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Abstract

Some thirty years ago Fishburn, Niemi, Richelson, Riker and Straf-
fin published first systematic comparisons of voting procedures using
several criteria of systems performance. Still today Richelson’s set of
criteria — and his list of voting systems — is perhaps the most exten-
sive in the literature. Some of the criteria, notably monotonicity and
the Condorcet criteria, introduced by these authors still play a central
role in the present day treatises on voting systems. This paper dis-
cusses the relevance of performance criteria and various paradoxes to
the choice of voting systems. We first outline a procedure whereby the
criteria could be systematically utilized. This is analogous to a wide
class of multi-criterion choice problems. Apart from relatively trivial
settings, this procedure leaves many problems open. These, in turn,
seem to depend on context-related considerations. Moreover, it is ar-
gued that individual preference rankings may not be most appropriate
way to approach voting systems: cyclic individual preferences some-
times make perfect sense and often people are capable of much more
refined opinion expression than preference ranking.

1 Introduction

First systematic comparisons of voting procedures appeared in 1970’s. The
journal Behavioral Science became a major forum for these early publica-
tions. Especially notable are the article by Peter C. Fishburn (1971) and a
series of works by Jeffrey T. Richelson. This series culminated in a summary

*The perceptive comments of Dan S. Felsenthal on an earlier version are gratefully
acknowledged.



(Richelson 1979) that is perhaps the most extensive of its kind in terms of
both the number of systems and the number of criteria. These were fol-
lowed by a book-length treatise by Philip D. Straffin, Jr (1980) and perhaps
most notably by William H. Riker’s (1982) magnum opus. While these texts
explicitly dealt with voting systems, they were preceded and inspired by sev-
eral path-breaking works in the more general field of social choice functions,
e.g. Fishburn (1973), Fishburn (1977) and Young (1975). The history of
voting procedures had also been discussed in Black (1958) and Riker (1961).
The wider public was first made aware of the theory of comparative voting
systems by an article in Scientific American written jointly by Richard G.
Niemi andt Riker (1976).

From those early years on there has been a relatively clear distinction
between theoretical and applied works. Fishburn, Richelson and Young are
obviously theoretical scholars, while Riker and Straffin had a more applied
focus. Indeed, Riker (1982) can be seen as an attempt to justify a specific
theory of democracy by invoking theoretical results achieved in social choice
theory. More specifically, Riker argues that since

e all known voting procedures have at least one serious flaw,

e voting equilibria are extremely rare in multidimensional spatial voting
models, and

e strategic manipulation opportunities are ubiquitous,

it is erroneous to equate voting results with the “will of the people” or ex-
pressions of collective opinion for the reason that the latter is a meaningless
notion. Hence, defining democracy as a system ruled in accordance with the
will of the people is indefensible. His favorite — liberal — view of democracy,
on the other hand, is immune to the negative results of social choice theory
because it does not require more of a voting — or, more generally, ruling —
system than that it enables the voters to get rid of undesired rulers. For
this purpose, continues the argument, the plurality rule is a particularly apt
instrument.

Riker’s view is thought-provoking. Many authors, while accepting its
premises based on social choice theory, have questioned the conclusions
(Lagerspetz 2004; Mackie 2003; Nurmi 1984; Nurmi 1987). This paper
dwells on the premises and their significance for voting system design. We
shall first outline the standard view which looks at various voting systems
and evaluates them in terms of criteria of performance. This approach in
essence deems all systems satisfying a given criterion of performance as
equivalent and those which don’t also equivalent. Starting from 1960’s a
rich literature on probability and simulation modelling of voting systems
performance has emerged to give a somewhat more nuanced picture (Klahr
1966; Niemi and Weisberg 1972). We shall discuss the nature and relevance



Criterion
Voting system a b ¢ d e f g h i
Amendment 11 11 0 0 0 0 O
Copeland 11 1 1 1 0 0 0 0
Dodgson 10 1. 01 0 0 0 O
Maximin 10 1. 1.1 0 0 0 O
Kemeny 117 1.1 1 0 0 O O
Plurality 00 1 1 1 1 0 0 1
Borda 01 0 1 1 1 0 0 1
Approval 00 01 0 1 1 0 1
Black 11 1 1 1 0 0 0 1
Pl. runoff 01 1 0 1 0 0 0 O
Nanson 117 1.0 1 0 0 0 O
Hare 01 1 0 1 0 0 0 O

Table 1: A Comparison of voting procedures

of these results. We then deal with the intuitive difficulty of devising exam-
ples of various criterion violations and discuss whether this should play a
role in voting system evaluations. Finally, we shall scrutinize the “givens”
of the theory used in the evaluation.

