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Abstract

We propose a model of learning when experimentation is possible, but
unawareness and ambiguity matter. In this model, complete lack of infor-
mation regarding the underlying data generating process is expressed as
a (maximal) family of priors. These priors yield posterior inferences that
become more precise as more information becomes available. As informa-
tion accumulates, however, the individual’s level of awareness as encoded
in the state space may expand. Such newly learned states are initially seen
as ambiguous, but as evidence accumulates there is a gradual reduction of
ambiguity.

1 Introduction

State spaces and probabilities are ubiquitous in economic models. They provide
an unrivaled analytical tool to study situations in which uncertainty matters. Yet,
it is not always clear how state spaces and beliefs emerged. If such knowledge is
founded upon experience, how so?

Standard models of learning take for granted (an exogenously given) state
space, impose an objective prior, and update it using Bayes’ rule in face of new
information. Practical problems, however, rarely fit this mould. For all intents
and purposes, states of the world are essentially abstract representations of reso-
lutions of uncertainty. Moreover, whereas Bayesian updating is an effective tool
to sort out the probability of the number of heads in a finite sequence of tosses of
a fair coin, in many practical situations, it may not be possible to specify a prior
probability. The standard Bayesian machinery is ill-equipped to provide guidance
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when the new information is surprising—and falls on a zero probability event—or
when the new information contradicts past experience—and cannot be catego-
rized in any of the previously considered events. Moreover, it leaves no room for
confidence in the probability assessments made.

This paper considers learning when there is incomplete information about
the structure of the state space, but further information can be obtained through
experimentation. We take for granted that the final objective of such analysis,
after observations have been made, is the choice among possible courses of action
whose consequences depend on the state of the world. For the present purposes,
we are only concerned with the assessment phase of the analysis: the process of
building the state space on the go and updating beliefs in a way that satisfies some
basic principles of coherence and consistency.

For the problem to be well-defined, we aim to answer two questions. First, we
need to sort out what constitutes a state of the world. If it is possible to learn new
sources of randomness, then the model should allow for extensions of the state
space to accommodate them. In particular, the model of the state space should
permit two operations:

1. Creation: when new states are added without changing the structure of old
events; and

2. Refinement: when old states turn into events that can be partitioned into
more richly described states.

Second, we need to work out how to form and update a prior belief on this space
that truly reflects complete ignorance. To answer the first question, we invoke
the approach of Karni and Vierø [2013, 2017]; to answer the second, we propose
an imprecise version of the Dirichlet process prior, defined by Ferguson [1973,
1974].

More specifically, the theory presented here is adapted to the following kind
of problem. Suppose that an expert is challenged to express her opinions about
possible plans of action whose consequences depend on the unknown state of
the world. Before making her assessment, she has the opportunity to carry out a
sequential experiment to learn about possible states of the world and their plau-
sibility. Experiments are described by an underlying stochastic process, that em-
bodies the physical law governing the machinery of the experiment. Ideally, the
realizations of these sequential trials provide a full description of the outcome,
thus resolving all uncertainty regarding the state of the world. However, the ex-
pert’s level of awareness restricts her perception of the realized state of the world,
she can only partially observe these realizations. Thus the experimenter’s aware-
ness level determines which events she can conceive and delimits the boundaries
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of her conceivable state space. As new evidence becomes available, the exper-
imenter may discover new states. Consequently, her awareness level increases
and her conceivable state space expands.

Beliefs are represented by an evolving set of predictive distributions over fu-
ture, conceivable states of the world; inferences about events can be summarized
by upper and lower probabilities. As new states are discovered, probability mass
may be shifted from old, non-null events to the events just created. Moreover,
newly learned events are initially perceived as ambiguous. As evidence accum-
mulates, however, the experimenter becomes more familiar with these events.
The ambiguity associated with those events gradually disappears and the assess-
ment made by the individual converges to their true posterior probability.

The resulting theory captures several desirable, intuitive features:

1. Rich class of stochastic environments: the model is able to capture a wide
range of data generating processes.

2. Internal consistency: the individual’s beliefs are revised in a coherent way.

3. External consistency: the evolution of beliefs reflects data (frequentist vali-
dation).

4. Possibility of surprises: the individual is cognizant of the possibility of con-
sequences and actions of which she is currently unaware, but which may
be revealed over time; as a result, learning never ends.

5. Event-specific ambiguity: ambiguity is related to lack of familiarity; newly
learned events are seen as more ambiguous than old events.

6. Large-sample confidence: as evidence accummulates, the ambiguity per-
ceived by the individual is gradually reduced and her confidence in her
assessment increases.

Our approach relates to four different literatures. First, we provide a model
of learning that, in line with Marinacci [2002] and Epstein and Schneider [2007],
accommodates ambiguous beliefs. Secondly, we explicitly model the process of
inductive reasoning implied by the dynamics of growing awareness described in
Dominiak and Tserenjigmid [2017] that utilizes the framework developed in Karni
and Vierø [2013, 2017]. Because ambiguity emerges endogenously, when infor-
mation is surprising, we provide a dynamic foundation for the unanimity rule
preference representation axiomatized in Bewley [2002] and Gilboa, Macheroni,
Marinacci, and Schmeidler [2010] as well as the partial “comparative likelihood
relation” in Nehring [2009]. Finally, we provide an axiomatization of the model’s
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probability kernel, which can be compared to the result in Billot, Gilboa, Samet,
and Schmeidler [2005].

There are two other papers that make the connection between levels of aware-
ness and perceptions of ambiguity. Halpern, Rong, and Saxena [2010] introduces
unawareness in the context of a Markov decision problem and provides a charac-
terization as to when the individual can ‘learn’ to play nearly optimally. Kochov
[2016], on the other hand, proposes a ‘revealed preference’ test to distinguish be-
tween those contingencies the individual is unaware of versus those she foresees
but whose likelihood she perceives as ambiguous.

The paper is organized as follows. Section 2 describes the underlying data
generating process and how actions and consequences are discovered. Section 3
explains how the individual’s conception of the world evolves in view of this ac-
quired information. Section 4 investigates the properties of the model. Section 5
explores the implications of the results to the problem of consensus formation of
beliefs. Finally, Section 6 discusses the Bayesian interpretation of the model. All
the proofs are collected in the Appendix.

2 The discovery process

First, we introduce the elements of the data generating process and the nature of
the observations made by the individual. Let T = {0, 1, . . . , t , . . .} denote time.
There exists a countable set A of actions, which corresponds to the set of alterna-
tives that are or may become known to the individual. There also exists a set C of
consequences, which we take to be a separable, completely metrizable space.

2.1 Underlying stochastic process

We are given a sequence
X1,X2, . . . ,Xt , . . .

of random variables defined on the ambient probability space (Ω,F , µ) and tak-
ing values in the common measurable space (CA,B), where B denotes the Borel
σ -algebra on the metrizable product CA. If xt ∈ CA is a realization of Xt , then
action a ∈ A is associated with the consequence (xt )a ∈ C, which we also denote
by a(xt ). We may also think of the action a as the sequence of random vari-
ables (a(X1),a(X2), . . . ,a(Xt ), . . . )with range C. An element of CA specifies the
unique consequence associated with every possible action in A. A realization xt
of Xt , being an element of CA, thus resolves all uncertainty.

Throughout the paper, we assume the following stochastic dependence con-
dition on (Xt )t⩾1, originally studied by Kallenberg [1988].
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Definition 2.1. The sequence of random variables (Xt )t⩾1 is said to be condition-
ally exchangeable if for every n ⩾ 1

(X1, . . . ,Xn ,Xn+1) ∼ (X1, . . . ,Xn ,Xn+2) ,

where ∼ means “distributed as.”

