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Abstract: We consider a repeated interaction between a long-run player and
a sequence of short-run players, in which the long-run player may either be ratio-
nal or may be a mechanical type who plays the same (possibly mixed) action in
every stage game. We depart from the classic model, exemplified by Fudenberg
and Levine [4, 5], in assuming that the short-run players make inferences by
analogical reasoning, meaning that they correctly identify the average strategy
of each type of long-run player, but do not recognize how this play varies across
histories. Concentrating on 2 × 2 games, we provide a complete characteriza-
tion of equilibrium payoffs, establishing a payoff bound for the rational long-run
player that can be strictly larger than the familiar “Stackelberg” bound. We
also provide a complete characterization of equilibrium behavior, showing that
play begins with either a reputation-building or (depending on parameters) a
reputation-spending stage, followed by a reputation-manipulation stage.
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Reputation with Analogical Reasoning

1 Introduction

1.1 Reputations

The literature on reputation, pioneered by Kreps, Milgrom, Roberts and Wilson
[7, 8, 12], has shown that uncertainty about a player’s type can have dramatic
implications for equilibrium play in repeated games.1 This is most effectively
illustrated in the context studied by Fudenberg and Levine [4, 5]. A long-run
player faces a sequence of short-run players. The long-run player is almost cer-
tainly a rational player interested in maximizing her discounted sum of payoffs,
but may also be a mechanical type who plays the same (possibly mixed) stage-
game action in every period. Fudenberg and Levine show that the rational
long-run player, if sufficiently patient, can guarantee a payoff that corresponds
to the payoff she would obtain by always playing like the mechanical type of her
choice (with the short-run players playing a best response to this choice). The
rational long-run player’s payoff in the repeated game thus approximates the
payoff she could achieve in a single-shot game in which the long-run player first
chooses behavior matching that of a mechanical type, and then the short-run
player chooses a best response.

The analysis of Fudenberg and Levine follows from a careful examination
of the short-run players’ updating of their beliefs as to which type of long-run
player they are facing. These beliefs in turn follow from Bayes’ rule, assum-
ing that the short-run players have a perfect understanding of the equilibrium
strategies of the various types of long-run players.

The initial reputation models of Kreps, Milgrom, Roberts and Wilson [7,
8, 12] were designed to explain certain types of seemingly intuitive behavior
that does not appear in the equilibrium of a complete-information game, with
entry deterrence in the finitely-repeated chain store game being the classic ex-
ample. Subsequent developments, typified by Fudenberg and Levine [4, 5], have
pushed reputation models toward characterizing equilibrium payoffs. Nonethe-
less, much of the more applied interest in reputations centers around behavioral
questions. How do people build reputations? How do they manage or maintain
their reputations, and when do they spend them?

This paper examines an alternative reputation model, centered around a
simpler model of how short-run players formulate and update their beliefs. We
view this behavior as a plausible alternative to the potentially demanding re-
quirement that short-run players have a perfect understanding of equilibrium
play. We characterize equilibrium payoffs, but are also able to obtain precise
characterizations of equilibrium behavior.

1See Mailath and Samuelson [11] for a survey. Mailath and Samuelson refer to a player
who necessarily chooses the same exogenously-specified action in every stage game as a simple
commitment type. We refer to such players as mechanical types.
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1.2 Analogical Reasoning

We assume that short-run players reason as if all types of the long-run players
behave in a stationary fashion. This assumption is correct for mechanical types,
but not necessarily so for the rational long-run player. The stationary behavior
attributed by short-run players to each type of long-run player is assumed to
match that type’s true expected frequency of play, aggregated over the various
periods.

We view this formulation as capturing a setting in which it is difficult for
short-run players, who appear in the game just once, to obtain a detailed descrip-
tion of the actions of the long-run players after every possible history. Instead,
we assume that short-run players can observe the aggregate frequency of play of
the various types of long-run player in previous reputation games, but not how
these frequencies depend on the exact history in the game. It is then plausible
that short-run players will reason as if the behaviors of the various types of
long-run players are stationary, and match the aggregate empirical frequencies
of play. In particular, this is the simplest model making use of all of the in-
formation available to short-run players. Long-run players, on the other hand,
play more often and are thus able to access data (about the play of short-run
players) in a finer way.

The equilibrium approach pursued in this paper captures this intuitively-
formulated scenario by assuming further that a steady state has been reached,
so that the equilibrium play of the long-run players indeed matches the his-
torical frequencies that gave rise to these beliefs. The resulting steady state
corresponds to an analogy-based expectation equilibrium (Jehiel [6]), which has
been defined for games with multiple types in Ettinger and Jehiel [3]. Observe
that despite the coarseness of short-run players’ understanding of the long-run
player’s strategy, short-run players still perform inferences using Bayes’ rule as
to which type of long-run player they are facing. However, this updating is based
on a misspecified model of the long-run player, assuming behaviors are station-
ary, in contrast to the correct model used in the classic sequential equilibrium
concept.2

1.3 Equilibrium Behavior

We concentrate throughout on the case in which both the short-run player and
the long-run player must choose between two actions in every period, discussing
extensions in Section 4. We provide a complete characterization of equilibrium
behavior.

We find two types of equilibria—those in which the long-run frequency of
play of the rational long-run player becomes concentrated around one frequency
as the discount rate vanishes, which we refer to as unary equilibria, and those

2Liu and Skrzypacz [9] examine a model in which the short run players observe only the
play of the long run player from the recent past, but are otherwise fully rational. They
investigate the extent to which the long run player is still able to effectively commit to play
matching that of a mechanical type.
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which do not have this property. For a given constellation of mechanical types
and specification of the stage game, there may exist multiple equilibria, with
payoff differences that persist even as the agents become arbitrarily patient.
However, if the set of possible mechanical types is sufficiently rich, then we
(generically) have unique equilibria, and all such equilibria are unary.

Unary equilibria have an important implication for our learning interpre-
tation of the equilibrium considered here. While our basic theory (implicitly)
requires that short-run players have access to aggregate behavior from previous
reputation games by type, there is no need for short-run players to have access
to the types of previous long-run players in the case of unary equilibria. By
observing the distributions of aggregate frequencies in past reputation games,
short-run players can identify that there are different modes, and by identifying
each mode with a type of long-run player, the short-run players would reason
exactly as we assume they do in our current analysis.

We accordingly focus this introductory discussion on unary equilibria. Equi-
librium behavior can then be divided into two phases. The game begins with an
initial phase, in which (depending on parameters) the rational long-run player
either builds her reputation (playing so as to inflate the belief of the short run
player that she is the mechanical type with whom she wishes to be confused) or
spends her reputation (exploiting the belief that with sufficiently high probabil-
ity she is the mechanical type with whom she wants to be confused). If the set of
commitment types satisfies a straightforward diversity condition, then this ini-
tial phase is relatively short, and converges to being an insignificant proportion
of play as players get more patient.

The initial phase is followed by a manipulation phase. Here, the long-run
player’s behavior balances the interest of making the highest instantaneous pay-
off and the interest of maintaining the belief that the long-run player is mechan-
ical. In the most interesting cases (in which the “reputation outcome” does not
coincide with a Nash equilibrium of the stage game), player 1 manipulates player
2’s belief so as to keep player 2 as close as possible to indifference between player
2’s actions. In the process, player 1 introduces correlation into the actions of
player 1 and 2, reducing the cost of manipulating 2’s beliefs and boosting player
1’s payoff.

For a fixed discount factor, and conditional on facing the rational long-run
player, the short-run players’ belief that the long-run player is mechanical need
not converge to zero, in contract to the insight obtained by Cripps, Mailath and
Samuelson [1, 2] in the classic rationality setup. Thus, even in the ultra long-run,
short-run players remain uncertain as to which type of long-run player they are
facing. This is so because the short-run players are working with a misspecified
model, and hence even arbitrarily rich amounts of data need not lead them to
correct beliefs.

1.4 Equilibrium Payoffs

A first result on equilibrium payoffs is straightforward. The rational long-run
player can always guarantee a payoff that is no less than the bound derived in
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Fudenberg and Levine [4, 5].3 However, she can often ensure a strictly larger
payoff. There are two reasons for this difference. First, the long-run player
in our model can induce the short-run players to attach positive probability to
multiple types, even in the limit as arbitrarily large amounts of data accumulate.
This essentially allows the long-run player to “commit” to the behavior of a
phantom mechanical type who does not actually appear in the list of possible
mechanical types. Second, the correlation between player-1 and player-2 actions
that appears in the reputation-manipulation phase allows an additional boost
in the long-run player’s payoff.

We can illustrate the second, somewhat more subtle, of these forces with the
following game:

Cheat Honest
Audit 4,−2 3,−1
Not 0, 4 4, 0

(1)

Think of this as a game between a taxpayer (player 2) and the government
(player 1). There is a potential surplus of 4, consisting of the taxpayer’s liability,
to be split between the two. If the government does not audit, the surplus is
captured by the government if the taxpayer is honest, and by the taxpayer if
the taxpayer cheats. Auditing simply reduces the payoffs of both agents by 1
if the taxpayer is honest. Auditing a cheating taxpayer imposes an additional
penalty on the taxpayer, while allowing the government to appropriate the sur-
plus and recover the auditing costs. This game has a unique mixed equilibrium,
in which the government audits with probability 4/5 and the taxpayer cheats
with probability 1/5, for payoffs (16/5, 4/5). In the classic model, commitment
is of no value.4 Suppose further that in addition to the normal or rational player
1, there is a mechanical type of player 1 who plays a stationary mixture giving
Audit with probability strictly above 4

5 , as well as a mechanical type who plays
Audit with probability strictly below 4

5 . As usual, we assume that the overall
probability of the long-run player being mechanical is small. In our cognitive
environment, the long-run player would choose Audit roughly 4/5 of the time
and Not roughly 1/5 of the time, thereby ensuring that player 2 is always very
close to indifferent between Honest and Cheat. However, player 1 would man-
age to Audit only when player 2 is cheating, and to not audit when player 2 is
honest. A (very) patient player 1 thus always gets a per period payoff close to
4, which exceeds the stage-game Nash equilibrium payoff, as well as any con-
ceivable equilibrium payoff in the classic approach, no matter what mechanical
types are present. Player 1’s reputation-manipulation stage allows player 1 not
only to keep player 2 on the boundary between being honest and cheating, but

3This follows from the work of Watson [13], and can be established with the same sort of
argument found in Fudenberg and Levine [4, 5].

4To verify this, note that inducing honest behavior from player 2 requires that player 1
audit with probability at least 4/5, which then ensures that player 1 gets no more than the
equilibrium payoff. It is not a general property that commitment has no value when stage
games have only mixed equilibria, but this property simplifies the current comparison without
being necessary for the result.
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to avoid miscoordination in doing so.
Interestingly, this is also the payoff that would be achieved by player 1 if

the player 2s followed fictitious play dynamics, i.e. played best responses to the
empirical frequencies of actions of the long-run player observed so far (in the
current repeated game). This link to the payoff achievable in the fictitious play
setup extends to all 2x2 games. More precisely, as players get patient, the best
payoff the long-run player can achieve in an equilibrium of our cognitive setup
corresponds to the payoff the long-run player would obtain by best responding
to fictitious play dynamics on the part of short-run players.

This link is somewhat unexpected, to the extent that our approach is one
with multiple types of long-run players in which short-run players make infer-
ences as to which type they are facing, whereas the fictitious play setup has
no such inference taking place. In addition, our approach is an equilibrium ap-
proach (in that the stationary behavior assumed for the long-run player matches
the true aggregate empirical frequency), unlike the fictitious play setup. How-
ever, the equilibrium strategy of the long-run player in our environment involves
manipulating the beliefs of the short-run players in much the same way that a
long-run player would manipulate the experience of fictitious-play opponents.

2 The Model

2.1 The Reputation Game

We consider a repeated game of incomplete information, as in Fudenberg and
Levine [4, 5]. A long-run player 1 faces a sequence of short-run player 2s.
The interaction lasts over possibly infinitely many periods. Conditional upon
reaching period t, there is a probability 1 − δ that the game stops at t and
probability δ that it continues.5 As usual, we will be especially interested in the
case in which δ is close to 1.

