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Abstract

This paper studies a finite-horizon search problem in which two or more players

are involved. Players can agree upon a proposed object by a unanimous decision.

Otherwise, search continues until the deadline is reached, at which players receive

predetermined fixed payoffs. If players can benefit from the object of search only

at the deadline, the limit payoffs as the realizations of objects become frequent are

efficient but sensitive to the distribution of possible payoff profiles. In this case the

limit expected duration of search relative to the length of time before the deadline

is more than a half, and approximates one in the limit as the number of involved

players goes to infinity. If the benefits are received as soon as they agree, the

payoff approximates the Nash bargaining solution in the limit, and an agreement

is reached almost immediately.

1 Introduction

This paper studies search problems which involve two features that arise in many real-

life situations: The decision to “stop” is made by multiple individuals, and there is a

predetermined deadline at which a decision has to be made, whatever it is. The goal of

this paper is to provide a tractable framework to analyze such situations, and investigate

the implications of the two assumptions, especially in terms of welfare of the involved

players, and the duration of search.

To fix the idea of the kind of situations that we would like to analyze, let us provide

a concrete example: A husband and a wife are searching for an apartment in a city that
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they are moving in. The contract with their current apartment terminates at the end

of August, they need to find a place by September 1. Since they are not familiar with

the city, they ask a broker to pass information of available apartments to them. The

availability of new apartments depends on many specific factors, and so the news do not

come every single day. Whenever the broker passes an information to the couple, each

person (the husband and the wife) expresses whether they are willing to rent it or not.

The couple’s preferences are not perfectly aligned with respect to the type of apartments

they would like to reside, and both players need to agree to rent an apartment. The search

ends once an offer is accepted. The market is seller’s market, so the couple cannot “hold”

an offer and search a better one. If the couple cannot agree on anything by September

1, they will end up homeless.

To analyze this type of situations, we consider an n-player search problem with a dead-

line. Time is continuous, and according to a Poisson process an “opportunity” arrives.

At each opportunity, a payoff profile for all involved players realizes from some set ac-

cording to an iid distribution, and each player says “accept” or “reject.” The search ends

if all players accept, otherwise it continues. If no agreement is reached by the deadline,

players obtain an a priori specified fixed payoff. Since there is a trivial subgame per-

fect equilibrium in which all players always reject, we analyze an (appropriately defined)

trembling-hand equilibrium of this game in the limit as the Poisson arrivals become fre-

quent. Our main results are the following: If the benefits are received only at the deadline

(which corresponds to the situation in which the couple can only rent an apartment only

in September), the limit payoffs are efficient but sensitive to the probability distribution

of possible payoff profiles. In this case the limit expected duration of search relative to

the length of time before the deadline is more than a half, and approximates one in the

limit as the number of involved players goes to infinity. If players can benefit from the

object of search as soon as they agree (in the example this means the couple can rent

the apartment as soon as they sign the contract), the payoff approximates a point in the

Nash set (Maschler et al. (1988), Herrero (1989)) which generalizes the Nash bargaining

solution (Nash (1950)) to nonconvex domains. They reach an agreement almost imme-

diately in the limit. We further investigate the structure of equilibrium and relate the

forms of equilibria in these two situations.

As would be clear at this point, there are two key features in our model: deadline

and multiple agents. These two factors give rise to new challenges for model-making and

analysis of search problems, and as a consequence they lead us to obtain new insights

to search problems. In particular, these two things interact with each other. First, the

existence of deadline implies that the problem is nonstationary. That is, the problems

faced by the agents at different moment of time are different. Nonstationarity often

results in intractability, but we overcome this by using a continuous-time specification

and Poisson arrivals as described in the preceding paragraph, which turns out to be useful
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in recent developments of finite horizon games.1 Second, one may argue that since each

player’s decision at any given opportunity is essentially conditional on the situation where

all other agents say “yes,” the problem essentially boils down to a single-player search

problem. This argument misses an important key property of our model: It is indeed true

that at each given opportunity the decisions by the opponents do not affect a player’s

decision. However, the player’s expectation about the opponents’ future decisions affect

her decision today, and such future decisions by opponents are in turn affected by the

decisions at the further future by involved agents. These two features interact because

the two “futures” discussed in the previous sentence are different exactly due to the

nonstationarity.

1.1 Literature Review

Let us relate our work with the literature. First, although there is a large body of

literature on search problems with a single agent over infinite horizon, there are very

few works that diverge from these two assumptions.2 Some recent papers in economics

discuss infinite-horizon search models in which a group of multiple decision-makers de-

termine when to stop. Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui

(2011) consider a search model in which a unanimous agreement is required to accept an

alternative, and show that the equilibrium outcome is close to the Nash bargaining solu-

tion when players are patient. Despite absence of a deadline, these convergence results

to the Nash bargaining solution have a similar flavor to ours when payoffs realize as soon

as an agreement is reached. In Section 6.3, we will discuss a common logic behind these

convergence. Compte and Jehiel (2010) also analyze the general majority rule to discuss

the power of each individual to affect outcomes of search, and the size of the set of limit

equilibrium outcomes. Albrecht et al. (2010) consider the general majority rule, and show

that cutoffs in their strategies are lower for the decision-makers than for a player in the

corresponding single-person search model, and the expected duration of search is shorter

if they are more patient. Alpern and Gal (2009), and Alpern et al. (2010) analyze a search

model in which a realized object is chosen when one of two decision-makers accepts it,

unless one of them cast a veto which can be exercised only finite times in the entire search

process.3 Note that all of the above works consider an infinite-horizon framework.4

Second, there is an emerging new field on “revision games,” which concerns players’

1See Ambrus and Lu (2010a), Kamada and Kandori (2009), Kamada and Sugaya (2010a,b), and
Calcagno and Lovo (2010).

2See Rogerson et al. (2005) for a survey.
3Recent papers by Moldovanu and Shi (2010), and Bergemann and Välimäki (2011) analyze infinite-

horizon search problems where each player receives a private signal in every period.
4There is large literature of search models in Operations Research. Fewer works, however, consider

multi-person decision problems (See Abdelaziz and Krichen (2007) for a survey). Sakaguchi (1978)
proposed a two-player continuous-time infinite-horizon stopping game in which opportunities arrive ac-
cording to a Poisson process as in our model.
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interactions over continuous-time with finite horizon, where opportunities to “revise”

actions arise according to a Poisson process (Kamada and Kandori (2009), Kamada and

Sugaya (2010a,b), Calcagno and Lovo (2010)). An insight from these works is that when

action space is finite (as in our case) the set of equilibria is typically small and the solution

can be obtained by (appropriately implemented) backwards induction. Another insight

is that a differential equation is useful when characterizing the equilibrium. In our paper

we follow and extend these methods to characterize equilibrium.

Third, the multi-agent search problem is similar to the bargaining problem in that

both predict what outcome in a prespecified domain is chosen as a consequence of strategic

interaction between agents. On the other hand, the search model is distinguished from

bargaining in which players have full control of the proposals, as discussed by Compte

and Jehiel (2004, 2010). As opposed to the well-known bargaining models in which a

player is chosen as a “proposer” and makes an offer to other players, we assume that

there is no “proposer” but rather all players are passive. This assumption captures the

feature of situations that we would like to analyze. For example neither the husband

nor the wife designs and builds their house for themselves, but looks for an apartment

which is already built. The distinction between these “active” and “passive” players

is also important when we consider the difference between our work and the standard

bargaining literature.5

There are papers discussing continuous-time bargaining models with finite horizon, in

which players have full control of proposals. Ma and Manove (1993) argue continuous-

time bargaining with deadline where two players propose alternately, having options to

wait with retaining the right of proposal. They show that players reach an agreement

near the deadline as the delay of transmission of the proposal shrinks. Ambrus and Lu

(2010a) consider a model of coalitional bargaining in a similar context with ours.6 They

show general uniqueness of the Markov perfect equilibrium, and characterize the core as

the limit equilibrium outcomes in convex games.

Perhaps the most related are the papers by Gomes et al. (1999) and Imai and Salonen

(2009), who analyze models that have common features with ours, although their models

are different in several important aspects. As a consequence, the set of analyses imple-

mented are different, the proof methods are different, and importantly the results are

different even with respect to what seem common in these models. Detailed comparison

is made in Remark 2 of Section 6.2. Here we describe their works very briefly and point

out several important similarity and differences. Gomes et al. (1999) consider a model

of n-player discrete-time bargaining with a general coalitional form, in which a player

5Cho and Matsui (2011) present another view: A drawn payoff profile in the search process can be
considered as an outcome in a (unique) equilibrium in a bargaining game which is not explicitly described
in the model. From this viewpoint, every player is “active” although the “activeness” is hidden in the
model.

6See Ambrus and Lu (2010b) for an application of their model to legislative processes.
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is selected as a proposer with equal probability. They introduce a vector field on the

boundary of the set of feasible payoff profiles, and identify the limit of the subgame per-

fect equilibrium payoffs as breakdown probability vanishes and the horizon length tends

to infinity (while the duration of a single period is kept fixed). In addition to the model-

ing assumption and the difference with respect to the limit payoff, their models and ours

have different implication about the duration of search: Search ends immediately for any

discount rate (including the case with no discounting) in their model, while the duration

depends crucially on discount rate in our model. Imai and Salonen (2009) consider a

two-player discrete-time bargaining. They axiomatize their bargaining solution defined

as the limit equilibrium payoff as the number of periods in a fixed length of horizon tends

to infinity first and then the horizon length shrinks to zero or diverges to infinity. The

limit as the horizon length shrinks is the Raiffa bargaining solution, while the other limit

is the Nash bargaining solution. In contrast to their results, in our search model, the

limit payoff profile as realization of allocations becomes frequent is the Nash bargaining

solution irrespective of the length of time horizon for any positive discount rate. This is

because there is no “last opportunity” in our model.

The paper is organized as follows. Section 2 provides a model. In Section 3 we

provide basic results. In particular, we show that trembling-hand equilibrium takes the

form of cutoff strategies, by which we mean each player at each moment of time has a

“cutoff” of payoffs below which they reject offers and otherwise accept. In Section 4 we

consider the case in which discounting is not so much important relative to the frequency

of search (the case corresponding to the situation where the couple can rent an apartment

only in September), and in Section 5 we consider the opposite case, that is, the case in

which discounting is important relative to the frequency of search (the couples can rent

an apartment as soon as they sign the contract). Section 6 discusses further topics and

Section 7 concludes. All proofs are provided in Appendix.