We view conditional exchangeability as a structural judgement, that is, it is
an assessment regarding the structural properties of the underlying stochastic
process, which are the result of the design of the experiment. It is related to
the more familiar notion of exchangeability. Recall that a sequence of random
variables (Xt )t⩾1 is said to be exchangeable whenever every permutation of every
finite subsequence has the same distribution, i.e., for every n ⩾ 1

(Xk1 , . . . ,Xkn ) ∼ (Xkσ (1)
, . . . ,Xkσ (n)) ,

where σ : {1, . . . ,n} → {1, . . . ,n} is a permutation on {1, . . . ,n}.
It is immediate that exchangeable sequences are conditionally exchangeable,

but the converse is true only under stationarity. Recall that a sequence of ran-
dom variables (Xt )t⩾1 is said to be stationary whenever the distribution of finite
subsequences is invariant over time, i.e., for every k ⩾ 1

(X1, . . . ,Xn) ∼ (Xk+1, . . . ,Xk+n) .

By a result due to Kallenberg [1988, Proposition 2.1], if a stationary sequence of
random variables is conditionally exchangeable, then it is exchangeable. Kallen-
berg [1988] provides an example of a non-stationary, but conditionally exchange-
able sequence that is not exchangeable.

Furthermore, conditional exchangeability can be understood in terms of the
martingale aspect of the process (Xt )t⩾1. In particular, Kallenberg [1988, Propo-
sition 2.2] shows that conditional exchangeability is equivalent to a property later
coined as conditionally identically distributed.

Let G = (Gt )t⩾0 denote the nested sequence of sub-σ -algebras Gt of F such
that G0 = {∅,Ω} and Gt = σ(X1, . . . ,Xt ) for every t ⩾ 1. That is, G is the
filtration induced or generated by the sequence of random variables (Xt )t⩾1. It is
the smallest filtration with the property that Xt is Gt -measurable for every t ⩾ 1.

Definition 2.2. We say that (Xt )t⩾1 is conditionally identically distributed with
respect to G (or G -c.i.d.) if the conditional expectation satisfies

Eµ [д(Xk ) | Gt ] = Eµ [д(Xt+1) | Gt ] µ-a.s.

for every k > t ⩾ 0 and every bounded measurable д : CA → R.
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Essentially, this propertymeans that, at every time t , future realizations (Xk )k>t
are identically distributed conditional on past realizations (Xk )k≤t . We refer to
Berti, Pratelli, and Rigo [2004] for examples of non-exchangeable, c.i.d. stochastic
processes.

2.2 Discovery of actions and consequences

The individual in period 0 is aware of a nonempty, finite set A0 ⊆ A of actions,
and a nonempty, finite set C0 ⊆ C of consequences. We now describe how other
actions and consequences are discovered.

Discovery of actions. We suppose that actions in A are discovered over time,
via a given nested sequence

A0 ⊆ A1 ⊆ · · · ⊆ At ⊆ · · · ⊆ A ,

where each At , t ⩾ 0, is a finite, nonempty set of actions. We think of A0 as the
individual’s prior knowledge of the available actions. At time t ⩾ 1, the individual
discovers or becomes aware of the set At \At−1 of additional actions. We do not
model how the sequence (At )t⩾0 is realized. We leave open the possibility that the
sequence is a sample path of some independent stochastic process or the result
of some independent learning process. As an example, the actions in (At )t⩾0

could represent the sequence of treatment options for a particular illness as new
alternatives are discovered and made available to the specialist. Further, we do
not assume that all actions in A are eventually revealed to the individual. That is,
it could be the case that everything is intrinsically knowable, but our model also
allows for “unknown unknowns” that remain unknowable indefinitely.

Stochastic discovery of consequences. Throughout the rest of the section,
we fix a sample path

x1,x2, . . . ,xt , . . .

of realizations of (Xt )t⩾1.
The realization xt sets the perfect level of description of the true state of the

world. What the individual observes, however, is restricted by her level of un-
awareness. If x ∈ CA, then we let x |At = (xa)a∈At . In period t , the individual’s
information consists of the finite history of all observations up to period t for the
given sample path, which can be written as:

x̂t = (x1 |A1 ,x2 |A2 , . . . ,xt |At ) .1

1We mark variables that depend on the finite history of observations with a hat ( ·̂ ).
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In particular, the individual discovers consequences as she (partially) observes
the realizations of the collection of random variables a(Xt ), induced by the ac-
tions known to her.2 Thus the set of consequences known to the individual is the
set of all observed consequences given the finite history x̂t . Formally, the set of
consequences the individual considers possible at the end of period t is given by

Ĉt B C0 ∪
{

t∪
k=1

{a(xk ) : a ∈ Ak }
}
∪ {θt } ,

with Ĉ0 B C0 ∪ {θ0}. We interpret θt , for t ⩾ 0, as the intangible consequence
that represents the possibility of observing an outcome that is not in the setC0 ∪{∪t

k=1{a(xk ) : a ∈ Ak }
}
of known consequences. That is, we also allow for the

individual to conceive of the possibility that some actions may yield, in future
periods, consequences which are as yet unknown to her in period t . Of course,
we assume that C ∩ {θ0,θ1, . . .} = ∅.

3 The inference problem

In this section, we explain how the individual’s perception of the state space
evolves over time. Recall that, given the sample path

x1,x2, . . . ,xt , . . . ,

the information available to the individual at period t is the finite history

x̂t = (x1 |A1 ,x2 |A2 , . . . ,xt |At )

of all observations up to period t . Given this finite history of observations, the
individual’s conceivable state space expands to convey her increasing level of
awareness.

3.1 Evolution of the set of conceivable states

Following the approach of Karni and Schmeidler [1991], and Karni and Vierø
[2013, 2017], conceivable states represent the possible resolution of uncertainty
restricted by the awareness level of the individual. That is, having observed the

2An alternative way to model the discovery of consequences is to assume that the individual
chooses an action each period and observes only the consequence associated to that chosen action.
Our results can be adapted to that case, under the additional assumption of independence across
actions.
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finite history x̂t and being aware of the consequences in Ĉt and actions inAt , the
individual can conceive of states that are elements of the finite set

Ŝt B ĈAtt ,

which we refer to as the set of conceivable states (at the end of period t ), for the
given history x̂t .

In particular, for every period t , the observation xt |At is understood as a con-
ceivable state in Ŝt , that is, xt |At = (a(xt ))a∈At ∈ Ŝt . Moreover, for every t ⩾ 1,
the set of conceivable states Ŝt−1 induces a partition of Ŝt , whereby each element
in Ŝt−1 is mapped to an event in Ŝt .

The following example illustrates how the conceivable state space evolves
over time and how conceivable states in previous periods are mapped to events
in later periods. Suppose that the individual is aware of one action a and one
consequence c1 in period t − 1. The set Ŝt−1 comprises two states s1 and s2:

s1 s2
a c1 θt−1

In the next period, we consider three alternative scenarios. If At = {a} and
a(xt ) = c2, then a new, previously unknown consequence is revealed in period t .
Hence, at the end of period t , the individual conceives of three states in Ŝt :

s1︷︸︸︷ s2︷  ︸︸  ︷
si1 si2 sii2

a c1 c2 θt

In this scenario, the state s1 in Ŝt−1 becomes si1, and the state s2 in Ŝt−1 is “split”
into si2 and sii2 . The partition of Ŝt induced by Ŝt−1 is thus {{si1}, {si2, sii2 }}.