At the beginning of the game, the long-run player is chosen by Nature to
be one of several types: either a rational type with probability µ0

∅ or one of

K possible mechanical types with probabilities µ1
∅, . . . , µ

K
∅ , respectively. This

choice is observed by player 1 but not player 2.
We let a(t) ∈ A = A1 × A2 denote the pure stage-game actions chosen by

players 1 and 2 in period t ∈ {0, 1, 2, . . .}. A mechanical type plays the same
completely-mixed stage-game action in every period. We denote by αk ∈ ∆(A1)
the mixed action played by type k of player 1 in each period t.

In period t, the rational player 1 and the new period-t short-run player
observe the history of actions h(t) ∈ At, and the players then simultaneously

5It is a familiar observation that this specification of a repeated game with a random
termination date is formally equivalent to a game that never terminates, but in which players
discount payoffs with discount factor δ. In the current development, we commit throughout
to the random-termination interpretation. This will have substantive implications when we
place consistency conditions on players’ information. We could also address the case in which
the game lasts forever but players discount, with somewhat different details.
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choose actions. The players receive stage-game payoffs u(a(t)), where u : A →
R2.

Player 1’s expected payoff from the sequence of action profiles {a(t)}∞t=0 is
given by

(1− δ)

∞∑
t=0

δtu1(a(t)).

Hence, the long-run player imposes no discounting other than that implicitly
induced by the random termination of the game. We could also allow player 1
to discount payoffs, though this would complicate the notation. The short-run
player values only the payoff she obtains in the stage where she is called to play.

2.2 The Solution Concept

The short-run players are initially uncertain about the long-run player’s type,
and will draw inferences about this type as play unfolds. Their inferences fol-
low from Bayesian learning, but this learning is conducted in the context of a
misspecified model. In particular, short-run players adopt a simplified model of
the long-run players’ behavior, assuming that this behavior is stationary.

Formally, we capture this by examining a sequential analogy-based expecta-
tions equilibrium (Jehiel [6] and Ettinger and Jehiel [3]). The long-run player
distinguishes all of her information sets. The short-run players put all of their
histories into a single analogy class, effectively assuming that any history they
observe consists of a sequence of independent draws, from a common distribu-
tion given by the (in their view) stationary strategy of player 1. Ettinger and
Jehiel [3] provide a general development of the solution concept. The remainder
of this section makes the solution concept precise for the game considered in
this paper.

Given that the definition of the mechanical types dictates their strategies,
we need only specify the strategies of the rational player 1 and of the short-run
players 2. Let σ1 and σ2 denote these strategies, respectively, and let σ denote
the strategy profile (σ1, σ2). These strategies specify, for every possible history

of play h ∈
∞∪
t=0

At, a behavioral strategy σih ∈ ∆Ai for i = 1, 2. We denote by

σ1h(a1) the probability that the rational player 1 selects action a1 after history
h and by σ2h(a2) the probability that player 2 selects action a2 after history h.
We also denote by Pσ(h) the probability that history h is reached when player
1 plays according to σ1 and players 2 play according to σ2 (taking into account
the probability of breakdown after each period).

Given σ, we define

A0 =

∑
h P

σ(h)σ1h∑
h P

σ(h)
. (2)

Hence, A0 is the aggregate strategy of the rational long-run player when this
player’s strategy is σ1 and the strategy of players 2 is σ2.

6

6The strategy of players 2 affects A0 insofar that it affects Pσ(h).
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In order to choose actions, short-run players must form beliefs about the
action played by the long-run player. These beliefs incorporate two factors,
namely beliefs about the action of the rational player 1, and updated beliefs
as to which type of player 1 player 2 thinks she is facing. For the first compo-
nent, player 2 assumes the rational player 1 chooses in each period according
to a mixed action α0. This again reflects the stationarity misconception built
into player 2’s beliefs by the sequential analogy-based expectations equilibrium.
Turning to the second, let µk

h denote the belief that player 2 assigns to player
1 being type k = 0, ...K after history h (where k = 0 refers to the rational type
and k > 0 refers to the mechanical type k). For a history ht we require:

µ0
h

µk
h

=
µ0
∅

µk
∅

t−1∏
τ=0

α0(a1(τ))

αk(a1(τ))
. (3)

Player 2 thus updates her belief using Bayes rule, given the history h and the
conjecture that player 1 with type 0 plays according to α0, while player 1 with
type k plays according to αk.

To specify equilibrium actions, we then require that after every history h,
player 2 plays a best-response to

K∑
k=0

µk
hα

k, (4)

which represents the expectation about player 1’s play given the analogy-based
reasoning of player 2. The rational long-run player 1 chooses a strategy σ1

which is a best response to σ2. A strategy profile σ is a sequential analogy-
based expectation equilibrium if it satisfies these best-response requirements
and also satisfies the consistency requirement that

A0 = α0.

The unconventional aspect of a sequential analogy-based expectations equi-
librium is the expectations formed by the short-run players. These players model
the rational player-1’s behavior as stationary, whereas it typically will not be
stationary. Given this misspecified model, they behave as rationally as possible,
forming posterior beliefs via Bayes’ rule and choosing best responses to their
beliefs.

Player 2’s beliefs about player 1’s actions must match the empirical frequen-
cies of those actions. Hence, for the mechanical types, we assume that αk is the
mixed action attributed to mechanical type k by player 2 and is also mechanical
type k’s action. Similarly, we assume that player 2 attributes an action α0 to
the rational type that is indeed the empirical frequency A0 of actions taken by
that type.

We interpret the consistency requirement on player 2’s beliefs as the steady-
state result of a learning process. We assume the repeated game is itself played
repeatedly, though by different players in each case. At the end of each game,

7



a record is made of the frequency with which player 1 (and perhaps player 2
as well, but this is unnecessary) has played her various actions. This in turn
is incorporated into a running record recording the frequencies of player 1’s
actions. A short-run player forms expectations of equilibrium play by consulting
this record. As evidence accumulates, the empirical frequencies recorded in this
record will match α0, α1, . . . , αK , leading to the steady state captured by the
sequential analogy-based expectations equilibrium.

The public record records the frequencies of the various actions played by
player 1, but need not observe their order, with such information rendered ir-
relevant by player 2’s stationarity assumption. We view this as consistent with
the type of information typically available. It is relatively easy to find prod-
uct reviews, ratings services, or consumer reports that give a good idea of the
average performance of a product, firm or service, but much more difficult to
identify the precise stream of outcomes.7 Somewhat more demandingly, we as-
sume that the record includes not only the empirical frequencies with which
previous player 1’s have played their various actions, but also that at the end
of each (repeated) game the type of player 1 is identified and recorded. In some
cases, one can readily find reports of performance by type. For example, one
can find travel guides reporting that a certain airport has legitimate taxis, that
provide good value-per-dollar with high probability, as well as pirate taxis, that
routinely provide poor value-per-dollar. In other cases this assumption will be
less realistic. We identify below an important class of games in which informa-
tion about types is unnecessary, with empirical frequencies alone sufficing (see
subsection 3.4.5).

3 Reputation Analysis

3.1 The Canonical Game

The stage game takes the following form:

L R
T a,w c, y
B b, x d, z

where the long-run player 1 must in each period choose between T and B and
the short-run players 2 must choose between L and R.

Clearly, if player 2 has a strictly dominant strategy in the stage game, then
every player 2 will play it (and player 1 will best respond to it) in every period.
To avoid this trivial case, we assume throughout the analysis that player 2 has
no dominant strategy, assuming (without loss of generality) that

y > w, x > z. (5)

7Notice that with no change in the analysis, we could assume that player 2 can observe
only the empirical frequencies of the actions taken by the current player 1 (and player 1’s
age), but not their order. Since player 2 reasons as if player 1’s strategy is stationary, these
empirical frequencies provide all the information player 2 needs.
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We carry this assumption throughout the subsequent analysis without further
mention.

We can then define p∗ so that player 2’s best response is R if player 1 plays
T with probability at least p∗, and player 2’s best response is L if 1 plays B
with probability at least 1− p∗. That is,

p∗ =
x− z

x− z + y − w
.

On the boundary, player 2 is indifferent when 1 plays T with probability p∗.
We can simplify the notation by taking αk to be the probability with which

player 1 of type k plays T . The analysis of the sequential analogy-based ex-
pectation equilibria in this 2x2 case boils down to the determination of α0, the
average probability with which the rational player 1 chooses T . Once a candi-
date α0 is fixed, the strategy σ2 of players 2 after every history h is determined
by (3) and (4), and the strategy σ1 of the rational player 1 must be a best-
response to σ2. For such (σ1, σ2) to be a sequential analogy-based expectation
equilibrium, it should be that the induced frequency A0 with which the rational
player 1 chooses T (as defined by (2)), equals α0.

3.2 Best Responses

3.2.1 Player 2’s Best Response

We begin with a characterization of the short-run players’ best responses. For
history h, let nhT be the number of times action T has been played and let
nhB be the number of times action B has been played. The short-run player’s
posterior beliefs after history h depend only on (nhT , nhB), and not on the order
in which the various actions have appeared. In addition, this posterior belief
determines player 2’s belief about player 1’s current action. We then have:8

Lemma 1 Fix a specification of player-1 types (α0, α1, . . . , αK) and prior prob-
abilities (µ0

∅, µ
1
∅, . . . , µ

K
∅ ). Then there exists an increasing function NB : {0, 1, 2, . . .} →

ℜ, such that for every history h:

• Player 2 plays L if nhB > NB(nhT );

• Player 2 plays R if nhB < NB(nhT ).

• Player 2 is indifferent between L and R when nhB = NB(nhT ).

Proof. Let ph be the probability player 2 attaches to the event that player 1
will play T , conditional on the history h. Then

ph =

K∑
k=0

µk
hα

k,

8When αk > p∗ for all k, then player 2 always chooses R and we can set NB = +∞. When
αk < p∗ for all k, then player 2 always chooses L and we can set N B = −∞.
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where µk
h is the posterior attached to player-1 type k at history h. Player 2 will

play R if she thinks player 2 will play T with probability ph > p∗, and will play
L if ph < p∗. The secret to getting player 2 to play R is thus to have her expect
T .

Intuitively, the rational player 1, together with the mechanical types of player
1, are characterized by an array of stationary (from player 2’s point of view)
probabilities of playing T , some exceeding p∗ and some falling short of p∗.
Whenever player 2 observes T , her posterior beliefs about the type of player
2 shift (in the sense of first-order stochastic dominance) toward types that are
relatively likely to play T . Player 2 thus plays R if and only if she has observed
enough T outcomes. Section 5.1 fills in the details.

Notice that this result holds regardless of what assumptions we make about
the distribution of mechanical types or the strategy of the rational type, though
different specifications of these strategies will give rise to different functions
NB . If there exists at least one mechanical type who plays T with probability
less than p∗, and at least one mechanical type who plays T with probability
greater than p∗, then for any specification of α0 and any specification of the
other mechanical types (if any), there will exist histories after which player 2
plays L as well as histories after which player 2 plays R.

3.2.2 Player 1’s Best Response: a > d > b, c

Turning to player 1, the most interesting cases are those in which the largest of
the four payoffs {a, b, c, d} is neither b nor c, so that the largest feasible payoff
to player 1 is not available as the outcome of a stage-game Nash equilibrium.
It is then simply a matter of notation to assume that the largest payoff is a.
We must still break the analysis into several cases, beginning here with that in
which a > d > b, c. For example:

L R
T 4, 0 1, 1
B 2, 1 3, 0

. (6)

Player 1 then faces a trade-off in creating incentives for player 2 and exploiting
2’s resulting play. For example, player 1 might consider inducing player 2 to
choose L. Upon doing so, however, player 1 would like to exploit the result
by choosing T . Unfortunately for player 1, player 2’s best response to T is R,
so that player 1 cannot exploit 2’s play of L without also interfering with 2’s
incentive to choose L.

Lemma 2 Let a > d > b, c hold. Let NB be an increasing function character-
izing player 2’s best-response behavior, with 2 playing L when nhB > NB(nhT )
and playing R when nhB < NB(nhT ). Then

• Player 1 plays T if nhB > NB(nhT );

• Player 1 plays B if nhB < NB(nhT ).
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nB nB

nT nT

NB (nT) NB (nT)

L

R

T

B

Figure 1: Strategies for the short-run player (left panel) and long-run player
(right panel) given a > d > b, c. The function NB, taken from Lemma 1 and
characterizing player 2’s best responses, does not require a > d > b, c. Lemma
2 shows that under a > d > b, c, this function also characterizes player 1’s best
responses. The depiction of NB is schematic; it is increasing but we cannot in
general restrict its intercept or curvature. The outcome is shown in the right
panel, consisting of a succession of dots identifying successive (nT , nB) values,
starting at the origin and proceeding upward (whenever B is chosen) and to the
right (whenever T is chosen).