2 Model

The Basic Setup

There are n players who face a search problem (X, xd) where X ⊂ Rn is the set of

possible payoff profiles (which we call “allocations”), and xd ∈ Rn is the disagreement

point assumed to be xd = (0, . . . , 0) ∈ Rn. Let N = {1, . . . , n} be the set of players. A

typical player is denoted by i, and the other players are denoted by −i.
Players with a common discount rate ρ > 0 search within a finite time interval [−T, 0]

with T > 0, on which opportunities of agreement arrive according to the Poisson process

with arrival rate λ > 0. At each opportunity, the nature draws an object which is char-

acterized by an allocation x = (x1, . . . , xn) ∈ X following an identical and independent
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probability measure µ defined on the Borel subsets of X. After allocation x is realized,

each player simultaneously responds by either accepting or rejecting x without a lapse of

time. Let B = {accept, reject} be the set of responses in this search process. If all players

accept, the search ends, and players receive the corresponding payoffs. We will consider

two specifications with respect to the timing that the payoffs realizes. The first is when

the payoffs realize only at the deadline, irrespective of the timing of agreement. In this

case the payoff profile from agreeing to allocation x is e−ρTx. The second is when the

payoffs realize upon agreement. In this case the corresponding payoff profile e−ρ(T−t)x.

Notice that the coefficient e−ρTx in the first case is a strictly positive constant, so the

first case is essentially equivalent to the case with ρ = 0 in the second case. If at least one

of the players rejects the offer, then they continue search. If players reach no agreement

before the deadline at time 0, they obtain the disagreement payoffs xd = (0, . . . , 0).

Assumptions

We make the following mild assumptions about X and µ throughout the paper.

Assumption 1.

(a) X is a compact subset of Rn.

(b) There exists an allocation (x1, . . . , xn) ∈ X with xi > 0 for all i ∈ N .

(c) For all x ∈ X, any neighborhood of x in X has a positive volume with respect to the

Lebesgue measure in Rn.

(d) µ is absolutely continuous with respect to the Lebesgue measure in X, and admits a

continuous probability density function f whose support is X.

(e) f is bounded away from zero, i.e., minx∈X f(x) > 0.7

Condition (a) is standard and assumed in all the papers we cited in the introduction.

Note however that X may not be convex.8 Condition (b) is an assumption not to make

the problem meaningless because a player should reject any allocation that gives her a

nonpositive payoff at any time before the deadline. Condition (c) rules out degenerate

domains such as points and line segments. This condition follows from the next condition

ifX is convex. Conditions (d) and (e) are standard regularity conditions of the probability

measure.

7The minimum exists because of Assumption 1 (d).
8Convexity is assumed in Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2011),

although Cho and Matsui (2011) discuss an application of their analysis to nonconvex cases.
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Histories and Strategies

Let us define strategies in this game. A history at −t ∈ [−T, 0] consists of

1. a series of time (t1, . . . , tk) when there was an opportunity of Poisson arrival before

−t, where k ≥ 0 and −T ≤ −t1 < −t2 < · · · < −tk < −t,

2. allocations x1, . . . , xk drawn at opportunities t1, . . . , tk respectively,

3. acceptance/rejection decision profiles (b1, . . . , bk), where each decision profile bl (l =

1, . . . , k) is contained in Bn \ {(accept, . . . , accept)},

4. allocation x ∈ X ∪ {∅} at −t (x = ∅ if no Poisson opportunity arrives at −t).

We denote a history at time −t by
(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
. Let H̃t be the set

of all such histories at time −t, and H̃ =
∪

−t∈[−T,0] H̃t. Let

Ht =
{(

(t1, x1, b1), . . . , (tk, xk, bk), (t, x)
)
∈ H̃t | x ̸= ∅

}
be the history at time −t when players have an opportunity, and H =

∪
−t∈[−T,0] Ht. A

(behavioral) strategy σi of player i is a function from H to a probability distribution over

the set of responses B.9 Let Σi be the set of all strategies of i, and Σ =
∏

i∈N Σi. For

σ ∈ Σ, let ui(σ) be the expected payoff when players play σ. A strategy profile σ ∈ Σ is

a Nash equilibrium if ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ

′
i ∈ Σi and all i ∈ N . Let ui(σ |h)

be the expected payoff of player i given that a history h ∈ H̃ is realized and strategies

taken after h is given by σ. A strategy profile σ ∈ Σ is a subgame perfect equilibrium if

ui(σi, σ−i |h) ≥ ui(σ
′
i, σ−i |h) for all σ′

i ∈ Σi, h ∈ H, and all i ∈ N .

Equilibrium Notions

A strategy σi ∈ Σi of player i is a Markov strategy if for history h ∈ Ht at −t, σi(h)
depends only on the time −t, and the present allocation xki for player i herself. A strategy

profile σ ∈ Σ is a Markov perfect equilibrium if σ is a subgame perfect equilibrium, and σi

is a Markov strategy for all i ∈ N . We will later show that players play a Markov perfect

equilibrium (except for histories in a zero-measure set) if they follow a trembling-hand

equilibrium defined below. For ε ∈ (0, 1/2), let Σε be the set of strategy profiles which

prescribe probability at least ε for both responses in {accept, reject} after all histories in

H. A strategy profile σ ∈ Σ is a trembling-hand equilibrium if there exists a sequence

(εk)k=1,2,... and a sequence of strategy profiles (σk)k=1,2,... such that εk > 0 for all k,

limk→∞ εk = 0, σk ∈ Σεk , σk is a Nash equilibrium in the εk-constrained game with a

9We assume that the set of histories has a measure naturally induced by the Catesian product of the
Lebesgue measures for t’s and x’s, and the counting measures for b’s. A strategy has to be a measurable
function with respect to this measure on H.
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restricted set of strategies Σεk for all k, and limk→∞ σk(h) = σ(h) for all h ∈ H̃, i.e. the

convergence is pointwise with respect to histories.10

Some More Terminologies

An allocation x = (x1, . . . , xn) ∈ X is (strictly) Pareto efficient in X if there is no

allocation y = (y1, . . . , yn) ∈ X such that yi ≥ xi for all i ∈ N and yj > xj for some

j ∈ N . An allocation x ∈ X is weakly Pareto efficient in X if there is no allocation

y ∈ X such that yi > xi for all i ∈ N . Let X̂ = {v ∈ Rn
+ |x ≥ v for some x ∈ X} be the

nonnegative region of the comprehensive extension of X.

3 Preliminary Results

In this section, we present preliminary results which will become useful in the subsequent

sections. We will show that there exists essentially a unique trembling-hand equilibrium,

in which every player plays a strategy with a cutoff manner. We will derive an ordinary

differential equation that characterizes the cutoff profile in the equilibrium. In addition,

we will show a basic invariance: The equilibrium continuation payoff when enlarging

the arrival rate is the same as that when lowering the discount rate and stretching the

duration from the deadline at the same rate. We hereafter consider the case with discount

rate ρ ≥ 0, because the case when the payoffs realize only at the deadline is equivalent

to the case with ρ = 0, as discussed in the previous section.

We show that any trembling-hand equilibria yield the same continuation payoff profile

after almost all histories at time −t ∈ [−T, 0]. Therefore the trembling-hand equilibrium

is essentially unique and Markov.

Proposition 1. Suppose that σ, σ′ are two trembling-hand equilibria. Then ui(σ |h) =

ui(σ
′ |h′) for almost all histories h, h′ ∈ H̃t \ Ht and all i ∈ N .

We make two remarks about Proposition 1. First, we ruled out histories inHt, because

different realization of payoffs that players accept clearly give rise to different continua-

tion payoffs on the equilibrium path. Second, there exist subgame perfect equilibria in

which all players reject any allocations, since they move simultaneously.11 We introduced

trembling-hand equilibrium to rule out such trivial equilibria. In an ε-constrained game,

a player will optimally accept a favorable allocation for herself, expecting the others to

accept it with a small probability.

10This equilibrium concept is an analogue of extensive-form trembling-hand equilibrium, as opposed
to its normal-form counterpart. Although our extensive-form game involves uncountably many nodes
and hence the standard definitions of trembling-hand equilibria are not directly applicable, it is for this
reason that we call this notion a trembling-hand equilibrium.

11If players respond sequentially, we can show that any subgame perfect equilibrium consists of cutoff
strategies. Therefore our results are essentially independent of the timing of responses of players.
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A Markov strategy σi of player i ∈ N is a cutoff strategy with cutoff vi(t) ≥ 0 if player

i who is to respond at time −t accepts allocation x ∈ X whenever xi ≥ vi(t), and rejects

it otherwise. For a cutoff profile v = (v1, . . . , vn) ∈ Rn
+, we denote the “acceptance set”

by A(v) = {x ∈ X | xi ≥ vi for all i ∈ N}. The following argument will show that there

exists a trembling-hand equilibrium that consists of cutoff strategies. To show this, we

construct a Markov perfect equilibrium.

Suppose that all players play Markov strategies σ, and there is no Poisson arrival at

time −t ∈ [−T, 0]. Then player i has an expected payoff ui(σ |h) at −t independent of
history h ∈ H̃t \ Ht played before time −t. We denote the continuation payoff at time

−t by vi(t, σ) = e−ρ(T−t)ui(σ |h).
We hereafter fix a cutoff strategy profile σ, and simply denote by vi(t) the continuation

payoff of player i at time −t. Let A(v(t)) ⊂ X be the set of allocations accepted by the

cutoff strategies with cutoff profile v(t) = (v1(t), . . . , vn(t)). We often denote this set by

A(t) with a slight abuse of notation. If σ is a Markov perfect equilibrium, vi(t) must be

characterized by the following recursive expression: For i ∈ N ,

vi(t) =

∫ t

0

(∫
X\A(τ)

vi(τ)dµ+

∫
A(τ)

xidµ

)
λe−(λ+ρ)(t−τ)dτ

=

∫ t

0

(
vi(τ) +

∫
A(τ)

(
xi − vi(τ)

)
dµ

)
λe−(λ+ρ)(t−τ)dτ . (1)

After time −t, players find the first Poisson opportunity at time −τ with probability

density λe−λ(t−τ). If the drawn allocation x falls in A(τ), they reach agreement with x,

or otherwise, they continue search with continuation payoffs v(τ).