If alternatively At = {a,b}, a(xt ) = b(xt ) = c1, then a new action is discov-
ered but no new consequence, and s1 and s2 correspond to events in Ŝt :

s1︷  ︸︸  ︷ s2︷  ︸︸  ︷
si1 sii1 si2 sii2

a c1 c1 θt θt
b c1 θt c1 θt

In this alternative scenario, s1 splits into si1, and sii1 and s2 splits into si2 and sii2 .
The partition of Ŝt induced by Ŝt−1 is thus {{si1, sii1 }, {si2, sii2 }}.
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Finally, if At = {a,b}, a(xt ) = c1 and b(xt ) = c2, then the new set of con-
ceivable states Ŝt is:

s1︷          ︸︸          ︷ s2︷                              ︸︸                              ︷
si1 sii1 siii1 si2 sii2 siii2 siv2 sv2 svi2

a c1 c1 c1 c2 c2 c2 θt θt θt
b c1 c2 θt c1 c2 θt c1 c2 θt

In this case, the state s1 is split into si1, s
ii
1 and siii1 , and the state s2 is split into the

remaining six states. Therefore, the partition of Ŝt induced by the state space Ŝt−1
conceivable in the previous period is {{si1, sii1 , siii1 }, {si2, sii2 , siii2 , s

iv
2 , s

v
2 , s

vi
2 }}.

In a nutshell, there are two circumstances that surprise the individual and
prompts her to expand the set of states she believes to be possible:

i. the discovery of new consequences: formally, that corresponds to Ĉt−1 \
{θt−1} being a proper subset of Ĉt \ {θt }; and

ii. the discovery of new feasible actions: that corresponds to At−1 being a
proper subset of At .

The advantage of workingwith this canonical state space and its product structure
is that it distinguishes between the information deduced by logical inference—
which states can be conceived—and the information explicitly conveyed by the
data—the distributions over consequences induced by the actions. In particular,
nothing suggests to the individual that the drawings of consequences induced by
different actions is independent. However, as will be shown in the next section,
the individual’s (imprecise) prior reflects her total ignorance regarding possible
correlations between different actions. It is thus left to the evidence to reveal the
true correlation structure among the states.3

We now formalize the embedding illustrated by the previous examples for the
general structure of the states. For any pair of periods t and t ′, with t < t ′, we
can express the associated embeddings and projections as follows.

3The first formal treatment of imprecise probability is from Boole [1854], who suggested it as
a way to reconcile the theory of logic, which can express complete ignorance, and the theory of
probability.
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CA

CAt ′ Ĉ
At ′
t ′ = Ŝt ′

CAt ĈAtt = Ŝt

projAt ′

projAt
projAt

ψt ′

ϕt ′:t

ψt

For every period t , let κt : C → Ĉt denote the mapping that takes conse-
quences in C that are unknown in period t to θt in Ĉt , and keeps the other, known
consequences unchanged. That is,

κt (c) =

{
c if c ∈ Ĉt \ {θt } ,
θt otherwise.

The mapping κt induces a natural embeddingψt : CAt → ĈAtt , whereby

ψt (x) = (κt (xa))a∈At .

Finally, for t < t ′, we define ϕt ′:t : Ŝt ′ → Ŝt as the unique mapping such that

ψt ◦ projAt = ϕt ′:t ◦ψt ′ .

Notice that, because Ĉt \ {θt } ⊆ C, the mapping ψt is surjective. Moreover, be-
cause At ⊆ At ′ , and Ĉt \ {θt } ⊆ Ĉt ′ \ {θt ′}, it follows that ϕt ′:t is also surjective,
and hence it has a set-valued inverse. The partition of Ŝt ′ induced by Ŝt is the
one given by the collection of sets {ϕ−1t ′:t (s) : s ∈ Ŝt }. In particular, for each state
s ∈ Ŝt , the event ϕ−1t ′:t (s) ⊆ Ŝt ′ is the collection of conceivable states in Ŝt ′ into
which the state s has been “split.”

3.2 Evolution of beliefs

We now propose a prior, based on the Dirichlet process, that represents (almost)
complete ignorance with respect to the distribution µ.4

4Benavoli, Mangili, Ruggeri, and Zaffalon [2015] propose a prior similar to the one we describe.
They, however, apply it to Bayesian hypothesis testing, obtaining a method with nice asymptotic
properties and, at the same time, that is more robust compared to the usual tests.
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TheDirichlet process. The simplest and one of the most commonly used non-
parametric statistical model is the Dirichlet process, defined by Ferguson [1973,
1974].5 It was introduced as a prior over probability distributions and, due to
the tractability of the resulting posterior inferences, it is widely employed for
Bayesian nonparametric inference.

We use the following notation. If S is a separable, completelymetrizable space,
then let ∆(S) denote the set of Borel probability measures on S . For every s in S ,
let δs ∈ ∆(S) denote the (Dirac or degenerate) probability measure that assigns
probability one to s obtaining.

To describe the Dirichlet process, let G(α , β), with α > 0 and β > 0, denote
the Gamma distribution on R+, with Lebesgue density

βα

Γ(α)
xα−1e−βx ,

where Γ(α) is the complete gamma function. For G(α , β), α is called the shape
parameter and β is the scale parameter. The n-dimensional Dirichlet distribution
with parameter (α1, . . . ,αn), with αk ⩾ 0 and

∑
k αk > 0, is the distribution of the

random vector
(

Z1∑
k Zk
, . . . , Zn∑

k Zk

)
taking values in the unit simplex ∆n−1, where

Zk
i.i.d.∼ G(αk , 1) .

Definition 3.1. Let π be a finite non-null (probability) measure on (X,BX),
where BX is the Borel σ -algebra of subsets of X, and α > 0. Then a stochastic
process Θ is a Dirichlet process with base measure π and concentration parameter
α , denoted byΘ ∼ DP(α ,π), if for every finite measurable partition {B1, . . . ,Bn}
of X, the random vector (Θ(B1), . . . ,Θ(Bn)) has a Dirichlet distribution with pa-
rameter (απ(B1), . . . ,απ(Bn)).

Under the Dirichlet process, data is assumed to be generated according to the
law

Θ ∼ DP(α ,π)

X1,X2, . . . | Θ i.i.d.∼ Θ .

That is, the parameter that explains the data is the random measure Θ itself. The
Dirichlet Process is thus a probability distribution on ∆(X), the space of proba-
bility measures over (X,BX). We record the following properties of the Dirichlet
process.

5We refer to Ferguson [1973, 1974] for the first description of the Dirichlet process and its use
in Bayesian nonparametric inference. More recently, this literature expanded rapidly; we refer to
Walker, Damien, Laud, and Smith [1999] and Escobar andWest [1995] for more modern treatments,
as well as generalizations of the Dirichlet process.
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Theorem3.2 (Ferguson [1973,Theorem 1], Ghosh and Ramamoorthi [2003, Chap-
ter 3]). Let (X1, . . . ,Xt ) be i.i.d. samples from Θ and suppose Θ has a DP(α ,π)
distribution. Then:

1. The conditional distribution of Θ given the finite sample (X1, . . . ,Xt ) is a
Dirichlet process with parameters (α + t , α

α+t π + 1
α+t

∑
k δXk ):

Θ | (X1, . . . ,Xt ) ∼ DP

(
α + t ,

α

α + t
π +

1

α + t

∑
k

δXk

)
.