2 The standard approach

The motivation for introducing a new voting system or criticizing an old one
is often a counterintuitive or unexpected voting outcome. A case in point is
Borda’s memoir where he criticized the plurality voting and suggested his
own method of marks (McLean and Urken 1995). With time this approach
focusing on a specific flaw of a system has given way to studies dealing with
a multitude of systems and their properties. An example of such studies
(e.g. Nurmi 2002, 36; Nurmi 2006, 136-137) is summarized in Table 1.

Here criterion a denotes the Condorcet winner criterion, b the Condorcet
loser one, ¢ strong Condorcet criterion, d monotonicity, e Pareto, f consis-
tency, g Chernoff property, h independence of irrelevant alternatives and i
invulnerability to the no-show paradox. A “1” (“0”, respectively) in the
table means that the system represented by the row satisfies (violates) the
criterion represented by the column.

The systems are viewed as choice rather than preference functions. This
distinction makes a difference especially in the case of the Kemeny rule. As
a preference function it is consistent (Young and Levenglick 1978), but as a



choice rule it isn’t.! It will be recalled that choice functions map preference
profiles into subsets of alternatives. Denoting by ® the set of all preference
profiles and by A the set of alternatives, we thus have

f:<I>H2A

for social choice functions.
Preference functions, in contradistinction, map preference profiles into
rankings over alternatives (cf. social welfare functions). Le.

F:d >R

where R denotes the set of all preference rankings over A.

Consider now a partition of a set N of individuals with preference profile
¢ into two separate sets of individuals N7 and Ny with corresponding profiles
¢1 and ¢ over A and assume that f(¢1 N ¢2) # 0. The social choice
function f is consistent iff f(¢1 N @2) = f(¢), for all partitionings of the set
of individuals.

The same definition can be applied to social preference functions. F' is
consistent iff whenever F(¢1)NF (¢2) # () implies that F(¢1)NF (¢2) = F (o).

It turns out that, like all Condorcet extensions, Kemeny’s rule is an in-
consistent social choice function. An example is provided by Fishburn (1977,
484). However, as a preference function it is consistent, i.e. whenever two
distinct subsets of individuals come up with some common preference rank-
ings, these common rankings must also be the result when the sub-profiles
are put together. Young’s result that all Condorcet extensions are inconsis-
tent is visible in Table 1 where all those systems with a 1 in column a have
a 0 in column f. The satisfaction of the Condorcet winner criterion is, how-
ever, just a sufficient, not necessary, condition for inconsistency: plurality
runoff and Hare’s system fail on both the Condorcet winner criterion and
on consistency.

Of particular interest in Table 1 is column 4, the invulnerability to the
no-show paradox. One of the main motivations for elections is to get an idea
of voter preferences. Systems that are vulnerable to the no-show paradox are
at least prima facie incompatible with this motivation. It has been shown by
Moulin (1988) and Pérez (1995) that all Condorcet extensions are vulnerable
to the no-show paradox and, indeed, as shown by Pérez (2001), most of them
to the strong version thereof whereby by abstaining a group of voters may
get their first-ranked alternative elected, while some other alternatives would
be elected if they would vote according to their preferences.

'T am grateful to Dan Felsenthal for calling my attention to the apparent discrepancy
between Young and Levenglick’s claim that the Kemeny rule satisfies both the Condorcet
winner criterion and consistency, and Fishburn’s demonstration that the rule is not con-
sistent.



monotonic non-monotonic
vulnerable Copeland  plurality runoff
invulnerable Borda empty

Table 2: Monotonicity and vulnerability to no-show paradox among anony-
mous and neutral systems: examples

At first sight, monotonicity is closely related to invulnerability to the no-
show paradox. On closer scrutiny the situation gets more nuanced. Firstly,
among monotonic systems there are both systems that are vulnerable to the
no-show paradox and those that are not (see e.g. Nurmi 2002, 103). In other
words, monotonicity does not imply invulnerability to the no-show paradox.
By Moulin’s result all monotonic Condorcet extensions — e.g. Copeland’s
and Kemeny’s methods — are vulnerable to the no-show paradox. More
obviously, monotonicity does not imply vulnerability either since e.g. the
plurality rule is both monotonic and invulnerable to the paradox. The same
is true of the Borda count. But what about non-monotonicity? Does it
imply vulnerability? Again Moulin’s result instructs us that non-monotonic
Condorcet extensions — e.g. Dodgson’s and Nanson’s methods — are vul-
nerable. So are plurality runoff and Hare’s system (or, more generally, the
single transferable vote). Indeed, in Table 1 all non-monotonic systems are
vulnerable to the no-show paradox. Campbell and Kelly (2002) have shown,
however, that this is not the case in general, i.e. there are non-monotonic
systems that are invulnerable to the no-show paradox. These are, however,
either non-anonymous or non-neutral (or both). Hence, within the class of
anonymous and neutral procedures we get the following table (Table 2).

