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I. Introduction

I.1 An Example: The Chain Store Game

Consider the chain-store game:

Out In

Acquiesce 5,0 2,2

Fight 5,0 −1,−1

If played once, this game has a unique Nash equilibrium, (Acquiesce,In).



What if the game is played (finitely) many times?

– One’s intuition is that player 1 will fight early entry, in order to

deter later entrants.

– However, the (finitely repeated) game has a unique subgame per-

fect equilibrium, in which (Acquiesce,In) is played in every period.

This is a simple backward-induction argument.

– This is known as the “chain store paradox.”

– Similarly, it is intuitive that players might cooperate in the early

rounds of a finitely-repeated prisoners’ dilemma, but here the only

Nash equilibrium is that both players always defect.



Let’s add some incomplete information:

– Now suppose that with probability 1−µ∗0, player 1 is the “normal”

type.

– With probability µ∗0 (small), player 1 is a “commitment” type who

always fights entry.

– Player 1’s type is 1’s private information.

– We can interpret the commitment type as having different payoffs,

that make it optimal to fight, or as a type who is simply “commit-

ted” to fighting.



Some things that are no longer equilibrium outcomes:

– It is not an equilibrium for the normal type to acquiesce in every

period.

– It is also not an equilibrium for the normal type to fight in every

period. For example, the normal type will acquiesce in the last

period.



The sequential equilibrium has the following properties (Kreps, Milgrom,

Roberts and Wilson (1982)):

– There is an initial phase in which (Fight,Out) is played, and 2’s

beliefs remain unchanged at the prior.

– There is a terminal phase in which 2 mixes between In and Out,

and 1 mixes between Acquiesce and Fight.

– If (Acquiesce,In) occurs, then 1 is revealed to be normal, and

(Acquiesce,In) is played in every subsequent period.

– If Out is played, 2’s beliefs remain unchanged. If (Fight,In) is

played, 2 revises upward the posterior probability that 1 is the

commitment type.



– In the final period, player 2 mixes while player 1 plays Acquiesce.

As the number of repetitions grows:

– The length of the terminal phase remains fixed. This is deter-

mined by backward-induction calculations that do not depend on

the length of the game.

– The initial phase grows long, consuming virtually all of the game.

– We thus see (Fight,Out) most of the time.



I.2 The Reputation Literature

The idea of “reputation” has been modeled many different ways in the

literature. Examples include:

– Models of expert advice, such as Morris (2001).

– Models of career concerns, such as Holmström (1982,1999).

– Models of bargaining, such as Abreu and Gul (2000).

– ...

– Models based on repeated games.



I.3 Reputations in Repeated Games

The idea of reputation is applied to repeated games in two ways:

– As an interpretation of equilibria in repeated games of complete

information.

– By incorporating incomplete information.



I.4 The Objective

Reputation ideas were originally applied to finitely-repeated games, such

as the chain-store game or the prisoners’ dilemma, as a way of expand-

ing the set of equilibrium outcomes to avoid seemingly counterintuitive

implications.

More recently, reputation ideas have been applied to infinitely-repeated

games, as a way of putting bounds on equilibrium payoffs.

The techniques are much the same.

This is commonly interpreted as a robustness exercise, but this interpreta-

tion must be adopted with care.



II. Reputations in Repeated Games of Perfect Mon-
itoring

II.1 The Model

Players include:

– The normal player 1, a long-run, optimizing player.

– One or more commitment types of player 1, mechanical players.

– Player 2, a short-run player.



II.2 Stackelberg Types and Actions

Define:

v∗1 = max
a1∈A1

min
α2∈BR(a1)

u1(a1,α2)

a∗1 ∈ arg max
a1∈A1

min
α2∈BR(a1)

u1(a1,α2)

v∗∗1 = sup
α1∈∆A1

min
α2∈BR(α1)

u1(α1,α2).



For example, consider the product-choice game:

h `

H 2,3 0,2

L 3,0 1,1



II.3 The Basic Reputation Result

Proposition 1 Let A2 be finite and let µ0 attach positive probability to

both the normal type and the pure Stackelberg type. Then there exists a

(parameter dependent) k such that in every Nash equilibrium, player 1’s

payoff is at least

δkv∗1 + (1− δk)min
a
u1(a).

Fudenberg and Levine (1989).

We’ll first interpret this result, and then sketch the proof.



II.4 Interpretation

– The implication is that a patient player 1 gets arbitrarily close to

the Stackelberg payoff. A chance of being the Stackelberg player

is just as good as being that player.