2. The predictive distribution of the next observationXt+1, given the finite sample
(X1, . . . ,Xt ), is

P[Xt+1 | X1, . . . ,Xt ] =
α

α + t
π +

1

α + t

t∑
k=1

δXk .

We can re-write the predictive distribution of the next observation as

P[Xt+1 | X1, . . . ,Xt ] =
α

α + t
π +

t

α + t

∑t
k=1 δXk
t

.

We interpret this conditional distribution as follows. The term
∑
k δXk
t is the em-

pirical distribution and represents the contribution of experience. The term π
represents the initial guess. Thus the conditional distribution of the next obser-
vation is a weighed average of the initial guess and the empirical distribution.
The relative weights α

α+t and t
α+t balance out our confidence on the prior beliefs

versus the data.

The imprecise Dirichlet process. We extend the Dirichlet process to allow for
ambiguity, arising from the lack of information about the law of the underlying
process, as well as from the incompleteness of the observed data. Specifically, we
construct a class of Dirichlet processes by allowing the base measure π to vary in
the set of probability measures.

From the perspective of the individual, in every period t ⩾ 0, prior uncer-
tainty regarding the probability law of the underlying stochastic process is ex-
pressed by the following class of Dirichlet priors:

Λ̂t = {DP(α ,π) : π ∈ ∆(Ŝt )} ,

for some fixed α > 0. That is, Λ̂t is the class of Dirichlet processes with common
parameter α that allows the base measure π to be any element of the set of prob-
ability measures ∆(Ŝt ). For a fixed concentration parameter α > 0, the set Λ̂t
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combines all Dirichlet priors that the individual can conceive in a given period t ,
thus representing her unconditional belief assessment over the conceivable state
space Ŝt under the veil of ignorance, before making any observations. We note
that the base measure π in the precise Dirichlet processDP(α ,π) is interpreted as
the initial guess. Therefore, the set Λ̂t reflects complete ignorance about the law
of the underlying process, since the set of initial guesses is maximal: every con-
ceivable (nontrivial) event E ⊆ Ŝt has upper probability of 1 and lower probability
of 0 in that set.

In subsequent periods t ⩾ 1, the individual updates these unconditional as-
sessments Λ̂t in light of the history of observations x̂t . However, when reassess-
ing her beliefs, the individual’s level of awareness increases over time. With the
wisdom of hindsight, she can conceive of many sample paths that are consistent
with her observations x̂t . She then updates her belief assessment conservatively,
allowing for all those possible sample paths.

More precisely, in period t , if the individual’s conceivable state space is Ŝt ,
then she can conceive of all histories of length t , that is,

h = (h1, . . . ,ht ) ∈ ×tk=1 Ŝt ,

with hk ∈ Ŝt for every k = 1, . . . , t . Given observations x̂t , we let Ĥt ⊆ ×tk=1
Ŝt

denote the set of histories that are conceivable in period t and consistent with the
finite history of observations x̂t , that is,

Ĥt =
{
(h1, . . . ,ht ) ∈ ×tk=1Ŝt : hk |Ak = (x̂t )k for k = 1, . . . , t

}
.

Notice that, since the state space may expand over time, usually there will be
more than one history consistent with x̂t . In particular, for every t ⩾ 2, if at least
two consequences are known, |Ĉt | ⩾ 2, and the individual becomes aware of at
least one new action in period t , so that At−1 ⊂ At , then there will be at least
two different histories in Ĥt . Moreover, regardless of the cardinality of the set Ĥt ,
the last observation (x̂t )t is xt |At , which is an element of Ŝt . Thus ht = xt |At for
every h = (h1, . . . ,ht ) in Ĥt .

The following theorem describes the individual’s posterior inferences in the
presence of the ambiguity generated by growing awareness.

Theorem 3.3. Let (X1, . . . ,Xt ) be i.i.d. samples from Θ and suppose Θ has one of
the distributions DP(α ,π) in Λ̂t . Let also Ĥt denote the set of histories consistent
with the observations x̂t generated by Θ. Then:

1. The set of conditional distributions of Θ, given the histories Ĥt , is the set of
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Dirichlet processes:

Λ̂t | Ĥt =
{
DP

(
α + t ,

α

α + t
π +

1

α + t

∑
k

δhk

)
: π ∈ ∆(Ŝt ) and h ∈ Ĥt

}
.

2. The set of predictive distributions, given the set of histories Ĥt , is

P[Xt+1 |At | Ĥt ] =
{

α

α + t
π +

1

α + t

t∑
k=1

δhk : π ∈ ∆(Ŝt ) and h ∈ Ĥt

}
.

Remark 3.4. Henceforth, we write P | Ĥt for the set of predictive distributions
P[Xt+1 |At | Ĥt ] above.

Having observed x̂t , the individual can conceive of many finite histories h ∈
Ĥt . Theorem 3.3 says that she updates every prior in Λ̂t given every sample his-
tory consistent with her observations.

Notice that the influence of the probability measures in Λ̂t , the individual’s
unconditional assessment, on her conditional assessment Λ̂t | Ĥt is determined
by the hyperparameter α and the length of the history of observations she has
seen, that is, t . We shall interpret α as the learning parameter. Since the weight
given to the empirical distributions is t/(α + t), higher values of α are associated
with a lower degree of confidence of the individual on the accumulated data.6

Wealso note that the degree of imprecision of Λ̂t | Ĥt comes from two sources.
The first, not surprisingly, relates to the lack of prior information to guide the
choice of the base measure π of the (unconditional) Dirichlet prior DP(α ,π). The
second arises from the lack of familiarity with the newly discovered events, since
the discovery of new actions in a subsequent period t increases the number of
elements in the set of conceivable histories Ĥt of length t that are consistent with
the observed data x̂t .

The set of predictive distributions P | Ĥt represents the conditional assess-
ment the individual has about the next observation. For every event E ⊆ Ŝt , this
conditional assessment can be summarized by the upper probability

ρt (E) = max{ρ(E) : ρ ∈ P | Ĥt }

and the lower probability

ρ
t
(E) = min{ρ(E) : ρ ∈ P | Ĥt } .

6We refer toWalley [1996] and Raiffa and Schlaifer [1961] for discussions about possible choices
of α .
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Notice that if, for some k ≤ t , hk ∈ E for every h ∈ Ĥt , then ρt (E) > 0. That is,
upon making the observation that event E has occurred at least once unambigu-
ously, for every conceivable history consistent with the observations, the individ-
ual’s revised beliefs regarding E are bounded away from zero.

Remark 3.5. Given Theorem 3.3, it readily follows that for every pair of periods
t > t ′:

P | Ĥt =
{ (

α + t ′

α + t

)
π +

(
t − t ′

α + t

) t∑
k=t ′+1

δhk
t − t ′

: h ∈ Ĥt ,π ∈ ∆(Ŝt ) for which

there exists ν ∈ P | Ĥt ′ such that π
(
ϕ−1t :t ′(s)

)
= ν(s) for every s ∈ Ŝt ′

}
.

So, in particular, by taking t ′ = t −1we obtain the following equivalent recursive
definition for the individual’s predictive assessment in period t :

P | Ĥt =
{ (

α + t − 1

α + t

)
π +

δxt |At
α + t

: π ∈ ∆(Ŝt ) for which

there exists ν ∈ P | Ĥt−1 such that π
(
ϕ−1t :t−1(s)

)
= ν(s) for every s ∈ Ŝt−1

}
.

4 Properties of the model

In this section, we study the properties of the model. We first provide a charac-
terization of the updating rule that generates the predictive distribution in The-
orem 3.3–2. We then study the large sample properties of the individual’s belief
assessment.