3 Standard approach and system choice

Table 1 gives a summary information of some criteria and systems. To
justify a “1” in the table one has to show that the criterion represented by
the column is under no profile violated by the system represented by the
row. To justify a “0” requires no more than an example where the system
violates the criterion. This information can obviously be useful in choosing a
voting system. Suppose that one is primarily interested in only one criterion,
say Condorcet winning. Then one’s favorite systems are those with a “1” in
column a. This in itself sensible way of proceeding leaves, however, one with
many systems. So, we need additional considerations to narrow the choice
down.

A more “graded” approach to comparing two systems with respect to one
criterion has also been suggested (Nurmi 1991; see also Lagerspetz 2004).
The superiority of system A with respect to system B takes on degrees from



strongest to weakest as follows:

1. A satisfies the criterion, while B doesn’t, i.e. there are profiles where
B violates the criterion, but such profiles do not exist for B.

2. in every profile where A violates the criterion, also B does, but not
vice versa.

3. in practically all profiles where A violates the criterion, also B does,
but not vice versa (“A dominates B almost everywhere”).

4. in a plausible probability model B violates the criterion with higher
probability than A.

5. in those political cultures that we are interested in, B violates the
criterion with higher frequency than A.

We shall return to items 4 and 5 in the next section. Comparing systems
with respect to just one criterion is, however, not plausible since criteria tend
to be contested not only among the practitioners devising voting systems,
but also within the scholarly community. Suppose instead that one takes a
more holistic view of Table 1 and gives some consideration to all criteria. A
binary relation of dominance could then be defined as follows:

Definition 1 A system A (strictly) dominates system B in terms of a set
of criteria, if and only if whenever B satisfies a criterion, so does A, but not
the other way around.

In Table 1 e.g. Kemeny’s rule dominates all other systems except the
positional ones: plurality, Borda and approval voting. Regardless of what
relative weights one assigns to various criteria, it seems natural to focus
on the undominated systems. Thus in Table 1 one is left with Kemeny,
Borda and plurality. Provided that the criterion set is considered adequate,
this procedure considerably narrows down the original set of systems. If
all criteria are regarded as equally important, we are left with just one:
Kemeny.

But all criteria are not of equal importance. Nor are they unrelated. To
wit, if a system always ends up with the Condorcet winner, i.e. satisfies
criterion a, it also elects the strong Condorcet winner, that is, satisfies crite-
rion c. It is also known that the Condorcet winner criterion is incompatible
with consistency (Young 1974a, Young 1974b). Some criteria seem to be
context-related in the sense that they lose their practical relevance in some
specific contexts. E.g. one could argue that consistency has no practical
bearing on committee decisions since the results are always determined by
counting the entire set of ballots. Similarly, the Chernoff property may seem
irrelevant in committee settings. These observations notwithstanding, there



is a more subtle argument one can build against the standard approach: the
finding that a criterion is not satisfied by a system tells very little — in fact
nothing — about the likelihood of violation.

4 How often are criteria violated?

To find out how often a given system violates a criterion — say, elects a Con-
dorcet loser — one has to know how often various preference profiles occur
and how these are mapped into voting strategies by voters. Once we know
these two things we can apply the system to the voting strategy n-tuples (if
the number of voters is n), determine the outcomes, and, finally, compare
these with preference profile to find out whether the choices dictated by the
criterion contradict those resulting from the profile, e.g. if an eventual Con-
dorcet loser was chosen. Traditionally, two methods have been resorted in
estimating the frequency of criterion violations: (i) probability modelling,
and (ii) computer simulations. Both are based on generating artificial elec-
torates and calculating how frequently the criterion is violated or some other
incompatibility is encountered in these electorates.

The literature on probability and computer simulations is vast (see e.g.
Gehrlein 1997; Gehrlein 2002; Gehrlein 2006; Gehrlein and Lepelley 2004;
Lepelley 1993; Merlin et al. 2000; Saari and Tataru 1999). Of particular
interest has been the occurrence of cyclic majorities. The early models were
based in impartial culture (IC) assumption. Under it each voter is randomly
and independently assigned to a preference ranking over alternatives. So,
the voters are treated as random samples — with replacement — from uniform
distribution over all preference rankings. The method devised by Gehrlein
and Fishburn (1978) is useful in deriving limit probabilities when the number
of voters increases. IC is a variation of the principle of insufficient reason:
since we cannot know which preference profiles will emerge in the future,
we assume that all individual preference relations are purely random in the
sense that each individual’s preference relation is independently drawn from
a uniform distribution of preferences over all possible preference rankings.
As all versions of the principle of insufficient reason, also IC is based on
untenable epistemology: it is not possible to derive knowledge about prob-
abilities of rankings from complete ignorance regarding those probabilities.
Despite its implausibility, this assumption could still be made because of
its technical expediency if one could point out that the result based on IC
do not deviate very much from those obtained under other more plausible
assumptions. But, alas, this is not the case: the IC simulation results often
differ dramatically from other simulation results (see e.g. Nurmi 1999).