Figure 1 illustrates player 1’s and player 2’s best responses, as well as the
equilibrium path of play. Intuitively, the strategy adopted by player 1 has the
effect of keeping player 2 as close as possible to being indifferent between L and
R as often as possible.

Let NB be the function describing player’s 2’s best response, characterized
in 1. Let ñB(t) and ñT (t) be the values of nB and nT induced by player 1’s
best response to the player-2 strategy induced by NB , after t periods. Then the
following limit will exist:

q := lim
t→∞

ñT (t)

ñB(t)
∈ (0, 1), (7)

Furthermore, the limit (as δ → 1) of the value of α0 induced by player 1’s
strategy will equal q. The value of q is the long-run average proportion of T in
such a strategy.

11



Proof. We first show that the player-1 behavior described in Lemma 2 is a
best response, using the one-shot deviation principle. Assume first that we are
at a history h such that nhB > NB(nhT ). If player 1 follows σ1 he plays T
(and player 2 plays L) until he first reaches a history h′ with nh′B = nhB and
nh′B < NB(nh′T ), with player 1 playing B (while player 2 plays R) at h′ and
with the next history being characterized by (nh′T , nhB + 1). If at h, player 1
plays B instead of T and then follows σ1, he must play T after his first B (and
player 2 plays L) until reaching a history h′′ featuring nh′′ = (nh′T , nhB + 1).
Summarizing, we have the following:

Equilibrium path Payoff Deviation path Payoff

TL a BL b
TL a TL a
TL a TL a
...

...
...

...
TL a TL a
BR d TL a

We thus see that the only difference between the two scenarios is in the first and
last period within this sequence of periods (the deviation gives u1(B,L) = b and
u1(T, L) = a in the first and last period whereas in absence of the deviation,
player 1 receives u1(T,L) = a and u1(B,R) = d in the first and last period).
We now compare the payoffs in two steps. We can think of transforming the
equilibrium outcome to the deviation outcome by first switching the final-period
payoff from the d earned under the equilibrium payoff to b, and then operating
on this intermediate payoff sequence by moving its initial a to the end and
bringing its terminal b to the beginning. Because d > b, the initial alteration in
the final-period payoff that transforms the equilibrium path to the intermediate
path decreases player 1’s payoff. But then, since a > b, the second adjustment
that delays the receipt of a in order to accelerate the receipt of b also decreases
player 1’s payoff. Hence, the deviation must yield a lower payoff.

The same argument applies for histories h such that nhB < NB(nhT ). The
details of this argument and uniqueness are given in Section 5.2.

3.2.3 Player 1’s Best Response: a > c > d > b

Now suppose a > c > d > b, so that a is again the largest payoff for player 1,
but d is not the next largest. For example,

L R
T 4, 0 3, 1
B 1, 1 2, 0

. (8)

The difference between this and the previous case is that here player 1 pays
a cost when playing B against player 2’s R. We can view playing B against R
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as an investment in pushing player 2 to the point that 2 will play L. When B
is a best response to R, as in the previous case, this investment is costless. In
the current case B is not a best response to R, and if too many plays of BR are
required to elicit a play of L from player 2, then player 1 may simply give up
on manipulating player 2’s behavior and instead settle for the perpetual play of
TR.

Let q continue to be defined as in (7), i.e., let q be the limiting propor-
tion with which player 1 chooses T if player 1 ignores the possibility that the
perpetual play of TR may be optimal and instead plays as in Lemma 2. Then:

Lemma 3 Let a > c > d > b. Let NB be an increasing function characterizing
player 2’s best-response behavior, with 2 playing L when nhB > NB(nhT ) and
playing R when nhB < NB(nhT ). Then there exists a function NB(nT , δ) ≤
NB(nT ) such that for every h:

• Player 1 plays T if nhB > NB(nhT );

• Player 1 plays B if NhB(nT ) > nB > NB(nhT , δ);

• Player 1 plays T if nhB < NB(nhT , δ).

• If qa+ (1− q)d > c (cf. (7)), then

lim
δ→1

sup{nT : NB(nT , δ) < 0} = ∞. (9)

Section 5.3 contains the proof. Figure 2 illustrates these strategies. The first
two items in the lemma describe player-1 behavior matching that of Lemma 2,
culminating in a reputation-manipulation stage in which player 1 manages to
keep player 2 close to indifferent between T and B. However, reaching this
reputation-manipulation stage may now require a costly initial sequence of BR
plays. The third item captures the possibility that player 1 might find this
investment too costly. The more patient is player 1, the more investing 1 is
willing to do. The final statement of the lemma indicates that if qa+(1−q)d > c
holds, then a sufficiently patient player 1 never settles for the perpetual play
of TR, with every outcome (at least eventually) calling for player 1 to invest
in enough BR plays to bring about a history in which nnB > NB(nhT ), and
allowing 1 to earn the payoff a from TL.

3.2.4 Player 1’s Best Response: a > b > c, d or a > c > b > d

Suppose one of the following holds:

a > b > c, d

a > c > b > d.

For example,

13
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NB (nT) NB (nT)
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Figure 2: Strategies for the short-run player (left panel) and long-run player
(right panel) given a > c > d > b. The function NB is taken from Lemma 1.
Condition a > c > d > b is needed only for deriving player 1’s best responses.
Again, the qualitative properties of the functions are general; the detailed spec-
ification is not. An outcome path is shown, beginning at the origin and in this
case proceeding relentlessly to the right via the consistent play of T . In this case,
player 1 eschews any attempt to build a reputation, settling instead for a payoff
of c in every period. From Lemma 3, this can happen only if qa+ (1− q)d < c
or δ is not too large.

L R
T 4, 0 2, 1
B 3, 1 1, 0

. (10)

This is similar to the game presented in (8). In both games, player 1 endeav-
ors to induce TL as often as possible, and hence keeps player 2 nearly indifferent
between playing L and R. The difference is that in (8), player 1 prefers 2 to
play R on those occasions when 1 must play B, while in (10), 1 will contrive to
have player 2 invariably play L.

Again let q be defined as in (7), i.e., let q be the limiting proportion with
which player 1 chooses T if player 1 plays as in Lemma 2. Then:

Lemma 4 Let a > b > c, d or a > c > b > d hold. Let NB be an increasing
function characterizing player 2’s best-response behavior, with 2 playing L when

14



nhB > NB(nhT ) and playing R when nhB < NB(nhT ). Then there exists a
function NB(nT ) ≤ NB(nT ) such that, for sufficiently large δ and history h:

• Player 1 plays T if nhB > NB(nhT + 1);

• Player 1 plays B if NB(nhT , δ) < nhB < NB(nhT + 1);

• Player 1 plays T if nhB < NB(nhT , δ).

• If qa+ (1− q)b > c (cf. (7), then

lim
δ→1

sup{nT : NB(nT , δ) < 0} = ∞.

Section 5.4 contains the proof. The new development here is that once player
1 has induced player 2 to choose L, 1 ensures that 2 thereafter always plays L.
The state never subsequently crosses the border NB(nT ). Instead, whenever
the state comes to the brink of this border, 1 drives the state away with a play
of B before 2 has a chance to play R.

Figure 3 illustrates these strategies.

3.3 Equilibrium: Examples

We now combine these characterizations of best-response behavior to illustrate
equilibria.

3.3.1 Example I: The Product Choice Game

Consider the product-choice game of Mailath and Samuelson [10], transcribed
here as:9

L R
T 3, 0 1, 1
B 2, 3 0, 2

.

Player 2 is indifferent between L and R when p = p∗ = 1
2 . Player 2’s best

response is described by Lemma 1, and player 1’s by Lemma 4.
Let us assume there is a single mechanical type, characterized by the action

α1 = 1
10 . Hence, the mechanical type plays B with high probability. Action B

is the pure “Stackelberg” type for player 1 in this game, i.e., the pure action to
which player 1 would most like to be committed, conditional on player 2 playing
a best response.

A first observation is that, in equilibrium, we must have α0 > p∗. If not,
player 2’s expectation is that player 1 will always choose T with probability less
than p∗, and hence player 2 would always choose L. The rational player 1 would

9To interpret the labels, we think of player 1 as a firm who can choose either high quality
(B) or low quality (T ), and player 2 as a consumer who can choose to buy either a custom
product (L) or generic product (R) from the firm.
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Figure 3: Strategies for the short-run player (left panel) and long-run player
(right panel) given a > b > d > c. The function NB is taken from Lemma
1. Condition a > b > d > c is needed only for deriving player 1’s best re-
sponses. Again, the qualitative properties of the functions are general; the
detailed specification is not. An outcome path is shown, beginning at the origin
and proceeding upward (whenever B is chosen) and to the right (whenever T
is chosen). In this case, the function NB from Lemma 4 is never reached in
equilibrium and plays no role in shaping equilibrium behavior. Notice that once
player 2 plays L, player 2 plays L in every subsequent period, with player 1
choosing T as often as is consistent with such player-2 behavior.

respond with the perpetual play of T , ensuring that the consistency condition
(2) cannot hold and vitiating the existence of an equilibrium.

Given that α0 > p∗, let

µ1∗α1 + (1− µ1∗)α0 = p∗. (11)

If µ1
h > µ1∗, player 2 will choose L, while µ1

h < µ1∗ will cause player 2 to choose
R. From Bayes’ rule, the function NB, defining player 2’s strategy, must solve

µ1∗ =
µ1
∅(α

1)nhT (1− α1)NB(nT )

µ1
∅(α

1)nhT (1− α1)NB(nhT ) + µ0
∅(α

0)nhT (1− α0)NB(nhT )
=

µ1
∅

µ1
∅ + µ0

∅
(
α0

α1

)nhT
(

1−α0

1−α1

)NB(nhT )
.

Hence, the function NB is linear, and is of the form
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nB

nT

NB (nT)
L

R

Slope = (1-α1)/α1

Slope = (1-α0)/α0

Figure 4: Player 2’s strategy for the case of one mechanical type with α1 (prob-
ability of T ) falling short of p∗, along with a sample outcome path. Play begins
with player 1 choosing T and player 2 choosing L, with the state climbing the
horizontal axis (via a sequence of T actions on the part of player 1) until first
threatening to cross the line NB(nT ). Play then ascends along the line NB(nT ).
The boundary NB is irrelevant to equilibrium behavior in this case, and is
omitted.

NB(nhT ) = −
ln α0

α1

ln 1−α0

1−α1

nhT + C

for some constant C. One can calculate that the slope of this line is larger than
(1− α0)/α0 but smaller than (1− α1)/α1:

1− α0

α0
< −

ln α0

α1

ln 1−α0

1−α1

<
1− α1

α1
. (12)

This is intuitive. The function NB identifies ratios of B to T observations
that keep the posterior on the mechanical type fixed at µ1∗. This ratio must lie
between the ratio of B to T observations under the rational type, or (1−α0)/α0,
and the ratio under the mechanical type, or (1 − α1)/α1. Figure 4 illustrates
these strategies.

Figure 4 assumes that C < 0. We now argue that this must be the case, for
sufficiently large δ. Suppose C > 0. Then play would begin with a sequence
of B plays from player 1. This seems an intuitive reputation-building stage.
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Upon first reaching a period t with t > NB(0) (and hence nhB > NB(0)),
player 1 would subsequently play T whenever nhB > NB(nhT+1) and play B
otherwise. This reputation-exploiting phase gives a proportion of B plays equal
to the slope of NB , and hence (from 12) a proportion of B greater than would
the stationary strategy α0. However, the consistency condition is that player
1’s actions average to α0. One cannot combine an initial phase in which only
action B is played with a steady-state phase playing action B more than α0 to
get an average frequency of α0. Hence, C < 0.

Play thus necessarily begins with a reputation-spending phase, in which
player 1 continually plays T , until entering a reputation-manipulation phase.
In the reputation-manipulation phase, player 1 chooses T as often as possible,
consistent with inducing player 2 to always choose L. Whenever player 2’s
posterior brings player 2 to the brink of playing R, player 1 chooses B in order
to keep player 2’s beliefs inside the region in which L is a best response. Lemma
4 indicates that there are histories under which player 1 will eschew reputation
building entirely and simply play T at every opportunity. It is clear that these
histories cannot arise in equilibrium.