4.1 Internal consistency

We begin by noting that in any period t ⩾ 0, if the decision maker’s conceivable
state space is S , then she can conceive of all future sample paths of any finite
length n, that is,

f = (f1, . . . , fn) ∈ ×nk=1S ,

with fk ∈ S for every k = 1, . . . ,n. Let FnS denote the set of all such conceivable
future sample paths of length n and set FS = ∪n⩾1 F

n
S . In addition, let Ŝ∞ denote

the set of conceivable state spaces the individual will become aware of as a result
of the observations she will make. That is, Ŝ∞ = {Ŝt : t ⩾ 0}.
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Adopting the nomenclature of Billot et al. [2005], we define a probabilistic
belief in period t to be a mapping ρSt : ∆(S) × FS → ∆(S). Given a belief π ∈
∆(S), we interpret the probabilistic belief ρSt (π ; f ) as telling us how the individual
anticipates that such a belief π in period t would be revised as a result of observing
the conceivable future sample path f ∈ FS .

We consider the following axioms on the family of probabilistic beliefs {ρSt : t ⩾
0 , S ∈ Ŝ∞}.

Axiom 1 (responsiveness). For every belief π ∈ ∆(S) and every future sample
path f = (f1, . . . , fn) ∈ FS :

{ f1, . . . , fn} ⊆ supp ρSt (π ; f ) ⊆ suppπ ∪ { f1, . . . , fn} .

Axiom 2 (symmetric treatment [of previously unconsidered states]). For
every pair of state spaces S and S ′ and every pair of beliefs π ∈ ∆(S), π ′ ∈ ∆(S ′):

ρSt (π ; s)(s) = ρS
′
t (π

′; s ′)(s ′) ,

whenever s < suppπ and s ′ < suppπ ′.

Axiom 3 (invariance). For every belief π ∈ ∆(S) and every future sample path
f = (f1, . . . , fn) ∈ FS :

ρSt (π ; f ) = ρSt (π ;σ f ) ,

where σ f = (fσ (1), . . . , fσ (n)) and σ : {1, . . . ,n} → {1, . . . ,n} is a permutation
of {1, . . . ,n}.

Axiom 4 (linearity in beliefs). For every pair of beliefs π ,π ′ ∈ ∆(S) and every
future sample path f ∈ FS :

ρSt (βπ + (1 − β)π ′; f ) = βρSt (π ; f ) + (1 − β)ρSt (π
′; f ) ,

for every β ∈ [0, 1].

Axiom 5 (intertemporal coherence). For every pair of periods t < t ′, every
belief π ∈ ∆(S) and every future sample path f = (f1, . . . , fn) ∈ FnS with n >
t ′ − t :

ρSt (π ; f ) = ρSt ′
(
ρSt (π ; f1, . . . , ft ′−t ); ft ′−t+1, . . . , fn

)
.

As the name suggests, Axiom 1 (responsiveness), requires that ρSt assigns
strictly positive weight to every state that appears in the future sample path f .
Furthermore, a state s cannot be in the support of ρSt (π ; f ) if it is neither in the
support of the belief π nor in the future sample path f .
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Axiom 2 (symmetric treatment), may be interpreted as requiring, should the
decision-maker observe next period a previously unconsidered state, that the
(strictly positive) weight that she anticipates being shifted to this previously un-
considered state depends only on the period t in which this probabilistic belief is
formed.

Axiom 3 (invariance) is an exchangeability property: future information is
interpreted in the same way, regardless of the order in which it arrives. It re-
flects the conditional exchangeability property of the underlying data generating
process.

To explain the normative appeal of Axiom 4 (linearity in beliefs), recall that
any initial belief π may be expressed as the probability weighted sum

π =
∑
s ∈S

π(s)δs .

That is, π is a weighted sum of the Dirac probability measures associated with
each element in its support. Noting that ρSt (δs ; f ) is the probabilistic belief the
individual anticipates she would have starting from the degenerate belief concen-
trated on the state s after observing the sample path f , we see from the repeated
application of Axiom 4 that

ρSt (π ; f ) =
∑
s

π(s)ρSt (δs ; f ) .

That is, the probabilistic belief ρSt (π ; f ) can be expressed as amixture of the beliefs
in the set {ρSt (δs ; f ) : s ∈ S} with the weights corresponding to the weight she
assigns in her belief π to each particular state s .

Our final axiom, Axiom 5 (intertemporal coherence), is a consistency property.
It ensures that the family of probabilistic beliefs exhibits an appropriate “law of
iterative conditioning.”

Together, these five axioms characterize the anticipated revision of beliefs be-
ing undertaken in accordance with a Dirichlet process.

Theorem 4.1. Suppose that |Ŝt | ⩾ 3 for some t ⩾ 0. Then the following are equiv-
alent.

1. The family of probabilistic beliefs {ρSt : t ⩾ 0 , S ∈ Ŝ∞}, satisfies Axioms 1–
5 (responsiveness, symmetric treatment, invariance, linearity in beliefs and
intertemporal coherence).

2. In every period t ⩾ 0 and for each S ∈ Ŝ∞ the probabilistic belief ρSt , takes
the following form: for each belief π ∈ ∆(S), each future sample path f =
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(f1, . . . , fn) ∈ FS

ρSt (π ; f ) =
α + t

α + t + n
π +

n

α + t + n

n∑
k=1

1

n
δfk ,

where α ⩾ 0.

For any family of probabilistic beliefs satisfying the five axioms above, Theo-
rem 4.1 implies that the individual’s conditional assessment in period t as specified
in part 2 of Theorem 3.3 may be reexpressed in terms of the probabilistic belief
ρŜt0 as follows.

P | Ĥt =
{
ρŜt0 (π ;h) : h ∈ Ĥt ,π ∈ ∆(Ŝt )

}
.

That is, we can view P | Ĥt as the set of probability beliefs the individual in
period 0 would anticipate her assessment in period t would be, if she had been
aware in period 0 of what her conceivable state space in period t would be, as well
as what were all the conceivable histories in Ĥt that would be consistent with her
observations up to and including period t .

Alternatively, employing the second of the equivalent expressions for P | Ĥt
from Remark 3.5, we obtain the recursive formulation given by:

P | Ĥt =
{
ρŜtt−1(π ;xt |At ) : π ∈ ∆(Ŝt ) for which there exists ν ∈ P | Ĥt−1

such that π
(
ϕ−1t :t−1(s)

)
= ν(s) for every s ∈ Ŝt−1

}
.

We conclude this section by comparing our probability assignment rule with
the similarity-based probability assignment rule introduced and axiomatized by
Billot et al. [2005]. Formally, the intersection of our probability assignment rule
and theirs is the limiting case in which our learning parameter α is equal to zero
and their similarity weighting function is constant. That is, the case in which all
the elements of any “database” (the analog of our conceivable histories) in their
setting are (considered) equally similar. As there is no increasing awareness in
their model, their probability assignment is always precise.

4.2 External consistency

We now investigate whether, as the sample size increases, the decision maker’s
assessment regarding known events converges in some meaningful sense to the
true posterior probability of the event, according to the data generating process.