– It is familiar that results in repeated games require patience. How-

ever, in the folk theorem, patience is important in strengthening

incentives, while here is is important in reducing the cost of repu-

tation building.

– Despite this interpretation of the role of patience, this result and

its proof says nothing about equilibrium behavior.

– A2 can be infinite, at the cost of a more cumbersome argument.



– We can also accommodate multiple short-run players. We sim-

ple replace “best response” with “Nash equilibrium in the induced

short-run player game” in the Stackelberg definitions.



II.5 Should We Expect Stackelberg Types?

This result is sometimes criticized for requiring the fortuitous appearance

of (only) the Stackelberg type.

The commitment type was considered intuitive in the chain store game,

but this may not always be the case.

– The result still holds if the commitment type is not the Stackelberg

type, but it may give a lower payoff bound. Whatever commitment

type is there, player 1 can do as well as being known to be that

commitment type.

– There may be many commitment types, such as countably many.

In this case, player 1 “gets to choose his favorite type.”



II.6 The Argument

There are three parts to the proof:

– A characterization of player 2’s beliefs on a useful set of states.

– A characterization of player 2’s behavior, given these beliefs.

– The combination of these two elements to get the proof.



II.7 Beliefs

Some notation:

Ω Set of states

Ω′ States in which a∗1 is chose in every period

Ω′′ States in Ω′ whose histories all have positive probability

µ∗0 Prior probability of Stackelberg type

qt Probability player 2 attaches to a∗1 in period t

ηz Number of periods qt < z.



The belief lemma:

Lemma 1

P
{
ηz >

lnµ∗0
lnz
|Ω′

}
= 0.



The argument: On Ω′′,

P(Stackelberg type|ht+1) =
P (Stackelberg type|ht)

qt

This follows immediately from Bayes’ rule if only 1’s actions are observed.

A straightforward technical argument extends to the case in which 2’s

actions are observed as well.

Then we note that

– Either qt is large or the probability attached to the Stackelberg

type increases.

– A high probability of the Stackelberg type implies that qt is large.



II.8 Best responses

The best response lemma:

Lemma 2 There exists z∗ ∈ (0,1) such that

α1(a∗1)> z∗⇒BR(α1)⊂BR(a∗1).

This is obvious when A2 is finite, and otherwise requires a continuity ar-

gument.



II.9 The Reputation Result

– Fix z > z∗. Let k =
lnµ∗0
lnz∗ .

– Let the normal player 1 play a∗1 in each period. Then in all but k

periods, 2 plays a best response to a∗1.

– Then 1’s payoff is at least

δkv∗1 + (1− δk)min
a
u1(a).



III. Reputations in Repeated Games of Imperfect
Monitoring

We are interested in imperfect monitoring for two reasons:

– Monitoring may often be imperfect.

– We can then consider mixed commitment types in perfect moni-
toring games.

The arguments are much the same, but require two changes:

– We must revisit the Stackelberg payoff notion.

– We need a new belief lemma.



III.1 The Model

Player i now has an action set Ai and a signal set Zi.

Special cases:

– Perfect monitoring, mixed commitment type.

– Public signals, player 2 cannot see previous player-2 actions.

– Public signals, public short-run actions.

– Private signals.



III.2 Stackelberg Payoffs

Let α∗1 be the commitment action.

The bound on player 1’s payoff will be something like

inf
α2∈BR(α∗1)

u1(α∗1,α2).

However, we need to be more precise about “BR(α∗1)”.

Let

BRε(α1) = {α2|∃α′1 s.t. α2 ∈BR(α′1), |ρ(·|α1,α2)−ρ(·|α′1,α2)|< ε}.

BR∗ε(α1) = {α2 : supp(α2)⊂BRε(α1)}



III.3 The Reputation Result

Proposition 2 For any ε > 0, there exists k such that in any Nash equilib-

rium, player 1’s payoff is at least

(1− ε)δk inf
α2∈B∗ε(α∗1)

u1(α∗1,α2) + (1− (1− ε)δk) min
a∈A

u1(a).

Fudenberg and Levine (1992).



An example. Consider the product choice game.

h `

H 2,3 0,2

L 3,0 1,1

Suppose h and ` are public, but H and L give rise to public signals y and

y with probabilities (p,1−p) and (q,1− q) (p > q).



If we set α∗1 = 1
2H + 1

2L, then for all ε, BRε(α∗1) = ∆A2, and we have a

lower bound on player 1’s payoff of 1
2.

If we shade the commitment type just slightly toward H, then BRε(α∗1) =

{L}, and we get a bound close to 3
2.

This exceeds the public-monitoring complete information payoff.



