the selected point represent an allocation

of points between “accounts” 1 and 2. They received the points allocated to one of the

accounts, determined at random with equal chance (µ∗1 = µ∗2 = 0.5). Subjects faced a total
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Figure 3: Sample budget lines. A set of 25 budgets from one real subject in Choi et al. (2014).

of 25 budgets, as illustrated in Figure 3.

We note some interpretations of the design that matter for our posterior discussion. First,

points on the 45-degree line correspond to equal allocations between the two accounts, and

therefore involve no risk. The 45-degree line is the “full insurance” line. Second, we can

interpret the slope of a budget line as a price in the usual sense: if the x2-intercept is larger

than the x1-intercept, points in the account 2 are “cheaper” than those in the account 1.

Choi et al. (2014) implemented the task using the instrument of the CentERpanel, ran-

domly recruiting subjects from the entire panel sample in the Netherlands. Carvalho et al.

(2016) administered the task using the GfK KnowledgePanel, a representative panel of the

adult U.S. population. Carvalho and Silverman (2017) used the Understanding America

Study panel. The number of subjects completed the task in each study is 1,182 in CKMS,

1,119 in CMW, and 1,423 in CS.

The survey instruments in these studies allowed them to collect a wide variety of indi-

vidual demographic and economic information from the respondents. The main sociodemo-

graphic information they obtained include gender, age, education level, household income,

occupation, and household composition.

The selection of 25 budget lines was independent across subjects in CKMS (i.e., the

subjects were given different sets of budget lines), fixed in CMW (i.e., all subjects saw the

same set of budgets), and semi-randomized across subjects in CS (i.e., each subject drew

one of the 10 sets of 25 budgets).
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Figure 4: Kernel density estimations of e∗. (A) all subjects. (B) The subsample of subjects with CCEI = 1.

4.2 Results

Summary statistics. We exclude five subjects who are “exactly” OEU rational, leaving

us a total of 3,719 subjects in the three experiments. About 76% of subjects never chose

corners of the budget lines, and there are only 77 subjects (two percent of the entire sample)

who chose corners in more than half of the 25 questions. Given these observations, our focus

on risk aversion does not seem to be too restrictive in this environment.

We calculate e∗ for each individual subject. The distributions of e∗ are displayed in

Figure 4A. The CKMS sample has a mean e∗ of 1.289, and a median of 1.316. The CMW

subjects have a mean of 1.189 and a median of 1.262, while the CS sample has a mean

of 1.143 and a median of 1.128.6

Recall that the smaller a subject’s e∗ is, the closer are her choices to OEU rationality.

Of course, it is hard to exactly interpret the magnitude of e∗, a problem that we turn to in

Section 4.3.

Downward-sloping demand and e∗. Perturbations in beliefs, prices, or utility, seek

to accommodate a dataset so that it is OEU rationalizable. The accommodation can be

seen as correcting a mismatch of relative prices and marginal rates of substitution: recall

our discussion in the introduction. Another way to see the accommodation is through the

relation between prices and quantities. Our revealed preference axiom, e-PSAROEU, bounds

certain deviations from downward-sloping demand. The minimal e is therefore a measure of

the kinds of deviations from downward-sloping demand that are crucial to OEU rationality.

Figure 5 illustrates this idea. We calculate the Spearman’s correlation coefficient between

log(x2/x1) and log(p2/p1) for each subject in the datasets.7 Roughly speaking, downward-

6Since e∗ depends on the design of set(s) of budgets, comparing e∗ across studies requires caution.
7Note that log(x2/x1) is not defined at the corners. We thus adjust corner choices (less than 5% of all
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Figure 5: Correlation between log(x2/x1) and log(p2/p1) and measures of rationality: (A) CKMS, (B) CMW,

(C) CS. The vertical dashed line indicates the threshold below which Spearman’s correlation is significantly

negative (one-sided, at the 1% level). Solid curves represent LOESS smoothing with 95% confidence bands.

Dashed curves in the second row represent LOESS smoothing excluding subjects with CCEI = 1.

sloping demand corresponds to the correlation between changes in quantities log(x2/x1), and

changes in prices log(p2/p1), being negative. The correlation is close to zero if subjects do

not respond to price changes.

The top row of Figure 5 confirms that e∗ and the correlation between prices and quantities

are closely related. This means that subjects with smaller e∗ tend to exhibit downward-

sloping demand, while those with larger e∗ are insensitive to price changes. Across all three

datasets, e∗ and downward-sloping demand are strongly and positively related.

The CCEI, on the other hand, is not clearly related to downward-sloping demand. As

illustrated in the bottom row of Figure 5, the relation between CCEI and the correlation

between prices and quantities is not monotonic. Agents who are closer to complying with

utility maximization do not necessarily display a stronger negtive correlation between prices

and quantities. The finding is consistent with our comment about CCEI, e∗, and OEU

rationality: CCEI measures the distance from utility maximization, which is related to

parallel shifts in budget lines, while e∗ and OEU are about the slope of the budget lines, and

about a negative relation between quantities and prices. Hence, e∗ reflects the characterizing

properties of OEU better than CCEI.

choices) by a small constant, 0.1% of the budget in each choice, in calculation of the correlation coefficient.
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We should mention that the non-monotonic relation between CCEI and downward-sloping

demand seems to be partially driven by subjects who have CCEI = 1. There are 270 (22.8%)

subjects whose CCEI scores equal to one in CKMS sample, 207 (18.5%) in CMW sample, and

313 (22.0%) in CS sample, respectively. Omitting such subjects weakens the non-monotone

relationship. The dotted curves in the bottom row of Figure 5 look at the relation between

CCEI and the correlation coefficient excluding subjects with CCEI = 1. These curves also

have non-monotonic relation, but they exhibit negative relation on a wider range of the

horizontal axis, and have wider confidence bands when the correlation coefficient is positive

(fewer observations).

We should also mention the practice by some authors, notably Friedman et al. (2018), to

evaluate compliance with OEU by looking at the correlation between risk-neutral prices and

quantities. Our e∗ is clearly related to that idea, and the empirical results presented in this

section can be read as a validation of the correlational approach. Friedman et al. (2018) use

their approach to estimate a parametric functional form, using experimental data in which

they vary objective probabilities, not just prices. 8 Our approach is non-parametric, and

focused on testing OEU itself, not estimating any particular utility specification.

First-order stochastic dominance and e∗. In the experiments we consider, choosing

(x1, x2) at prices (p1, p2) violates monotonicity with respect to first-order stochastic domi-

nance (FOSD-monotonicity) when either (i) p1 > p2 and x1 > x2 or (ii) p2 > p1 and x2 > x1.

Since the two states have the same objective probability in our datasets, choosing a greater

payoff in the more expensive state violates monotonicity with respect to FOSD. Choices that

violate FOSD-monotonicity are not uncommon in the data (see Table E.1 and Figure E.12

in Appendix E.3 for details).