18



The ambient sample space (Ω,F , µ) describes every possible outcome of all
sources of randomness. However, from the perspective of the individual, the par-
ticular choice of this space is immaterial. The individual only cares about the
sequence of induced distributions defined by

µt (B) = µ(Xt ∈ B)

for every B in the σ -algebra B of Borel subsets of CA.
Furthermore, the individual’s perception of these distributions is restricted by

her current level of awareness, which has two implications. First, the individual
can conceive of the idea of the unknown, that is, she is cognizant of her unaware-
ness. She can thus conceive of random variables that may take the intangible
value θt in period t . Let C̃ = C ∪ {θ0,θ1, . . .} denote the set of extended conse-
quences and consider the set C̃A of functions from A into C̃. Endow C̃ with the
σ -algebra C generated by the union of the Borel σ -algebra on C and the discrete
σ -algebra on {θ0,θ1, . . .}. Let B̃ = σ(Ba : a ∈ A) denote the σ -algebra of subsets
of C̃A generated by the cylinder sets

Ba = proj−1a (B)

for every set B in C and every action a ∈ A. We shall abuse notation and identify
the random variableXt , which takes values in CA, with the coextension ofXt that
takes values in the larger range space C̃A.

Second, in every period, the individual can only observe the realized conse-
quences associated with the actions in the set known to her. Because the indi-
vidual can only learn the distributions of consequences induced by the actions
already discovered by her, learning is not uniform. To deal with this issue, take
as given period t ′. The set At ′ consists of all actions known to the individual in
the given period t ′. Consider the set C̃At ′ of functions fromAt ′ into C̃ and endow
it with Bt ′ = σ(Ba : a ∈ At ′), that is, the σ -algebra of subsets of C̃At ′ generated
by the cylinder sets

Ba = proj−1a (B)

for every set B in C and every a ∈ At ′ . If д : C̃At ′ → R is a bounded, Bt ′-
measurable function, then the individual’s (conditional) assessment of д in pe-
riod t ⩾ t ′ is given by the collection of conditional expectations

Eµ

[∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )] | Gt

]
for every ρ ∈ P | Ĥt . There is learning if these assessments become closer to the
true expectation Eµ [д(Xt+1 |At ′ ) | Gt ] as the sample size increases.7

7We note that the function д could be any bounded, measurable function. In particular, if д is
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Our main result, Theorem 4.2, formalizes these ideas. It conveys the sense in
which the individual learns in the long run. Essentially, it says that the limiting
distribution induced over consequences by the actions in At ′ and the individual’s
assessment of this distribution become indistinguishable from the point of view
of integrating bounded, measurable functions.

If (Ω,F , µ) is a measure space and (Xt )t⩾1 is a sequence of random variables
with values in an arbitrary measurable space, then we can define the following
notion of countably generated sets of converging functions.

Consider a family G of real-valued, measurable functions such that for every
д ∈ G there exists a random variable Vд such that

Eµ [д(Xt+1) | Gt ] → Vд µ-a.s.

We say that G is countably generated whenever it contains a countable subset G0

such that
Eµ [д(Xt+1) | Gt ] → Vд µ-a.s.

uniformly for every д ∈ G if and only if the convergence happens uniformly for
every д ∈ G0.

Theorem 4.2. Fix some t ′ ⩾ 1. If (Xt )t⩾1 is conditionally exchangeable and G is
a countably generated family of bounded, Bt ′-measurable functions д : C̃At ′ → R,
then for every д ∈ G there exists a random variable Vд such that Eµ [д(Xt+1 |At ′ ) |
Gt ] → Vд µ-a.s. and

1. Eµ

[
max
ρ ∈P |Ĥt

∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )]

���� Gt ] → Vд µ-a.s. and

2. Eµ

[
min
ρ ∈P |Ĥt

∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )]

���� Gt ] → Vд µ-a.s.

A useful feature of this model is that it is possible to measure the degree of
imprecision or ambiguity of the individual’s beliefs for every event she is aware
of. We say that the degree of ambiguity associated with an event E ⊆ Ŝt in period t
is the difference between the upper and the lower probabilities:

∆t (E) = ρt (E) − ρ
t
(E) .

an indicator function on an event, then the individual learns the probability of that event. If д is a
payoff function over the consequences of a particular action, then the individual learns the expected
payoff of that action.
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The following corollary is an easy consequence ofTheorem 4.2. It establishes that
ambiguity is associated with lack of familiarity or information regarding conceiv-
able events. There is resolution of ambiguity over time, but it is only partial, in
the sense that the individual sees the events she just became aware of as more
ambiguous.

Corollary 4.3. Fix some t ′ ⩾ 1 and let E ⊆ Ŝt ′ . Then for t > t ′,

∆t (ϕt ′:t (E)) → 0 µ-a.s.

5 Merging of opinions

This section considers the problem of a group of agents who need tomake a collec-
tive decision involving the (uncertain) value of possible plans of action. Initially,
their beliefs may not be consistent, but they will have some opportunity to jointly
gather evidence regarding the stochastic outcome of each plan of action available
before they make a final decision.

The group consensus formation problem has been studied extensively. Among
Bayesians, there is a lot of controversy regarding which is the best procedure
for aggregating beliefs—many desirable properties lead to dictatorial aggregation
rules (see Genest and Zidek [1986] for a survey of classical aggregation methods
and impossibility theorems). Shafer [1986] and Walley [1991, Chapter 4] propose
belief aggregation methods, based on theories of imprecise probability, that seem
to perform better and avoid dictatorial rules [see also Crès, Gilboa, and Vieille,
2011]. Going beyond the realm of belief aggregation and into the territory of
multi-Bayesian decision problems does not help. These impossibility results carry
through if one incorporates preferences into the problem—as illustrated by Hyl-
land and Zeckhauser [1979]. For surveys, we refer toWeerahandi and Zidek [1981,
1983], and Zidek [1988]; Gilboa, Samet, and Schmeidler [2004] is a rare positive
result in this area.

We focus on the aggregation rule determined by unanimity voting, whereby
an action is acceptable if and only if it is acceptable for every individual in the
group. We show that the beliefs of the members of the group merge with increas-
ing information, as a corollary of Theorem 4.2.

Consider a group of n individuals who must reach a consensus regarding the
value of each act or plan of action in a common, finite set of possible actions A.
Suppose that each individual i has a prior assessment of the expected value of each
action in A. For the purposes of this section, the choice of the set A is arbitrary.
For example, it could happen that only actions “observable” by all individuals are
considered. In this case, A is the intersection of the individual sets of actions
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known by each expert, that is, A = ∩ni=1A
i . Alternatively, it could also happen

that the individuals are set out to find a cooperative solution to a complex problem,
about which each expert has only a partial understanding. In this case, they could
have engaged in a pre-play communication and agreed on the set that represents
the combined knowledge of all in the group. Then the appropriate description
of the problem is to take A to be the union of all individual sets of feasible acts,
thus A = ∪ni=1A

i . We also assume that there is a common set C of consequences
and that the group agrees with respect to the return associated with each of these
consequences. That is, there exists a bounded and measurable functionv : C→ R
that expresses the common value assigned by all individuals to each consequence
in C. Let C0 ⊆ C denote the finite subset of consequences known to the experts
in period 0.

We assume that each individual in the group is Bayesian and makes infer-
ences from the observed data by updating a Dirichlet process prior. In period 0,
expert i’s assessment is represented by a Dirichlet prior on CA with base measure
π i0, with support on the setCA0 , and common concentration parameter α > 0.8 The
interpretation is that π i0 represents the initial guess of expert i and α represents
the experts’ unanimous confidence in their initial estimation.