Bellman equality (1) implies that vi(t) is differentiable in t. Multiplying both sides of

(1) by e(λ+ρ)t and differentiating both sides yield

v′i(t) = −ρvi(t) + λ

∫
A(t)

(
xi − vi(t)

)
dµ

for i ∈ N . Therefore we obtain the following ordinary differential equation (ODE) of the

continuation payoff profile v(t) = (v1(t), . . . , vn(t)) defined in X̂:

v′(t) = −ρv(t) + λ

∫
A(t)

(
x− v(t)

)
dµ (2)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn. Let us make a couple of observations

about ODE (2). Figure 1 describes a typical illustration of the vectors that appear in this

ODE for n = 2. The shaded area shows the acceptance set A(t), whose barycenter with

respect to the probability measure µ is
∫
A(t)

xdµ
/
µ(A(t)). Therefore the term λ

∫
A(t)

(x−
v(t))dµ is parallel to the vector from v(t) to the barycenter of A(t), which represents

the gain upon agreement. On the other hand, −ρv(t) captures the loss from discounting.
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−ρv(t)

x1

x2

v(0) = 0

A(t)

X

v(t)

λ
∫
A(t)(x− v(t))dµ

barycenter of A(t)

v′(t)

Figure 1: Vectors in ODE (2)

Velocity vector v′(t) is the sum of these two vectors. The absolute value of the integral on

the right hand side of (2) is proportional to the weight µ(A(t)). If ρ = 0, (2) immediately

implies v′i(t) ≥ 0 for all t and i ∈ N , and v′i(t) = 0 if and only if µ(A(t)) = 0.

Now we see that a standard argument of ordinary differential equations shows that

ODE (2) has a solution whenever Assumption 1 holds.12 The cutoff strategy profile

with a cutoff profile given by this solution of ODE (2) turns out to be a trembling-hand

equilibrium, as shown in the following proposition.

Proposition 2. There exists a trembling-hand equilibrium that consists of (Markov) cut-

off strategies.

By Proposition 1, the solution of ODE (2) is unique. Therefore the game has essen-

tially a unique trembling-hand equilibrium for any given X and µ. Let us denote the

unique solution of (2) by v∗(t; ρ, λ), the continuation payoff profile in the trembling-hand

equilibrium. We simply denote this by v∗(t) as long as there is no room for confusion. To

prepare for the main sections in which we investigate the asymptotic behavior of v∗(t) as

the arrival rate λ becomes large, we show a useful lemma which is directly derived from

the form of ODE (2).

Lemma 3. For any α > 0, v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) if −t,−αt ∈ [−T, 0].

Next we note that, under certain assumptions, v∗(t; ρ, λ) converges to an allocation

v∗ independent of t in the limit of λ → ∞. This convergence is obvious if ρ = 0.

Since v′(t) is always nonnegative and X̂ is compact, limT→∞ v∗(T ; 0, λ) clearly exists.

Since v∗(T ; 0, λ) = v∗(λT ; 0, 1) by Lemma 3, v∗ = limλ→∞ v∗(T ; 0, λ) also exists, and is

12This is because the right hand side of ODE (2) is continuous in v, and X̂ is compact. See Coddington
and Levinson (1955, Chapter 1) for a general discussion about ODE.
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x1

x2

v(0) = 0

A(t)

X

v(t)

v
∗

v
′(t)

barycenter of A(t)

Figure 2: The path and the velocity vector of ODE (3)

independent of T . If ρ > 0, the existence of v∗ = limλ→∞ v∗(t) is not straightforward

since v′i(t) may be negative. We postpone a proof of the existence of this limit in the case

of positive ρ until Proposition 12 in Section 5.

In the following two sections, we analyze the limit of the continuation payoffs in the

equilibrium and the expected duration that the search process continues, as the frequency

of Poisson arrival goes to infinity. This limit is considered in two cases: the case when

the payoffs realize at the deadline (Section 4), and the case when the payoffs realize as

soon as the agreement is reached (Section 5).

4 Asymptotic Results when the Payoffs Realize at

the Deadline

In this section, we consider the case in which players receive benefits of the agreement only

at the deadline even when they stop searching earlier. Mathematically, this is equivalent

to analyzing the limit of the continuation payoff profile limλ→∞ v∗(t) in the equilibrium

when ρ = 0. In this case, v∗(t) is characterized as the unique solution of the following

ordinary differential equation given by letting ρ = 0 in ODE (2):

v′(t) = λ

∫
A(t)

(
x− v(t)

)
dµ (3)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn. Figure 2 describes a path of the solution

of ODE (3) for n = 2. At time −t ∈ [−T, 0], the velocity vector v′(t) equals λ
∫
A(t)

(x −
v(t))dµ, which is parallel to the vector from v(t) to the barycenter of A(t) weighted by

µ.
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x1

x2

v(t)

v(0) = 0

v∗

X

X

1

1

1/2

1/2

Figure 3: A path that converges to a weakly Pareto efficient allocation.

We present asymptotic results of the continuation payoffs v∗(t) as the arrival rate

λ tends to infinity. If λ is very large, one may conjecture that players have so many

opportunities that they can find a good allocation. We discuss efficiency of the limit

v∗ = limλ→∞ v∗(t; 0, λ) in X to show that this intuition is basically correct. Let us note

that we sometimes consider the limit limt→∞ v∗(t; 0, λ) with enlarging the time interval

[−T, 0]. By Lemma 3, v∗ = limt→∞ v∗(t; 0, λ) for all λ. This implies that we can consider

the two limits interchangeably; the limit of v∗(t) as t → ∞, and the limit as λ → ∞ for

fixed t.

In general, v∗ is not necessarily Pareto efficient in X. There is an example of a

probability density function f satisfying Assumption 1 in which v∗(t) converges to an

allocation that is not strictly Pareto efficient.

Example 1. Let n = 2, X =
(
[0, 1/2]×[3/4, 1]

)
∪
(
[3/4, 1]×[0, 1/2]

)
, and f be the uniform

density function on X, which is shown in Figure 3. By the symmetry with respect to the

45 degree line, we must have v∗1(t) = v∗2(t) for all t. Therefore v∗ = (1/2, 1/2), which is

not Pareto efficient in X.

Note that v∗ is weakly Pareto efficient, and that X is a non-convex set in this exam-

ple. In fact, we will show that v∗ is always weakly efficient for general X, and strictly

Pareto efficient if X is convex. Furthermore, even if X is not convex, we can show v∗ is

“generically” Pareto efficient, that is, v∗ is Pareto efficient in X for any generic f that

satisfies Assumption 1.

Remember X̂ = {v ∈ Rn
+ |x ≥ v for some x ∈ X} is the positive region of the

comprehensive extension of X.

Lemma 4. The solution v∗(t) of equation (3) converges to a weakly Pareto efficient

allocation in X̂ as λ→ ∞.

12



Let F be the set of density functions that satisfy Assumption 1. We consider a

topology on F defined by the following distance in F : For f, f̃ ∈ F ,

∣∣f − f̃
∣∣ = sup

x∈X

∣∣f(x)− f̃(x)
∣∣.

Proposition 5. The set

{f ∈ F | v∗ is Pareto efficient in X}

is open and dense in F .

This proposition shows that v∗ is efficient only for generic f . However, if X is convex,

then v∗ is efficient for all f .

Proposition 6. Suppose that X is a convex set. Then v∗ is Pareto efficient in X.

Weak Pareto efficiency leads to an observation that players reach an agreement almost

surely if t is very large. Let p(t) be the probability that players reach an agreement in the

equilibrium before the deadline given no agreement at time −t. Then the continuation

payoffs v∗(t) must fall in the set {p(t)v | v ∈ X̂}, which implies v∗(t)/p(t) ∈ X̂. We

have v∗i (t) > 0 for all t > 0 and i ∈ N since v∗i (t) is nondecreasing and v∗′i (0) > 0 by

equation 3. Since there is a positive probability that no opportunity arrives before the

deadline, p(t) is smaller than one. Therefore v∗(t)/p(t) ∈ X̂ strictly Pareto dominates

v∗(t). This implies limt→∞ p(t) = 1 since by Lemma 4 v∗ is weakly Pareto efficient in X̂.

Now we show the following proposition:

Proposition 7. The probability of agreement before the deadline converges to one as the

time interval becomes large.

In Propositions 5 and 6, we showed that v∗(t) almost always converges to the Pareto

frontier of X. We consider the inverse problem. For any Pareto efficient allocation w in

X which is not at the edge of the Pareto frontier,13 we show that one can find density f

which satisfies Assumption 1 such that the limit of the solution v∗(t) of equation (3) is

w.

Proposition 8. Suppose that w is a Pareto efficient allocation in X such that wi > 0

for all i ∈ N , and w is not located at the edge of the Pareto frontier. Then there exists

a probability measure µ satisfying Assumption 1 such that the equilibrium continuation

payoff profile v∗(t) converges to w as λ tends to infinity.

In the proof, we construct a probability density function f to have a large weight near

w ∈ X, and show that the limit continuation payoffs is w if there is a sufficiently large

13We formally define this property in the proof given in Appendix A.8.
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weight near w. Note that this claim is not so obvious as it seems. Indeed, we will see

in Section 5 that the limit is independent of density f if there is a positive discount rate

ρ > 0, as long as Assumption 1 holds.

In the rest of this section, we make assumptions on regularity of X around v∗ in

addition to Assumption 1.

Assumption 2. (a) The limit v∗ is Pareto efficient in X.

(b) The Pareto frontier of X is smooth in a neighborhood of v∗.

(c) For the unit normal vector α ∈ Rn
+ at v∗, αi > 0 for all i ∈ N .

(d) For all η > 0, there exists ε > 0 such that {x ∈ Rn
+ | |v∗ − x| ≤ ε, α · (x− v∗) ≤ −η}

is contained in X, where “·” denotes the inner product in Rn.14

The next lemma shows that v∗(t) converges to v∗ with a speed of order (λt)−1/n.

Lemma 9. Suppose that Assumption 2 holds. As either t → ∞ or λ → ∞, (v∗i −
v∗i (t))(λt)

1/n converges to a positive and finite value which is written as

lim
t→∞

(v∗i − v∗i (t))(λt)
1
n =

( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj

αi

) 1
n

for all i ∈ N , where α ∈ Rn
++ be the unit normal vector of X at v∗.

In the present model with finite λ, it always takes positive time for players to reach

an agreement. The next proposition shows that if the Pareto frontier of X is smooth and

v∗(t) converges to the Pareto frontier, then the expected duration of the search process

in the time interval [−T, 0] is (n2T )/(n2 + n+ 1).