Violations of monotonicity with respect to FOSD are related to downward-sloping de-

mand, as they involve consuming more in the more expensive state. Importantly, the number

of choices that violate FOSD-monotonicity is a good indicator of the distance to OEU. See

the positive relation between the fraction of FOSD-monotonicity violations and e∗ in the top

row of Figure 6: subjects who frequently made choices violating FOSD-monotonicity tend to

have larger e∗ compared to those with fewer such violations. Note that OEU-rational choices

must satisfy monotonicity with respect to FOSD. Indeed, choices made by five OEU-rational

subjects (e∗ = 0) in our data never violated FOSD-monotonicity.

8For the datasets we use, where probabilities are always fixed, the results we report in Figure 7 are

analogous to what Friedman et al. (2018) report in their Figure 6.
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Figure 6: Violation of FOSD-monotonicity and measures of rationality. Solid curves represent LOESS

smoothing with 95% confidence bands. Dashed curves in the bottom panels represent LOESS smoothing

excluding subjects with CCEI = 1. Panels: (A) CKMS, (B) CMW, (C) CS.

The relation between e∗ and violations of FOSD-monotonicity stands in sharp contrast

with CCEI. First, choices that violate FOSD-monotonicity can be consistent with GARP. In

fact, our data exhibits subjects that pass GARP while making choices that violate FOSD-

monotonicity (an empirical fact that was first pointed out by Choi et al., 2014). The bottom

row of Figure 6 shows that a substantial number of subjects with perfect compliance with

GARP (CCEI = 1) make at least one violation of FOSD-monotonicity.9 The existence

of these subjects generates a nonmonotonic relationship between CCEI and the violation

frequency of FOSD-monotonicity, as represented by U-shaped LOESS curves.10

Typical patterns of choices. We can gain some further insights into the data by con-

sidering “typical” patterns of choice. Figure 7 displays such typical patterns from selected

subjects with varying degrees of e∗. Panels A-D plot observed choices from the different

9More than 80% of the GARP-compliant (i.e., CCEI = 1) subjects made at least one choice that violates

FOSD-monotonicity (CKMS: 252/270; CMW: 173/207; CS: 265/313). Between 11 to 34% of the GARP-

compliant subjects made choices violating FOSD-monotonicity in mroe than half of the 25 budgets (CKMS:

91/270; CMW: 47/207; CS: 35/313).
10Choi et al. (2014) propose an additional measure to make up for the problems of CCEI by combining

the observed data and the mirror-image of the data. We consider their proposal in the appendix: see in

particular, Figures E.13 and E.14 in the online appendix. The bottom line is that our conclusions continue

to hold for the adjusted version of CCEI.
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Figure 7: Choice patterns from three subjects with CCEI = 1 and varying e∗. (A-D) Observed choices.

(E-H) The relation between log(x2/x1) and log(p2/p1). Choices in shaded areas violate monotonicity with

respect to first-order stochastic dominance. r indicates the Pearson’s correlation coefficient and f indicates

the fraction of violations of FOSD-monotonicity.

budget lines, and panels E-H plot the relation between log(x2/x1) and log(p2/p1) associated

with each choice pattern. The idea in the latter set of plots is that, if a subject properly re-

sponds to price changes, then as log(p2/p1) becomes higher, log(x2/x1) should become lower.

This relation is also the idea in e-PSAROEU. Therefore, panels E-H in Figure 7 should have

a negative slope for the subjects to be OEU rational.

Figure 7 also illustrates how e∗ operates. It measures how big of an “adjustment” of prices

would be needed to satisfy downward-sloping demand. Such adjustments would represent

horizontal shifts in the figure. Observe that all subjects in Figure 7 have CCEI = 1, and

are thus essentially consistent with utility maximization (ignoring the knife-edge cases of

CCEI = 1 and inconsistency). The figure illustrates that the nature of OEU violations has

little to do with CCEI.

Panel A presents a choice pattern that is “almost” consistent with OEU. The relation

between log(x2/x1) and log(p2/p1) fits close to a negative line, but there is a small deviation

around log(p2/p1) = 0 which makes the subject’s e∗ nonzero. The choice pattern in panel B

exhibits a negative slope, but with more deviations (panel F). In particular, some of the

choices violate FOSD-monotonicity. Panels C and H show a pattern that does not violate
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Figure 8: Correlation between e∗ and CCEI from (A) CKMS, (B) CMW, and (C) CS.

FOSD-monotonicity but deviates from OEU.

The subject’s choices in panel D are close to the 45-degree line. At first glance, such

choices might seem to be rationalizable by a very risk-averse expected utility function. How-

ever, as panel H shows, the subject’s choices deviate from downward-sloping demand, and

hence cannot be rationalized by any expected utility function. One might be able to ratio-

nalize the choices made in panel D with some models of errors in choices, but not with the

types of errors captured by our model.11

Relationship between e∗ and CCEI. Comparing e∗ and CCEI, we find that CCEI is not

a good indication of the distance to OEU rationality. To reiterate a point we have already

made, this should not be surprising as CCEI is meant to test general utility maximization,

and not OEU. Nevertheless, it is interesting to see and quantify the relation between these

measures in the data.

In Figure 4B, we show the distribution of e∗ among subjects whose CCEI is equal to

one, which varies as much as in panel A. Many subjects have CCEI equal to one, but their

e∗’s are far from zero. This means that consistency with general utility maximization is not

necessarily a good indication of consistency with OEU.

That said, the measures are clearly correlated. Figure 8 plots the relation between CCEI

and e∗. As we expect from their definitions (larger CCEI and smaller e∗ correspond to

higher consistency), there is a negative and significant relation between them (Spearman’s

correlation coefficient: r = −0.18 for CKMS, r = −0.11 for CMW, r = −0.35 for CS, all

11This is, in our opinion, a strength of our approach. We do not ex-post seek to invent a model of errors that

might rescue EU. Instead we have written down what we think are natural sources of errors and perturbation

(random utility, beliefs, and measurement errors). Our results deal with what can be rationalized when these

sources of errors, and only those, are used to explain the data. A general enough model of errors will, of

course, render the theory untestable.
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p < 0.001).

Notice that the variability of the CCEI scores widens as the e∗ becomes larger. Obviously,

subjects with a small e∗ are close to being consistent with general utility maximization, and

therefore have a CCEI that is close to one. However, subjects with large e∗ seem to have

disperse values of CCEI.

Correlation with sociodemographic characteristics. We investigate the correlation

between our measure of consistency with expected utility, e∗, and various demographic vari-

ables available in the data. The exercise is analogous to CKMS’s findings using CCEI.

We find that younger subjects, those who have high cognitive abilities, and those who

are working, are closer to being consistent with OEU than older, low ability, or non-working,

subjects. For some of the three experiments we also find that highly educated, high-income

subjects, and males, are closer to OEU. Figure 9 summarizes the mean e∗ along with 95%

confidence intervals across several socioeconomic categories. 12 We use the same categoriza-

tion as in Choi et al. (2014) to compare our results with their Figure 3.

