
0 

 

The Advantage of Dual Discrimination in Lottery Contest Games1 

by 

Yosef Mealema, Shmuel Nitzanb and Takashi Uic 

 

 

Abstract 

In a simple class of complete information lottery contests, the designer can combine 

two types of discrimination: a change of the contestants’ prize valuations subject to a 

balanced-budget constraint (direct discrimination), as well as a bias of the impact of 

their efforts (structural discrimination). Applying such dual discrimination, the 

designer reduces (increases) the higher (lower) prize value up to a mimimal 

(maximal) level, but suitably increases (reduces) the corresponding prize share. Our 

main result establishes that this dual discrimination is advantageous yielding almost 

the maximal possible efforts - the highest valuation of the contested prize. The efforts 

in our setting can therefore be larger than those obtained under alternative modes of 

one-type favoritism. This is true in particular with respect to the optimal structural 

discrimination or head-starts in a simple lottery or in all-pay auction contest, (Franke 

et al. 2013, 2014). The optimal two-mode favoritism that combines structural 

discrimination and head starts, (Franke et al. 2016), can yield the maximal possible 

revenue in all-pay auctions. Our result establishes that the maximal efforts can also be 

induced in a simple lottery contest by resorting to our alternative mode of dual 

discrimination.   
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1. Introduction 

In the vast contest literature that has numerous applications (internal labor market 

tournaments, promotional competitions, R&D races, rent-seeking, political and public 

policy competitions, litigation and sports), the most commonly assumed contest 

success function (CSF) is the simple lottery proposed by Tullock (1980), (see Konrad 

(2009) and references therein). In two-player contests, for 01 x , 02 x , and 0 , 

this simple logit functions take the form: 

(1)                













0   if               5.0

0   if       
),(

21

21

21

1

211

xx

xx
xx

x

xxp   

Usually, 1x  and 2x  are interpreted as the contestants’ efforts. However, 1p  has two 

possible interpretations. It can be interpreted as contestant 1’s winning probability of 

an indivisible prize or as his share in a divisible prize. In turn, the winning probability 

of contestant 2 or his share in the prize is equal to 12 1 pp  . Henceforth, we use the 

second interpretation, as in Corchon and Dahm (2010), Franke et al. (2013), Lee and 

Lee (2012) and Warneryd (1998). Nevertheless, although under this interpretation 

there is no uncertainty in the model and the contestants compete on the certain shares 

of a divisible prize, we preserve the terms “contest” and “CSF”. The asymmetry 

between the impact of the contestants’ efforts is captured by the parameter 0 . 

 In our extended setting, we do enable the contest designer to control  , as first 

suggested in Lien (1986, 1990) and later by Clark and Riis (2000). This means that 

the designer can apply structural discrimination that affects the contestants’ shares in 

the contested prize (the same efforts may yield different shares, depending on the 

value of this parameter). By (1), a reduction in   increases the bias in favor of 

contestant 1, who is assumed to be, with no loss of generality, the more motivated 

contestant (the one with the higher prize valuation). Furthermore, 10    ( 1 ) 

implies a bias in favor of contestant 1 (contestant 2). When 1  the contest is fair. 

The empirical relevance of such discrimination in contests with a logit CSF is 

thoroughly discussed in Epstein et al. (2011) and Franke (2012). Franke et al. (2013) 

have justified structural discrimination on the grounds that it lends itself to a very 

appealing competitive-market interpretation. For a recent survey of discrimination in 

contests, see Mealem and Nitzan (2016). Note that under complete information on the 

prize valuations, the contest designer could set a price equal to the highest valuation 
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and sell the prize to the contestant with that valuation. The analysis of discrimination 

in contests is therefore meaningful assuming that the designer must allow a viable 

competition, as apparently implicitly assumed in the literature on optimal design in 

contests. It turns out that such a competitive setting still allows the designer to extract 

the maximal possible revenue, namely the highest prize valuation.  

In our contest environment, the designer’s ability to discriminate is enriched. 