Proposition 10. Suppose that Assumption 2 holds. Then the expected duration of search

in the equilibrium is
n2

n2 + n+ 1
T .

The proposition implies that a positive fraction of time is spent on search, but players

do not spend all the time they have. This is a result of a tradeoff between two effects: On

one hand, players do not want to wait too much, as doing so would result in disagreement,

or the agreement in low payoffs which they would receive if it takes place close to the

deadline. On the other hand, players do not want to stop their search immediately, as

they are very picky when the deadline is very far away. Being picky is optimal for the

players, as there is no discounting. In the next section, we will see that if there is a

significant effect of discounting we expect the search to end immediately. Putting it

another way, there are two effects of making the arrival rates large. One is that there

exist many realizations of payoffs in a given time interval, which makes the possibility of

14Only condition (b) is necessary if X is convex.
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Number of agents 1 2 3 5 10 100

Limit expected duration .33 .57 .69 .81 .90 .99

Table 1: Limit expected duration of search as opportunities arrive more and more fre-
quently.

time

Prob. of agreement

−10 0

1
.86

λ = 1

λ → ∞

Figure 4: A numerical example of the cumulative probability of agreement.

agreement more likely. The other is that as the result of the increase of opportunities,

players expect more opportunities in the future, which makes them pickier.

The solution of the expected duration provided in the theorem implies that, if only

two players are involved in search, the expected duration is 4
7
T , it monotonically increases

to approach T as n gets larger. Table 1 shows the limit expected duration for several n’s

when T = 1.15 We do not think the reason for this is a simple one, which would say that

if there are many people it is difficult to all agree on something. The result is rather the

consequence of two distinct effects explained above.

The limit duration of Proposition 9 is not far away from those with finite λ in many

cases. In the apartment search example, let us suppose that the couple has ten weeks

before the deadline, and a broker provides information of an apartment once in every

week on average. Figure 4 shows a graph of the cumulative probability of agreement for

λ = 1 and λ → ∞ when T = 10, N = {1, 2}, X = {(x1, x2) ∈ R2
+ |x1 + x2 ≤ 1}, and µ

is the uniform distribution on X. The probability of agreement before any time −t does
not change more than 15% if one considers quite a frequent search instead of searching

once a week. A straightforward computation shows that the expected duration of search

is decreasing in λ, and it is 6.08 for λ = 1, which is only 6.5% longer than the limit

expected duration (4/7) · 10 = 5.71.

15Although we assumed n ≥ 2, one can easily show that the same analysis applies to the search problem
with a single agent.
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5 Asymptotic Results when the Payoffs Realize upon

Agreement

In this section, we consider the limit of the equilibrium continuation payoffs v∗(t) as

λ→ ∞ when the payoffs realize as soon as an agreement is reached. First, we note that

if ρ = 0, exactly the same analysis as in the previous section applies, as we have already

discussed. Hereafter we consider the case where ρ > 0. Let us revisit the ordinary

differential equation (2) that characterizes the equilibrium continuation payoff profile

v∗(t) as its unique solution:

v′(t) = −ρv(t) + λ

∫
A(t)

(
x− v(t)

)
dµ (2)

with an initial condition v(0) = (0, . . . , 0).

If λ is large, the right hand side of equation (2) is approximated by the right hand side

of equation (3). Therefore, v∗(t) is close to the solution of equation (3) in the case of ρ = 0,

for λ large relative to ρ. This resemblance of trajectories holds until v∗(t) approaches the

boundary of X̂. In particular, we can show that v∗(t) approaches v0 arbitrarily closely

as λ → ∞, where v0 is defined as the limit of the solution of equation (3). Note that v0

is weakly Pareto efficient by Lemma 4.

Proposition 11. For all ε > 0, there exists λ̄ > 0 such that for all λ ≥ λ̄,

∣∣v0 − v∗(t)
∣∣ ≤ ε for some t.

Remark 1. Before analyzing v∗ = limλ→∞ v∗(t; ρ, λ), let us consider another limit

v∗(∞; ρ, λ) = limt→∞ v∗(t; ρ, λ). Since the right hand side of equation (2) is not pro-

portional to λ, these two limits do not coincide for positive ρ > 0. If the limit v∗(∞)

exists, this must satisfy

ρv∗(∞) = λ

∫
A

(
x− v∗(∞)

)
dµ (4)

where A = {x ∈ X | x ≥ v∗(∞)}. For ρ > 0, equality (4) shows µ(A) > 0, which

follows that v∗(∞) is Pareto inefficient in X. This will contrast efficiency of v∗ =

limλ→∞ v∗(t; ρ, λ) shown in Proposition 12.

Equality (4) also implies that v∗(∞) is parallel to the vector from v∗(∞) to the

barycenter of A, as shown in Figure 5 in the two-dimensional case.

We assume the following simplifying conditions until the end of this section.16

Assumption 3. The Pareto frontier of X is smooth, and every component of the normal

vector at any Pareto efficient allocation in X is strictly positive.
16We can show basically the same results without this assumption. We avoid complications derived

from the indeterminacy of a normal vector on the boundary of X.
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(0, 0)

A

v∗(∞)

barycenter of Pareto frontier of A
barycenter of A

λ
∫
A
(x− v∗(∞))dµ

−ρv∗(∞)

Figure 5: Vectors when t→ ∞.

Now suppose that λ is very large. Then µ(A) must be very small, which means that

v∗(∞) is very close to the Pareto frontier of X. By Assumption 1, the density f is

approximately uniform in A if A is a set with a very small area. To obtain an intuition,

suppose that A is a small n-dimensional pyramid. The vector in the right hand side of

equality (4) is parallel to the vector from v∗(∞) to the barycenter of the Pareto frontier

of A.

If x is the barycenter of the Pareto frontier of A, it turns out that the boundary of

A at x is tangent to the hypersurface defined by
∏

i∈N xi = a for some constant a. We

refer to such a Pareto efficient allocation as a Nash point, and the set of all Nash points

as the Nash set of (X, 0) (Maschler et al. (1988), Herrero (1989)). The Nash set contains

all local maximizers and all local minimizers of the Nash product. If X is convex, there

exists a unique Nash point, which is called the Nash bargaining solution.

The above observation leads to the next proposition.

Proposition 12. Suppose that any Nash point is isolated in X. Then the limit v∗ =

limλ→∞ v∗(t) exists and belongs to the Nash set of the problem (X, 0). In particular, if X

is convex, this limit coincides with the Nash bargaining solution of (X, 0).

Therefore, the trajectory of v∗(t) for very large λ starts at v∗(t) = 0, approaches v0,

and moves along the Pareto frontier until reaching a point close to a Nash point.

Finally we consider the duration of search in the equilibrium. In contrast to Proposi-

tion 10 in the case of ρ = 0, we show that players reach an agreement almost immediately

if λ is very large.

Proposition 13. For all −t ∈ (−T, 0] and all ε > 0, there exists λ̄ > 0 such that the

probability that players reach an agreement before time −t in the equilibrium is larger

than 1− ε for all λ ≥ λ̄.
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Figure 6: Paths of continuation payoffs. The probability density is low near (1, 0), and
high near (0, 1).

6 Discussion

6.1 Dynamics of Bargaining Powers

Consider the case where X = {x ∈ R2
+ | x1 + x2 ≤ 1} and a density f such that f(x) >

f(x′) if x2−x1 > x′2−x′1. Suppose ρ > 0 is very small. In this case, the limit of the solution

of ODE (3) with ρ = 0, denoted v0, locates at the boundary of X by Proposition 6, and

it is to the north-west of (1
2
, 1
2
), which is the Nash bargaining solution and is the limit

of the solution of ODE (2). Hence, by Proposition 11, the continuation payoff when the

players receive payoffs upon the agreement starts at a point close to (1
2
, 1
2
), and goes up

along the boundary of X and reaches a point close to v0, and then goes down to (0, 0).

On this path of play, player 1’s expected payoff is monotonically decreasing over time.

On the other hand, player 2’s expected payoff changes non-monotonically. Specifically,

it rises up until it reaches close to v02, and then decreases over time. Figure 6 illustrates

this path.

Underlying this non-monotonicity is the change in bargaining power between the

players. When the deadline is far away, there will be a lot of opportunities left until

the deadline, so it is unlikely that players will accept allocations that are far from the

Pareto efficient allocations, so the probability distribution over such allocations does not

matter so much. Since X is convex and symmetric, two players expect roughly the same

payoffs. However, as the time passes, the deadline comes closer, so players expect more

possibility that Pareto-inefficient allocations will be accepted. Since player 2 expects

more realizations favorable to her than player 1 does, player 2’s expected payoff rises

while player 1’s goes down. Finally, as the deadline comes even closer, player 2 starts

fearing the possibility of reaching no agreement, so she becomes less pickier and the cutoff

goes down accordingly.
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6.2 Simultaneous Convergence

In Section 4, we have shown that if ρ = 0, the limit equilibrium payoffs as λ → ∞
are efficient but dependent on the distribution µ. In Section 5, in contrast, the limit is

the Nash bargaining solution if ρ > 0 is fixed. In this section, we show that the limit

equilibrium payoffs as λ→ ∞ and ρ→ 0 simultaneously depends on where λρn converges

to.

Proposition 14. Suppose that Assumptions 2 and 3 hold. The limit v∗ = limλ→∞,ρ→0 v
∗(t; ρ, λ)

satisfies the following claims: (i) If λρn → 0, then v∗ = limλ→∞ v∗(t; 0, λ), which is the

limit analyzed in Section 4, and (ii) if λρn → ∞, then v∗ = limλ→∞ v∗(t; ρ, λ) for ρ > 0,

which is the limit shown in Section 5.

An insight behind this result is as follows: The limit depends on whether the first

term in ODE (2) is negligible or not when compared to the second term. Let z(t; ρ, λ)

be the Hausdorff distance from v∗(t; ρ, λ) to the Pareto frontier of X. If ρ is very small

and λ is not very large, Proposition 11 shows that v∗(t; ρ, λ) is close to limλ→∞ v∗(t; 0, λ)

which is on the Pareto frontier. Then we can apply Lemma 9 to show that z(t; ρ, λ) is

approximately proportional to λ−1/n. Since µ(A(t)) approximates z(t; ρ, λ)n (times some

constant), and the length of the vector from v∗(t; ρ, λ) to the barycenter of A(t) is linear

in z(t; ρ, λ), the second term is of order λ · λ−1/n · λ−1 = λ−1/n. Therefore if λρn → 0

the first term, which approximates ρv∗, is negligible because ρ vanishes more rapidly

than λ−1/n. If λρn → ∞, the first term is significant because ρ does not vanish rapidly

compared to λ−1/n.