How can player 1 afford a reputation-spending stage if µ1 (upon which we
have placed no restrictions) is very small? During the reputation-manipulation
stage, player 2 attaches positive probability to type α0 as well as α1, with the
posteriors on these two types hovering around the level that makes 2 indifferent
between L and R. If µ1 is very small, then the equilibrium value of α0 will be
very close to p∗, so that the posterior attached to type α1 will have to drop yet
further in order to induce indifference.

For any fixed value of δ, player 2 remains perpetually uncertain as to which
type of agent he faces. This stands in contrast to the findings of Cripps, Mailath
and Samuelson [1, 2] that the types of long-run players in reputation games
eventually must become known. To reconcile these seemingly contrasting re-
sults, notice that the short-run players in this case have a misspecified model
of the long-run player’s behavior. It need not be surprising that even over-
whelming amounts of data do not suffice for players with a misspecified model
to learn the true state of nature. At the same time, the short run players have a
correct understanding of the aggregate play of the long run players. One might
have thought that eventually the long run frequency of actions of the normal
long run player would coincide with this aggregate frequency, thereby leading
to an identification of the rational type of player 1. This intuition is correct
for the limiting case in which δ gets close to 1, but away from this limit, the
long run frequency need not coincide with the aggregate behavior, and hence
the convergence of beliefs need not obtain.

3.3.2 Example II: A Zero-Sum Game

Consider the zero-sum game:

L R
T 7,−7 0, 0
B 3,−3 5,−5

. (13)
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Player 2’s best-response behavior is described by Lemma 1, and player 1’s be-
havior is now described by Lemma 2.

In the standard model, reputations have no value in this game. The minmax
strategies for the two players in this game are ( 29T,

7
9B) for player 1 and ( 59L,

4
9R)

for player 2. This gives player 1 a payoff of 35
9 . No commitment type can give

player 1 a larger payoff. For example, a commitment to T gives a payoff of 0,
while a commitment to B gives a payoff of 3. Nonetheless, player 1 is able to
effectively exploit the presence of the mechanical types in the current context.

We consider the case in which there is only one mechanical type playing T
with probability α1 strictly smaller than p∗ (= 2

9 in (13)).
The equilibrium is determined by a function NB with the property that TL

is played at histories h in which nhB > NB(nhT ) and BR is played at histories
in which nhB < NB(nhT ). We can repeat the reasoning of the previous example
to conclude that

NB(nhT ) = −
ln α0

α1

ln 1−α0

1−α1

nhT + C

for some constant C.
In equilibrium, we must again have µ1∗ ≤ µ1

∅ (cf. (11)). The game begins
with a sequence of TL plays. Player 1 here starts with an excess reputation, and
exploits player 2 while pushing this reputation downward. Once µ1

h hits µ1∗,
play moves back and forth between TL and BR (as the posterior of the me-
chanical type dips below or moves above µ1∗). The former appears in weighted
proportion less than α0 (so that the consistency condition, that player 1’s play
averages to α0, is satisfied). We can then again divide these strategies into a
reputation spending stage and a second “reputation-manipulation” stage, the
latter beginning the first time the posterior belief µ1

h crosses µ1∗.
The payoff obtained by the long-run player in this game is above the value.

Equilibrium play includes some periods in which nhB > NB(nhT ) and the out-
come is TL for a player-1 payoff of 7, and some periods in which nhB < NB(nhT )
and the outcome is BR for a player-1 payoff of 5. Both payoffs exceed player
1’s value, and hence so must player 1’s equilibrium payoff.10

3.3.3 Example III: Multiple Mechanical Types

Consider once again the zero-sum game of Section 3.3.2, but now with two or
more mechanical types, with at least one playing T with probability exceeding p∗

and one playing T with probability falling short of p∗. The important feature of
this configuration is that there are mechanical types on both sides of p∗. Given
that this is the case, introducing additional mechanical types does nothing but
complicate the calculations.

10We have not specified what actions the players take when nhB = NB(nhT ). In particular,
player 2 might mix after such a history. However, whatever (possibly mixed) action player
2 takes at such a history, player 1 has an action available that ensures player 1 at least her
value, and that leads to continuation payoffs above 1’s value, ensuring that 1’s equilibrium
payoff exceeds her value.
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Lemmas 1 and 2 again describe the players’ best response functions, and so
the equilibrium here will share many of the features of the equilibrium calculated
in Section 3.3.2. The function NB now need not be linear, though it will be
increasing.

Once again, there will be an initial phase, consisting of either a reputation-
building phase consisting of a string of B actions, or a reputation-spending phase
consisting of a string of T actions. This initial phase will last until either the
first time a B action causes the state (nhT , nhB) to cross from below to above
the function NB , or until the first time a T action causes the state (nhT , nhB)
to cross from above to below the function NB . Thereafter, play will enter a
reputation-manipulation phase in which the state hovers as close as possible to
the graph of the function NB .

In Section 3.3.2, the initial phase necessarily involved a string of T actions,
which have the effect of diminishing the probability attached to the mechanical
type. When there are mechanical types on both sides of p∗, the initial phase may
consist of a string of either B or T plays, depending on the prior distribution
over mechanical types.11

What determines whether player 1 initially builds or spends her reputation?
Suppose (counterfactually) that only the mechanical player-1 types {α1, . . . , αK}
were present, with the probabilities {µ1

0, . . . , µ
K
0 } scaled up to sum to one. If

player 2 would play R against this mixture, then equilibrium play in the original
game must constitute a sequence of BR plays. If player 2 would play L against
this mixture, then equilibrium play in the initial phase of the original game must
constitute a sequence of TL plays. Player 1’s initial play must then push player
2 away from the action player 2 would choose against the mechanical types.

To see that this is the case, suppose player 2 would play R if facing only
the mechanical types. Our best-response characterizations give us two possible
configurations for equilibrium play. First, it may be that α0 > p∗. Given that
player 2 would initially play R against the mechanical types, the addition of
such a rational type reinforces 2’s initial proclivity to play R. From Lemmas
1–2, play then consists of an initial sequence of BR plays, until reaching the
reputation-manipulation phase. Here, player 2’s beliefs become concentrated on
the two types of player 1 that straddle p∗, namely min{α0, α} and α, where α
denote the largest αk such that αk < p∗ and α denotes the smallest αk such that
αk > p∗. Player 1’s average play α̂0 during this reputation-manipulation phase
must then be below α0. However, there is no way to combine an initial sequence
of B plays with a subsequent phase that is relatively heavy on B (α̂0 < α0)
and get average play of α0. The equilibrium must then feature α0 < p∗, and
hence the reputation-manipulation phase must be comprised of behavior that
is relatively heavy on T (α̂0 > α0). Player 1’s initial phase of play must then

11Section 3.3.2 examined a case in which there was a single mechanical type with α1 < p∗,
finding that equilibrium required a string of initial “reputation-spending” T actions. If we
examine an equilibrium with a single mechanical type with α1 > p∗, equilibrium would again
require a string of initial “reputation-spending” B plays. An initial reputation-spending phase
is thus a robust feature of specifications in which all of the mechanical types lie on the same
side of p∗, which no longer holds when there are mechanical types on both sides of p∗.
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feature B, and hence (from Lemmas 1–2), play must begin with a sequence of
BR plays.

For a fixed distribution of mechanical types, there is an upper bound M on
the length of the introductory phase, that holds over all equilibria for all discount
factors. To see that this is the case, note that the function NB depends only
on the set of types (α0, α1, . . . , αK) and the prior (µ0

∅, µ
1
∅, ..., µ

K
∅ ), and not the

discount factor. We must accordingly ask the following questions. Suppose the
initial specification is such that NB(0) > 0, i.e., player 2 initially plays R. What
is the maximum (over α0) of the minimum number t of successive observations
of B it would take for player to play L, i.e., what is the smallest t for which
t > NB(0)? This minimum number t is maximized either when α0 = 0 or
α0 = 1, where it takes a finite value that we can bound by M . Similarly, we can
suppose the initial specification is such that NB(0) < 0, i.e., player 2 initially
plays L. What is the maximum (over α0) of the minimum number t of successive
observations of T it would take for player to play R, i.e., what is the smallest t
for which 0 < NB(t)? This value is again maximized at either α0 = 0 or α0 = 1,
where it takes a finite value that we can bound by M .

In the limit as δ → 1, player 2’s limiting (as t gets large) posterior on the
rational type must converge to 1. Eventually the empirical frequency of past
play of the rational type must be very close to α0, by the consistency condition,
and thus α0 must converge to p∗ as δ → 1 (as otherwise, player 2s would not
be kept to be playing either L or R in the long run).

More precisely, as δ → 1, the bounded initial phase is followed by a reputa-
tion manipulation phase of arbitrarily long (expected) length. The consistency
condition given by (2) can then be satisfied only if α̂0, the average play of
the rational type during the reputation-manipulation phase, approaches α0, the
overall average play of the rational type. During the reputation-manipulation
phase, the average play α̂0 of the rational type must balance player 2’s posterior
over types so that player 2 remains nearly indifferent over player 2’s actions. In
the limit, player 2’s posterior will be concentrated on only two types of player 1,
being the two closest types on either side of α̂0. One of these types will be α0,
and one will be a mechanical type. But if α̂0 is converging to α0, the consistent
play of α̂0 can maintain player 2’s near indifference only if α̂0 and α0 are both
very close to p∗, and if the posterior probability placed on the rational type
converges to 1.

The result that player 2 learns player 1’s type is a double limiting result,
referring to the limit of player 2’s beliefs as t gets large, in a sequence of equilibria
for games in which δ gets large. For any fixed δ, player 2 remains perpetually
uncertain as to player 1’s type.

3.4 Equilibrium: Analysis

We now characterize equilibria for the general case with many mechanical types.
We retain (5), ensuring that player 2 does not have a dominant strategy, but do
not restrict player 1’s payoffs. We fix a specification of the mechanical types’
actions (α1, . . . , αK) and prior probabilities (µ1

∅, . . . , µ
K
∅ ). We assume there is
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at least one mechanical type that plays T with probability greater than p∗, and
one that plays T with probability less than p∗. There may be many mechanical
types.

Let α denote the strategy of the mechanical type who attaches the largest
probability less than p∗ to T . Let α be the strategy of the mechanical type who
attaches the smallest probability larger than p∗ to T . Then let q∗ satisfy

αq∗(1− α)1−q∗ = αq∗(1− α)1−q∗ .

Intuitively, a collection of actions featuring q∗ proportion of T is equally likely to
have come from mechanical type α as from mechanical type α. When observing
a sufficiently long string of such data, player 2 will rule out the other mechanical
types, but will retain both α and α as possibilities.

3.4.1 Existence of Equilibrium

Proposition 1 There exists a sequential analogy-based expectation equilibrium.

Proof. Intuitively, we think of (1) fixing α0, an average strategy for the long-
run player, (2) deducing player 2’s best responses, (3) deducing player 1’s best
responses, and (4) calculating the values of A0 implied by these best responses.
This gives us a map from values of α0 to values of A0. A fixed point of this
map gives us an equilibrium. The details of this argument are fairly standard,
and are given in Section 5.5.

3.4.2 Pure-Outcome Equilibria

We say that the equilibrium outcome is pure if either α0 = 0 or α0 = 1. This
does not mean that the equilibrium features pure strategies, since player 1 may
mix at out-of-equilibrium histories. However, player 2 models player 1 as playing
a pure strategy, and will receive no contradictory evidence along the equilibrium
path. In other cases, we say the equilibrium outcome is mixed.

When does a pure-outcome equilibrium exist? We can assume c > b without
losing any generality, with the case c < b simply being a relabeling.