Regenwetter et al. (2006) strongly criticize the IC assumption by ar-
guing that it in fact maximizes the probability of majority cycles. Their
criticism aims at playing down the empirical significance of the results that



— under the IC assumption — suggest that the probability of majority cycles
is reasonably high even in the case of just three alternatives. Surely, the fact
that the probability of cycles is estimated at 0.09 in IC’s when the number
of voters approaches infinity and the number of alternatives is 3, does not
imply that the probability of cycles would be of the same order in current,
past or future electorates. What those results literally state is that provided
that the opinions of the voters resemble an IC, then the probability of en-
countering majority cycles is as specified. The interest of these estimates
is not in their predictive success in real world, but in their ability to pro-
vide information about variables and parameters that increase or decrease
the likelihood of cycles. Probability models are in general more useful in
providing this kind of information. Often the interest is not so much in
the probability estimates themselves but in their variability under various
transformations in the models.

Consider the studies on Condorcet efficiency of various voting proce-
dures, i.e. on the probability that the Condorcet winner is chosen by a
procedure under various cultures. Those studies that focus on Condorcet
efficiency are typically reporting the probability of the Condorcet winner
being chosen, provided that such a winner exists in the profile. In other
words, these studies (e.g. Merrill 1984) do not aim at predicting how often
Condorcet winners are elected, but, by focusing instead on just those profiles
where a Condorcet winner exists, help to identify the propensity of various
procedures to elect the Condorcet winner (see also Merrill 1988). Similarly
studies reporting the probability of various systems to come up Condorcet
losers are not predicting the relative frequency of Condorcet losers being
elected in current elections, but are aiming at disclosing factors, variables
or parameters that increase or decrease such choices under profiles where a
Condorcet loser exists. Yet, the argument of Regenwetter et al. is supported
by simulations where IC assumption is slightly perturbed by assuming that
a small minority of the electorate — say, 5 or 10 per cent of the total — forms
a homogeneous sub-culture of voters with identical preferences while the
rest of the electorate remains an IC. It then turns out that the Condorcet
efficiencies of various systems change quite significantly. More importantly,
even the ranking of systems in terms of Condorcet efficiency can change for
some combinations of alternatives and voters (Nurmi 1992). Similar obser-
vation can be made about differences in choice set of various systems under
IC and small perturbations thereof. IC seems to be associated with larger
discrepancies of systems than systems with a minuscule group representing
identical preferences immersed in IC (Nurmi 1988; Nurmi 1992).

Despite its tendency to exaggerate Condorcet cycles and dampen Con-
dorcet efficiencies of systems that are not Condorcet extensions, IC is a
useful construct in illuminating the differences of voting rules. By estimat-
ing the likelihood that two rules make overlapping choices in IC’s we get
a profile-neutral view of how far apart they are as choice intuitions. For



example, IC simulations suggest — unsurprisingly — that two Condorcet ex-
tensions, Copeland’s rule and max-min method, are relatively close to each
other in the sense of resulting rarely in distinct choice sets. More inter-
esting is the finding that the Borda count is nearly as close to Copeland’s
rule as the max-min method is (Nurmi 1988). This is consistent with the
relatively high Condorcet efficiency of the Borda count reported in several
studies (e.g. Merrill 1984; Nurmi 1988). As is well-known, the Borda scores
of alternatives can be computed from the outranking matrix by taking row
sums. This binary implementation of the Borda count already hints that,
despite its positional nature, the method is reasonably close to the idea that
the winners be detected through binary comparisons.

The criticism of IC has so far not produced many alternative culture
assumptions. Perhaps the most widespread among the alternative assump-
tions is that of impartial anonymous culture (IAC). Consider an electorate
of n voters considering the set of k alternatives. The number of rankings of
alternatives is then k!. Let n; denote the number of voters with i’th prefer-
ence ranking (i = 1,...,k!). Each anonymous profile can be represented by
listing the n;’s. The profile satisfies anonymity since transferring j voters
from ng to ny when accompanied with transferring voter j voters from ny
to ns leaves the distribution of voters over preference ranking unchanged.
In TAC’s every distribution of voters over preference rankings is assumed
to be equally probable. This changes the Condorcet efficiency as well as
Borda paradox estimates by increasing the former and decreasing the latter
(Gehrlein 1997; Gehrlein 2002).