Remark 2. Gomes et al. (1999) consider a discrete-time finite-horizon n-player bargain-

ing with a general coalitional form. A proposer is selected with equal probability in

every period, and if her proposal is rejected, she drops out of bargaining with a small

probability. They investigate the limit subgame perfect equilibrium payoff profile as the

probability of breakdown vanishes and the horizon length tends to infinity. The limit is

shown to be the Raiffa solution (defined appropriately in the setting of a general coali-

tional form) if the speed that the probability of breakdown vanishes is sufficiently faster

than the speed that the horizon length goes to infinity, and it is the Nash solution (or

more general concept of the NTU consistent value) if the latter is sufficiently faster than

the former. Imai and Salonen (2009) consider a related two-player model. They analyze a

limit solution as the number of periods in the fixed length of horizon becomes large. This

solution turns out to be between the Raiffa and the Nash solution, which are borderline

cases of Gomes et al. (1999).

Despite common features such as presence of deadline, and analysis of limits in mul-

tiple cases, the present paper differs from these works in the following three aspects.

First, proposers in the above bargaining model have a full control of their proposals. In
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a subgame perfect equilibrium, players reach an agreement immediately because a pro-

poser always offers an allocation accepted by the others given continuation payoffs in

subsequent subgames. On the other hand, realization of an allocation at each moment is

stochastic in our model, hence it is not ex ante obvious whether the duration of search

shrinks as we let the arrival rate go to infinity. Indeed, we have shown in Proposition 10

that when the payoffs realize at the deadline, players spend a significant amount of time

for search.

Second, the conditions that determines whether the limit equilibrium payoffs is Nash

solution or not are different. In the bargaining models, the condition is expressed by the

limit of the probability that there is no breakdown in the entire bargaining conditional

on no agreement at all (Gomes et al. (1999, Theorem 4.4)). Since imposing a breakdown

with probability π at an opportunity is mathematically equivalent to discounting payoffs

with discount factor 1−π, and there are λ opportunities in average in a unit time interval

in the Poisson process, the discount rate ρ is given by e−ρ = (1 − π)λ. Therefore the

probability of no breakdown corresponds to (1−π)λT = e−ρT which does not depend on λ.

This contrasts our Proposition 14, in which the term in the convergence condition depends

on λ. This distinction derives from the difference in the probabilities of agreement at an

opportunity on the equilibrium path. In our search model, the probability of realization

falling into the acceptance set is the nth order of the distance to the limit payoff profile,

while players reach an agreement with probability one in the bargaining model.

Third, the processes by which opportunities arrive differ in two models. In Gomes

et al. (1999) and Imai and Salonen (2009), players have an opportunity for sure in every

fixed time interval. This implies that there is the “last period” (unless a breakdown oc-

curs). In contrast, our model have a positive probability that there comes no opportunity

after any time −t. This distinction affects the limit as λ→ ∞. Let the discount rate be

positive. Then, the limit payoffs in Imai and Salonen (2009) comes between the Raiffa

and the Nash bargaining solutions as the number of periods in the fixed length of horizon

becomes large, whereas the limit in our search model is exactly the Nash bargaining so-

lution independent of the level of discount rate ρ > 0. If there is the last period, players

expect to obtain positive payoffs at the last period for sure. This effect does not disappear

in backward induction unless the time horizon goes to infinity.

6.3 Infinite-Horizon and Static Games

Although we consider a finite-horizon model, our convergence result in Proposition 12 is

suggestive of that in infinite-horizon models such as Wilson (2001), Compte and Jehiel

(2010), and Cho and Matsui (2011), all of whom consider the limit as the discount factor

goes to one in discrete-time infinite-horizon models. This is because the threatening

power of disagreement at the deadline is quite weak if the horizon is very far away, and
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thus the infinite-horizon model is similar to a finite-horizon model with T → ∞ if ρ > 0.

In fact, we can show that the iterated limit as T → ∞ and then ρ → 0 is the Nash

bargaining solution in our model. By Proposition 14, limρ→0 v
∗(T ;αρ, αλ) with α = ρ−a

is the Nash bargaining solution for all a > n/(n+1). As a→ ∞, we see that the iterated

limit limρ→0 limα→∞ v∗(T ;αρ, αλ) is also the Nash bargaining solution. Since Lemma 3

shows that enlarging T is equivalent to rising λ and ρ in the same ratio, the iterated limit

as T → ∞ first and then ρ→ 0 must be the Nash bargaining solution.

Propositions 1 and 2 imply that the limit continuation payoff is essentially equal to

the cutoff, which is expressed by a single variable. In this sense, there is some connection

between our model and a static game considered by Nash (1953) himself, who provided

a characterization of the Nash bargaining solution by introducing a static demand game

with perturbation described as follows.17 Suppose that X is convex. The basic demand

game is a one-shot strategic-form game in which each player i calls a demand xi ∈ R+.

Players obtain x = (x1, . . . , xn) if x ∈ X, or 0 otherwise. In the perturbed demand game,

players fail to obtain x ∈ X with a positive probability if x is close to the Pareto frontier.

Under certain conditions, he showed that the Nash equilibrium of the perturbed demand

game converges to the Nash bargaining solution as the perturbation vanishes.

Let us compare the perturbed Nash demand game with our multi-agent search model

with a positive discount rate. Let p(x) = µ
(
A(x)

)
be the probability that players come

across an allocation which Pareto dominates or equals x ∈ X at an opportunity. If T is

very large and t is close to T , players at time −t choose almost the same cutoff profile, say

x, contained in the interior of X. The average duration that players wait for an allocation

falling into A(x) is almost 1/λp(x). During this time interval, payoffs are discounted at

rate ρ. Since xi must be equal to her continuation payoff in an equilibrium, i would lose

nearly (1−e−ρ/λp(x))yi on average by insisting cutoff xi where y is the expected allocation

conditional on y ∈ A(x). Note that this loss vanishes as ρ→ 0 for every x in the interior

of X. Let probability P (y) satisfy P (y) = e−ρ/λp(x). Player i loses the same expected

payoff when y ∈ X is demanded in the perturbed demand game where the probability of

successful agreement is P (y).

The key tradeoff in this game, the attraction to larger demands or the fear of failure

of agreement, is parallel to that in the multi-agent search, to be pickier or to avoid loss

from discounting.

7 Conclusion

We investigated an n-person search problem with deadline in which agreement oppor-

tunities arrive according to the Poisson process, and the drawn object is adopted by a

17We here follow a slightly modified game considered by Osborne and Rubinstein (1990, Section 4.3).
Despite the difference, the model conveys the same insight as the original.
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unanimous acceptance. If players cannot reach any agreement before the deadline, they

obtain a predetermined payoff profile. We analyzed the limit of the equilibrium continu-

ation payoffs as objects are drawn more and more frequently. If players receive payoffs at

the deadline, the continuation payoffs are efficient but sensitive to the distribution of the

payoffs of the object in search. The limit expected duration of search is longer than a half

of the length of the given time interval, increases in n, and converges to one as n goes to

infinity. On the other hand, if players receive payoffs immediately after they agree, the

continuation payoff profile converges to a Nash point, and the duration of search is zero

in the limit.

We are currently working on several extensions and further investigation of our model.

First, we have assumed that the disagreement payoff is 0. This assumption is not entirely

innocuous in the presence of discounting, but we expect none of our results change sub-

stantially even if we relax this assumption. Second, we have assumed that the discount

rate is homogeneous across all the players. Allowing for heterogeneous discount rates

will change the Nash bargaining solution to weighted Nash bargaining solution when the

payoffs realize upon agreement, but the duration of search will not change. Third, our

results pertain to the limit case as the arrival rates go to infinity. We are exploring the

case of finite arrival rates to conduct comparative statics exercises. We will address these

and other points in our future research.

Appendix

A.1 More Definitions

First we introduce definitions and notations used in proofs.

Let xi = max{xi | (xi, x−i) ∈ X for some x−i} be the maximum payoff attainable for

player i in X, fH = maxx∈X f(x) < ∞ be the upper bound, and fL = minx∈X f(x) > 0

be the lower bound of f in X. Note that Assumption 1 ensures existence of these values.

A.2 Proof of Proposition 1

Suppose that there exists at least one trembling-hand equilibrium. We show that the

continuation payoff of player i at time −t is unique in any trembling-hand equilibrium.

Let vεi (t) and v
ε
i (t) be the supremum and the infimum of the set of continuation payoffs

ui(σ |h) of player i after all histories h ∈ H̃t \ Ht at time −t in all Nash equilibria σ in

the ε-constrained game. Let wε
i (t) = vi(t) − vi(t), w̄

ε(t) = maxi∈N w
ε
i (t). We will show

that w̄ε(t) = 0 for all ε > 0 for any time −t ∈ [−T, 0]. Note that w̄ε(0) = 0 for all ε.

Let us consider the ε-constrained game. If player i accepts an allocation x ∈ X at

time −t, she will obtain xi with probability at least εn−1. Accepting x is a dominant
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action of player i if the following inequality holds:

εn−1xi + (1− εn−1)vεi (t) > vεi (t),

which implies,

xi > vεi (t) +
1− εn−1

εn−1
wε

i (t).

Let ṽεi (t) = vεi (t) +
1−εn−1

εn−1 wε
i (t). Then ṽ

ε
i (t)− vεi (t) =

1
εn−1w

ε
i (t).