The evolution of the experts assessment goes as follows. In period 0, expert i’s
belief is represented by the probability measure π i0 ∈ ∆(CA). For every period
t ⩾ 1, after the group publicly observes the sample X1 = x1, . . . ,Xt = xt , ex-
pert i updates her assessment by computing the predictive probability under the
Dirichlet posterior, that is,

Pit [Xt+1 ∈ · | X1, . . . ,Xt ] =
α

α + t
π i0[ · ] +

1

α + t

t∑
k=1

δXk ( · ) .

The group’s belief is then represented by the set of predictive probabilities

PGt | X1, . . . ,Xt =
{
Pit [Xt+1 · | X1, . . . ,Xt ] : i = 1, . . . ,n

}
.

Notice that the group’s beliefs PGt | X1, . . . ,Xt is a subset of the set of predictive
distributions P | Ĥt described in Theorem 3.3, when we let At = A for every
period t .

Furthermore, each individual i evaluates action a by the expectation

Eit [a | X1, . . . ,Xt ] =
∑

x ∈suppPit

Pit [x | X1, . . . ,Xt ] v ◦ a(x) .

8The assumption that the experts share a common concentration parameter α is made for sim-
plicity and it could be relaxed.
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Therefore, the consensus of the group at t is represented by the lower and upper
expectations. That is, the aggregated opinion of the group is given by the pair of
functionals Et : CA → R and Et : C

A → R, defined by

Et (a) = min
{
Eit [a | X1, . . . ,Xt ] : i = 1, . . . ,n

}
,

and
Et (a) = max

{
Eit [a | X1, . . . ,Xt ] : i = 1, . . . ,n

}
.

The following result follows from Theorem 4.2. It establishes that the group’s
lower and upper expectations merge as the experts revise their opinions in view
of the information gathered over time.
Corollary 5.1. If (Xt )t⩾1 is conditionally exchangeable, then for every action a

|Et (a) − Et (a)| → 0 µ-a.s.

Corollary 5.1 provides, to some extent, circumstances under which the com-
mon prior assumption may be justified. It implies that the posterior beliefs of
different agents merge, after observing a sufficiently long history of past, public
signals. The common prior could be understood as the limiting posterior of agents
who have been observing the realization of a common signal for a sufficiently long
time before the economic interaction being studied begins.

It is worth noting that the argument proposed here avoids, at least partially,
the shortcomings of alternative arguments in support of the common prior as-
sumption.9 From a Bayesian statistics point of view, even in the single-person
decision problem, agents need to assign positive probability to the true parameter.
In the multi-person problem, these results require that individuals agree on which
events should be assigned positive probability (mutual absolute continuity condi-
tion).10 These assumptions seem barely weaker than the common prior assump-
tion itself. By applying the consistency results of our learning model, however,
it is possible to show convergence of posterior beliefs even when the individuals’
prior beliefs are mutually singular.

The common prior assumption has also been justified from a frequentist point
of view, by the argument that past experiences wash away differences in beliefs,
because limiting relative frequencies can be commonly learned. Corollary 5.1 has
the same flavor. It should be noted, however, that contrary to most of the results
available, our convergence results do not require stationarity of the underlying
stochastic process.11

9For a survey of such arguments, we refer to Morris [1995].
10The absolutely continuous condition was suggested by Blackwell and Dubins [1962]. Kalai and

Lehrer [1993] formalized this argument in a game theoretic setting, in which learning leads to Nash
equilibrium.

11See, for example, Kurz [1994].
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6 Bayesian interpretation

So far, the discussion focused on the classical Bayesian view that there is an objec-
tive model of probability which explains the data. According to this view, there is
a true but unknown parameter that is to be estimated from the data. The prior as-
sessments in Λ̂t thus represent initial guesses about this parameter. Consistency
matters to classical Bayesians because they would like the posterior to converge
in a meaningful way to the true objective parameter as data accumulates.

An alternative view is the subjective view of probability, according to which
there is no such thing as an objective probability model. For a subjective Bayesian,
probabilities are nothing but a representation of degrees of belief. Here, we pro-
vide an interpretation of the model that is compatible with this view.

Usually, an individual has some information about a statistical problem—perhaps
the order of magnitude of some parameter or some qualitative aspect of sampling.
However, there is little reason to believe that an individual should have much con-
fidence in a sharply defined prior distribution, or that individuals with different
backgrounds should agree on all minute details of themodel that explains the data.
In particular, it is much easier for subjective Bayesians to reach an agreement
about qualitative features of the process, such as conditional exchangeability, or
hyper-parameters, such as the concentration parameter α , than have a consen-
sus about the whole prior distribution. However, especially in high-dimensional
problems, there is no guarantee that the opinions of individuals with different
subjective priors would eventually merge, no matter how much data they have.
From this point of view, consistency represents asymptotic interpersonal agree-
ment. Indeed, a model with nice frequentist properties is robust in the sense that
small variations in the specification of the prior will not lead to large disagree-
ments.

Appendix

A Proof of Subsection 3.2

Proof of Theorem 3.3. 1. From Theorem 3.2 (1), the set Λ̂ | Ĥt is the set of all
conditional distributions ofΘ that follows aDP(α ,π) distribution, for every
π ∈ ∆(Ŝt ) and every finite sample history consistent with the observations
x̂t .

2. From Theorem 3.2 (2), the set P[Xt+1 |At | Ĥt ] is the set of all predictive dis-
tributions of the next observation, computed for every finite sample history
consistent with the observations x̂t .
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□

B Proof of Subsection 4.1

Proof of Theorem 4.1. [1 ⇒ 2]
Fix some S ∈ Ŝ∞ for which |S | ⩾ 3. Denote by s1, s2 and s3 three distinct

states in S . Applying Axiom 1 (responsiveness), we have

{s2} ⊆ supp ρSt (δs1 ; s2) ⊆ {s1, s2}

Thus it must be the case that for some β1t ∈ [0, 1),

ρSt (δs1 ; s2) = β1t δs1 + (1 − β1t )δs2 .

From repeated applications of Axiom 2 (symmetric treatment) we obtain:

ρSt (δs ′; s) = β1t δs ′ + (1 − β1t )δs , for all pairs of states s ′, s ∈ S .

Next by repeatedly applying Axiom 4 (linearity in beliefs) it follows that for all
p ∈ ∆(S) and all s ∈ S

ρSt (π ; s) = ρSt

(∑
s ′∈S

π(s ′)δs ′; s

)
=

∑
s ′∈S

π(s ′)ρSt (δs ′; s)

=
∑
s ′∈S

π(s ′)
[
β1t δs ′ + (1 − β1t )δs

]
= β1t

∑
s ′∈S

π(s ′)δs ′ + (1 − β1t )δs
∑
s ′∈S

π(s ′)

= β1t π + (1 − β1t )δs .

By invoking Axiom 5 (intertemporal coherence) and utilizing what we have es-
tablished above, we see that

ρSt (δs1 ; s2, s3) = ρSt+1

(
ρSt (δs1 ; s2); s3

)
= β1t+1

[
β1t δs1 + (1 − β1t )δs2

]
+ (1 − β1t+1)δs3

= β1t+1β
1
t δs1 + β1t+1(1 − β1t )δs2 + (1 − β1t+1)δs3

Similarly,

ρSt (δs1 ; s3, s2) = β1t+1β
1
t δs1 + β1t+1(1 − β1t )δs3 + (1 − β1t+1)δs2
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Since by Axiom 3 (invariance), ρSt (δs1 ; s2, s3) = ρSt (δs1 ; s3, s2), and {δs : s ∈ S}
forms a basis for ∆(S), it follows that

β1t+1(1 − β1t ) = (1 − β1t+1) ⇒ β1t+1 =
1

2 − β1t
(1)

So, by setting α B β10/(1 − β10 ) ⩾ 0, and applying expression (1) repeatedly, we
obtain

β10 =
α

α + 1
, β11 =

α + 1

α + 2
, . . . , β1t =

α + t

α + t + 1

Thus,
1 − β1t+1 = 1 − α + t + 1

α + t + 2
=

1

α + t + 2
,

which plugging back into the expression for ρSt (δs1 ; s2, s3), yields

ρSt (δs1 ; s2, s3) =
α + t

α + t + 2
δs1 +

2

α + t + 2

(
1

2
δs2 +

1

2
δs3

)
.