We observe statistically significant (at the 5% level) gender differences in CMW (t(1114) =

−2.20, p = 0.028) and CS (t(1418) = −4.46, p < 0.001), but not in CKMS (t(1180) = −0.87,

p = 0.384). Male subjects were on average closer to OEU rationality than female subjects

in the CMW and CS samples (panel A).

We find significant age effects as well. Panel B shows that younger subjects are on average

closer to OEU rationality than older subjects (the comparison between age groups 16-34

and 65+ reveals statistically significant difference in all three datasets; all two-sample t-tests

give p < 0.001).

We observe weak effects of education on e∗ (panel C).13 Subjects with higher education

are on average closer to OEU than those with lower education in CKMS (t(829) = 4.20,

p < 0.001), but the difference is not significant in the CMW and CS (t(374) = 1.68, p = 0.094

in CMW; t(739) = 1.41, p = 0.1596 in CS).

Panel D shows that subjects who were working at the time of the survey are on average

closer to OEU than those who were not (t(1180) = 2.24, p = 0.025 in CKMS; t(1114) = 2.43,

p = 0.015 in CMW; t(1419) = 3.35, p = 0.001 in CS).

12Figure E.16 in Appendix shows correlation between CCEI and demographic variables.
13The low, medium, and high education levels correspond to primary or prevocational secondary educa-

tion, pre-university secondary education or senior vocational training, and vocational college or university

education, respectively.
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Figure 9: e∗ and demographic variables.

In panels E1 and E2, we classify subjects according to their Cognitive Reflection Test

score (CRT; Frederick, 2005) or average log reaction times in numerical Stroop task. 14 The

average e∗ for those who correctly answered two questions or more of the CRT is lower than

the average for those who answered at most one question. Subjects with lower response

times in the numerical Stroop task have significantly lower e∗ (t(1114) = −3.35, p < 0.001).

One of the key findings in Choi et al. (2014) is that consistency with utility maximization

as measured by CCEI correlates with household wealth. When we look at the relation

between e∗ and household income, there is a negative trend but the differences across income

brackets are not statistically significant (bracket “0-2.5k” vs. “5k+”, t(533) = 1.65, p =

0.099; panel F1). Panel F2 presents similar non-significance between subjects who earned

14CRT consists of three questions, all of which have an intuitive and spontaneous, but incorrect, answers,

and a deliberative and correct answer. In the numerical Stroop task, subjects are presented with a number,

such as 888, and are asked to identify the number of times the digit is repeated (in this example the answer

is “3”, while an “intuitive” response is “8”). It has been shown that response times in this task capture the

subject’s cognitive control ability.
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more than 20 thousand USD annually or not in CMW sample (t(1114) = −0.23, p = 0.818).

When we compare poor households (annual income less than 20 thousand USD) and wealthy

households (annual income more than 100 thousand USD) from the CS sample, average e∗

is significantly smaller for the latter sample (t(887) = −3.57, p < 0.001).

Robustness of the results. As discussed, e∗ can be sensitive to extreme choices because

it bounds perturbations for all states and observations. In a first robustness check, we

recalculate e∗ using subsets of observed choices after dropping one or two critical mistakes.

More precisely, for each subject, we calculate e∗ for all combinations of 25 −m (m = 1, 2)

choices and pick the smallest e∗ among them. In a second robustness check, instead of

bounding all states we we calculate “average” perturbation necessary to rationalize the data

to mitigate the effect of extreme mistakes. These alternative ways of calculating e∗ do

not change the general pattern of correlation between e∗ and CCEI or e∗ and demographic

variables. See Appendix E.2 for details.

4.3 Minimum Perturbation Test

Our discussion so far has sidestepped one issue. How are we to interpret the absolute

magnitude of e∗? When can we say that e∗ is large enough to reject consistency with OEU

rationality? To answer this question, we present a statistical test of the hypothesis that an

agent is OEU rational. The test needs some assumptions, but it gives us a threshold level

(a critical value) for e∗. Any value of e∗ that exceeds the threshold indicates inconsistency

with OEU at some given statistical significance level.

Our approach follows, roughly, the methodology laid out in Echenique et al. (2011)

and Echenique et al. (2016). First, we adopt the price perturbation interpretation of e in

Section 3.2. The advantage of doing so is that we can use the observed variability in price

to get a handle on the assumptions we need to make on perturbed prices. To this end, let

Dtrue = (pk, xk)Kk=1 denote a dataset and Dpert = (p̃k, xk)Kk=1 denote an “perturbed” dataset,

where p̃ks = pksε
k
s for all s ∈ S and k ∈ K and εks > 0 is a random variable. Prices p̃k are

prices pk measured with error, or misperceived.

If the variance of ε is large, it will be easy to accommodate a dataset as OEU rational.

The larger is the variance of ε, the larger the magnitudes of e that can be rationalized as

consistent with OEU. So our procedure is sensitive to the assumptions we make about the

variance of ε.

To get a handle on the variance of ε, our approach is to think of an agent who mistakes
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Figure 10: Rejection rates under each combination of type I and type II error probabilities (ηI , ηII ), from

CKMS sample (A), CMW sample (B), and CS sample (C).

true prices p with perturbed prices p̃. If the variance of ε is too large, the agent should not

mistake the distribution of p and p̃. In other words, the distributions of p and p̃ should be

similar enough that an agent might plausibly confuse the two. To make this operational,

we imagine an agent who conducts a statistical test for the variance of prices. If the true

variance of p is σ2
0 and the implied variance of p̃ is σ2

1 > σ2
0, then the agent would conduct

a test for the null of σ2 = σ2
0 against the alternative of σ2 = σ2

1. We want the variances to

be close enough that the agent might reasonably get inconclusive results from such a test.

Specifically, we assume the sum of type I and type II errors in this test is relatively large.15

The details of how we design our test are presented in Appendix D, but we can advance

the main results. See Figure 10. Each panel corresponds to our results for each of the

datasets. The probability of a type I error is ηI . The probability of a type II error is ηII .

Recall that we focus on situations when ηI + ηII is relatively large, as we want our consumer

to plausibly mistake the distributions of p and p̃. Consider, for example, our results for

CKMS. The outermost numbers assume that ηI +ηII = 0.7. For such numbers, the rejection

rates range from 3% to 41%. For the CS dataset, if we look at the second line of numbers,

where ηI + ηII = 0.65, we see that rejection rates range from 1% to 19%.

Overall, it is fair to say that rejection rates are modest. Smaller values of ηI + ηII

correspond to larger variances of ε, and therefore smaller rejection rates. The figure also

illustrates that the conclusions of the test are very sensitive to what one assumes about

variances, through the assumptions about ηI and ηII . But if we look at the largest rejection

rates, for the largest values of ηI + ηII , we get 25% for CS, 27% for CMW, and 41% for

CKMS. Hence, while many subjects in the CS, CMW and CKMS experiments are inconsis-

15The problem of variance is pervasive in statistical implementations of revealed preference tests, see

Varian (1990), Echenique et al. (2011), and Echenique et al. (2016) for example. The use of the sum of

type I and type II errors to calibrate a variance, is new to the present paper.
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tent with OEU, our statistical tests would attribute such inconsistency to a mistake but at

least according to our statistical test, for most subjects the rejections could be attributed to

mistakes.