In addition to structural discrimination, i.e., the control of  , the contest designer can 

affect the contestants’ incentives by directly changing their rewards in case of 

winning all the contested  prize, thereby increasing or decreasing the gap between 

their prize valuations. Such a policy is usually based on a “give and take” mechanism 

in case of winning, which is henceforth referred to as direct discrimination. This form 

of discrimination has been introduced and studied in Mealem and Nitzan (2014, 2016), 

focusing on its comparative application in an all-pay-auction relative to a logit CSF, 

disregarding the possibility of structural discrimination. 

 A crucial element in this different type of discrimination is the balanced-

budget constraint faced by the contest designer. This constraint, which limits the 

design of the optimal tax schedule, implies that when one contestant's share of the 

prize is subjected to a positive tax, the share of the prize won by the other contestant 

must be subjected to a negative tax, viz., the granting of a subsidy. The tax scheme 

consists then of two numbers (negative and positive) that are added to the contestants' 

initial valuations of the divisible prize. These numbers need to satisfy the requirement 

that the designer’s net expenditures are equal to zero in equilibrium. Of course, 

whether the constraint is satisfied or not depends both on the applied structural and 

direct discrimination; the former determining the contestants' shares in the prize and 

the latter the actual modified values of the prize. 

Our main result establishes that in a simple lottery contest, dual favoritism that 

combines structural and direct discrimination is very effective: the maximal efforts 

can be increased to almost the initially highest prize valuation.2  

The maximal efforts in our setting are larger than those obtained in Fang 

(2002), where discrimination is not allowed, and larger than the efforts obtained in 

Franke et al. (2013, 2014) where only structural or head-starts discrimination is 

                                                           

2 This is implied by our main result, assuming that the upper bound of the net value of the prize 

approaches infinity and the lower bound of the net value of the prize approaches zero. 
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allowed. In a simple lottery contest with our dual discrimination, total efforts can be 

larger than those obtained under any optimal single mode of discrimination and, in 

particular, discrimination applied in an N-player all-pay auction. Whereas using head-

starts in addition to structural discrimination is not conductive to generate additional 

revenue in a simple lottery contest (Franke et al. 2016), in our dual discrimination 

lottery contests, the contest designer has an incentive to apply the optimal direct 

discrimination in addition to the optimal structural discrimination.  As in the case of 

optimal two-mode favoritism that combines structural discrimination and head starts 

in an all-pay auction contest (Franke et al. 2016), the maximal possible revenue can 

be induced in a simple lottery contest by resorting to our alternative two-mode 

favoritism combining structural and direct discrimination.   

Fang (2002) considered the unbiased simple class of N-player lottery contests  

assuming that the discretionary power of the contest designer is restricted to the 

exclusion of specific players. He showed that the exclusion principle, established in 

Baye et al. (1993) for an all-pay auction framework with complete information, is not 

valid in an unbiased lottery framework. Franke et al. (2013) extend this result to the 

biased lottery contest showing that it is never optimal for the designer to discourage 

strong contestants from participating in order to enhance competitive pressure among 

the remaining weaker contestants. Moreover, they have pointed out the existence of 

an additional inclusion principle: some weak contestants, who are inactive in the 

unbiased case of Fang (2002), are encouraged to become active. This implies that in 

their setting of structural discrimination, the designer will endogenously induce a 

more leveled playing field in comparison to the unbiased contest setting. This 

enhances competition and, in turn, increases the contestants’ exerted efforts. However, 

as long as 2N , it is not optimal for the designer to completely level the playing 

ground so some weak contestants may still remain inactive, although at least three 

will always be active. 

Franke et al. (2016) have recently shown that an optimally biased all-pay 

auction contest combining structural discrimination and head-starts always dominates 

the optimally biased lottery contest resorting to these two modes of favoritism; it 

yields larger efforts. This is in contrast to the outcome of the comparison between the 

unbiased versions of these contest models where the (unbiased) all-pay auction can 

yield less efforts when the exclusion principle applies (it is effort-enhancing to 

exclude the player with the highest prize valuation from participation, but the two 
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active weaker contestants may expend less efforts than all the active players in the 

lottery contest). Franke et al. (2016) also show that when the designer can apply 

structural discrimination, the exclusion principle of the all-pay auction becomes 

obsolete. The designer will always bias the all-pay auction such that the two strongest 

players are active and, moreover, compete on equal terms (the strongest player is not 

excluded, but his effectiveness is sufficiently weakened). All other players choose to 

be inactive. Applying a less extreme discrimination in the lottery contest induces more 

contestants (at least three) to participate. But the effect of increased competitiveness 

due to a higher number of active contestants cannot offset the effect of reduced 

competitiveness due to a less extreme discrimination and, consequently, the optimally 

biased all-pay auction yields larger efforts than the optimally biased simple lottery.  