Is TAC then more realistic than IC? Apparently it is since all voting rules
discussed above are anonymous. Hence, they do not distinguish between a
3 voter profile where voters 1 and 2 have identical preferences and voter 3’s
ranking is the inversion of that of voters 1 and 2, on the one hand, and a
profile where voter 2 is re-named voter 3 and voter 3 is re-named voter 2
with no other changes in the profile. In IAC’s all that matters is how many
voters are assigned to each ranking. Since most voting rules are anonymous,
TAC would seem more pertinent to voting rule assessment than IC. On closer
inspection, the difference is, however, a matter of degree. Both IC and IAC
are poor proxies of political electorates. Given any election result it is in-
conceivable that the profile emerging in the next election would, with equal
probability, be any distribution of voters over preference rankings. The same
is true of committees and other bodies making several consecutive collective
choices. There is in general far more interdependence between voters than
suggested by IAC. Indeed, it can be argued (Nurmi 1988a) that in recon-
structing the profile transformation over time, one should distinguish two
mechanisms: (i) one that determines the initial profile, and (ii) one which
determines the changes from one time instant (ballot) to the next. Both IC
and TAC collapse these two into one mechanism that generates each voting
situation de novo. This is certainly not the way in which everyday experi-



1 voter 1 voter 1 voter 1 voter 1 voter

D E C D E
E A D E B
A C E B A
B B A C D
C D B A C

Table 3: Black’s system is vulnerable to strong no-show paradox

ence suggests that opinion distributions are formed. If it were, the electoral
campaigns would take on heretofore unknown forms: the distinctions be-
tween core constituencies and moving voters would vanish as would that
between government and opposition etc. So, it seems that everyday obser-
vations fly in the face of IC, IAC and many other models used in generating
voter profiles. This does not play down the importance of those models as
theoretical tools, i.e. in enhancing our understanding of the mechanisms in-
creasing or decreasing the occurrence of various paradoxes, incompatibilities
or discrepancies related to voting systems.

5 Counterexamples are sometimes difficult to come
by

Summaries like Table 1 provide information that has somewhat asymmetric
nature. To prove that a system is incompatible with a criterion one needs
to find a profile where — under the assumed mechanism concerning voting
behavior — the system leads to a choice that is not consistent with the range
of choices allowed for by the criterion. To find such a profile when, theoreti-
cally, one should exist, is, however, not always easy. At the behest of and in
cooperation with Dan S. Felsenthal the present author embarked upon look-
ing for examples illustrating the incompatibility of the Condorcet winning
criterion and invulnerability to the no-show, truncation and twin paradoxes.
The background of this search is the result proven by Moulin (1988) and sub-
sequently strengthened by Pérez (2001) saying that all Condorcet extensions
are vulnerable to the no-show paradox. In the subsections that follow these
incompatibilities are illustrated for some well-known Condorcet extensions
(for fuller discussion, see Felsenthal 2010).

5.1 Black’s procedure

Black’ procedure is vulnerable to the no-show paradox, indeed, to the strong
version thereof. This is illustrated in Table 3.

10



5 voters b voters 6 voters 1 voter 2 voters

A B C C C
B C A B B
D D D A D
C A B D A

Table 4: Nanson’s method is vulnerable to strong no-show paradox

Here D is the Condorcet winner and, hence, is elected by Black.

Suppose now that the right-most voter abstains. Then the Condorcet
winner disappears and E emerges as the Borda winner. It is thus elected by
Black. E is the first-ranked alternative of the abstainer. Hence we have a
strong version of the paradox.

Truncation paradox is closely related to the no-show one. It occurs
whenever a group of individuals gets a better outcome by revealing only
part of their preference ranking rather than their full ranking. Obviously,
not voting at all is an extreme version of truncation and thus the above can
be used to show that Black is also vulnerable to truncation. If more specific
demonstration is needed, then one might consider the modification of the
above example whereby the right-most voter truncates his preference after A,
i.e. not express any view regarding C and D. Then, the Condorcet winner
again disappears and the Borda winner E emerges as the Black winner.
Again the strong version of the truncation paradox.

5.2 Nanson’ method

Nanson’s Borda-elimination procedure is vulnerable to the strong version
of no-show paradox as well. 2 Table 4 illustrates. Here Nanson’s method
results in B.

If one of the right-most two voters abstain, C — their favorite — wins.
Again the strong version of no-show paradox appears.

The twin paradox occurs whenever a voter is better off if one or several
individuals, with identical preferences to those of the voter, abstain. In
Table 4 we have an instance of the twin paradox as well: if there is only one
CBDA voter, C wins. If he is joined by another, B wins.

Nanson is also vulnerable to truncation: if the 2 right-most voters indi-
cated only their first rank, C would win (not B).

11



42 voters 26 voters 21 voters 11 voters

B A E E
A E D A
C C B B
D B A D
E D C C

Table 5: Dodgson’s method is vulnerable to no-show and twin paradoxes

1 voter 1 voter 1 voter

A D B
B C D
D A C
C B A

Table 6: Schwartz’s method violates Pareto condition

5.3 Dodgson’s method

In Table 5 A is closest to becoming the Condorcet winner, i.e. it is the
Dodgson winner.