5 Perturbed Subjective Expected Utility

We now turn to the model of subjective expected utility (SEU), in which beliefs are not

known. Instead, beliefs are subjective and unobservable. The analysis will be analogous to

what we did for OEU, and therefore proceed at a faster pace. In particular, all the definitions

and results parallel those of the section on OEU. The proof of the main result (the axiomatic

characterization) is substantially more challenging here because both beliefs and utilities are

unknown: there is a classical problem in disentangling beliefs from utility. The technique

for solving this problem was introduced in Echenique and Saito (2015). The proofs of the

theorems are in Appendix A.

Definition 9. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-belief-perturbed SEU rational if there

exist µk ∈ ∆++ for each k ∈ K and a concave and strictly increasing function u : R+ → R

such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(xks)

and for each k, l ∈ K and s, t ∈ S

µks/µ
k
t

µls/µ
l
t

≤ 1 + e. (8)

Note that the definition of e-belief-perturbed SEU rationality differs from the definition

of e-belief-perturbed OEU rationality, only in condition (8), establishing bounds on pertur-

bations. Here there is no objective probability from which we can evaluate the deviation of

the set {µk} of beliefs. Thus we evaluate perturbations among beliefs, as in (8).

Remark 1. The constraint on the perturbation applies for each k, l ∈ K and s, t ∈ S, so it

implies for each k, l ∈ K and s, t ∈ S

1

1 + e
≤ µks/µ

k
t

µls/µ
l
t

≤ 1 + e.

Hence, when e = 0, it must be that µks/µ
k
t = µls/µ

l
t. This implies that µk = µl for a dataset

that is 0-belief perturbed SEU rational.
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Next, we propose perturbed SEU rationality with respect to prices.

Definition 10. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-price-perturbed SEU rational if there

exist µ ∈ ∆++ and a concave and strictly increasing function u : R+ → R and εk ∈ RS
+ for

each k ∈ K such that, for all k,

y ∈ B(p̃k, p̃k · xk) =⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks),

where for each k ∈ K and s ∈ S
p̃ks = pksε

k
s ,

and for each k, l ∈ K and s, t ∈ S
εks/ε

k
t

εls/ε
l
t

≤ 1 + e. (9)

Again, the definition differs from the corresponding definition of price-perturbed OEU

rationality only in condition (9), establishing bounds on perturbations. In condition (9), we

measure the size of the perturbations by

εks/ε
k
t

εls/ε
l
t

,

not εks/ε
k
t as in (5). This change is necessary to accommodate the existence of subjective

beliefs. By choosing subjective beliefs appropriately, one can neutralize the perturbation in

prices if εks/ε
k
t = εls/ε

l
t for all k, l ∈ K. That is, as long as εks/ε

k
t = εls/ε

l
t for all k, l ∈ K, if

we can rationalize the dataset by introducing the noise with some subjective belief µ, then

without using the noise, we can rationalize the dataset with another subjective belief µ′ such

that εksµ
′
s/ε

k
tµ
′
t = µs/µt.

Finally, we define utility-perturbed SEU rationality.

Definition 11. Let e ∈ R+. A dataset (xk, pk)Kk=1 is e-utility-perturbed SEU rational if

there exist µ ∈ ∆++, a concave and strictly increasing function u : R+ → R, and εk ∈ RS
+

for each k ∈ K such that, for all k,

y ∈ B(pk, pk · xk) =⇒
∑
s∈S

µsε
k
su(ys) ≤

∑
s∈S

µsε
k
su(xks),

and for each k, l ∈ K and s, t ∈ S
εks/ε

k
t

εls/ε
l
t

≤ 1 + e.
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As in the previous section, given e, we can show that these three concepts of rationality

are equivalent.

Theorem 3. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-belief-perturbed SEU rational;

• D is e-price-perturbed SEU rational;

• D is e-utility-perturbed SEU rational.

In light of Theorem 3, we shall speak simply of e-perturbed SEU rationality to refer to

any of the above notions of perturbed SEU rationality.

Echenique and Saito (2015) prove that a dataset is SEU rational if and only if it satisfies

a revealed-preference axiom termed the Strong Axiom for Revealed Subjective Expected

Utility (SARSEU). SARSEU states that, for any test sequence (xkisi , x
k′i
s′i

)ni=1, if each s appears

as si (on the left of the pair) the same number of times it appears as s′i (on the right), then

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

SARSEU is no longer necessary for perturbed SEU-rationality. This is easy to see, as

we allow the decision maker to have a different belief µk for each choice k, and reason as in

our discussion of SAROEU. Analogous to our analysis of OEU, we introduce a perturbed

version of SARSEU to capture perturbed SEU rationality. Let e ∈ R+.

Axiom 2 (e-Perturbed SARSEU (e-PSARSEU)). For any test sequence (xkisi , x
k′i
s′i

)ni=1 ≡ σ, if

each s appears as si (on the left of the pair) the same number of times it appears as s′i (on

the right), then
n∏
i=1

pkisi

p
k′i
s′i

≤ (1 + e)m(σ).

We can easily see the necessity of e-PSARSEU by reasoning from the first-order con-

ditions, as in our discussion of e-PSAROEU. The main result of this section shows that

e-PSARSEU is not only necessary for e-perturbed SEU rationality, but also sufficient.

Theorem 4. Let e ∈ R+ and D be a dataset. The following are equivalent:

• D is e-perturbed SEU rational;
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• D satisfies e-PSARSEU.

It is easy to see that 0-PSARSEU is equivalent to SARSEU, and that by choosing e to

be arbitrarily large it is possible to rationalize any dataset. As a consequence, we shall be

interested in finding a minimal value of e that rationalizes a dataset: such “minimal e” is

also denoted by e∗.

6 Proofs of Theorems 1 and 2

6.1 Proof of Theorem 1

First we prove a lemma that implies Theorem 1, and is useful for the sufficiency part of

Theorem 2. The lemma provides “Afriat inequalities” for the problem at hand.

Lemma 1. Given e ∈ R+, and let (xk, pk)Kk=1 be a dataset. The following statements are

equivalent.

(a) (xk, pk)Kk=1 is e-belief-perturbed OEU rational.

(b) There are strictly positive numbers vks , λk, µks , for s ∈ S and k ∈ K, such that

µksv
k
s = λkpks , and xks > xk

′

s′ =⇒ vks ≤ vk
′

s′ , (10)

and for all k ∈ K and s, t ∈ S,

1

1 + e
≤ µks/µ

k
t

µ∗s/µ
∗
t

≤ 1 + e. (11)

(c) (xk, pk)Kk=1 is e-price-perturbed OEU rational.