Finally note that in a simple lottery contest with our dual discrimination, even 

when 2N , the maximal efforts can be increased to almost the initially highest prize 

valuation, where only two contestants are active in equilibrium; one of them must be 

the contestant with the highest prize valuation, but the second active player can be any 

of the other contestants. This result differs from the result obtained in Franke et al. 

(2013, Theorem 4.6), where at least three contestants are active in the equilibrium of 

the simple N-player contest with just structural discrimination. Furthermore, the 

exclusion principle of Baye et al. (1993) is not necessarily valid in our extended 

contest because the strongest player can be induced to be always active. 

Interestingly, in the extreme case of our setting (see footnote 1), the individual 

with the lower prize valuation is offered the illusion of competing on a very large 

prize, albeit only a very small share of it can be won. The value of his prize is 

nevertheless positive and in fact, almost equal to the initial prize valuation of his rival, 

the individual with the higher prize valuation. The existence of effective incentives 

that induce participation in the contest together with the existence of an extreme 

illusion that results in efforts incurred by the individual with the lower prize valuation 

is a distinctive interesting feature of our contest. This feature is manifested in the 

examples presented in the next section. 

This paper is organized as follows. After discussing the examples in Section 2, 

the main results are presented in Section 3.  Section 4 is devoted to the extension to 

the N-player game. We conclude the paper in Section 5. 
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2. Illustration of direct discrimination  

Our model of dual discrimination in a simple lottery contest is of particular relevance 

in certain applications. To illustrate the plausibility of direct discrimination with a 

balanced-budget constraint in contests, we present two applications. In the first one, 

the contest designer typically engages in a certain activity (some well- defined task or 

project) restricted to a certain budget. Although the budget is earmarked only for this 

activity, it can be used to manipulate and affect the incentives of the contestants (the 

contractors) who compete for the outsourced project. But a designer who engages in 

such manipulations and in particular, in discrimination, must satisfy the contest 

balanced-budget constraint that we assume in order to ensure the overall budget 

constraint is satisfied: 

1. Municipal projects. A municipal authority is conducting a tender for a divisible 

project such as urban development including development of a sewage system, 

roads, sidewalks and gardening. Two companies compete for a share in the project. 

The municipal authority is restricted to a budget allocated, for example, by the 

federal government. Although the budget is allocated only to urban development, 

it can be used to influence the incentives of the competing contestants by applying 

the two possible modes of discrimination. In order to satisfy the overall budget 

constraint, a designer who resorts to structural and direct discrimination must also 

satisfy the assumed balanced budget constraint. 

The next application describes a situation where the balanced-budget 

constraint is due to a different reason. The constraint is no longer related to a fixed 

budget which is at the disposal of the designer for the purpose of carrying out a 

particular project. It is due to the fact that the two competing contestants are (at least 

partly) controlled by a parent company. The parent company may not prevent 

competition between its two subsidiaries by custom or by the law. However, despite 

the existing competition, the parent company still has the ability to enforce some 

overall financial discipline as well as the power to ensure that the designer's strength 

in manipulating the companies is limited. The control of the parent company on its 

two subsidiaries and its power in dealing with the designer, given the conflict of 

interests among them, explains its success in enforcing the balanced-budget 

constraint: 

2. Portfolio distribution between two investment houses. In the capital market, the 

commission rate charged by an investment house is usually inversely related to the 
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size of the customer’s investment. Suppose that the average commission rate in 

the industry is z  and that a large client (e.g., a pension fund of some large 

employer) is interested in distributing its portfolio between two investment houses 

that are subsidiaries of some parent company. Despite the affinity among the two 

investment houses, they compete in the market.3 The first investment house has an 

established reputation while the second smaller house is relatively less known. 