Proposition 2 Let c > b. Then there exists a pure-outcome equilibrium for
sufficiently large δ (i.e., there exists a δ ∈ (0, 1) such that a pure-outcome equi-
librium exists for any δ > δ ) if and only if

c > d (14)

c > q∗ max{a, c}+ (1− q∗)max{b, d}. (15)

If (14)–(15) hold, then for any ε > 0, there is a δ(ε) < 1 such that for all
δ > δ(ε), every pure-outcome equilibrium payoff for player 1 exceeds c − ε, as
does every equilibrium payoff.
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Proof. [Necessity ] Suppose c < d and we have a candidate pure-outcome
equilibrium with either α0 = 0 or α0 = 1. As δ → 0, the payoff from such
an equilibrium approaches b in the first case and c in the second. Consider a
strategy in which player 1 chooses T if the cumulative frequency which which he
has played T falls short of α, and otherwise plays B. Then after a finite number
of periods, Player 2 will attach sufficiently large probability to player 1 being
type α as to thereafter always play R. Hence, except for a bounded number of
initial periods, which become insignificant as δ → 1, player 1 earns a payoff of
αc + (1 − α)d which exceeds both of b and c, and hence exceeds the payoff of
any pure equilibrium. This ensures that there for sufficiently large δ, there are
no pure-outcome equilibria.

Alternatively, suppose c > d but (15) fails, in which case (given c > b, d) we
must have a > c and c < q∗a+(1−q∗)max{b, d}. Fix a candidate pure-outcome
equilibrium yielding payoff c. Now suppose player 1 undertakes a strategy of
initially playing B, until player 2’s posterior belief is pushed to indifference
between L and R. Thereafter, player 1 plays actions that keep the realized
histories near the function NB(nT ). If b < d, player 1 allows the history to cross
back and forth over the line, giving a mixture between payoffs a and d. If b > d,
player 1 ensures that the history lies always just above this boundary, giving
a mixture between payoffs a and b. The probability attached to a in either of
these mixtures is q∗, which suffices for the result.

The sufficiency result is similar, and is relegated along with the payoff char-
acterization to Section 5.6.

3.4.3 Mixed-Outcome Equilibria

When will there exist a mixed-outcome equilibrium? Sections 3.3.1 and 3.3.2
have illustrated two mixed equilibria. The limiting payoff in the first of these
equilibria is given by p∗a+(1−p∗)b, and in the second is given by p∗a+(1−p∗)d.
In each case, it was important that this payoff exceeded c, since otherwise a
sufficiently patient long-run player 1 could ensure a payoff arbitrarily close to
c simply by always playing T . This suggests the conjecture that (retaining our
convention that c > b) there exists a mixed-outcome equilibrium as long as

c < p∗ max{a, c}+ (1− p∗)max{b, d},

and that the payoff in this equilibrium is given by p∗ max{a, c}+(1−p∗)max{b, d}.
This is indeed a sufficient condition for existence, but a glance at Proposition 2
suggests that it is not the only sufficient condition. There is no pure-outcome
equilibrium if c < q∗ max{a, c}+(1−q∗)max{b, d}, and the latter is indeed also
sufficient for the existence of a mixed-outcome equilibrium. Section 5.7 proves:

Proposition 3 Let c > b. Then for sufficiently large δ, a mixed-outcome equi-
librium exists if and only if at least one of the following holds:

c < p∗ max{a, c}+ (1− p∗)max{b, d} (16)

c < q∗ max{a, c}+ (1− q∗)max{b, d}. (17)
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The first step in the proof is straightforward. If c < p∗ max{a, c} + (1 −
p∗)max{b, d}, we show that there exists a mixed-outcome equilibrium analogous
to that of Sections 3.3.1 and 3.3.2. A fixed point argument establishes the
existence of such an equilibrium. This leaves one case to be addressed, namely
that in which

p∗ max{a, c}+(1−p∗)max{b, d} < c < q∗ max{a, c}+(1− q∗)max{b, d}. (18)

Notice, from Proposition 2, that there is no pure equilibrium for this case, while
the first inequality ensures there is no mixed equilibrium analogous to those of
Sections 3.3.1–3.3.2.

To see how we proceed, it is helpful to acquire some notation. We say that
a sequence of equilibria, as δ converges to 1, with player-1 average strategy
{α0

ℓ}∞ℓ=0 is unary if P{h : |α0
ℓ(h) − α0

ℓ | > ε} converges to zero, for all ε > 0.
Hence, in the limit the average strategy of player 1 is independent of history.
Otherwise, the equilibrium is binary (a term justified by the following lemma).
A pure equilibrium is obviously unary. The mixed equilibria of Sections 3.3.1–
3.3.2 are unary.

We have already concluded that when (18) holds, the (only) equilibrium is
a binary, mixed equilibrium. Notice that (18) can hold only if b, d < c < a and
q∗ > p∗, the former placing constraints on the payoffs in the game and the latter
on the distribution of mechanical types.

We can then construct an equilibrium as follows. In the first period, player
1 is indifferent between T and B, and mixes, placing probability ζ on T . If the
first action is T , then player 1 plays T thereafter. If the first action is B, then
player 1 plays B until making player 2 indifferent between L and R, after which
point player 1 maintains this indifference. This gives a long-run average T play
of α0 > p∗. We have aggregate play for player 1 of

α0 = ζ + (1− ζ)α0.

It is then a straightforward calculation, following from the facts that p∗ max{a, c}+
(1− p∗)max{b, d} < c < q∗ max{a, c}+ (1− q∗)max{b, d} and q∗ > p∗ that we
can choose α0 and ζ so that

• Player 1 is indifferent over the actions T and B in 1’s initial mixture, This
requires adjusting α0 so that the payoff to player 1 from building and
maintaining player 2’s indifference is c,

• Probability α0 makes player 2 indifferent between L and R. This requires
adjusting ζ and hence α0 so that α0 causes player 2’s posterior to concen-
trate probability on types α and α0,

completing the specification of the equilibrium.
Are there equilibria in which player 1 mixes over more than two continuation

paths? The answer is no:

Lemma 5 Let c > b. There is a value δ such that for all δ ∈ (δ, 1), in any
equilibrium that is not unary, there are two long-run averages of play for player
1. Player 1’s payoff in any sequence of such equilibria converges to c as δ → 1.
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Proof. Fix a candidate equilibrium and the associated value α0. Then let α

and α be (respectively) the largest frequency smaller than p∗ with which a type
of player 1 plays T , and smallest frequency larger than p∗ with which a type of
player 1 plays T . These differ from α and α in that we now include the rational
type of player 1 in the set of possibilities. Let q̂ satisfy

αq̂(1− α)1−q̂ = α
q̂
(1− α)1−q̂.

Then player 1 can attain a payoff arbitrarily close (for large δ) to c by always
playing T , and otherwise the largest payoff player 1 can obtain is

q̂max{a, c}+ (1− q̂)max{b, d}.

These are accordingly the only two payoffs that can be attached positive prob-
ability in a mixed equilibrium that is not unitary, and will both appear only if
equal. But then only two long-run averages of play for player 1 can appear.

3.4.4 Payoffs

We can now collect our results to characterize equilibrium payoffs and behavior.
It is convenient to start with payoffs. To conserve on notation, let

P ∗ := p∗ max{a, c}+ (1− p∗)max{b, d} (19)

Q∗ := q∗ max{a, c}+ (1− q∗)max{b, d} (20)

Section 5.8 proves:

Proposition 4 let c > b. For sufficiently large δ:
[4.1] If P ∗, Q∗ < c, then the only equilibrium is pure, featuring payoff c.
[4.2] If c < P ∗, Q∗, then there exist unary mixed equilibria. The rational

player 1’s behavior in a unary sequence of mixed-outcome equilibrium satisfies
limδ→1 α

0(δ) = p∗, and the limiting equilibrium payoff of the rational player 1
is given by P ∗. If c > d, there may also exist a binary mixed equilibria, with
payoff c for the rational player 1.

[4.3] If Q∗ < c < P ∗, then there exists a pure equilibrium if c > d. There
also exists a unary mixed equilibria, and the rational player 1’s behavior in a
sequence of unary mixed-outcome equilibrium satisfies limδ→1 α

0(δ) = p∗, and
the limiting equilibrium payoff of the rational player 1 is given by P ∗.

[4.4] If P ∗ < c < Q∗, then the only equilibrium is a binary mixed equilibrium,
and the rational player 1’s payoff in any such equilibrium approaches c as δ → 1.

We can summarize our results as follows.
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Parameters Equilibria Payoffs

P ∗, Q∗ < c Pure c

c < P ∗, Q∗ Unary mixed P ∗

c < P ∗, Q∗ Binary mixed (possibly, and only if c > d) c

Q∗ < c < P ∗ Pure (if and only if c > d) c
Q∗ < c < P ∗ Unary mixed P ∗

P ∗ < c < Q∗ Binary mixed c

.

Example. If Q∗ < c < P ∗ and c > d, there exists both a pure and mixed
equilibrium. For example, consider the game:

L R
T 6, 0 3, 1
B 2, 1 0, 0

.

Notice that p∗ = 1/2. Let there be two mechanical types, characterized by the
probability they attach to playing T , with this probabilities being .01 and .51.
We thus have Q∗ < c < P ∗. There is then a pure equilibrium, with payoff
c = 3, and a mixed equilibrium, whose payoff converges to p∗a + (1 − p∗)b =
p∗6 + (1− p∗)2 = P ∗ = 4 as δ → 1.

The question is then why the possibility of obtaining payoff P ∗ does not
preclude the existence of a pure equilibrium, which yields a payoff of 3 for player
1. Let us consider a candidate pure equilibrium, in which α0 = 1, so that the
rational type of player 1 always chooses T , for a payoff of 3. Why cannot player
1 earn a higher payoff, namely P ∗, given this candidate equilibrium? Player 1
can endure an initial phase in which the posterior that 2 attaches to 1 playing
T can be pushed to the point at which 2 is indifferent between L and R, with
this indifference thereafter maintained. In calculating 1’s payoff, we can ignore
the initial phase (by focussing on δ → 1), and the payoff will be very close to

q∗6 + (1− q∗)2,

where q∗ is the frequency required to maintain the posterior near p∗, namely

q∗ ln
.01

.51
= (1− q∗) ln

.49

.99
.

This gives us a value of q∗ equal to approximately .15, and Q∗ equal to approx-
imately 2.6. As a result, player 1 will get a higher payoff from simply playing
T all of the time and receiving 3, rather than the mix q∗6 + (1 − q∗)2. Hence
p∗a + (1 − p∗)b is not available as a payoff to player 1 given the equilibrium
hypothesis of α0 = 1, and we thus have multiple equilibria.
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Remark 1 The value of q∗ must lie between the probabilities α and α, the
former the largest probability less than p∗ attached to T by a mechanical type,
and the latter the smallest probability larger than p∗ attached to T by a me-
chanical type. If the set of mechanical types becomes rich, such as would be the
case with a sequence of increasingly dense grids of mechanical types, the value
of q∗ must then approach p∗. This will eventually (generically) ensure that P ∗

and Q∗ are on the same side as c, precluding the type of coexistence of pure
and mixed equilibria exhibited in the preceding example.

Remark 2 If c < P ∗, Q∗, there always exists a unary mixed equilibrium
(with payoff approaching P ∗ as δ → 1), and there may or may not also exist a
binary mixed equilibrium (with payoff c). First, it is clear that such existence
requires c > d, since otherwise it can not be optimal to put positive probability
on always playing T (as does the binary mixed equilibrium), and this in turn
implies that we must have b, d < c < a. Second, the lower probability α0 in this
equilibrium must be enough smaller than p∗ as to push the expected payoff from
this outcome down to c. This in turn requires that α, largest probability less
than p∗ attached to T by a mechanical type, must be sufficiently small. Hence,
if α is sufficiently close to p∗, perhaps because the set of mechanical types is
sufficiently rich, then binary mixed equilibria will not exist for this case.12

We can combine the insights of Remarks 1 and 2. Let us say that the set
of mechanical types is ε-rich if there is no interval subset of [0, 1] of length
exceeding ε that does not contain a mechanical type.

Corollary 1 Let c > b. Consider the (generic) set of games for which c ̸= P ∗.
[1.1] There is an ε > 0 such that if the set of mechanical types is at least

ε-rich, then any equilibrium is either pure or unary mixed.
[1.2] There is an ε > 0 such that if the set of mechanical types is at least

ε-rich and δ is sufficiently large, then player 1’s equilibrium payoff, is at least

max{b, c, p∗ max{a, c}+ (1− p∗)max{b, d}} − ε.