(d) There are strictly positive numbers v̂ks , λ̂k, and εks for s ∈ S and k ∈ K, such that

µ∗sv̂
k
s = λ̂kεksp

k
s , and xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k ∈ K and s, t ∈ S, 1
1+e
≤ εks
εkt
≤ 1 + e.

(e) (xk, pk)Kk=1 is e-utility-perturbed OEU rational.
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(f) There are strictly positive numbers v̂ks , λ̂k, and ε̂ks for s ∈ S and k ∈ K, such that

µ∗sε̂
k
s v̂

k
s = λ̂kpks , and xks > xk

′

s′ =⇒ v̂ks ≤ v̂k
′

s′ ,

and for all k ∈ K and s, t ∈ S,

1

1 + e
≤ ε̂ks
ε̂kt
≤ 1 + e.

Proof. The equivalence between (a) and (b), the equivalence between (c) and (d), and the

equivalence between (e) and (f) follow from arguments in Echenique and Saito (2015). The

equivalence between (d) and (f) with εks = 1/ε̂ks for each k ∈ K and s ∈ S is straightforward.

Thus, to show the result, it suffices to show that (b) and (d) are equivalent.

To show that (d) implies (b), define v = v̂ and µks = µ∗s
εks
/
(∑

s∈S
µ∗s
εks

)
for each k ∈ K and

s ∈ S and λk = λ̂k/
(∑

s∈S
µ∗s
εks

)
for each k ∈ K. Then, µk ∈ ∆++(S). Since µ∗sv̂

k
s = λ̂kεksp

k
s ,

we have µksv
k
s = λkpks . Moreover, for each k ∈ K and s, t ∈ S, εks

εkt
=

µks/µ
k
t

µ∗s/µ
∗
t
. Hence, 1

1+e
≤ εks

εkt
≤

1 + e.

To show that (b) implies (d), for all s ∈ S define v̂ = v and for all k ∈ K, λ̂k = λk. For

all k ∈ K and s ∈ S, define εks = µ∗s
µks

. For each k ∈ K and s ∈ S, since µksu
k
s = λkpks , we

have µ∗sv
k
s = λ̂kεksp

k
s . Finally, for each k ∈ K and s, t ∈ S, εks

εkt
= µ∗s/µ

k
s

µ∗t /µ
k
t

=
µkt /µ

k
s

µ∗t /µ
∗
s
. Therefore, we

obtain 1
1+e
≤ εks

εkt
≤ 1 + e.

6.2 Proof of the necessity direction of Theorem 2

Lemma 2. Given e ∈ R+, if a dataset is e-belief-perturbed OEU rational, then the dataset

satisfies e-PSAROEU.

Proof. Fix any sequence (xkisi , x
k′i
s′i

)ni=1 ≡ σ of pairs that satisfies conditions (i) and (ii) in

Definition 6. By Lemma 1, there exist vkisi , v
k′i
s′i
, λki , λk

′
i , µkisi , µ

k′i
s′i

such that v
k′i
s′i
≥ vkisi and vkisi =

µ∗si

µ
ki
si

λkiρkisi , and v
k′i
s′i

=
µ∗
s′
i

µ
k′
i

s′
i

λk
′
iρ
k′i
s′i

. Thus, we have 1 ≥
∏n

i=1

λki (µ
k′i
s′
i
/µ∗

s′
i
)ρ

ki
si

λk
′
i (µ

ki
si
//µ∗si )ρ

k′
i

s′
i

=
∏n

i=1

µ
k′i
s′
i
/µ∗

s′
i

µ
ki
si
/µ∗si

∏n
i=1

ρ
ki
si

ρ
k′
i

s′
i

,

where the second equality holds by condition (ii). Hence,
∏n

i=1

ρ
ki
si

ρ
k′
i

s′
i

≤
∏n

i=1

µ
ki
si
/µ∗si

µ
k′
i

s′
i
/µ∗

s′
i

.

In the following, we evaluate the right hand side. For each (k, s), we first cancel out

all the terms µks that can be canceled out. Then, the number of µks ’s that remain in

the numerator is d(σ, k, s), as in Definition 7. Since the number of terms in the nu-

merator and the denominator must be the same, the number of remaining fractions is
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m(σ) ≡
∑

s∈S
∑

k∈K:d(σ,k,s)>0 d(σ, k, s). So by relabeling the index i to j if necessary, we

obtain
∏n

i=1

µ
ki
si
/µ∗si

µ
k′
i

s′
i
/µ∗

s′
i

=
∏m(σ)

j=1

µ
kj
sj
/µ∗sj

µ
k′
j

s′
j
/µ∗

s′
j

.

Consider the corresponding sequence (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 . Since the sequence is obtained by

canceling out xks from the first element and the second element of the pairs, and since the

original sequence (xkisi , x
k′i
s′i

)ni=1 satisfies condition (ii), it follows that (x
kj
sj , x

k′j
s′j

)
m(σ)
j=1 satisfies

condition (ii).

By condition (ii), we can assume without loss of generality that kj = k′j for each j.

Therefore, by the condition on the perturbation,
∏m(σ)

j=1

µ
kj
sj
/µ∗sj

µ
k′
j

s′
j
/µ∗

s′
j

≤ (1 + e)m(σ) In conclusion,

we obtain that
∏n

i=1(ρ
ki
si
ρ
k′i
s′i

) ≤ (1 + e)m(σ).

6.3 Proof of the sufficiency direction of Theorem 2

We need three lemmas to prove the sufficiency direction. The idea behind the argument is

the same as in Echenique and Saito (2015). We know from Lemma 1 that it suffices to find

a solution to the relevant system of Afriat inequalities. We take logarithms to linearize the

Afriat inequalities in Lemma 1. Then we set up the problem to find a solution to the system

of linear inequalities.

The first lemma, Lemma 3, shows that e-PSAROEU is sufficient for e-belief-perturbed

OEU rationality under the assumption that the logarithms of the prices are rational numbers.

The assumption of rational logarithms comes from our use of a version of the theorem of

the alternative (see Lemma 12 in Appendix A.4): when there is no solution to the linearized

Afriat inequalities, a rational solution to the dual system of inequalities exists. Then we

construct a violation of e-PSAROEU from the given solution to the dual.

The second lemma, Lemma 4, establishes that we can approximate any dataset satisfying

e-PSAROEU with a dataset for which the logarithms of prices are rational, and for which

e-PSAROEU is satisfied.

The last lemma, Lemma 5, establishes the result by using another version of the theorem

of the alternative, stated as Lemma 11.

The rest of the section is devoted to the statement of these lemmas.