Given the importance of the large customer, the preservation of the reputation of 

the first investment house (contestant 1) implies that it assigns a higher value to 

the investment of the large customer (the employer’s pension fund). Often, such a 

pension fund prefers to invest a large share of its portfolio in the reputable and 

usually larger investment house and this enables obtaining a commission rate 

lower than z . This implies that the pension fund actually “taxes” the larger and 

more reputable investment house relative to z . On the other hand, the investment 

house with the lower reputation usually receives the smaller share of the portfolio. 

However, the commission rate they charge are higher than z . The balanced-

budget constraint is satisfied because of the market forces; The pension fund is 

interested in reducing the commission rate, and the parent company of the two 

investment houses is interested in increasing the commission rate. 

 

3. The setting 

In our contest there are two risk-neutral contestants, 4  the high and low benefit 

contestants, 1 and 2. With no loss of generality, the initial prize valuations of the 

contestants, 1n  and 2n , satisfy the inequality 1 2n n  or 1

2

1
n

k
n

   and that the contest 

designer is assumed to have full knowledge of the contestants’ prize valuations. In 

two-player contests, for 01 x , 02 x  and 0 , the simple logit functions take the 

form: 

                                                           

3 Two such competing investment houses, Psagot and Ofek, were subsidiaries of the leading Bank in 

Israel, Bank Leumi. Another example of two such companies is Gadish and Tagmulim, that were two 

subsidiaries of another major Israeli bank, Bank Hapoalim. 
4The case of multiple contestants is dealt with later on. 
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and therefore 12 1 pp  . 

Direct discrimination via differential taxation of the contested prize that 

affects the contestants’ actual prize valuations, 1n  and 2n , is a pair of (positive or 

negative) amounts, 1  and 2  that changes the prize valuations to  11 n  and 

 22 n  where  nnn ii  0 . The lower and upper bounds of the 

contestants' actual net prize are the parameters n  and n . We also assume that the 

contest designer faces a balanced-budget constraint, that is, 1  and 2  must also 

satisfy the requirement that: 

(2)     02211   pp . 

Given the contestants’ fixed prize valuations and the CSF, the function that 

specifies the contestants’ shares given their efforts, ),( 21 xxpi , the net payoff (surplus) 

of contestant i is: 
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The designer selects  , 1  and 2 . In this case, the two contestants maximize their 

net payoffs: 
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Proposition 1 

Assume that 21 nn  , 0n  is sufficiently close to zero, and n  is sufficiently large. 
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C

 . Then 

(23)   
 

1
2

22

11

3
,max nn

n

n
nn 

















  

because if 22 nn  , then 

(24)   
    

0
233

1

12

12

2

22

1 
















 nn

nnn

nnnn

n

n
nn




 

when n  is sufficiently large and if 
 

1

11
2

3









n

n
 and 

 
2

22
1

3









n

n
, then 

   0,0, 21   or  nn 5.0,5.0  . Therefore    2121 ,, nnnn   or 

 



















1

11

1
3

,




n

n
nn . However, because 

(25)    0323 121  nnnn   

when n  is sufficiently close to zero, we must have    2121 ,, nnnn  . 

We next show (b). Let  
 

 21

2
,

1

21 , arg,
2




GMax
C

 . By a similar argument, 

   2121 ,, nnnn   or 
 



















 2

2

22
,

3
nn

n

n




, but the latter solution is also 

possible if 0323 212  nnnn  .                                   Q.E.D 
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Proof of Proposition 1 

Since 21 nn  , we have  

(26)        
   

0,,
2

21

2

21

2

21

22

21
2121 






nnnnnnnn

nnnnnnnn
nnnnGnnnnG  

If nnn 32 21  , then we can verify that 

(27) 

    

     
0

448

2947

448

43942

,
32

,lim

21

21

2

21

21

211

2

21

2

21

21
21





























nnn

nnnnnn

nnn

nnnnnnn

nn
nnn

nnnn
GnnnnG

n

 

when n  is sufficiently small. Therefore, we must have    21

*

2

*

1 ,, nnnnGG   

when n  is sufficiently small and n  is sufficiently large.                                     Q.E.D 

 

In the next proposition, we obtain a sufficient condition for the values of n and n . 