III.4 Sorin’s Belief Lemma

Let Ω be a Borel space with filtration Ft. Let P̂ and P̃ be measures on Ω,

and let P be their (nontrivial) mixture µP̂+ (1−µ)P̃. Then for

Lemma 3 For any ε and ψ > 0, there exists k such that

P̂
{
|{t : dt(P, P̂)≥ ψ}|> k

}
≤ ε,

where

dt(P, P̂) = sup
A∈Ft+1

|P(A|Ft− P̂(a|Ft)|.



IV. Temporary Reputations

IV.1 The Model

– Full support public or private monitoring.

– Player 1 is either normal or commitment type.

– Player 2 has unique best response to commitment action, that does

not give Nash equilibrium of the stage game.

– For every player-1 pure action, the signal distributions induced by

player 2’s pure actions are linearly independent.



IV.2 The Temporary Reputations Result

Proposition 3

P(Commitment type|F2t)→ 0 P̃ almost surely.

Cripps, Mailath and Samuelson (2004,2007).



IV.3 The Intuition

– Suppose not. Player 2’s beliefs are a martingale, and so must

converge to an interior belief.

– 2’s beliefs can converge to something in the interior only if play

converges to α∗1.

– Then 2 will play a best response to α∗1.

– Then the normal player 1 will deviate from α∗1, a contradicting 2’s

beliefs.

This is not a limiting result in δ, but the limits must be interpreted carefully.



V. Discussion

There are many extensions we might consider.

What are reputation models missing?



VI. Two Long-Run Players

VI.1 The Model

Suppose player 2 is also a long-run player. There will be two sources of

asymmetry in the model:

– There is incomplete information about player 1’s type.

– We will fix δ2 and let δ1→ 1.

We should in general expect to work with some asymmetry.

Assume monitoring is perfect.



VI.2 A First Intuition

Then it seems we should expect our previous results to go through in a

pretty straightforward way. In particular, if player 1 plays a1 in each period,

we again have

P
{
ηz >

lnµ∗0
lnz
|Ω′

}
= 0.

In particular, this result depends only on belief updating, and is unaffected

by whether player 2 is short-run or long-run.

Then we need only check that player 2 will play a best response.



VI.3 The Difficulty

Consider the game:

L C R

T 10,10 0,0 −z,9

B 0,0 1,1 1,0

The (pure and mixed) Stackelberg action is T , with payoff 10.



Types for player 1:

– Normal, prior probability .8, in equilibrium plays trigger strategy

that begins with T and plays T until first observingB, then switches

to B.

– Stackelberg, prior probability .1, always plays T .

– Punishment, prior probability .1, plays T unless some out-of-equilibrium

action observed, thereafter plays B.



Player 2’s behavior:

– Alternate between L and R, as long as 1 plays T . Should 1 ever

play B, conclude 1 is the punishment type and thereafter play C.

– Suppose 2 has deviated. Then 2 plays L and if 1 plays T , conclude

1 is not the punishment type, and play L. If one plays B, conclude

1 is the punishment type and play C.

Player 1’s payoff is 10−z
2 , can be made arbitrarily close to his pure minmax

payoff of 1.

Player 2’s payoff is 9.5.



Is this an equilibrium?

– Consider player 2. 2’s equilibrium payoff is 9.5. A deviation on the

part of player 2 gives 2 a payoff of 10 if 1 is not the punishment

type (probability .9), and 1 if player one is the punishment type

(probability 01), for an expected payoff of 9.1.

– If 1 deviates, player 2’s actions are clearly optimal, given her beliefs.

– What about player 1? If 1 deviates, he gets 1, which is suboptimal.

– Sequential rationality? If 1 deviates, subsequent play is a stage-

game Nash equilibrium, which is OK. If 2 deviates, the normal

player 1 gets 10, the maximum possible, and hence must be OK.



Comments:

– This example is adapted from Schmidt (1993). We can make all

of player 1’s types payoff types.

– Celantani, Fudenberg, Pesendorfer and Levine (1996) construct a

similar example without a punishment type.

The key to this result is that player 2 learns to expect the Stackelberg

action, but cannot be sure that this is the Stackelberg type. This is irrel-

evant for a short-run player 2, but the possibility of the punishment type

can terrify a long-run player 2.



VI.4 Conflicting Interests

The stage game has conflicting interests if the pure Stackelberg action a∗1
mixed minmaxes player 2.

Examples:

C D

C 2,2 −1,3

D 3,−1 0,0

This is the prisoners’ dilemma. a∗1 = D, and so we have conflicting inter-

ests.



h `

H 2,3 0,2

L 3,0 1,1

In the product choice game, a∗1 = H, and we do not have conflicting in-

terests.