Lemma 3. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU. Suppose that

log(pks) ∈ Q for all k ∈ K and s ∈ S, log(µ∗s) ∈ Q for all s ∈ S, and log(1 + e) ∈ Q. Then

there are numbers vks , λk, µks for s ∈ S and k ∈ K satisfying (10) and (11) in Lemma 1.
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Lemma 4. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to

µ∗. Then for all positive numbers ε, there exist a positive real numbers e′ ∈ [e, e + ε],

µ′s ∈ [µ∗s − ε, µ∗s + ε], and qks ∈ [pks − ε, pks ] for all s ∈ S and k ∈ K such that log qks ∈ Q for

all s ∈ S and k ∈ K, log(µ′s) ∈ Q for all s ∈ S, and log(1 + e′) ∈ Q, µ′ ∈ ∆++(S), and the

dataset (xk, qk)kk=1 satisfy e′-PSAROEU with respect to µ′.

Lemma 5. Given e ∈ R+, let a dataset (xk, pk)kk=1 satisfy e-PSAROEU with respect to µ.

Then there are numbers vks , λk, µks for s ∈ S and k ∈ K satisfying (10) and (11) in Lemma 1.

6.3.1 Proof of Lemma 3

The proof is similar to the proof of the main result in Echenique and Saito (2015), which

corresponds to the case e = 0. By log-linearizing the equation in system (10) and the

inequality (11) in Lemma 1, we have for all s ∈ S and k ∈ K, such that

log µks + log vks = log λk + log pks , (12)

xks > xk
′

s′ =⇒ log vks ≤ log vk
′

s′ , (13)

and for all k ∈ K and s, t ∈ S,

− log(1 + e) + log µ∗s − log µ∗t ≤ log µks − log µkt ≤ log(1 + e) + log µ∗s − log µ∗t . (14)

We are going to write the system of inequalities (12)-(14) in matrix form, following

Echenique and Saito (2015) with some modifications.

Let A be a matrix with K×S rows and 2(K×S)+K+1 columns, defined as follows: We

have one row for every pair (k, s), two columns for every pair (k, s), one columns for each k,

and one last column. In the row corresponding to (k, s), the matrix has zeroes everywhere

with the following exceptions: it has 1’s in columns for (k, s); it has a −1 in the column for

k; it has − log pks in the very last column. Matrix A looks as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − log pks

(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − log pkt

(l,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − log pls

(l,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − log plt
...

...
...

...
...

...
...

...
...

...
...


.
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Next, we write the system of inequalities (13) and (14) in a matrix form. There is one

row in matrix B for each pair (k, s) and (k′, s′) for which xks > xk
′

s′ . In the row corresponding

to xks > xk
′

s′ , we have zeroes everywhere with the exception of a −1 in the column for (k, s)

and a 1 in the column for (k′, s′). Matrix B has additional rows, that capture the system of

inequalities (14), as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 · · · · · · 1 −1 0 0 · · · · · · 0 0 · · · log(1 + e)− log µ∗s + log µ∗t

· · · 0 0 0 0 · · · · · · −1 1 0 0 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t

· · · 0 0 0 0 · · · · · · 0 0 −1 1 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t

· · · 0 0 0 0 · · · · · · 0 0 1 −1 · · · · · · 0 0 · · · log(1 + e)− log µ∗s + log µ∗t
...

...
...

...
...

...
...

...
...

...
...


.

Finally, we have a matrix E which has a single row and has zeroes everywhere except

for 1 in the last column.

To sum up, there is a solution to the system (12)-(14) if and only if there is a vector

u ∈ R2(K×S)+K+1 that solves the system of equations and linear inequalities

S1 :


A · u = 0,

B · u ≥ 0,

E · u > 0.

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column

of A and B. Under the hypotheses of the lemma we are proving, the last column consists of

rational numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if

there is no rational vector (θ, η, π) that solves the system of equations and linear inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

In the following, we shall prove that the non-existence of a solution u implies that the

dataset must violate e-PSAROEU. Suppose then that there is no solution u and let (θ, η, π)

be a rational vector as above, solving system S2.

The outline of the rest of the proof is similar to the proof of Echenique and Saito (2015).

Since (θ, η, π) are rational vectors, by multiplying a large enough integer, we can make the

vectors integers. Then we transform the matrices A and B using θ and η. (i) If θr > 0, then
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creat θr copies of the rth row; (ii) omitting row r when θr = 0; and (iii) if θr < 0, then θr

copies of the rth row multiplied by −1.

Similarly, we create a new matrix by including the same columns as B and ηr copies of

each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

By using the transformed matrices and the fact that θ ·A+ η ·B + π ·E = 0 and η ≥ 0,

we can prove the following claims:

Claim There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 ≡ σ of pairs that satisfies conditions (i) and (ii)

in Definition 6.

Proof. We can construct a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 in a similar way to the proof of Lemma 11

of Echenique and Saito (2015). By construction, the sequence satisfies condition (i) that

xkisi > x
k′i
s′i

for all i.

In the following, we show that the sequence satisfies condition (ii) that each k appears

as ki the same number of times it appears as k′i. Let n(xks) ≡ #{i | xks = xkisi} and n′(xks) ≡
#{i | xks = x

k′i
s′i
}. It suffices to show that for each k ∈ K,

∑
s∈S
[
n(xks)− n′(xks)

]
= 0.

Recall our construction of the matrix B. We have a constraint for each triple (k, s, t) with

s < t. Denote the weight on the rows capturing
µks/µ

k
t

µ∗s/µ
∗
t
≤ 1 + e by η(k, s, t) and 1 + e ≤ µks/µ

k
t

µ∗s/µ
∗
t

by η(k, t, s).

For each k ∈ K and s ∈ S, in the column corresponding to µks in matrix A, remember

that we have 1 if we have xks = xkisi for some i and −1 if we have xks = x
k′i
s′i

for some i. This

is because a row in A must have 1 (−1) in the column corresponding to vks if and only if it

has 1 (−1, respectively) in the column corresponding to µks . By summing over the column

corresponding to µks , we have n(xks)− n′(xks).
Now we consider matrix B. In the column corresponding to µks , we have 1 in the row

multiplied by η(k, t, s) and −1 in the row multiplied by η(k, s, t). By summing over the

column corresponding to µks , we also have −
∑

t6=s η(k, s, t) +
∑

t6=s η(k, t, s).

For each k ∈ K and s ∈ S, the column corresponding to µks of matrices A and B must

sum up to zero; so we have

n(xks)− n′(xks) +
∑
t6=s

[−η(k, s, t) + η(k, t, s)] = 0. (15)

Hence for each k ∈ K for each k ∈ K
∑

s∈S
[
n(xks)− n′(xks)

]
= 0.

Claim
∏n∗

i=1(ρ
ki
si
/ρ

k′i
s′i

) > (1 + e)m(σ∗).
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Proof. By (15), So for each s ∈ S

∑
k∈K

∑
s∈S

∑
t6=s

[η(k, s, t)− η(k, t, s)] log µ∗s =
∑
k∈K

∑
s∈S

[
n(xks)− n′(xks)

]
log µ∗s =

n∗∑
i=1

log
µ∗si
µ∗s′i

,

where the last equality holds by the definition of n and n′. Moreover, since d(σ∗, k, s) =

n(xks)− n′(xks) =
∑

t6=s [η(k, s, t)− η(k, t, s)] ≤
∑

t6=s η(k, s, t), we have

m(σ∗) ≡
∑
s∈S

∑
k∈K:d(σ∗,k,s)>0

d(σ∗, k, s) =
∑
s∈S

∑
k∈K

min{n(xks)− n′(xks), 0} ≤
∑
s∈S

∑
k∈K

∑
t6=s

η(k, s, t).