This condition is stated in terms of a new parameter r that relates the upper and lower 

bounds to the contestants' prize valuations in a simple specific way.  The parameter  r 

which characterizes the environment of the designer enables a more practical 

restatement of Proposition 1 by explicitly limiting the requirements that the upper 

bound is sufficiently large and the lower bound is sufficiently close to zero.. 

 

Proposition 2 

 Assume that 21 nn  , rnn 1 , 
r

n
n 2 , and 5.4r . Then, 

   
 2

2

12
21

*

2

*

1
1

,,
r

rnn
nnnnGG




 , 

 2
2*

1
1 r

n
x


 , 

 2
2

1*

2
1 r

rn
x


 , 

 2
2*

1
1 r

rn
u


 , 

 2
1*

2
1 r

rn
u


 . 

 

Proof of Proposition 2 

We show that 5.4r suffices the assumption that 0n  is sufficiently close to zero 

and n  is sufficiently large. 
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We first consider the proof of Lemma 1, where (24) and (25) use this 

assumption. The left-hand side of (24) is reduced to 

 
    

  21

211

2

121

2

22

1
213

22

3 nnrr

nnrnrnnrn

n

n
nn






















 

which is positive if 5.4r . The left-hand side of (25) is reduced to 

  1
2

1 233 n
r

n
rn    

which is negative if 5.4r . 

We next consider the proof of Proposition 1. It is enough to show that if 

 
r

n
rnnn 2

21 3232   and 5.4r  then 

    
0,

32
, 2

21

21
21 













 nn

nnn

nnnn
GnnnnG . 

The left-hand side is reduced to 

 
    

)(
214

1

221

2
rf

nnnrrr

r





 

where 

      2

2212211

2

211

3 52243)( nnnrnnnnrnnnrrf   

Note that  
r

n
rn 2

1 32   and 5.4r  imply 

  09243 2
21 

r

n
rnn  

Thus, 0)('' rf  and 

05611)1()( 2

221

2

1

''  nnnnfrf  

because 21 nn  . Consequently, 

  04)1()( 2

2

2

1  nnfrf  if 5.4r .     Q.E.D 

 

It is straightforward to verify that comparative statics with respect to the 

parameter r yields the following results: 
 

0
1

2
3

2

*

1 







r

n

r

x
, 

 
0

1

2
3

1

*

2 







r

rn

r

x
 and 

 
 

0
1

2
3

21 









r

nrn

r

G
. The latter effect is due to the dominance of the positive effect 

of a change in r on the efforts of player 1 relative to its negative effect on the efforts 



 13 

of player 2. Also note that the equilibrium efforts are increasing in the prize valuations 

of the two players, however these efforts are smaller than 1n  as long as 21 nn  and r 

is finite. 

 

 

4. The N – player contest 

With dual discrimination total efforts cannot exceed the prize valuation of contestant 

1. That is, 

 

Proposition 3 

Under dual discrimination, in equilibrium, Gn 1 . 

 

Proof of Proposition 3 

In equilibrium, the net payoff of every contestant under dual discrimination cannot be 

negative, since otherwise he can improve his situation and secure a zero net payoff by 

not taking part in the contest. In other words, for every contestant i, 

  0 iiiii xnpu  . Summing over all the contestants, we get that 

   0
11




N

j

jjjj

N

j

j xnpu   or     0
111

 


N

j

j

N

j

jj

N

j

jj xpnp  . Since 



N

j

jxG
1

 

and   0
1




N

j

jjp   ,   Gnp
N

j

jj 
1

. Since Nnnn  ,...,21  and 1
1




N

j

jp , it must be 

true that   Gnpn
N

j

jj 
1

1 .5                                                                   Q.E.D. 