It is natural to compare our reputation results to those of Fudenberg and
Levine [4]. Their result is that

lim
δ→1

U∗
1 (δ) ≥ max

αk∈{α1,...,αK}
min

a2∈BR(αk)
u1(α

k, a2),

12To see the issues here, consider the game:

L R
T 5, 0 2, 1
B 0, 1 1, 0

Then p∗ = 1/2. A binary mixed equilibrium requires α0 to equal approximately 1/4, so
that player 1 is indifferent (and hence willing to mix) between always playing T , for a payoff
of approximately 2, and mixture α0, for a payoff of 5α0 + (1 − α0). We can construct such
an equilibrium if (for example) α = 1/10 and α = 9/10. However, since we must have
α < α0 < α, a binary mixed equilibrium does not exist if α ≥ 1/4.
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where U∗
1 (δ) is player 1’s equilibrium payoff and BR(αk) is the set of best

responses for player 2 to the player-1 action αk. Intuitively, player 1 can choose
her favorite mechanical type, and then receive the payoff she would earn if she
were known to be that type, given that player 2 plays the best response to that
type that is least favorable to player 1.

A proof virtually identical to that used to establish Fudenberg and Levine’s
lower bound ensures that player 1 in our setting is assured a payoff at least as
high. The following result is a corollary of Watson [13]:

Proposition 5 In any sequential analogy-based expectation equilibrium,

lim
δ→1

U∗
1 (δ) ≥ max

αk∈{α1,...,αK}
min

a2∈BR(αk)
u1(α

k, a2).

Proof. Suppose there exists a sequential analogy-based expectations equilib-
rium with an equilibrium payoff for player 1 that falls short of u1(α

k, a2) for
some mechanical type αk and a2 ∈ argmina2∈BR(αk) u1(α

k, a2). Then one fea-

sible strategy available to player 1 is to choose T with probability αk in each
period. The argument then follows from the fact that within a finite number of
periods (independent of δ), player 2 will place sufficiently high probability on
mechanical type αk as to play a best response, which suffices for the result.

Our lower bound is often tighter than that of Fudenberg and Levine. In
particular, the payoff of a unary mixed equilibrium satisfies

lim
δ→1

U∗
1 (δ) ≥ P ∗ = p∗ max{a, c}+ (1− p∗)max{b, d}.

This limit payoff typically exceeds the lower bound of Fudenberg and Levine,
and it does so for potentially two reasons. First, P ∗ is independent of the
specifications of the mechanical types αk. So unless there are mechanical types
characterized by actions arbitrarily close to p∗, the bound here will be higher.
Second, even if there are mechanical types characterized by actions close to
p∗, the bound found by Fudenberg and Levine will not exceed max{p∗a+ (1−
p∗)b, p∗c + (1 − p∗)d} (corresponding to the Stackelberg payoff when the long
run player can commit to a behavior either slightly above or below p∗), and this
bound is (strictly) smaller than P ∗ for a range of games (including zero-sum
games).

To illustrate this, we offer two examples. First, consider the product-choice
game:

L R
T 3, 0 1, 1
B 2, 3 0, 2

.

Recall that p∗ = 1
2 . If there is a mechanical type on each side of p∗, then

there exists a mixed-outcome equilibrium in which player 1 earns a payoff very
close to 5

2 . If these mechanical types are roughly equally spaced around p∗, then
every equilibrium has this property. However, if the types are not too close to
p∗, the Fudenberg-and-Levine bound will be smaller.
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Second, consider our familiar zero-sum game. In such games, there is no
value to commitment and thus the limiting per period payoff obtained by the
rational long-run player when there are very few mechanical types must be close
to his value when short-run players are fully rational. By contrast, when short-
run players use the mode of reasoning analyzed above, the rational long-run
player will typically get a payoff strictly above the value.13 For the sake of
illustration, consider the zero-sum game of (6):

L R
T 7,−7 0, 0
B 3,−3 5,−5

.

We have already calculated that the rational long-run player can guarantee a
per period payoff of P ∗ = 7p∗+5(1−p∗), whereas the value of this game is only
7p∗ +3(1− p∗) with p∗ = 2

9 . This latter phenomenon is not unique to zero-sum
games. The auditing game given by (1) has the same property.

3.4.5 Equilibrium Behavior

This subsection turns the attention from equilibrium payoffs to equilibrium be-
havior, stressing three aspects of such behavior. We have characterized this
behavior in the course of proving Propositions 2–4, and we need only summa-
rize this characterization here:

Corollary 2
[2.1] Player 1’s play, in any equilibrium, can be divided into two phases,

including an initial “reputation-building” or “reputation-spending” phase and a
subsequent “reputation-manipulation” phase.

[2.2] Throughout the reputation-manipulation phase, player 2 remains nearly
indifferent over L and R. Player 1 manages to correlate her actions with those
of player 2, allowing a higher payoff than is possible under uncorrelated mixtures.

[2.3] The reputation-manipulation phase is nonexistent in a pure equilibrium.
In a unary mixed equilibrium, the length of the initial phase remains bounded
as δ → 1, while the expected length of the reputation-manipulation phase grows
arbitrarily long.

[2.4] The action profile played in the initial phase of a unary equilibrium is
BR is player 2’s best response to the mechanical types (only) is B, and otherwise
is TL. Player 2’s initial action in such an equilibrium is a best response to the
mechanical types, and player 1’s initial sequence of actions pushes player 2 away
from this behavior and toward indifference.

[2.5] For any fixed δ, in any unary mixed equilibrium, player 2 remains
uncertain throughout the game as to the type of player 1.

13Such an observation about zero-sum games was anticipated by Ettinger and Jehiel [3]
in the simpler context of a two-period interaction yet requiring a significant chunk of non-
rational long-run players. Our present analysis allows us to provide a full analysis under the
same conditions as the ones in Fudenberg and Levine’s [4] classic contribution on reputation.
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In general, we think of player 2 as having access to historical information
concerning the types of past player 1s, and their average frequency of play. In
many cases, we think this is quite reasonable. We can well imagine consumer
reporting agencies indicating that there are low-quality providers who often
provide bad service, as well as high quality providers, who rarely provide bad
service. In the case of unary equilibria, however, the informational demands are
weaker. Here, player 2 need only have access to the average frequency of play of
past types. If there exist mechanical types α1 and α2 as well as a rational type
characterized by α0, player 2 will observe in the historical record a collection of
cases in which player 1’s play matched α1, a collection in which 1’s play matched
α2, and a collection in which play matched α0. Player 2 can then interpret this
evidence as indicating there are three types of player 1, in prior probabilities
equal to their relative frequency in the data. Player 1 has no way of knowing
which is the rational and which the mechanical types, but also has no need of
knowing this.14

3.5 Fictitious Play

The distinguishing feature of our model is that player 2 models player 1’s be-
havior as stationary, even if (as in the case of a rational player 1) this need not
be the case. Another setting in which players potentially mistakenly model the
play of their opponents as stationary is that of fictitious play. A comparison is
instructive. Consider a model in which there are no mechanical types of player
1, but player 2 plays a best response to a fictitious-play model of player 1.

Having reached period t with history h, player 2 computes the empirical
frequency with which player 1 has played T , or

nhT

t
.

Player 2 then plays L if this empirical frequency falls short of p∗, and plays R
if this empirical frequency exceeds p∗. Intuitively, player 2 views player 1 as
playing a stationary strategy corresponding with the empirical frequency of 1’s
play, to which 2 plays a best response.

We can describe this behavior in more familiar terms.

Lemma 6 Let player 2 play the game in period t with history h. Then 2’s
action is given by

L if nhT < p∗t

R if nhT > p∗t.

14In the case of binary equilibria, the record must include types, since the rational player
1 will sometimes give rise to one long-run average behavior and sometimes to another, and
player 2 must amalgamate both into a single type of player 1. We note that if each mode
in a non-unary equilibrium is interpreted as a different (stationary) type, we may run into
existence issues.
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Player 2’s behavior is thus once again described by a function

NB(nhT ) =
1− p∗

p∗
nhT .

The function NB is thus a ray through the origin.
Player 1’s best response behavior is again characterized by Section 3.2. Now,

however, there is no equilibrium condition to be satisfied. Player 2 is an au-
tomaton, and characterizing player 1’s behavior is equivalent to characterizing
equilibrium behavior. The fact that NB is a ray through the origin indicates
that there is now no initial reputation-building or reputation-spending phase.
Instead, player 1 moves immediately to reputation manipulation. We then im-
mediately have:

Proposition 6 Suppose player 1 faces a fictitious-play opponent and that in
case of indifference on the part of player 2, player 1 is free to pick player 2’s
behavior. Then:

(6.1) Player 1’s equilibrium payoff, in the limit as δ → 1 is given by

max{b, c, p∗ max{a, c}+ (1− p∗)max{b, d}}. (21)

(6.2) The frequency with which player 1 plays T is given by 0 (if b is the
maximizer in (21)), 1 (if c is the maximizer in (21)), or p∗ (if p∗ max{a, c} +
(1− p∗)max{b, d} is the maximizer in (21)).

For generic games, instances will not arise in which player 2 is indifferent, al-
lowing us to dispense with the assumption that player 1 can then choose player
2’s behavior.

From Corollary 1, as the the set of mechanical types in our model becomes
rich, player 1’s payoff approaches the payoff player 1 could achieve against a
fictitious-play opponent.

4 Discussion

We have examined reputation models in which short run players reason as if all
types of long run players behaved in a stationary way. This belief is correct for
most types of player 1, but will typically not be true of the (in most models)
most likely type, namely the rational player 1. Player 2’s beliefs about the
rational type are not arbitrary, instead being required to match the long run
empirical frequency of play of the type. We view such beliefs as natural for cases
in which player 2 can most readily collect information about average frequencies
of play. Player 2’s model of player 1 then makes use of all of the information at
2’s disposal, and is contradicted by nothing that player 2 could observe.15

15Player 2 observed the frequencies with which player 1 has played her various actions in
previous games, with our equilibrium conditions ensuring that these match the strategies that
player 2 attributes to the various types of player 1. If player 2 observes the sequence of actions
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The most interesting cases are those in which player 1’s payoff is not maxi-
mized by a stage-game Nash equilibrium, in which case attention turns to what
we have called unary mixed equilibria. In these equilibria, play consists of an
initial stage, whose relative length becomes insignificant as player 1 becomes
patient, in which player 1 either builds or spends down her reputation, depend-
ing on the payoffs of the game and the prior distribution over mechanical types.
This is followed by a reputation-manipulation stage in which play 1 essentially
controls player 2’s belief, keeping player 2 as close as possible to being indiffer-
ent between player 2’s actions. Doing so requires player 1 to switch back and
forth between her actions, but she can correlate her actions with those of player
2. As a result, there are two forces that allow player 1 to push her payoff above
the conventional bound that can be obtained by committing to the behavior of
player 1’s favorite mechanical type. Player 1 can manipulate 2’s beliefs so as to
effectively commit to mechanical types that don’t appear in the prior distribu-
tion, and player 1 can exploit the correlation induced during the manipulation
phase.

The obvious direction for extending these results is to consider larger stage
games. Our analysis of 2 × 2 games has relied heavily on the best-response
structure of the stage game. There are not too many variations on this struc-
ture in 2 × 2 games, allowing a reasonably succinct comprehensive treatment.
In particular, the key component of this structure, exploited throughout the
analysis, is that player 2 becomes more anxious to play L the more 1 plays T ,
and more anxious to play R the more 1 plays B. This is what lies behind the
manipulative strategy of player 1, with the manipulation then taking the form
of ensuring that player 1 receives payoff max{a, c} when playing T and payoff
max{b, d} when playing B.

The analysis in larger games will again be tied to the best response structure,
but there are now many more possibilities for this structure, making general
results quite tedious to state. Indeed, what it means to manipulate player 2 will
depend on the best response structure. However, we can establish one obvious
lower bound on payoffs, in that player 1’s payoff will be at least as high (and
possibly strictly higher) than the payoff bound established by Fudenberg and
Levine [4, 5].

We can go further to sketch the types of results that are available in larger
games. To build some intuition, first consider the following 2× 2 game:

L R
T 5, 0 2, 1
B 2, 1 4, 0

.