By the equality and the inequality above and by the fact that the last column must sum up

to zero and E has one at the last column, we have

0 >
n∗∑
i=1

log
p
k′i
s′i

pkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t6=s

η(k, s, t) +
∑
k∈K

∑
s∈S

∑
t6=s

(η(k, s, t)− η(k, t, s)) log µ∗s

=
n∗∑
i=1

log
p
k′i
s′i

pkisi
−

n∗∑
i=1

log
µ∗si
µ∗s′i

+ log(1 + e)
∑
k∈K

∑
s∈S

∑
t6=s

η(k, s, t)

=
n∗∑
i=1

log
ρ
k′i
s′i

ρkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t6=s

η(k, s, t) ≥
n∗∑
i=1

log
ρ
k′i
s′i

ρkisi
+ log(1 + e)m(σ∗).

That is,
∑n∗

i=1 log(ρkisi/ρ
k′i
s′i

) > m(σ∗) log(1 + e). This is a contradiction.

6.3.2 Proof of Lemma 4

Let X = {xks | k ∈ K, s ∈ S}. Consider the set of sequences that satisfy conditions (i)

and (ii) in Definition 6:

Σ =

{
(xkisi , x

k′i
s′i

)ni=1 ⊂ X 2

∣∣∣∣∣ (xkisi , x
k′i
s′i

)ni=1 satisfies conditions (i) and (ii)

in Definition 6 for some n

}
.

For each sequence σ ∈ Σ, we define a vector tσ ∈ NK2S2
. For each pair (xkisi , x

k′i
s′i

), we shall

identify the pair with ((ki, si), (k
′
i, s
′
i)). Let tσ((k, s), (k′, s′)) be the number of times that

the pair (xks , x
k′

s′ ) appears in the sequence σ. One can then describe the satisfaction of e-

PSAROEU by means of the vectors tσ. Observe that t depends only on (xk)Kk=1 in the dataset

(xk, pk)Kk=1. It does not depend on prices.
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For each ((k, s), (k′, s′)) such that xks > xk
′

s′ , define δ((k, s), (k′, s′)) = log(pks/p
k′

s′ ). And

define δ((k, s), (k′, s′)) = 0 when xks ≤ xk
′

s′ . Then, δ is a K2S2-dimensional real-valued vector.

If σ = (xkisi , x
k′i
s′i

)ni=1, then

δ · tσ =
∑

((k,s),(k′,s′))∈(KS)2
δ((k, s), (k′, s′))tσ((k, s), (k′, s′)) = log

 n∏
i=1

ρkisi

ρ
k′i
s′i

 .

So the dataset satisfies e-PSAROEU with respect to µ if and only if δ · tσ ≤ m(σ) log(1 + e)

for all σ ∈ Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN , and fix an

arbitrary ξ ∈ (0, 1). We shall construct by induction a sequence {(εks(n))}Nn=1, where εks(n)

is defined for all (k, s) with xks = yn.

By the denseness of the rational numbers, and the continuity of the exponential function,

for each (k, s) such that xks = y1, there exists a positive number εks(1) such that log(ρksε
k
s(1)) ∈

Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1) | xks = y1}.
In second place, for each (k, s) such that xks = y2, there exists a positive εks(2) such that

log(ρksε
k
s(2)) ∈ Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2) | xks = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been defined and that

ξ < ε(n). For each (k, s) such that xks = yn+1, let εks(n+1) > 0 be such that log(ρksε
k
s(n+1)) ∈

Q, and ξ < εks(n+ 1) < ε(n). Let ε(n+ 1) = min{εks(n+ 1) | xks = yn}.
This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all n.

Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k ∈ K and s ∈ S, let ρ̂ks = ρksε
k
s(n), where n is such that xks = yn. Choose

µ′ ∈ ∆++(S) such that for all s ∈ S log µ′s ∈ Q and µ′s ∈ [ξ̄µs, µs/ξ̄] for all s ∈ S. Such µ′

exists by the denseness of the rational numbers. Now for each k ∈ K and s ∈ S, define

qks =
ρ̂ks
µ′s
. (16)

Then, log qks = log ρ̂ks − log µ′s ∈ Q.

We claim that the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU with respect to µ′. Let δ∗

be defined from (qk)Kk=1 in the same manner as δ was defined from (ρk)Kk=1.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s′ , if n and m are such that xks = yn and xk
′

s′ = ym,

then n > m. By definition of ε,

εks(n)

εk
′
s′ (m)

<
εks(n)

ε(m)
< ξ̄ < 1.
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Hence,

δ∗((k, s), (k′, s′)) = log
ρksε

k
s(n)

ρk
′
s′ ε

k′
s′ (m)

< log
ρks
ρk
′
s′

+ log ξ̄ < log
ρks
ρk
′
s′

= δ((k, s), (k′, s′)).

Now, we choose e′ such that e′ ≥ e and log(1 + e′) ∈ Q.

Thus, for all σ ∈ Σ, δ∗ · tσ ≤ δ · tσ ≤ m(σ) log(1 + e) ≤ m(σ) log(1 + e′) as t· ≥ 0 and the

dataset (xk, pk)Kk=1 satisfies e-PSAROEU with respect to µ.

Thus the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU with respect to µ′. Finally, note that

ξ < εks(n) < 1 for all n and each k ∈ K, s ∈ S. So that by choosing ξ close enough to 1,

we can take ρ̂ to be as close to ρ as desired. By the definition, we also can take µ′ to be as

close to µ as desired. Consequently, by (16), we can take (qk)Kk=1 to be as close to (pk)Kk=1 as

desired. We also can take e′ to be as close to e as desired.

6.3.3 Proof of Lemma 5

We use the following notational convention: For a matrix D with 2(K×S)+K+1 columns,

write D1 for the submatrix of D corresponding to the first K × S columns; let D2 be the

submatrix corresponding to the following K × S columns; D3 correspond to the next K

columns; and D4 to the last column. Thus, D = [D1 D2 D3 D4 ].

Consider the system comprised by (12), (13), and (14) in the proof of Lemma 3. Let A,

B, and E be constructed from the dataset as in the proof of Lemma 3. The difference with

respect to Lemma 3 is that now the entries of A4 and B4 may not be rational. Note that

the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (12), (13), and (14). Then, by the argument in the proof of Lemma 3 there is no solution

to system S1. Lemma 11 (in Appendix A.4) with F = R implies that there is a real vector

(θ, η, π) such that θ ·A+ η ·B+π ·E = 0 and η ≥ 0, π > 0. Recall that E4 = 1, so we obtain

that θ · A4 + η ·B4 + π = 0.