 

Proposition 4 

                                                           

5 This result is also valid for unbiased contests or for contests with alternative modes of discrimination, 

when discrimination is through modifying the efforts. The explanation is that in equilibrium, the net 

payoff of every contestant cannot be negative, since otherwise he can improve his situation and secure 

a zero net payoff by not taking part in the contest. In other words, for every contestant i, 

0 iiii xnpu . Summing over all the contestants, we get that   0

11




N

j

jjj

N

j

j xnpu  or 

 


G

N

j

j

N

j

jj xnp 




11

. Since Nnnn  ,...,21  and 1

1




N

j

jp , it must be true that   Gnpn

N

j

jj 
1

1 . 
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If 2N  and 21 nn  , then the contest designer can always set r such that the 

equilibrium efforts are sufficiently close to 1n . In this case nnx  1

*

2 , nu *

1  and 

0*

2 u . 

 

  

Proof of Proposition 4 

It can be verified that  
  12

2

12*

2

*

1
1

, n
r

rnn
G 




  and 1lim nG

r



. Since G is 

continuous and monotone in r, there exists r such that G is sufficiently close to 1n . 

Q.E.D 

 

By Proposition 3, we have shown that the contestants cannot be induced to exert 

larger efforts than 1n . Therefore, Proposition 4 can be extended to the case of any 

number of contestants N. In the more general multi-player contest, the designer has to 

reduce the stakes of 2N  contestants to zero, making sure that contestant 1 with the 

highest stake is not included among them. That is, 

 

Corollary 1 

Given any number of contestants N, such that 0,...,21  nnnnn N , the 

contest designer can always set r such that the equilibrium efforts are sufficiently 

close to 1n . 

 

Proof of Corollary 1 

The proof is based on the following simple three-stage strategy that the designer 

applies: 

1. Stage 1: The designer selects a contestant  Nj ,...,2 . 

2. Stage 2: For any contestant  ji ,1 , the designer chooses ii n . That is, 

he reduces the initial prize valuations of 2N  players to zero  

3. Stage 3: Applying the dual discrimination strategy with respect to the two 

contestants 1 and j, according to Proposition 4, the designer can induce efforts 

that are almost equal to 1n .                                                         Q.E.D. 
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The explanation of our results is based on the following idea. First, assume without 

loss of generality that 2j . On the one hand, the designer applies direct 

discrimination in favor of contestant 2 by reducing the stake of contestant 1 (the 

contestant with the initially higher prize value) to n  by choosing 1  and increases the 

stake of contestant 2 (the contestant with the initially lower prize value) to n  by 

choosing 2 . On the other hand, in order to satisfy the balanced-budget constraint, the 

designer must create an appropriate bias in favor of contestant 1 by selecting  , such 

that the balanced-budget constraint (10) satisfies equation (12): 

(12)    
2

1

22

11








 














n

n
 

Propositions 1 and 2 imply that dual discrimination, that is, 11 nn  and 

22 nn  , is an effective strategy for increasing efforts. These efforts can be 

increased almost up to 1n , the initial higher prize valuation of contestant 1, provided 

that r .  

Propositions 1 and 2 imply that when the designer applies our two modes of 

discrimination in a simple lottery, each type has a positive “added value” that 

enhances the exertion of efforts relative to the situation where the designer resorts to 

just structural discrimination (Franke et al. (2013, 2014, 2016)). That is, the two 

modes of discrimination are supportive or “complementing” - their combination can 

yield larger efforts than those obtained by just structural discrimination. The 

advantage of combining these two types of discrimination relative to the use of just 

structural discrimination is due to the distinctive features of the contribution of each 

of these modes of discrimination to the exerted efforts as described below. 

(i) Direct discrimination sufficiently increases the initially lower prize valuation 

while sufficiently reducing the initially higher prize valuation. This increases the 

sum of the contestants’ prize valuations to infinity when r  and makes the 

‘income effect’ (associated with a scheme that increases the sum of the final 

stakes from ( )21 nn   to nnnn  )( 2211  ) of this mode of discrimination 

the dominant effect.6 

                                                           

6 For a clarification of the meaning of the income effect associated with direct discrimination, see the 

discussion following Proposition 2 in Mealem and Nitzan (2014). 
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(ii) The maximal possible increase in the sum of the contestants’ prize valuations is 

not the result of direct discrimination alone. It is rendered possible by structural 

discrimination that makes sure that the balanced-budget constraint is satisfied. 