Now take 20 out of the 21 voter group out. Then B becomes the Con-
dorcet and, thus, Dodgson winner. B is preferred to A by the abstainers,
demonstrating vulnerability to the no-show paradox. Adding those 20 twins
back to retrieve the original profile shows that Dodgson is also vulnerable
to the twin paradox.

5.4 Pareto violations, no-show and twin paradoxes of Schwartz

As will be recalled the Pareto condition states: if everybody strictly prefers
x to y, then y is not chosen, unless x is also chosen. Schwartz’s method
violates this condition as shown in Table 6.

Table 6 exhibits a top cycle: A = B = D »= C >~ A. Hence this is the
choice set of Schwartz. Yet, C is Pareto dominated by D.

To find out whether Schwartz is vulnerable to the no-show paradox we
have to make assumptions regarding the risk-posture of voters. If they are
assumed to be risk-averse, then the following example demonstrates the
vulnerability of Schwartz to both no-show and twin paradoxes.

2This subsection is partly based on the author’s correspondence with Dan S. Felsenthal
on May 25, 2001.

12



23 voters 28 voters 49 voters

A B C
B C A
C A B

Table 7: Schwartz’s method is vulnerable to no-show and twin paradoxes if
voters are risk-averse

23 voters 28 voters 49 voters

A B C
B C D
D D A
C A B

Table 8: Schwartz’s method and risk-neutral voters

In Table 7 the Schwartz choice set is A, B,C. With 4 voters from the
BCA voters abstaining, C becomes the Condorcet — and thus Schwartz —
winner. Starting from the 96-voter profile and adding BCA voters one by
one, we can demonstrate the twin paradox.

In case of risk-neutral voters, we can demonstrate these paradoxes through
the profile of Table 8:

Here the Schwartz (GOCHA) choice set is A, B,C, D. With 4 voters of
the BCDA group abstaining, C again becomes the Condorcet winner and is
thus elected. This shows the no show paradox. The twin paradox emerges
when one starts with the 96-voter profile and adds BCDA voters one by one
as above.

5.5 Min-max rule

The min-max rule is also vulnerable to no-show, truncation and twins para-
doxes. Table 9 illustrating this is an adaptation of Pérez (1995).

The outranking matrix of the Table 9 profile is in Table 10:

Thus, B is elected. However, with the 4 CABD voters abstaining, the
outcome would be A. With only 1 CABD voter added to the 15-voter profile,
A is still elected. If one then adds 3 “twins” of the CABD voter, one ends
up with B being elected. Hence twins are not welcome. If those 4 voters
reveal their first preference only, the minimum entry in B’s row drops to 4
and C emerges as the winner. Hence the truncation paradox. This outcome
assumes that winners are determined on the basis on minimum support in
pairwise comparisons. If a voter does not reveal his/her preference between

13



5 voters 4 voters 3 voters 3 voters 4 voters
D B A A C
B C D D A
C A C B B
A D B C D

Table 9: Min-max method is vulnerable to no-show, truncation and twins
paradoxes

A B C D | rowmin
Al - 10 6 14 6
B9 - 12 8 8
cj|13 7 - 8 7
D|5 11 11 - 5

Table 10: Outranking matrix of Table 9

x and y, he/she gives no votes to either one in the corresponding pairwise
comparison. This is in line with Brams (1982) who first introduced the
notion of preference truncation. Of course, other interpretations can be
envisaged.

5.6 Young fails on no-show and twin paradoxes

Young’s method is a Condorcet extension that looks for the largest subset of
voters which contains a Condorcet winner and elects the Condorcet winner
of that subset of voters. Being a Condorcet extension, Young’s rule is also
vulnerable to no-show and twin paradoxes as illustrated by Table 11. The
illustration is again inspired by and adapted from Pérez (2001) and Moulin
(1988):

In this profile E is elected (needs only 12 removals). Add now 10 voters
with ranking EDABC. This makes D the Condorcet winner. Hence, the 10
added voters are better of abstaining. Indeed we have an instance of the
strong version of no-show paradox. Obviously, twins are not always welcome
here.

5.7 Kemeny fails on no-show and twin paradoxes

The example of subsection 5.5 is applicable here. In the 15-voter profile (the
four left-most groups of voters), the Kemeny-ranking is DBCA. Now add 4

14
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Table 11: Young’s method is vulnerable to no-show and twin paradoxes

voters with DABC ranking. A now becomes the Condorcet and Kemeny
winner. Hence these four voters are better off not voting.

The twin paradox occurs when we start with the 15-voter profile adding
voters one by one until the winner changes from D to A. The last added
voter is the unwelcome twin.