Consider (qk)Kk=1, µ
′, and e′ be such that the dataset (xk, qk)Kk=1 satisfies e′-PSAROEU

with respect to µ′, and log qks ∈ Q for all k and s, log µ′s ∈ Q for all s ∈ S, and log(1+e′) ∈ Q.

(Such (qk)Kk=1, µ
′, and e′ exist by Lemma 4.) Construct matrices A′, B′, and E ′ from this

dataset in the same way as A, B, and E is constructed in the proof of Lemma 3. Note that

only the prices, the objective probabilities, and the bounds are different. So E ′ = E and

A′i = Ai and B′i = Bi for i = 1, 2, 3. Only A′4 and B′4 may be different from A4 and B4,

respectively.
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By Lemma 4, we can choose qk, µ′, and e′ such that |(θ·A′4+η ·B′4)−(θ·A4+η ·B4)| < π/2.

We have shown that θ · A4 + η · B4 = −π, so the choice of qk, µ′, and e′ guarantees that

θ · A′4 + η ·B′4 < 0. Let π′ = −θ · A′4 − η ·B′4 > 0.

Note that θ ·A′i+η ·B′i+π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for matrices

A, B and E, and A′i = Ai, B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, θ ·A′4 +η ·B′4 +π′E4 =

θ ·A′4 +η ·B′4 +π′ = 0. We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute

a solution to S2 for matrices A′, B′, and E ′.

Lemma 11 then implies that there is no solution to system S1 for matrices A′, B′, and

E ′. So there is no solution to the system comprised by (12), (13), and (14) in the proof

of Lemma 3. However, this contradicts Lemma 3 because the dataset (xk, qk) satisfies e′-

PSAROEU with µ′, log(1 + e′) ∈ Q, log µ′s ∈ Q for all s ∈ S, and log qks ∈ Q for all k ∈ K
and s ∈ S.

References
Afriat, Sidney N., “The Construction of Utility Functions from Expenditure Data,” International

Economic Review, 1967, 8 (1), 67–77.

, “Efficiency Estimation of Production Functions,” International Economic Review, 1972, 13 (3),
568–598.

Ahn, David S., Syngjoo Choi, Douglas Gale, and Shachar Kariv, “Estimating Ambiguity
Aversion in a Portfolio Choice Experiment,” Quantitative Economics, 2014, 5 (2), 195–223.

Allen, Roy and John Rehbeck, “Assessing Misspecification and Aggregation for Structured
Preferences,” 2018. Unpublished manuscript.

Apesteguia, Jose and Miguel A. Ballester, “A Measure of Rationality and Welfare,” Journal
of Political Economy, 2015, 123 (6), 1278–1310.

Carvalho, Leandro and Dan Silverman, “Complexity and Sophistication,” 2017. Unpublished
manuscript.

, Stephan Meier, and Stephanie W. Wang, “Poverty and Economic Decision Making:
Evidence from Changes in Financial Resources at Payday,” American Economic Review, 2016,
106 (2), 260–284.

Chambers, Christopher P. and Federico Echenique, Revealed Preference Theory, Cambridge:
Cambridge University Press, 2016.

, Ce Liu, and Seung-Keun Martinez, “A Test for Risk-Averse Expected Utility,” Journal
of Economic Theory, 2016, 163, 775–785.

Choi, Syngjoo, Raymond Fisman, Douglas Gale, and Shacher Kariv, “Consistency and
Heterogeneity of Individual Behavior under Uncertainty,” American Economic Review, 2007, 97
(5), 1921–1938.

, Shachar Kariv, Wieland Müller, and Dan Silverman, “Who Is (More) Rational?,”
American Economic Review, 2014, 104 (6), 1518–1550.

de Clippel, Geoffroy and Kareen Rozen, “Relaxed Optimization: ε-Rationalizability and the
FOC-Departure Index in Consumer Theory,” 2019. Unpublished manuscript.

41



Dean, Mark and Daniel Martin, “Measuring Rationality with the Minimum Cost of Revealed
Preference Violations,” Review of Economics and Statistics, 2016, 98 (3), 524–534.

Dziewulski, Pawel, “Eliciting the Just-Noticeable Difference,” 2016. Unpublished manuscript.

, “Just-Noticeable Difference as a Behavioural Foundation of the Critical Cost-Efficiency Index,”
2018. Unpublished manuscript.

Echenique, Federico and Kota Saito, “Savage in the Market,” Econometrica, 2015, 83 (4),
1467–1495.

, Sangmok Lee, and Matthew Shum, “The Money Pump as a Measure of Revealed Prefer-
ence Violations,” Journal of Political Economy, 2011, 119 (6), 1201–1223.

, Taisuke Imai, and Kota Saito, “Testable Implications of Models of Intertemporal Choice:
Exponential Discounting and Its Generalizations,” 2016. Caltech HSS Working Paper 1388.

Frederick, Shane, “Cognitive Reflection and Decision Making,” Journal of Economic Perspec-
tives, 2005, 19 (4), 25–42.

Friedman, Daniel, Sameh Habib, Duncan James, and Sean Crockett, “Varieties of Risk
Elicitation,” 2018. Unpublished manuscript.

Green, Richard C. and Sanjay Srivastava, “Expected Utility Maximization and Demand
Behavior,” Journal of Economic Theory, 1986, 38 (2), 313–323.

Griliches, Zvi, “Economic Data Issues,” in Zvi Griliches and Michael D. Intriligator, eds., Hand-
book of Econometrics, Vol. 3, Elsevier, 1986, pp. 1465–1514.

Halevy, Yoram, Dotan Persitz, and Lanny Zrill, “Parametric Recoverability of Preferences,”
Journal of Political Economy, 2018, 126 (4), 1558–1593.

Kubler, Felix, Larry Selden, and Xiao Wei, “Asset Demand Based Tests of Expected Utility
Maximization,” American Economic Review, 2014, 104 (11), 3459–3480.

Loomes, Graham, “Evidence of a New Violation of the Independence Axiom,” Journal of Risk
and Uncertainty, 1991, 4 (1), 91–108.

McFadden, Daniel, “Conditional Logit Analysis of Qualitative Choice Behavior,” in Paul Zarem-
bka, ed., Frontiers in Econometrics, New York: Academic Press, 1974, pp. 105–142.

Polisson, Matthew, John K.-H. Quah, and Ludovic Renou, “Revealed Preferences over
Risk and Uncertainty,” 2017. Unpublished manuscript.

Samuelson, Paul A., “A Note on the Pure theory of Consumer’s Behaviour,” Economica, 1938,
5 (17), 61–71.

Varian, Hal R., “The Nonparametric Approach to Demand Analysis,” Econometrica, 1982, 50
(4), 945–973.

, “Goodness-of-Fit in Optimizing Models,” Journal of Econometrics, 1990, 46 (1), 125–140.

42