Let X1
i (t) = {x ∈ X |xi ≥ ṽεi (t)}, Xm

i (t) = {x ∈ X | vεi (t) ≤ xi ≤ ṽεi (t)}, and

X0
i (t) = {x ∈ X | xi ≤ vεi (t)}. Any player i accepts x ∈ X1

i (t) and rejects x ∈ X0
i (t) with

probability 1 − ε after almost all histories at time −t. Note that X =
(∪

j∈N X
m
j (t)

)
∪(∪

(s1,...,sn)∈{0,1}n
∩

j∈N X
sj
j (t)

)
(although not disjoint). Then

vεi (t) ≤
∫ t

0

(∑
j∈N

∫
Xm

j (τ)

xidµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−(λ+ρ)(t−τ)dτ ,

and

vεi (t) ≥
∫ t

0

( ∑
(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−(λ+ρ)(t−τ)dτ .
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Therefore wε
i (t) = vi(t)− vi(t) is estimated as follows:

wε
i (t) ≤

∫ t

0

(∑
j∈N

∫
Xm

j (τ)

xidµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wε

i (τ)dµ
)
λe−(λ+ρ)(t−τ)dτ

≤
∫ t

0

(∑
j∈N

fHxi
1

εn−1
wε

j(τ)
∏
k ̸=j

xk

+
∑

(s1,...,sn)∈{0,1}n

∫
X

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wε

i (τ)dµ
)
λe−(λ+ρ)(t−τ)dτ

≤
∫ t

0

(∑
j∈N

fH max
k∈N

{xk}
1

εn−1

∏
k ̸=j

xk

+
∑

(s1,...,sn)∈{0,1}n

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

))
wε(τ)λe−(λ+ρ)(t−τ)dτ .

Since the above inequality holds for all i ∈ N , there exists a constant L > 0 such that

the following inequality holds:

wε(t) ≤
∫ t

0

Lwε(τ)e−(λ+ρ)(t−τ)dτ .

Let W ε(t) =
∫ t

0
wε(τ)e(λ+ρ)τdτ . Then

W ε′(t) = wε(t)e(λ+ρ)t

≤ W ε(t).

Therefore we have d
dt

(
W ε(t)e−t

)
≤ 0, which implies wε(t) ≤ W ε(t) ≤ 0 since wε(0) = 0.

Hence, wε(t) = 0 for all t and all ε > 0. Any trembling-hand equilibria yield the same

continuation payoffs after almost all histories at time −t ∈ [−T, 0].

A.3 Proof of Proposition 2

We show that the unique solution v∗(t) of ODE (2) characterizes a trembling-hand equi-

librium. For si ∈ {+,−}, and vi ∈ [0, xi] let

Isii (vi) =

[0, vi] if si = +,

[vi, xi] if si = −,
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and p+ = 1− ε, p− = ε. For ε > 0, let us write down a Bellman equation similar to (1)

with respect to a continuation payoff profile vε(t) in the ε-constrained game:

vεi (t) =

∫ t

0

( ∑
s∈{+,−}n

∫
(I

s1
1 (vεi (τ))×···×Isnn (vεi (τ)))∩X

(
ps1 . . . psn · xi + (1− ps1 . . . psn)vεi (τ)

)
dµ
)

· λe−(λ+ρ)(t−τ)dτ

This implies that

vε′i (t) = −(λ+ ρ)vεi (t)

+ λ
∑

s∈{+,−}n

∫
(I

s1
1 (vεi (t))×···×Isnn (vεi (t)))∩X

(
ps1 . . . psn · xi + (1− ps1 . . . psn)vεi (t)

)
dµ.

This ODE has a unique solution because the right hand side is uniformly Lipschitz con-

tinuous in vεi . Let v
ε(t) be this solution, which is a cutoff profile of a Nash equilibrium in

the ε-constrained game by construction. Since A(t) = (I+1 (v
ε
i (τ))× · · · × I+n (v

ε
i (τ)))∩X,

and p+ → 1, p− → 0 as ε → 0, ODE 2 is obtained by letting ε → 0. Therefore vε(t)

converges to v∗(t) as ε→ 0 because the above ODE is continuous in ε.18 Hence the cutoff

strategy profile with cutoffs v∗(t) is a trembling-hand equilibrium.

A.4 Proof of Lemma 3

Let w∗(t; ρ, λ) = v∗(αt; ρ/α, λ). By equation (3), w∗(t; ρ, λ) is the solution of

w′(t/α) = − ρ

α
w(t/α) + λ

∫
A(w(t/α))

(
x− w(t/α)

)
dµ,

which is equivalent to

d

dτ
w(τ) = −ρw(τ) + αλ

∫
A(w(τ))

(
x− w(τ)

)
dµ

where τ = t/α, w(t) = v(αt). The solution of the second equation is w∗(t;λ) = v∗(t;αλ).

Therefore we have v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) as desired.

A.5 Proof of Lemma 4

By Lemma 3, it suffices to show that v∗ = limt→∞ v∗(t) is weak Pareto efficient.

Let A = {x ∈ X |x ≥ v∗}. Suppose that there exists x = (x1, . . . , xn) ∈ A such

that x1 > v∗1, . . . , xn > v∗n. By Assumption 1, there exists a closed subset Y ⊂ A such

18See, e.g., Coddington and Levinson (1955, Theorem 7.4 in Chapter 1).
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µ(Y ) > 0, and yi = inf{xi | (x1, . . . , xn) ∈ Y } > xi. By ODE (3), we have

v∗′i (t) = λ

∫
A(t)

(
xi − v∗i (t)

)
dµ

≥ λ

∫
W

(yi − v∗i )dµ

= λ(yi − v∗i )µ(Y ) > 0.

This inequality implies that v∗i (t) ≥ λ(yi − v∗i )µ(Y )t + v∗i (0), which tends to infinity as

t → ∞. This contradicts the fact that v∗i (t) is convergent. Hence x is weakly Pareto

efficient in X̂.

A.6 Proof of Proposition 5

Let v∗(t; f) be the solution of ODE (3) for density f ∈ F , and v∗(f) = limλ→∞ v∗(t; f) =

limt→∞ v∗(t; f).

First we show that the set is open, i.e., for all f ∈ F with v∗(f) Pareto efficient, ε > 0,

and a sequence fk ∈ F (k = 1, 2, . . . ) with |fk − f | → 0 (k → ∞), there exist δ > 0 and

k̄ such that

|v∗(fk)− v∗(f)| ≤ ε

for all k ≥ k̄.

Since limt→∞ v∗(t; f) = v∗(f), for all δ > 0 there exists t̄ > 0 such that |v∗(f) −
v∗(t; f)| ≤ δ for all t ≥ t̄. By Pareto efficiency of v∗(f), let δ > 0 be sufficiently small so

that A
(
v∗(t̄; f)− (δ, δ, . . . , δ)

)
is contained in the ε-ball centered at v∗(f). Since the right

hand side of ODE (3) is continuous in v, the unique solution of (3) is continuous with

respect to parameters in (3). Therefore, for a finite time interval [0, T ] including t̄, there

exists k̄ such that |v∗(t; fk)−v∗(t; f)| ≤ δ for all t ∈ [0, T ] and all k ≥ k̄. This implies that

v∗(t; fk) ∈ A
(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
, thereby v∗(fk) ∈ A

(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
. Hence

we have |v∗(fk)− v∗(f)| ≤ ε.

Second we show that the set is dense, i.e., for all f ∈ F with v∗(f) not strictly Pareto

efficient in X and all ε > 0, there exists f̃ ∈ F such that |f − f̃ | ≤ ε and v∗(f̃) is Pareto

efficient. Since v∗(f) is only weakly Pareto efficient in X̂, there exists Pareto efficient

y ∈ X which Pareto dominates v∗(f). Let I = {i ∈ N | yi = v∗i (f)} and J = N \ I. Since
y is Pareto efficient, there is δ > 0 such that if x ∈ X is weakly Pareto efficient, satisfies

|y − x| ≤ δ, and yi = xi for some i ∈ N , then there is no x̃ ∈ X such that x̃i > yi and

|y − x̃| ≤ δ.

By Assumption 1, for any small δ/2 > η > 0, there is a small ball contained in X

centered at ỹ with |y − ỹ| ≤ η. Let g be a continuous density function whose support is
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the above small ball, takes zero on the boundary of the ball, and the expectation of g is

exactly ỹ. Let f̃ = (1 − ε
|f |+|g|)f + ε

|f |+|g|g ∈ F . Since f and g are bounded from above,

|f − f̃ | ≤ ε.

Since v∗(f) is weakly Pareto efficient, if v∗(f) ∈ A(v), then A(v) ⊂
∪

i∈N
(
[vi, v

∗
i (f)]×∏

j ̸=i[0, xj]
)
. If |v∗(f)− v| ≤ ξ where ξ > 0 is very small,∫

A(v)

(xi − vi)f(x)dx ≤ fH
∑
j∈N

(v∗j (f)− vj)
∏
k∈N

xk

≤ ξnfH
∏
k∈N

xk

If v∗(f) ∈ A(v), minj∈N(yj − vj) ≥ 2η and |v∗(f)− v| ≤ ξ, we have∫
A(v)

(xi − vi)f̃(x)dx−
∫
A(v)

(xi − vi)f(x)dx =

∫
A(v)

(xi − vi)(f̃(x)− f(x))dx

=
ε

|f |+ |g|

∫
A(v)

(xi − vi)(g(x)− f(x))dx

≥ ε

|f |+ |g|

(
(ỹi − vi)−

(
ξnfH

∏
k∈N

xk

))
.

If j ∈ J and |v∗(f)− v| ≤ ξ where ξ > 0 is very small, then∫
A(v)

(xj − vj)f̃(x)dx−
∫
A(v)

(xj − vj)f(x)dx ≥ ε

2(|f |+ |g|)
(ỹj − v∗j (f)).

Let w(t) = v∗(t; f̃) − v∗(t; f). Since ODE (3) is continuous in the parameters, for all

ζ > 0, there exists ε > 0 such that |w(t)| ≤ ζ for all t ∈ [0, T ]. Suppose that T and t are

very large so that |v∗(f)− v∗(t; f)| ≤ ξ. For j ∈ J , w′
j(t) is estimated as follows:

w′
j(t) = λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f̃(x)dx− λ

∫
A(v∗(t;f))

(xj − v∗j (t; f))f(x)dx

= λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f̃(x)dx− λ

∫
A(v∗j (t;f̃)))

(xj − v∗j (t; f̃)))f(x)dx

+ λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f(x)dx− λ

∫
A(v∗(t;f))

(xj − v∗j (t; f))f(x)dx

≥ λε

2(|f |+ |g|)
(ỹj − v∗j (f))− λ

∫
A(v∗(t;f))∩A(v∗(t;f̃))

wj(t)f(x)dx

− λ

∫
A(v∗(t;f))\(A(v∗(t;f))∩A(v∗(t;f̃)))

(xj − v∗j (t; f))f(x)dx

≥ λε

2(|f |+ |g|)
(ỹj − v∗j (f)− ζ)− λζξ

∑
k∈N

∏
l ̸=k

xl − λξnfH
∏
k∈N

xk.
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Therefore when ξ > 0 is sufficiently small, w′
j(t) is bounded away from zero:

w′
j(t) ≥

λε

4(|f |+ |g|)
(ỹj − v∗j (f)− ζ).