Specifically, structural discrimination counterbalances the above ‘income effect’ 

by almost completely favorably discriminating contestant 1, ensuring that his prize 

share converges to 1. The moderating effect described in (ii) is necessary to attain 

the maximal efforts. While structural discrimination has a ‘second order’ effect on 

efforts that moderates the income effect of direct discrimination, it also enables 

the dominance of this ‘first order’ income effect on efforts described in (i), namely, 

the increase in efforts due to the increase in the sum of the contestants’ prize 

valuations. The dominance of the effect of direct discrimination means that the 

more extreme this mode of discrimination, the higher the total efforts and this 

requires the extremity of structural discrimination. 

 

Corollary 1 implies, in particular, that dual discrimination can be advantageous 

relative to just structural discrimination in the 2-player all-pay auction or the simple 

lottery contest. 

 

Corollary 2 

If 2N  and 21 nn  , then there exists r such that dual discrimination yields efforts 

that are larger than the efforts obtained in the optimally biased 2-player all-pay 

auction (simple lottery) contest with structural discrimination. That is, 

 
   21212

2

12 25.05.0
1

nnnn
r

rnn





 or 

 
1

121 2






k

kk
r . 

 

 Note that our results imply that under the assumption that n  is sufficiently 

large and n  is sufficiently close to zero ( r ), the combination of the two modes 

of discrimination results in an outcome which is practically reasonable; the amount 

transferred between the contestants is finite. When the actual payment to contestant 2 

(the tax taken from contestant 1) is equal to 122 np  , since   converges to zero, 

that is, 2p  converges to zero, it seems that contestant 2 has no incentive to compete. 

But this is not the case because he plays a crucial role in yielding the almost maximal 
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possible efforts 1n . The designer sufficiently increases his prize valuation and by that 

induces him to exert efforts that are almost equal to 1n . 

In the first example of a municipal project (see the examples discussed in 

section 2), despite the fact that both modes of discrimination can be extreme, their 

combined use still results in a balanced effect. The designer promises the small 

company a very large value in case it receives the entire project. The designer, by 

structural discrimination, ensures that the small company's share in the project is 

sufficiently small, such that the large reputable company wins almost the entire 

project. In this extreme and most effective case from the designer's point of view, the 

large company transfers the small company a reasonable finite amount which is 

almost equal to its initial valuation of the entire project. 

In the second example of portfolio distribution between two investment houses 

in the extreme case the tax-subsidy transfer between the two investment houses under 

the optimal dual discrimination strategy is finite. In particular, by Proposition 1, it is 

equal almost to 1n , the value for investment house 1 of getting the entire portfolio of 

the large customer. Again, this result is plausible not because of the good will of the 

customer, but because it ensures him that the two investment houses exert almost the 

maximal efforts.  

 

5. Conclusion 

The enrichment of the “box of tools” of the contest designer by allowing him to 

exercise direct discrimination in addition to structural discrimination and head-starts 

clearly matters. We have shown that both structural and direct discrimination are 

effective in a lottery contest and therefore will be used by the designer. Under our 

lottery contest with dual discrimination, efforts are larger than those under any 

alternative contest game with optimal single favoritism and, in particular, optimal 

favoritism applied in an all-pay auction.  

Whereas using head-starts in addition to structural discrimination is not 

conductive to generate additional revenue in a simple lottery contest, (Franke et al. 

2016), in our dual discrimination lottery contests, the contest designer has an 

incentive to apply the optimal direct discrimination in addition to the optimal 

structural discrimination. The optimal two-mode favoritism that combines structural 

discrimination and head starts can yield the maximal possible revenue in all-pay 
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auctions, (Franke et al. 2016). Our main result establishes that the maximal efforts can 

also be induced in a simple lottery contest by resorting to our alternative mode of dual 

discrimination.  The largest possible efforts are equal to the initially highest prize 

valuation, when r . Hence, dual discrimination is indeed advantageous provided 

that it is based on the appropriate structural bias and head-starts in an all-pay auction 

contest and on the appropriate structural bias and direct discrimination in a simple 

lottery contest.  
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