The player-1 mixture that makes player 2 indifferent between L and R plays T
and B each with probability 1

2 , and our result is that player 1 can ensure a payoff

played by the rational player 1 in the current game, he may (after sufficiently many periods)
have cause to question the independence that he attributes to player 1’s actions. Player 2
could not do so if 2 observes only the aggregate frequencies with which player 1 has played
her actions, a formulation that suffices for our results and that strike us as realistic in many
cases.
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close to 1
2 ·5+

1
2 ·4, effectively keeping player 2 indifferent while coordinating play

so that only the outcomes TL and BR appear. Let T →BR2 R be interpreted
as strategy T for player 2 causes R to be a best response for player 2. Then
the structure that we exploit in constructing player 1’s manipulative strategy is
that

T →BR2 R →BR1 B →BR2 L →BR1 T.

Suppose in a large game that we could find a sequence of actions {T,M,B} for
player 1 and {L,C,R} for player 2, with

T →BR2 R →BR1 M →BR2 C →BR1 B →BR2 L →BR1 T.

Let p∗ be the mixture for player 1 that makes player 2 indifferent between L,
C, and R, and suppose that L, C and R are best responses to this mixture.16

Then player 1 can achieve a limiting payoff of

p∗(T )u1(T, L) + p∗(M)u1(M,R) + p∗(B)u1(B,M).

This is the outcome of a manipulation phase, in which player 1 maintains player
2’s indifference over the three actions {L,C,R}, while correlating play so as to
play 1’s best response against each action of player 2.

This result would generalize to longer cycles. We thus extend our main result
for 2×2 games to larger games. However, establishing this result for 2×2 games
required considering a number of cases, and this number grows as does the
size of the game, making a complete enumeration of results significantly more
tedious. We believe that a more productive approach would be to concentrate
on particular applications.

5 Appendix: Proofs

5.1 Proof of Lemma 1

We must establish the stochastic-dominance claim. Renumber the types of
player 1 so that type k ∈ {0, . . . ,K} plays T with probability α̂k, with α̂k+1 >
α̂k. Hence, we order the types by the probability that they play T , with the
rational type fit into the appropriate place in the list. Then the stochastic-
dominance claim requires, for any K ′ < K and interior beliefs µ0

h, . . . , µ
K
h ,

K′∑
k=0

µk
(h,T ) <

K′∑
k=0

µk
h,

where (h, T ) denotes the history consisting of h followed by an observation of
T . Using Bayes’ rule, this is

K′∑
k=0

µk
(h,T ) =

K′∑
k=0

α̂kµk
h∑K

j=0 α̂
jµj

h

<
K′∑
k=0

µk
h∑K

j=0 µ
j
h

=
K′∑
k=0

µk
h.

16We are here ruling out the existence of yet a fourth strategy that is superior to L, C, and
R, when 1 mixes according to p∗.
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Dropping the notation for the history h, this is

K′∑
k=0

α̂kµk
K∑
j=0

µj <
K′∑
k=0

µk
K∑
j=0

α̂jµj

or, deleting terms common to both sides

K′∑
k=0

α̂kµk
K∑

j=K′+1

µj <
K′∑
k=0

µk
K∑

j=K′+1

α̂jµj ,

which follows from the fact that the α̂k are increasing in k.

5.2 Proof of Lemma 2

The same argument applies for histories h such that nhB < NB(nhT ). The
relevant comparison is

Equilibrium path Payoff Deviation path Payoff

BR d TR c
BR d BR d
BR d BR d
...

...
...

...
BR d BR d
TL a BR d

The result then follows from the facts that a > c and d > c.
We now note that σ1 is the unique best response. The one-shot deviation

principle ensures there is no history h and alternative strategy σ′
1 that gives

player 1 a payoff superior to that of σ1 after history h. Could there by an
alternative σ′

1 that gives player 1 a payoff identical to that of strategy σ1 after
some history h′, but prescribes a different action? Notice that σ′

1 and σ1 must
yield identical payoffs after every history, since (i) σ′

1 can never yield a higher
payoff, (i) σ′

1 can never yield a lower payoff at a history that is reached (since
then it would not be a best response), and (iii) σ′

1 can without loss of generality
be taken to yield at least as high a payoff at histories that are unreached. Then
similarly without sacrificing generality, we can take σ1 and σ′

1 to prescribe
identical behavior after every history other than h′. But now our previous
argument, which generates strict inequalities, assures that the action prescribed
by σ1 at history h′ is uniquely optimal.

5.3 Proof of Lemma 3

Suppose first that player 1 faces a history at which nhB > NB(nhT ) and hence
T is prescribed. Then analogously to the proof of Lemma 2, we can compare
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the following two paths:

“Equilibrium path′′ Payoff Deviation path Payoff

TL a BL b
TL a TL a
TL a TL a
...

...
...

...
TL a TL a
BR d TL a

This looks precisely like the comparison we made in proving Lemma 2. The
difference is that here we do not know that the final play of B on the alleged
equilibrium path is indeed a prescription of the equilibrium (and hence the
quotation marks). The previous play of TL may have produced a point between
NB(nhT ) and NB(nhT ) (in which case B is prescribed) but may also have
produced a point below NB(nhT ) (in which case T is prescribed). Nonetheless,
the play listed under “equilibrium path” is feasible and, since it gives a higher
payoff than does the deviation (by the same argument as offered in proving
Lemma 2), the deviation is suboptimal.

Now suppose nhB < NB(nhT ). First, we fix nhT , and argue that if player 1
chooses B at (nhT , nhB − 1), then player 1 must also choose B at (nhT , nhB).
Suppose this is not the case. Then player 1’s strategy specifies T at (nhT , nnB),
and we can consider the following equilibrium path and proposed deviation,
beginning at history (nhT , nhB − 1),:

Equilibrium path Payoff Deviation path Payoff

BR d TR c
TR c BR d

These two paths both terminate at (nhT +1, nhB), and hence thereafter can be
taken to generate identical continuation payoffs. Because c > d, the proposed
deviation yields higher payoff. This establishes that if player 1 chooses B at
(nhT , nhB − 1), then player 1 must also choose B at (nhT , nhB), and hence
establishes the existence of a function NB(nT ) satisfying the second two bullet
points of the lemma.

Suppose qa + (1 − q)d > c, but (9) fails. Then there exists a history h and
corresponding (nhT , nhB), as well as a sequence {δk}∞k=0 with δk → 1 such that
the equilibrium outcome following history h is the play of TR in each subsequent
period, for a continuation payoff of c, for each k. In addition, there exists a
smallest integer n such that history h followed by n plays of B gives a history
h′ with (nh′T , nh′B) = (nhT , nhB +n) and nh′B > NB(nh′T ). Furthermore, as δ
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gets large, the continuation revenue given history h′ approaches (qa+(1−q)d).17

But since qa+ (1− q)d > c, we have, for sufficiently large δ,

(1− δn)d+ δn(qa+ (1− q)d) > c,

giving a contradiction.
It is once gain straightforward that this is the unique best response for player

1.

5.4 Proof of Lemma 4

The arguments are similar to those of Lemma 3, and we consider here only
cases where differences arise. Fix a history h and suppose nhB > NB(nhT )
but nhB < NB(nhT + 1). Then another play of T would lead to a history
(nhT + 1, nhB) with nhB < NB(nhT + 1), prompting player 2 to play R in the
next period. In cases 1 and 2, this is the equilibrium prescription for player 1.
In cases 3 or 4, a play of R is relatively more costly for player 1, and so player
1 preempts the appearance of R by playing B at history h. In particular, given
history h with (nhT , nhB), we have the following equilibrium path (initiated by
a preemptive B at history h) and possible deviation (initiated by playing T at
h):

Equilibrium path Payoff Deviation path Payoff

BL b TL a
TL a BR d

These two paths both terminate at (nhT + 1, nhB + 1), and hence thereafter
can be taken to generate identical continuation payoffs. Because b > d, the
equilibrium path is optimal for sufficiently patient players.

To establish the last claim in the lemma, we must confirm that, given a
history (nhT , nhB) with nhT ∈ (NB(nhT , NB(nhT + 1), that T appears in the
continuation play with average proportion that approaches q as δ approaches
1. This is the case for the strategies given in Lemma 3, and we hence need
only show that the current strategies induce the same limit. Now we note that,
beginning with history h, these strategies induce the following outcomes:

Lemma 3 strategies Current strategies

TL BL
BR BL
...

...
BR BL
BR TL

, (22)

17Once the history h′ is reached, continuation play features instances of TL and BR. As
δ → 1, the continuation payoff then is an average of payoffs a and d, with the probability
attached to a in this average being the limiting proportion of time a is played. This limit is q.
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at which point each strategy arrives at a history h′ with nh′T ∈ (NB(nh′T , NB(nh′T+
1). The argument can then be repeated, beginning with strategy h′. The result
then follows from noting that T and L appear in the same proportions under
both scenarios in (22).

5.5 Proof of Proposition 1

Let Σi be the set of functions of the form N2 → [0, 1] (where N is the set
of natural numbers, including 0). We interpret an element of N2 as a pair
(nhT , nhB) characterizing a history h, and a strategy for player i gives the
probability of playing T (player 1) or L (player 2) at each such history. Notice
that we are assuming that players make use only of the information in a history
identifying how often T and how often B has been chosen. This is restrictive, but
suffices to establish equilibrium. Strictly order N2 such that shorter histories
precede longer histories in the order, and then view an element of Σi as an
element of [0, 1]∞, where the zth component of [0, 1]∞ is the mixture chosen by
player i at the zth history (which will in general come well before period z).
Endowed with the product topology, this space is compact.

Fix a specification of the game, including a discount factor and specification
of the mechanical types, to be held constant throughout. Let f2 : [0, 1] → Σ2

be a correspondence, with f2(α
0) identifying the set of player-2 best responses

to the rational player-1 frequency α0. Let f1 : Σ2 → Σ1 be a correspondence,
with f1(σ2) identifying the set of player-1 best responses to the player-2 strategy
σ2. Let A : Σ1 → [0, 1] be a function, calculating the value of A0 (given the
discount factor) for the player-1 strategy σ1. Notice that the function A depends
on σ1 alone. In particular, we are restricting attention to a class of strategies in
which σ1(h) and σ2(h) both condition only on (nhT , nhB), the number of times
player 1 has played T and the number of times player 1 has played B. As a
result, the players’ behavior does not depend on what player 2 has chosen in
the past, and does not depend on the order in which player 1 has played T and
B. Fixing σ1 alone does not fix the distribution over histories—for this, we also
need to know σ2. However, for any period t, fixing σ1 fixes the distribution over
values (nhT , nhB) for histories of length t, and hence fixing σ1 alone suffices to
determine A.

It suffices for the existence of an equilibrium to show that Af1f2 : [0, 1] →
[0, 1] has a fixed point. This is obviously a correspondence from a compact set
into itself, so we must show that it is upper-hemicontinuous and convex-valued.

[Upper-hemicontinuity ] Let {α0(ℓ)}∞ℓ=1 be a converging sequence with α0(ℓ) →
α0. Let {A0(ℓ)}∞k=1 be a converging sequence of values withA0(ℓ) ∈ Af1f2(α

0(ℓ)).
We need to show:

lim
ℓ→∞

A0(ℓ) ∈ Af1f2(α
0).

Since A0(ℓ) ∈ Af1f2(α
0(ℓ)), there exist sequences {σ1(ℓ)}∞ℓ=1 and {σ2(ℓ)}∞ℓ=1

37



with (taking subsequences if necessary)

σ2(ℓ) ∈ f2(α
0(ℓ))

σ1(ℓ) ∈ f1(σ2(ℓ))

A0(ℓ) = A(σ1(ℓ))

lim
ℓ→∞

σ2(ℓ) = σ2

lim
ℓ→∞

σ1(ℓ) = σ1.

Because player 2’s payoff function is continuous, we have σ2 ∈ f2(α
0). It then

suffices to show
lim
ℓ→∞

A0(ℓ) ∈ Af1(σ2).

Because player 1’s payoff function is continuous, we have σ1 ∈ f1(σ2). It then
suffices to show

lim
ℓ→∞

A0(ℓ) = A(σ1).

This follows from the continuity of A.
[Convex-valuedness] Fix α0 and let A0 and A0′ be distinct members of

Af1f2(α
0). We need to show that Af1f2(α

0) contains every convex combination
of A0 and A0′ . There exist player-2 strategies σ2 and σ′

2 with A0 ∈ Af2(σ2)
and A0′ ∈ Af1(σ

′
2), and σ2, σ

′
2 ∈ f2(α

0). Because f2 is a best-response corre-
spondence, it is convex-valued, and hence {λσ2 + (1 − λ)σ′

2}λ∈(0,1) ∈ f2(α
0).