Counterexamples are, indeed, important in proving incompatibilities of
of systems and criteria. However, they vary a great deal in terms of the un-
derlying difficulty of constructing them. The above counterexamples dealing
with the no-show paradox and Condorcet extension methods show that even
though a general result — here due to Moulin and Pérez — is known, it is
not necessarily straight-forward to find examples to illustrate the incom-
patibility. This suggests that perhaps the compatibility should be viewed
as a matter of degree rather than a dichotomy. In fact we are here en-
countering the same problem as when discussing the relevance of simulation
models: how often are problematic profiles likely to emerge? We just don’t
know, but if the difficulty of finding examples of some incompatibilities —
e.g. between Young’s method and invulnerability to the no-show paradox
— is anything to go by, some of the problematic profiles occur only in very
specific circumstances. Hence their practical relevance is limited.

6 Another look at behavioral assumptions

The bulk of social choice theory is based on the assumption that the indi-
viduals are endowed with complete and transitive preference relations over
the alternatives. While there are good grounds for making this assumption,
it is not difficult to construct examples where a reasonable individual might
not satisfy it. Consider Table 12.

The Dictator of Universities (DU, so far a purely fictitious figure) ponders
upon the evaluation of three universities A, B and C in terms of three
criteria: (i) research output (scholarly publications), (ii) teaching output
(degrees), (iii) external impact (expert assignments, media visibility, R&
D projects, etc.). DU deems these criteria of roughly equal importance
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criterion (i) criterion (ii) criterion (iii)

A B C
B C A
C A B

Table 12: Performance of three universities on three criteria

in determining the future funding of the universities. His observations are
summarized in Table 12.

Since the criteria are of roughly equal importance DU comes up with the
following list of binary preferences: A = B = C = A = .... There is nothing
unreasonable in this obviously intransitive preference relation. So, perhaps
we should give some thought on alternative foundations of choice theory.
There are basically two ways to proceed in searching for those foundations:
(i) assume something less demanding, or (ii) something more demanding
than preference rankings.

6.1 Asking for less than rankings

It is well-known that Arrow’s focus on social welfare functions was eventually
replaced by apparently less demanding concept of social choice function.
In similar vein, one could replace the notion of complete and transitive
individual preference relation with that of a choice function, i.e. a rule
indicating for each subset of alternatives the set of best alternatives. In
Arrovian spirit one could then look for plausible conditions on methods
aggregating the individual choice functions into collective ones.

The following would seem plausible conditions on collective choices based
on individual choice functions:

e citizen sovereignty: for any alternative x, there exists a set of individ-
ual choice function values so that x will be elected,

e choice-set monotonicity: if z is elected under some profile of individual
choices, then x should also be elected if more individuals include x in
their individual choices

e neutrality
e anonymity

e choice-set Pareto: if all individuals include z in their individual choice
sets, then the aggregation rule includes x as well , and if no voter
includes y in their individual choice set, then ¥ is not included in the
collective choice.
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alt. set ind. choice sets Rule 1 Rule 2
ind.1 ind. 2 ind. 3
{zy2} =} {2} w0 A{zya)
{z.y} Az} {o} A{y} A=} {z}
{z, 2} Az} {2} A=}  {a} {«}
{v.2}  {vt  {z2 {yp  {y} {v}

Table 13: Two choice function aggregation rules

e Chernoff’s condition: if an alternative is among winners in a large set
of alternatives, it should also be among the winners in every subset it
belongs to (Chernoff’s postulate 4, Chernoff 1954, 429).

e Concordance: suppose that the winners in two subsets of alternatives
have some common alternatives. Then the rule is concordant if these
common alternatives are also among the winners in the union of the
two subsets (Chernoff’s postulate 10; Chernoff 1954, 432; Aizerman
and Aleskerov 1995, 19-20).

Incompatibilities can also be encountered in this less demanding setting.
To wit, consider two rules for making collective choices. Rule 1: whenever
an alternative is included in the choice sets of a majority of voters, it will
be elected. Rule 2 (plurality): whichever alternative is included in more nu-
merous choice sets than the other alternatives, is elected. Table 13 presents
an example of a three-member voting body pondering upon the choice from
{z,y, z}. The individual choice sets as well as those resulting from the ap-
plication of Rule 1 and Rule 2 are indicated (Aizerman and Aleskerov 1995,
237).

Concordance is not satisfied by Rule 1, since z is chosen from {z, y} and
{z, z}, but not from {x,y, z}. Rule 2 fails on Chernoff since z is in the choice
set from {x,y, z}, but not from {x, z}. It is also worth noticing that plurality
(Rule 2), but not majority (Rule 1) fails on choice-set monotonicity.

Aggregating choice profiles instead of preference ones is in a way natural
when one is dealing with collective choices rather than rankings. Yet, as we
just saw, incompatibilities between various desiderata can be encountered
here as well. Individual choice functions are less demanding than preference
rankings. All one needs to assume regarding the underlying preference rela-
tions is completeness. A step towards more demanding ways of expressing
preferences is individual preference tournament. Tournaments — it will be re-
called — are complete and asymmetric relations. One could argue that when
the individuals take different properties or aspects of choice options into ac-
count when forming their preference between different pairs of options, the
satisfaction of completeness and asymmetry comes naturally. Yet, transi-
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tivity is less obvious. Tversky’s (1969) experiments with choices involving
pairs of risky prospects illustrate this.