This implies that for small ε > 0 and large t, v∗j (t; f̃) > v∗(f) for all j ∈ J . Then the

similar method to Step 3 in the proof of Proposition 6 shows that v∗(t; f̃) converges to a

Pareto efficient allocation in X.

A.7 Proof of Proposition 6

Let A = {x ∈ X | x ≥ v∗}. Let I = {i ∈ N |xi = vi for all x ∈ A} ⊂ N , and J = N \ I.
Suppose that there exists x ∈ X which Pareto dominates v∗, thereby J ̸= ∅.

Step 1: We show that I is nonempty. If there is no such player, there exist y(1), . . . , y(n)

such that y(j) ∈ A and yj(j) > v∗j for all j ∈ N . This implies that y = 1
n

∑
j∈N y(j)

strictly Pareto dominates v∗. Since X is convex, y also belongs to A. This contradicts

the weak Pareto efficiency of v∗ shown in Lemma 4.

Step 2: Next we show that if v∗ is not Pareto efficient in X, and i ∈ I, then xi ≤ v∗i

for all x ∈ X.

Let i be the player in I. Suppose that there exists y ∈ X with yi > v∗i . Since X is

convex, αy + (1 − α)x ∈ X for all 0 ≤ α ≤ 1 and x ∈ X. Since we assumed that there

exists x ∈ X which Pareto dominates v∗, xj > v∗j for j ∈ J . Then there exists α > 0 such

that αy + (1− α)x ≥ v∗, and αyj + (1− α)xj > v∗j for some j. By Step 1, we must have

xi = v∗i . Therefore, αyi + (1− α)xi > v∗i , which contradicts the fact that i ∈ I.

Step 3: Finally we show that v∗(t) converges to a Pareto efficient allocation in X as

t→ ∞.

By convexity of X, we may find yj, ȳj (j ∈ J) such that v∗j < yj < ȳj, and
∏

i∈I [v
∗
i −

ε, v∗i ]×
∏

j∈J [yj, ȳj] is contained in X for small ε > 0. Let ε ∈ (0, 1/2) be sufficiently small

such that ε ≤
2fL

∏
j∈J(ȳj − yj)

fH
∏

j∈J xj
. Since v∗(t) converges to v∗ as t→ ∞, there exists t̄ such

that maxi∈N{v∗i − v∗i (t)} ≤ ε whenever t ≥ t̄. Let Y (t) =
∏

i∈I [v
∗
i (t), v

∗
i ]×

∏
j∈J [yj, ȳj] ⊂

A(t).

We have A(t) ⊂
∏

i∈I [v
∗
i (t), v

∗
i ]×

∏
j∈J [0, xj] since there is no x ∈ A(t) with xi > v∗i .

By equation (3), for i ∈ I,

v∗′i (t) = λ

∫
A(t)

(
xi − v∗i (t)

)
dµ

≤ λ

∫
∏

i′∈I [v
∗
i′ (t),v

∗
i′ ]

(
xi − v∗i (t)

) ∫∏
j∈J [0,xj ]

fH
∏
j∈J

dvj
∏
i′∈I

dvi′

≤ 1

2
λfH(v

∗
i − v∗i (t̄))

∏
i′∈I

(v∗i′ − v∗i′(t))
∏
j∈J

xj
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for all t ≥ t̄. On the other hand, for j ∈ J ,

v∗′j (t) = λ

∫
A(t)

(
xj − v∗j (t)

)
dµ

≥ λ

∫
Y (t)

(yj − v∗j )dµ

= λ(yj − v∗j )µ(Y (t))

≥ λfL(yj − v∗j )
∏
i∈I

(v∗i − v∗i (t))
∏
j′∈J

(ȳj′ − yj′).

Then for i ∈ I and j ∈ J ,

v∗′i (t)

v∗′j (t)
·
v∗j − v∗j (t̄)

v∗i − v∗i (t̄)
≤
fH(v

∗
i − v∗i (t̄))(v

∗
j − v∗j (t̄))

∏
j∈J xj

2fL
∏

j′∈J(ȳj′ − yj′)

≤
(v∗i − v∗i (t̄))(v

∗
j − v∗j (t̄))

ε

≤ ε ≤ 1

2

for all t ≥ t̄. Therefore,
v∗′i (t̄)

v∗′j (t̄)
≤ v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)
holds for all t ≥ t̄. This inequality implies

v∗i (t)− v∗i (t̄) ≤
v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)(v∗j (t)− v∗j (t̄)
)

for all t ≥ t̄. By letting t → ∞ in the above inequality, we have 0 < v∗i − v∗i (t̄) ≤(
v∗i − v∗i (t̄)

)
/2, a contradiction. Hence v∗ is strictly Pareto efficient in X.

A.8 Proof of Proposition 8

First, we define the notion of the edge of the Pareto frontier. Suppose that w is Pareto

efficient in X, and wi > 0 for all i ∈ X. Let us denote an (n − 1)-dimensional subspace

orthogonal to w by D = {z ∈ Rn |w · z = 0}. For ξ > 0, let Dξ be an (n− 1)-dimensional

disk defined as

Dξ = {z ∈ D | |z| ≤ ξ},

and let Sξ be its boundary. We say that a Pareto efficient allocation w in X is not located

at the edge of the Pareto frontier of X if there is ξ > 0 such that for all vector z ∈ Dξ

there is a scalar α > 0 such that α(w+ z) is Pareto efficient in X. We denote this Pareto

efficient allocation by wz ∈ X.

Let Bε(y) = {x ∈ X | |w − x| ≤ ε} for y ∈ X and ε > 0. We denote the volume
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of Bε(y) by Vε(y), and the volume of the n-dimensional ball with radius ε by Vε. Note

that miny∈X Vε(y) > 0 by Assumption 1. Let g be a continuous density function on an n-

dimensional ball centered at 0 ∈ Rn with radius ε, assumed to take zero on the boundary

of the ball. Let f̃ be the uniform density function on X. For a Pareto efficient allocation

y, we define a probability density function fy on X by

fy(x) = ηf̃(x) + (1− η)g(y − x)
Vε

Vε(y)

where η > 0 is small. Note that fy(x) is uniformly bounded above and away from zero

in x and y.

For z ∈ Dξ, let φ̃(z) be the limit of the solution of ODE (3) with density fwz , and

define a function φ from Dξ to D by φ(z) = φ̃(z) + δw ∈ D for some δ ∈ R. By the form

of ODE (3), the solution of (3) with density fwz is continuously deformed if z changes

continuously. Since w is not at the edge of the Pareto frontier, φ̃(z) is also Pareto efficient

inX and comes close to w if ξ, ε, and η are small. Therefore φ(z) is a continuous function.

The rest of the proof consists of two steps.

Step 1: We show that for any ξ > 0, there exist ε > 0 and η > 0 such that

|φ(z)− z| ≤ ξ for all z ∈ Dξ. If a density function has a positive value only in Bε(y) for

some y in the Pareto frontier of X, then the barycenter of A(t) is always contained in

Bε(y). In such a case, the limit allocation with density fy belongs to Bε(y). As η → 0,

fy approaches the above situation. Therefore, for sufficiently small η > 0, the distance

between the limit allocation and y is smaller than 2ε. For y = wz and letting ε very

small, we have |φ(z) − z| ≤ ξ. Since Dξ is compact, such we can take such small ε > 0

and η → 0 uniformly.

Step 2: We show that there is z ∈ Dξ such that φ(z) = 0. Let ψ(z) = z − φ(z). By

Step 1, ψ(z) belongs to Dξ for all z ∈ Dξ. By Brouwer’s fixed point theorem, there exists

z ∈ Dξ such that ψ(z) = z. Therefore there exists z ∈ Dξ such that φ(z) = 0.

Hence for z ∈ Dξ such that φ(z) = 0, the limit allocation with density fwz coincides

with w.

A.9 Proof of Lemma 9

Let fH(t) = maxx∈A(t) f(x), and fL(t) = minx∈A(t) f(x). Since f is continuous, both fH(t)

and fL(t) are continuous and converge to f(v∗) as t→ ∞. For ε > 0, there is t̄ such that

|v∗ − v∗(t)| ≤ ε for all t ≥ t̄. For η > 0, let

A(t) = {x ∈ Rn
+ |x ≥ v(t), α · (x− v∗) ≤ −η}, and

A(t) = {x ∈ Rn
+ |x ≥ v(t), α · (x− v∗) ≤ η}.
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The volume of A(t) (with respect to the Lebesgue measure on Rn) is

V (A(t)) =
1

n

∏
j∈N

(α · (v∗ − v∗(t))

αj

− η
)
,

and the volume of A(t) is

V (A(t)) =
1

n

∏
j∈N

(α · (v∗ − v∗(t))

αj

+ η
)
.

Suppose that ε > 0 is small and t̄ is large. Then by Assumption 2, A(t) ⊂ A(t) ⊂ A(t)

holds for all η > 0 and all t ≥ t̄. The rest of the proof consists of two steps.

Step 1: We show that for any two players i, j ∈ N , limt→∞ v∗′j (t)/v
∗′
i (t) = αi/αj. The

ith coordinate of the right hand side of equation (3) is estimated as

fL(t)

∫
A(t)

(
xi − v∗i (t)

)
dx

≤
∫
A(t)

(
xi − v∗i (t)

)
f(x)dx ≤ fH(t)

∫
A(t)

(
xi − v∗i (t)

)
dx.

Therefore,

λfL(t)V (A(t))

n+ 1

(α · (v∗ − v∗(t))

αi

− η
)

≤ v∗′i (t) ≤
λfH(t)V (A(t))

n+ 1

(α · (v∗ − v∗(t))

αi

+ η
)

(A.1)

for all t ≥ t̄ and i ∈ N . By letting η → 0, ε→ 0, and t→ ∞, we have limt→∞ v∗′j (t)/v
∗′
i (t) =

αi/αj.