Furthermore, by repeated applications of Axiom 4 (linearity in beliefs) we have

ρSt (π ; s, s
′) =

α + t

α + t + 2
π +

2

α + t + 2

(
1

2
δs +

1

2
δs ′

)
,

for all π ∈ ∆(S) and all s, s ′ ∈ S .
We extend this result by induction. We assume that the representation holds

for any conceivable future sample path up to length n − 1. So in particular,

ρSt (π ; f1, . . . , fn−1) = βn−1t π + (1 − βn−1t )
n−1∑
k=1

δfk ,

where βn−1t = (α + t)/(α + t + n − 1).
Applying Axiom 5 (intertemporal coherence), we obtain

ρSt (δs ; f1, . . . , fn) = ρSt+n

(
ρSt (δs ; f1, . . . , fn−1); fn

)
= β1t+n−1

(
βn−1t δs + (1 − βn−1t )

n−1∑
k=1

δsk

)
+ (1 − β1t+n−1)δt+n

By equating coefficients,

βnt = β1t+n−1 × βn−1t

=
α + t + n − 1

α + t + n
× α + t

α + t + n − 1

=
α + t

α + t + n
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and
1 − β1t+n−1 = β1t+n−1(1 − βn−1t ) =

1

α + t + n
.

Finally, repeated applications of Axiom 4 (linearity in beliefs) yields

ρSt (π ; f1, . . . , fn) =
α + t

α + t + n
π +

n

α + t + n

n∑
k=1

1

n
δfk ,

as required.
The feature that the parameter α does not depend on the conceivable state

space S readily follows from Axiom 2 (symmetric treatment).
[2 ⇒ 1] The proof is straightforward and is omitted. □

C Proofs of Subsection 4.2

To prove the main result in Subsection 4.2, we need two lemmas. The first essen-
tially shows that the empirical average of any bounded and measurable function
computed from some fixed period t ′ onwards gets closer to the conditional expec-
tation of that function. The second lemma establishes that the decision maker’s
assessment of that function converges to the limiting conditional expectation.

Lemma C.1. Take some t ′ ⩾ 1 and let д : CA → R be a bounded, B-measurable
function. If (Xt )t⩾1 is conditionally exchangeable, then there exists a random vari-
able Vд such that

Eµ [д(Xt+1) | Gt ] → Vд µ-a.s.

and for t ⩾ t ′

1

t − t ′ + 1

t∑
k=t ′
Eµ [д(Xk+1) | Gk ] → Vд µ-a.s.

Proof of Lemma C.1. Fix t ′ ⩾ 1 and let д : CA → R be a B-measurable function.
By Berti, Pratelli, and Rigo [2004, Lemma 2.1], there exists a random variable Vд
such that Eµ [д(Xt+1) | Gt ] → Vд µ-almost surely. For t ⩾ t ′, define

Yt =
t∑

k=t ′

{
Vд − Eµ [Vд | Gk ]

k − t ′ + 1

}
.

Thesequence (Yt )t⩾t ′ is a uniformly integrablemartingalewith respect to (Gt )t⩾t ′
and thus converges µ-almost surely. Taking into account Berti, Pratelli, and Rigo
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[2004, Lemma 2.1], an application of Kronecker’s lemma gives�����Eµ [д(Xt+1) | Gt ] −
1

t − t ′ + 1

t∑
k=t ′
Eµ [д(Xk+1) | Gk ]

�����
=

1

t − t ′ + 1

����� t∑
k=t ′

{
Vд − Eµ [Vд | Gk ]

}����� → 0 µ-a.s.

This concludes the proof of the lemma. □

LemmaC.2. Take some t ′ ⩾ 1 and let д : C̃At ′ → R be a bounded, Bt ′-measurable
function. If (Xt )t⩾1 is conditionally exchangeable, then there exists a random vari-
able Vд such that Eµ [д(Xt+1 |At ′ ) | Gt ] → Vд µ-a.s. and

1. Eµ

[
max
ρ ∈P |Ĥt

∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )]

���� Gt ] → Vд µ-a.s.

2. Eµ

[
min
ρ ∈P |Ĥt

∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )]

���� Gt ] → Vд µ-a.s.

Proof. For every t ⩾ t ′, define

Zt =
t∑

k=t ′

{
д(Xk |At ′ ) − Eµ [д(Xk+1 |At ′ ) | Gk ]

k − t ′ + 1

}
.

Thesequence (Zt )t⩾t ′ is a uniformly integrablemartingalewith respect to (Gt )t⩾t ′
and, thus, converges µ-almost surely to a random variable Z . Furthermore, if
t ⩾ t ′, then hk |At ′ = h′

k |At ′ = Xk |At ′ for every k ⩾ t ′ and h,h′ ∈ Ĥt . Thus,

max
ρ ∈P |Ĥt

Eρ [д(ψt (Xt+1 |At )|At ′ )] = max
ρ ∈P |Ĥt

∑
д(ψt (Xt+1 |At )|At ′ )ρ[ψt (Xt+1 |At )]

=
α + t ′ − 1

α + t

maxh∈Ĥt
{∑t ′−1

k=1 д(hk |At ′ )
}

t ′ − 1
+

t − t ′ + 1

α + t

∑t
k=t ′ д(hk |At ′ )
t − t ′ + 1

=
α + t ′ − 1

α + t

maxh∈Ĥt
{∑t ′−1

k=1 д(hk |At ′ )
}

t ′ − 1

− α + t ′ − 1

α + t

∑t
k=t ′ д(hk |At ′ )
t − t ′ + 1

+

∑t
k=t ′ д(hk |At ′ )
t − t ′ + 1

.
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Therefore, if Mд > 0 is the upper bound of |д |, then�����Eµ
[
max
ρ ∈P |Ĥt

Eρ [д(ψt (Xt+1 |At )|At ′ )]
���� Gt ] − 1

t − t ′ + 1

t∑
k=t ′
Eµ [д(Xk+1 |At ′ ) | Gk ]

�����
≤ 2(α + t ′ − 1)

α + t
Mд +

����� 1

t − t ′ + 1

t∑
k=t ′

(k − t ′ + 1)Zt

����� .
An application of the Kronecker’s lemma yields that����� 1

t − t ′ + 1

t∑
k=t ′

(k − t ′ + 1)Zt

����� → 0 µ-a.s.

and, because 2(α+t ′−1)
α+t → 0 surely, the desired convergence for д follows from

Lemma C.1. The same argument applied to case (2) completes the proof. □

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. For each bounded, Bt ′-measurable function д : CAt ′ → R,
let Nд ∈ F denote the set with µ(Nд) = 0 outside of which the convergence
shown in Lemma C.2 does not happen. Because G is countably generated, there
exists a countable subsetset G0 of bounded, measurable functions on C̃At ′ such
that the convergence is uniform for every д ∈ G if and only if it happens for
every д ∈ G0. Noting that µ(∪д∈GNд) = 0 completes the proof. □
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