It then suffices to show that Af1({λσ2 + (1 − λ)σ′
2}λ∈(0,1)) is convex. Let

g : [0, 1] → [0, 1] be a correspondence with g(λ) = Af1(λσ2 + (1− λ)σ′
2). Then

g(λ) is upper-hemicontinuous, because f1 is upper-hemicontinuous and A is con-
tinuous. It follows from the fact that f1 is a best response correspondence that
f1(λσ2 +(1−λ)σ′

2) is convex-valued, and the continuity of A then ensures that
Af1(λσ2 + (1 − λσ′

2) = g(λ) is convex valued. But an upper-hemocontinuous,
convex-valued correspondence from ℜ into ℜ preserves convex sets, giving the
result.

5.6 Proof of Proposition 2

[Sufficiency ] Suppose c > d and c > q∗ max{a, c}+(1− q∗)max{b, d}. Consider
a candidate equilibrium in which α0 = 1. Then playing T in each period gives
player 1 a payoff of c. The highest alternative payoff is q∗ max{a, c} + (1 −
q∗)max{b, d}, which gives the result.

[Payoff Characterization] This result follows from noting that if player 1
plays T in every period, then there will only a finite number of periods in which
player 2 can play L, after which 2 plays R and player 1’s payoff is c in every
subsequent period. The length of the initial string depends on the specification
of mechanical types, but is independent of the discount factor. Hence, as δ
gets large, this initial string becomes insignificant in player 1’s payoff, which
approaches c.
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More precisely, suppose we have a value ε > 0 and a sequence of discount
factors {δk}∞k=1 with limk→∞ δk = 1 and a sequence of equilibria, each with its
corresponding value α0

k describing player 1’s behavior and with its corresponding
functionNBk describing player 2’s behavior, in each which player 1 earns a payoff
less than c− ε. Fix one such equilibrium, and consider the alternative strategy
for player 1 of always playing T . If NBk(0) > 0, then the result is that TR
appears in every period, giving a payoff of c and a contradiction to the claim
that the purported equilibrium is an equilibrium. Suppose NBk(0) = 0. Then
define n∗(α0

k) to be the smallest integer with the property NBk(n
∗(α0

k)) > 0.
Notice that the function NBk depends on α0

k but not δk, so that we can indeed
write n∗ as a function only of α0

k.
The payoff from playing T in every period is bounded below by

(1− δ
n∗(α0

k)
k )min{a, c}+ δ

n∗(α0
k)

k c.

It thus suffices to show that there exists an integer M such that

sup
α0∈[0,1]

n∗(α0) < M. (23)

In particular, if this relationship holds, then no matter what the equilibrium
value of α0, player 1 can ensure (by always playing T ) an outcome path featuring
at most M periods of TL, followed by the perpetual play of TR. As δk → 1,
the payoff from this path approaches c.

We thus need only to verify (23). For this, we need only recognize that
n∗(α0) is maximized when α0 = 0, and this maximum is finite. In particular,
there is at least one mechanical type k with αk > p∗. As a result, there is a finite
number of observations of T that will cause player 2 to attach sufficiently large
posterior probability to mechanical types who play T with probability greater
than p∗ as to make R a best response.

5.7 Proof of Proposition 3

Proof. [Necessity ] Suppose that c > p∗ max{a, c} + (1 − p∗)max{b, d} and
c > q∗ max{a, c} + (1 − q∗)max{b, d}. Then it must be that c exceeds both of
b and d. We show that there exists no mixed-outcome equilibrium.

If we have c > a, then the c is the largest stage-game payoff available to
player 1. In addition, by consistently playing T , player 1 can ensure that player
2 will play R in all but a bounded (independently of α0) number of periods,
delivering a payoff that converges to c as δ → 0. No mixed-outcome equilibrium
can provide as high a payoff, giving the result.

Suppose instead that c < a. As before we must have c > b, d, and the
function qmax{a, c}+ (1− q)max{b, d} is increasing in q.

Fix a sequence of discount factors {δk}∞k=1 with δk → 1 and a corresponding
sequence of equilibria featuring values {α0

k}∞k=0 with α0
k → α0 < 1. Notice first

that we must have limk→∞ α0
k > max{q∗, p∗}. This follows from noting that,

given α0
k, an upper bound on player 1’s payoff is given by

α0
ka+ (1− α0

k)max{b, d}.
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This payoff can exceed c only if α0
k > max{q∗, p∗}. Hence, if α0

k ≤ max{q∗, p∗},
then player 1’s current strategy gives an expected payoff falling short of c. But
the perpetual play of T gives a payoff that converges (as k → ∞)) to c (since,
regardless of α0, such a strategy must induce player 2 to play T in all but a
finite (and bounded, as k → ∞) number of periods), a contradiction.

This leave open the possibility that we my have max{q∗, p∗} < limk→∞ α0
k <

1. If this is to be the case, then for each k, there must then be a history hk

after which player 1 plays B for a finite number of periods, earning payoff d in
each such period, until reaching history a h′

k with nh′
kT

= nhkT and nh′
kB

>
NB(nh′

kT
). Indeed, the first time that player 1 plays B gives rise to such a

history. Hence, we can take each hk to be a history of the form T · · ·T . Let
α0
k(hk) be the value of A0, calculated in the continuation game beginning with

history hk. We must have (taking a subsequence if necessary to ensure the
existence of the limit) limk→∞ α0

k(hk) ≤ α0.
Upon reaching history hk, the consistent play of T would generate a payoff of

c. It suffices for a contradiction to show that the continuation payoff falls short
of c for sufficiently large k. Once again, an upper bound on this continuation
payoff is given by

α0
k(hk)a+ (1− α0

k(hk))max{b, d}.

This payoff falls short of c if α0
k(hk) ≤ max{q∗, p∗}, since qmax{a, c} + (1 −

q)max{b, d} increases in q and falls short of c for q ≤ max{q∗, p∗}. Hence,
we avoid a contradiction only if there exists ε with α0

k(hk) > max{q∗, p∗} + ε.
Suppose this is the case. Then beginning at hk, player 2 will within a finite
number of periods play R in every subsequent period. (This is true no matter
what the value or α0

k, given that we know α0
k > q∗.) This ensures that player

1’s continuation payoff at history hk must fall short of c. This in turn is a
contradiction since playing T in every period after every history in hk gives a
payoff approaching (as δk → 1) c.

[Sufficiency ] Suppose p∗ max{a, c} + (1 − p∗)max{b, d} > c. Then there is
an interval of probabilities [p, p] with the property that for any p ∈ [p, p], we

have pmax{a, c} + (1 − p)max{b, d} > c. Now fix a value α0 and consider a
strategy in which player 1 first plays a sequence of B or T , as needed, to make
player 2 nearly indifferent between L and R, and player 1 thereafter alternates
between T and B, playing T q proportion of the time, so as to maintain 2’s near
indifference and to achieve payoff qmax{a, c} + (1 − q)max{b, c} for some q.
What will the value of q be in this mixture? The answer depends on α0, but we
must have q > α0 when α0 < p∗, and must have q < α0 when α0 > p∗. (If, for
example, α0 < p∗ and player 1 plays so that q < α0, then player 2 will eventually
come to attach arbitrarily high probability to types less than p∗, prompting
2 to consistently play L. Similarly, if α0 > p∗ and player 1 plays so that
q > α0, then player 2 will eventually come to attach arbitrarily high probability
to types larger than p∗, prompting 2 to consistently play L.) Next, consider
the correspondence Af1f2, defined in the proof of Proposition 1 (f2 associated
player-2 best responses to values of α0, f1 associates player 1 best responses with
player-2 strategies, and A identifies the resulting empirical frequency of player-
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1 actions.). Our preceding calculations ensure that for sufficiently large δ, we
have Af1f2(p) > p. In particular, any strategy with α0 ≤ p must induce player
2 to eventually always play L, which is suboptimal (because always playing T
ensures a payoff arbitrarily close to c). Alternatively, for the case of α0 = p,
we have just established there is a strategy for player 1 with q < p (and hance
a smaller average probability of T , when δ is large, that gives a payoff larger
than c. Since any strategy that plays T more than p of the time must lead to a
payoff of c, we must have Af1f2(p) < p, for sufficiently large δ. It then follows
from a version of the intermediate value theory and the fact that Af1f2 is an
upper-hemicontinuous, convex-valued correspondence that it has a fixed point
on [p, p], which corresponds to an equilibrium.

Suppose p∗ max{a, c}+(1−p∗)max{b, d} < c < q∗ max{a, c}+(1−q∗)max{b, d}.
Then it must be that d < c < a. Notice that this in turn ensures that q∗ > p∗.
We can construct an equilibrium for this case as follows. In the first period,
player 1 is indifferent between T and B, and mixes, placing probability ζ on T .
If the first action is T , then player 1 plays T thereafter. If the first action is B,
then player 1 plays B until making player 2 indifferent between L and R, after
which point player 1 maintains this indifference. This gives a long-run average
T play of α0 > p∗. We have aggregate play for player 1 of

α0 = ζα0 + (1− ζ)α0.

It is then a straightforward calculation, following from the facts that p∗ max{a, c}+
(1− p∗)max{b, d} < c < q∗ max{a, c}+ (1− q∗)max{b, d} and q∗ > p∗ that we
can choose α0 and ζ so that

• Player 1 is indifferent over the actions T and B in 1’s initial mixture,

• Probability α0 makes player 2 indifferent between L and R, in the process
causing player 2’s posterior to concentrate probability on types α and α0,

completing the specification of the equilibrium.

5.8 Proof of Proposition 4

Proposition 4.1 is a restatement of parts of Propositions 2 and 3.
Consider Proposition 4.4. Propositions 2 and 3 ensure that there is no pure

equilibrium, in this case, and that there exists a binary mixed equilibrium, with
payoff c. The fact that P ∗ < c ensures there is not unary mixed equilibrium,
since the payoff of such an equilibrium must approach P ∗, while c is always a
feasible payoff.

Consider Proposition 4.3, so that Q∗ < c < P ∗. This configuration is con-
sistent with c > d, and if and only if this is the case, there is a pure equilibrium
with payoff c (by Proposition 2). Proposition 3 ensures the existence of a unary
mixed equilibrium. We need then only argue that there is no binary mixed equi-
librium. Notice first that a binary mixed equilibrium can exist only if c > d. In
particular, a binary equilibrium gives payoff c. If c < d, then for any configura-
tion of player 1 strategies (including a proposed strategy for the rational player
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1), mimicking type α gives play 1 a payoff that is a mixture of c and d, which is
larger than c, and hence vitiates the proposed binary mixed equilibrium. Hence,
suppose c < d. Then it must be that a > c (in order for P ∗ > c to be possible),
and Q∗ < c < P ∗ is possibly only if q∗ < p∗. But then the construction of a
binary equilibrium must feature α0 < α0 > q∗, a contradiction.

Consider Proposition 4.2. The fact that Q∗ > c ensures there is no pure
equilibrium, and Proposition 3 has constructed a unary mixed equilibrium. We
can mimic the construction of Proposition 3 to obtain a binary mixed equi-
librium if c > d. Finally, we characterize the unary mixed equilibrium. Let
{δr}∞r=1 is a sequence of discount factors with δr → 1. Suppose p∗ max{a, c}+
(1−p∗)max{b, d} > c. Let there be a sequence of equilibria with corresponding
values {α0

r}∞r=0, with limit α0 ̸= p∗. Let α0
r(h) be the continuation value of α0,

after history h, under the rth equilibrium.
We have supposed the sequence is unary, meaning that as r gets large, P{h :

|α0
r(h) − α0

r| > ε} converges to zero for all ε > 0. Then for sufficiently large r,
player 2 learns player 1’s type and, since α0

r is bounded away from p∗, player
2 eventually either always plays L or always plays R. Player 1 thus receives
either a mixture of payoffs c and d or a mixture of a and b. Suppose the first is
the case, (the second is similar). If c > d, then we have a contradiction, since
player 1 would be better off always playing T for a payoff arbitrarily close to c,
ensuring that the candidate equilibrium is in fact not an equilibrium. If d > c,
then player 1 would be better off playing a mixture arbitrarily close to p∗.
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