Step 2: By Step 1, for i and small δ > 0, there exist t̃ such that such that

(1− δ)
αi

αj

≤
v∗j − v∗j (t)

v∗i − v∗i (t)
≤ (1 + δ)

αi

αj

for all t ≥ t̃ and j ∈ N . Therefore,

n(1− δ)(v∗i − v∗i (t)) ≤
α · (v∗ − v∗(t))

αi

≤ n(1 + δ)(v∗i − v∗i (t)).
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By inequality (A.1), we have

λfL(t)

n(n+ 1)

(
n(1− δ)(v∗i − v∗i (t))− η

)2∏
j ̸=i

(
n(1− δ)

αi

αj

(v∗i − v∗i (t))− η
)

≤ v∗′i (t) ≤
λfH(t)

n(n+ 1)

(
n(1 + δ)(v∗i − v∗i (t)) + η

)2∏
j ̸=i

(
n(1 + δ)

αi

αj

(v∗i − v∗i (t)) + η
)

for all t ≥ t̃ and j ∈ N . Thus for large t, v∗i (t) is approximated by the solution of the

following ordinary differential equation:

v′i(t) =
λf(v∗)nn

n+ 1
(n(v∗i − v∗i (t)))

2
∏
j ̸=i

αi

αj

(v∗i − vi(t)).

By solving this, we have an approximation

v∗ − v∗i (t) =
(
C +

λf(v∗)nn+1t

n+ 1

∏
j ̸=i

αi

αj

)− 1
n

where C is a constant. Hence,

lim
t→∞

(v∗i − v∗i (t))(λt)
1
n =

( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj

αi

) 1
n
,

which is a positive constant.

A.10 Proof of Proposition 10

By Assumption 2, A(t) is approximated as

{x ∈ Rn
+ |x ≥ v∗(t), α · (x− v∗) ≤ 0}.

By Lemma 9, µ(A(t)) is approximated as

µ(A(t)) = f(v∗)nn−1
∏
i∈N

(v∗i − v∗i (t))

= f(v∗)nn−1
∏
i∈N

(( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj

αi

) 1
n
(λt)−

1
n

)

=
n+ 1

n2λt

if t is large. For s ∈ [0, T ], the probability that players reach an agreement before time

−(T − s) is

1− e
∫ T
T−s µ(A(t))λdt = 1−

(λn2(T − s) + n+ 1

λn2T + n+ 1

)n+1

n2

.
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This probability is approximated by 1 −
(
T−s
T

)n+1

n2 . Therefore the expected duration of

the search process is ∫ T

0

s
d

ds

[
1−

(T − s

T

)n+1

n2

]
ds =

n2

n2 + n+ 1
T .

A.11 Proof of Proposition 11

Let v0(t;λ) be the solution of (3) for ρ = 0. Fix any t ∈ [0, T ]. Recall that v0(t;αλ) =

v0(αt;λ) for all α > 0. Since limλ→∞ v0(t;λ) = v0, there exists λ̄1 > 0 such that

∣∣v0 − v0(t;λ)
∣∣ = ∣∣v0 − v0(λt; 1)

∣∣
≤ ε/2 (A.2)

for all λ ≥ λ̄1.

Since the right hand side of ODE (2) is continuous in ρ, λ, and uniformly Lipschitz

continuous in v, the unique solution v∗(t; ρ, λ) is continuous in ρ, λ for all t ∈ [0, T ].

Recall that v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) for all α > 0. Therefore by continuity in ρ, there

exists λ̄2 > 0 such that

∣∣v∗(t; ρ, λ)− v0(t;λ)
∣∣ = ∣∣v∗(λt; ρ/λ, 1)− v0(λt; 1)

∣∣
≤ ε/2 (A.3)

for all λ ≥ λ̄2. By adding (A.2) and (A.3), we obtain the desired inequality for λ̄ =

max{λ̄1, λ̄2}.

A.12 Proof of Proposition 12

Let v(t) be the solution of ODE (2). The proof consists of five steps.

Step 1: We show that for any t > 0, µ(A(t)) → 0 as λ → ∞. If not, there exist

a positive value ε > 0 and an increasing sequence (λ̄k)k=1,2,... such that µ(A(t)) ≥ ε for

all λ̄k. Since X is compact and f is bounded from above, there exists η > 0 such that

µ
(
A(v(t) + (η, . . . , η))

)
≥ ε/2. In fact, since

µ
(
A(v(t)) \ A(v(t) + (η, . . . , η))

)
≤
∑
i∈N

µ
(
[vi(t), vi(t) + η]×

∏
j ̸=i

[0, xj]
)

≤ fH
∑
i∈N

η
∏
j ̸=i

xj,

we have µ
(
A(v(t)+ (η, . . . , η))

)
≥ ε/2 for η =

ε

2fH
∑

i∈N
∏

j ̸=i xj
. For this η, the integral
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in ODE (2) is estimated as∫
A(t)

(
xi − vi(t)

)
dµ ≥

∫
A(v(t)+(η,...,η))

(
xi − vi(t)

)
dµ

≥
∫
A(v(t)+(η,...,η))

ηdµ

≥ ηε/2.

By ODE (2),

v′i(t) ≥ −ρxi + λ̄kηε/2,

which obviously grows infinitely as λ̄k becomes large. This contradicts compactness of

X.

Step 2: We compute the direction of
∫
A(t)

(
xi − vi(t)

)
dµ in the limit as λ → ∞. By

Step 1, the boundary of X contains all accumulation points of {vi(t) |λ > 0} for fixed

t > 0. Fix an accumulation point v∗(t). There exists an increasing sequence (λk)k=1,2,...

with v∗(t) = limk→∞ v(t). By Assumption 3, there exists a unit normal vector of X at

v∗(t), which we denote by α ∈ R++.

Step 1 implies that v(t) is very close to the boundary of X when λk is very large. By

smoothness of the boundary of X, A(t) looks like a polyhedron defined by convex hull

of {v(t), v(t)+ (z1(t), 0, . . . , 0), v(t)+ (0, z2(t), 0, . . . , 0), . . . , v(t)+ (0, . . . , 0, zn(t))} where

zi(t)’s are positive length of edges such that the last n vertices are on the boundary of X.

This vector z(t) is parallel to (1/α1, . . . , 1/αn). Let r(t) be the ratio between the length

of z(t) and (1/α1, . . . , 1/αn), i.e., r(t) = z1(t)α1 = · · · = zn(t)αn.

Since density f is bounded from above and away from zero, distribution µ looks almost

uniform on A(t) if λk is large. Then the integral
∫
A(t)

(
xi − vi(t)

)
dµ is almost parallel to

the vector from v(t) to the barycenter of the polyhedron, namely, z(t)/(n+1). Therefore∫
A(t)

(
xi − vi(t)

)
dµ is approximately parallel to (1/α1, . . . , 1/αn) when λk is large.

Step 3: We show that
∑

i∈N αiv
′
i(t) ≥ 0 for large λ. Let (λk)k=1,2,... be the sequence

defined in Step 2. For large λk, A(t) again looks like a polyhedron with the uniform

distribution. By Step 2, the ODE near vi(t) is written as

v′i(t) = −ρvi(t) + λk
zi(t)

n+ 1
· µ(A(t)). (A.4)

Note that vi(t) is close to v
∗
i (t) and µ(A(t)) is order n of the length of z(t). By replacing

the above equation by r(t), ODE (A.4) approximates

r′(t) = ρa− λkbr(t)
n+1 (A.5)
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for some constants a, b > 0. Since r(t) is large when t is small, the above ODE shows

that r(t) is decreasing in t. Therefore µ(A(t)) is also decreasing in t. For large λk, this

implies that

α · v′(t) =
∑
i∈N

αiv
′
i(t) ≥ 0.

Step 4: We show that the Nash product is nondecreasing if λ is large. By ODE (A.4),

we have

αiv
′
i(t) = −ραivi(t) + β (A.6)

where β = λkµ(A(t))/(n+ 1) independent of i. Let us assume without loss of generality

that α1v
′
1(t) ≥ · · · ≥ αnv

′
n(t). Then we must have 1/α1v1(t) ≥ · · · ≥ 1/αnvn(t).

Let L(t) =
∑

i∈N log vi(t) be log of the Nash product. Then L′(t) =
∑

i∈N v
′
i(t)/vi(t).

By Chebyshev’s sum inequality,

L′(t) =
∑
i∈N

v′i(t)

vi(t)

≥ 1

n

(∑
i∈N

αiv
′
i(t)
)(∑

i∈N

1

αivi(t)

)
≥ 0.

Hence, L(t) is nondecreasing if λk is large. Moreover, equality holds if and only if

α1v
′
1(t) = · · · = αnv

′
n(t) or α1v1(t) = · · · = αnvn(t).

Step 5: We show that v(t) converges to a point in the Nash set as λ → ∞. Step 4

shows that L′(t) converges to zero as λ→ ∞. Then α1v
′
1(t) = · · · = αnv

′
n(t) or α1v1(t) =

· · · = αnvn(t) in the limit of λ → ∞. The former case implies v′i(t) = 0 for all i ∈ N by

Step 3. Then ODE (A.6) shows that the latter case holds. Therefore the latter case always

holds in the limit of λ → ∞. This implies that the boundary of X at v∗(t) is tangent

to the hypersurface defined by “Nash product =
∏

i∈N v
∗
i (t).” Hence any accumulation

point v∗(t) belongs to the Nash set.

Since we assumed that the Nash set consists of isolated points, v∗(t) is isolated. If v(t)

does not converge to v∗(t), there is δ > 0 such that for any λ̄ there exists v(t) with λ ≥ λ̄.

Let δ > 0 be small such that there is no point in the Nash set in {x ∈ X | |v∗(t)−x| ≤ δ}.
Since v(t) is continuous with respect to λ, for any λ̄, there exists λ > λ̄ such that

δ/2 ≤ |v∗(t) − v(t)| ≤ δ. Since {x ∈ X | δ/2 ≤ |v∗(t) − x| ≤ δ} is compact, v(t) must

have an accumulation point in this set. This contradicts the fact that any accumulation

point is contained in the Nash set. Furthermore, v∗(t) does not depend on t since v∗(t)

is continuous in t.
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A.13 Proof of Proposition 13

(Sketch of proof): The ODE (A.5) is approximated by a linear ODE, which has a solution

converging to v∗ with an exponential speed. Therefore for large λ, r(t) is approximated by

r(t) =
(ρa
λb

) 1
n+1

. Since µ(A(t)) is proportional to r(t)n, µ(A(t)) = cλ−
n

n+1 for a constant

c > 0. the probability that players reach an agreement before time −(T − s) is

1− e−
∫ T
T−s µ(A(t))λdt = 1− e−scλ

1
n+1

,

which converges to one as λ→ ∞.
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