Out In

Acquiesce 5,0 2,2

Fight 5,0 −1,−1

In the chain store game, a∗1 = F , and we have conflicting interests.



Consider a version of the ultimatum game:

– Simultaneous moves, proposal from player 1 (of how much goes to

2) and reservation value for 2.

– Finite set of offers, surplus of size 1.

– If offers are {0,1/n,2/n, . . . ,1}, then a∗1 = 1/n, and we do not

have conflicting interests.

– If offers are {1/n,2/n, . . . ,1}, then a∗1 = 1/n, and we do have

conflicting interests.



L C R

T 3,2 0,1 0,1

B 0,−1 2,0 0,−1

Here, a∗1 = T , which does not minmax player 2. Notice, however, that B

does minmax player 2.



VI.5 The Reputation Result

Proposition 4 Suppose there exists a positive-probability commitment type

with action a′1 that mixed minmaxes player 2. Then in any Nash equilib-

rium, player 1’s equilibrium payoff is at least

δk1 min
α2∈BR(a′1)

u1(a′1,α2) + (1− δk)min
a
u1(a),

where k depends on δ2 but not δ1.

Schmidt (1993).



Comments:

– If the game has conflicting interests, a sufficiently patient player 1

gets very close to his Stackelberg payoff.

– Even if the game does not have conflicting interests, reputation

may be valuable for player 1. Consider:

L C R

T 3,2 0,1 0,1

B 0,−1 2,0 0,−1



VI.6 The Argument

The intuition:

– In our opening example, 2 feared best responding to the commit-

ment action for fear of being punished.

– Now we have a case in which a best response to the commitment

action minmaxes 2. No punishment can do worse than minmax 2.

As a result, nothing can deter 2 from best-responding to commit-

ment action.



The steps in the proof:

The intuition:

– Let Ω′ be the outcomes with positive-probability histories that play

the Stackelberg action in every period.

– Consider histories ht consistent with Ω′. Show that there exists ε

and L such that if player 2 expects less than her minmax payoff at

ht conditional on Ω′, then there must exist a period with the next

L periods at which player 2 attaches less than 1−ε probability to

the commitment type.

– Hence, for every L periods in which player 2 does not best respond

to the commitment action, there must be a period in which the

commitment action is expected with probability less than 1− ε.



– From our previous belief lemma, on Ω′, there is a bounded number

of times player 2 can expect t;he commitment action with proba-

bility less than 1−ε, and hence a bounded number of times player

2 can not play a best response to the commitment action.



VI.7 Extensions

There are many extensions and variations on this basic result.

– Cripps, Schmidt and and Thomas (1996) show that one can get

somewhat weaker reputation results for actions that do not minmax

player 2. Intuitively, if player 1 is possibly committed to a′1, then

player 1 can get a payoff at least

min
α2∈D(a′1)

u1(a′1,α2),

where

D(a′1) = {α2|u2(a′1,α2)≥ v2}.



For an example, consider the battle of the sexes:

L R

T 0,0 3,1

B 1,3 0,0

The Stackelberg action is T , which does not minmax player 2, so
we do not have conflicting interests. D(T ) is the set of actions
that put probability at least 3/4 on R, and so player 1 can get a
payoff at least 9/4.

– Celantani, Fudenberg, Pesendorfer and Levine (1996) extend this
result to imperfect monitoring, in the process obtaining a quite
high payoff bound.

– Evans the Thomas (1997) obtain a similar bound using “punish-
ment” commitment types.



– Cripps, Mailath and Samuelson (2004,2007) once again establish

a temporary-reputations result.

– We can establish some results for equal discount factors, but these

are quite limited. For example, consider the game:

L R

T 1,1 0,0

B 0,0 0,0

Cripps and Thomas (1997) show that if player 1 is either normal

or a commitment type playing T , there are equilibria with payoffs

arbitrarily close to (0,0).



VII. Reputation as Separation

VII.1 The Model

The goal is a model that

– allows us to characterize behavior, and

– allows us to examine reputations as assets.

The key will be to build a model of reputation based on separation and

limited coordination.



The players and actions:

– Long-lived player 1.

– Continuum of short-lived, player 2’s with idiosyncratic, private sig-
nals.

– Player 1 can be normal (probability µ0) or inept (probability 1−µ0).

– The normal player 1 chooses from {L,H}. Inept player one always
chooses L.

– L is free, H costs c.

– There are two signals z and z. H gives z with probability ρH , L
gives z with probability ρL < ρH .



Expectations:

– F is a cumulative distribution of player 2’s expectation of high

effort.

– Player 1’s payoff is p(F ) minus cost (if any), where p is continu-

ous (weak convergence) and increasing (first-order stochastic dom-

inance).

– One example: perfect price discrimination.

In each period, the existing player 1 is replaced with probability λ, with a

new player whose type is drawn anew.



VII.2 Equilibrium

There always exists an L equilibrium.

Proposition 5 Fix λ > 0. Then for sufficiently small c, there exists a high-

effort equilibrium.

The intuition is that the normal type chooses H to convince consumers

his is not the inept type.



VII.3 The Role of Replacements

Replacements are important in this result:

Proposition 6 If λ = 0, then the is a unique pure sequential equilibrium,

in which the normal type always plays L.

The ides is that without replacements, too many good signals do “too

good” a job of convincing consumers, in the process destroying incentives.

Holmström (1982,1999) studies a related phenomenon, in that incentives

deteriorate with success, but there is always updating in his model, even

with low effort, and his is a model of symmetric information.



VII.5 The Role of Idiosyncratic Consumers

Suppose there is only one consumer, willing to pay a price equal to the

probability of high effort?

To what extent are Markov equilibria of this common consumer model

analogous to the equilibria of the idiosyncratic consumer model?

Proposition 7 Fix λ> 0. Then there exists a sufficiently small c such that

there exists a Markov equilibrium of the common-consumer model with

high effort.

Proposition 8 Let λ = 0 and suppose ρH = 1−ρL. Then there is unique

pure Markov equilibrium, in which normal types always exert low effort



VII.6 Continuity

This suggests a parallel between idiosyncratic consumers and common con-

sumers, given that we consider Markov equilibria in the latter. But, the

assumption ρH = 1−ρL is a bit troubling. Let us explore that.

Proposition 9 Let λ = 0 and suppose there are no integers m and n with

(1−ρH)mρnH = (1−ρL)nρmL . Then

– There exists a pure Markov equilibrium in which the normal type initially

plays H with probability 1.

– Once a bad signal appears, L is played thereafter.

– H lasts for an exponentially distributed number of periods.



– 0 = liminfα(µ)< limsupα(µ) = 1.



Proposition 10 Let ρH = 1−ρL and λ= 0. Let

ρH + c(1− δρH)

δ(1−2ρH)
< 1.

Then there exists a mixed equilibrium in which the normal type initially

exerts effort with high probability. In this equilibrium, 0 = liminfα(µ) <

limsupα(µ) = 1.

Hence, we think of Markov equilibria coupled with a continuity require-

ment as capturing the essence of idiosyncratic consumers in the common

consumer model.



VII.7 Discrete Actions

Can we simplify further? Consider the game:

h `

H 3− c,3 1− c,2

L 3,0 1,1

Proposition 11 Let λ > 0. Then for sufficiently small c, there exists a

pure Markov equilibrium in which the normal firm exerts high effort, and

consumers choose h, if and only the posterior probability of the normal

type exceeds 1/2.



VII.8 Lost Consumers

What if consumers abandon the firm when they get too pessimistic? Con-

sider the game:

d b

H 0,0 2− c,1

L 0,0 2,−1

Proposition 12 If λ = 0, then ever pure Markov equilibrium features low

effort. If λ > 0, then for small λ and c, there exists a pure Markkov

equilibrium in which (H,b) is played for posteriors exceeding 1/2 and (L,d)

is played otherwise.



VII.9 Bad Reputations

Consider the “bad reputation” game of Ely and Välimäki (2003).

A consumer decides whether to hire a firm. The firm (privately) observes

the state and then decides whether to provide H or L service.

The consumer cannot observe what service is provided.



Payoffs:

If the state is θH , payoffs are:

hire not

H v,v 0,0

L −w,−w 0,0

If the state is θL, payoffs are

hire not

H −w,−w 0,0

L v,v 0,0

States are equally likely and w > v.



Equilibrium:

There is a unique equilibrium in the stage game, with payoffs (v,v).

The repeated game of complete information also has an equilibrium with

payoffs (v,v).

Suppose there is incomplete information. The firm is likely to be normal,

but with some probability is a bad type that always chooses H.



Proposition 13 As δ→ 1, the largest equilibrium payoff for the firm con-

verges to zero.

– The consumer will hire the firm if and only if the probability the

firm is normal is at least some threshold µ∗.

– Consider a posterior just above µ∗. Then the next H signal pushes

the firm into the “never hire” region.

– As a result, the firm will choose L no matter what the state. But

the consumer will not hire such a firm, a contradiction.



VIII. Discussion