Now, if tournaments instead of rankings or choice functions are taken
as proper descriptions of individual opinions, we have readily at hand sev-
eral solution concepts, to wit, the uncovered set, top cycle set, Copeland
winners, the Banks set (Banks 1985; Miller 1995; Moulin 1986). Typically
these specify large subsets of alternatives as winners and are, thus, relatively
unhelpful in settings where single winners are sought. There are basically
two ways of utilizing individual tournament matrices in making collective
decisions:

1. Given the individual £ x k tournaments, construct the corresponding
collective one of the same dimension by inserting 1 to position (3, j)
if more than n/2 individual have 1 in the (4, 7) position. Otherwise,
insert 0 to this position. The row sums then indicate the Copeland
scores. Rows with sum equal to zero correspond to Condorcet losers,
those with sums equal to £ — 1 Condorcet winners. Uncovered and
Bank’s sets can be computed as well (the latter, though, is computa-
tionally hard). Also Dodgson scores can determined.

2. Construct the collective opinion matrix as an outranking matrix where
the entry in the (4, 7) position equals the number of individuals with 1
in the (4, j) position. The row sums then indicate the “Borda scores”.
Max-min scores can also be determined.

So, the concepts of preference aggregation can be re-invoked in tourna-
ment aggregation.

6.2 Asking for more than rankings

Another way of responding to social choice incompatibilities is to start from
more, rather than less, demanding notions than individual preference rank-
ings. In fact, this response has a firm foundation in the classic utility theory.
Over the past decade it has been reiterated by several authors. To quote
one of them (Hillinger 2004):

. anew ‘paradox of voting’: It is theorists’ fixation on a context
dependent and ordinal preference scale; the most primitive scale
imaginable and the mother of all paradoxes.

The step from complete and transitive preference relations to utility func-
tions representing these functions is short, in fact, in the finite alternative
sets nonexistent. Given the preference relations one can eo ipso construct
the corresponding utility functions. These might then be used in prefer-
ence aggregation. Since the cardinal utilities thereby obtained are unique
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up to affine transformations, one can transform all utility functions into
the same scale by range of values assigned to each alternative. The util-
ity values can, then, be used in defining social choice functions in many
ways. Hillinger (2004) suggests the following. Let P, be a strict prefer-
ence relation of voter ¢ and let P; assign the set of candidates into disjoint
subsets Aq,...,Ag, K > 1 such that the voter is indifferent between candi-
dates in the same subset and strictly prefers a; € A; to candidate a; € A;
iff ¢ > j.K is given independently of the number of candidates. For a
given K, the voter is asked to assign to each candidate one of the numbers
zg, 20 + 1,...,29 + K — 1. The utilitarian voting winner is the alternative
with the largest arithmetic mean or sum of assigned numbers.

This method simply sums up the scores — or utilities expressed in the
[0, 2o+ k—1] interval — to determine the winning candidate or ranking of the
candidates. Now this method has many names. Riker (1982) calls it Ben-
tham’s method, Hillinger the utilitarian or evaluative voting and Warren D.
Smith the range voting. It is worth pointing out that the cumulative voting
method whereby each voter can freely allocate a fixed stock of votes to var-
ious candidates, is not equivalent to utilitarian voting, although somewhat
similar in spirit to the latter.

The just mentioned methods invoke a new criterion of performance: the
maximization of collective utility. What is then maximized is the sum of
utilities assigned to an alternative by all voters. Summation is, of course,
just one possible way of handling the utilities. In addition to various non-
anonymous (weighted) methods of summation, one could also maximize the
product of the utility values. Riker calls this Nash’s method with an obvious
reference to the Nash product in bargaining theory.

The most recent entrant in the class of systems dealt with in this sub-
section is majoritarian judgment introduced and elaborated by Balinski and
Laraki (2007). It works as follows:

1. each voter gives each candidate an ordinal grade (e.g. poor, medium,
good, excellent)

2. the median grade of each candidate is determined
3. the winner is the candidate with the highest median grade

4. a specific tie-breaking rule is defined

Felsenthal and Machover (2008) have given an evaluation of the ma-
joritarian judgment in terms of criteria applied in the ordinal social choice
framework. The result is a typical mixture of good and bad showings. To
summarize their evaluation: the majoritarian judgment does satisfy the
Chernoff property, it is monotonic and is immune to cloning. These are
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undoubtedly desirable properties. In contrast to these, the system is incon-
sistent, vulnerable to the no-show paradox and may result in a Condorcet
loser.

The evaluation shows that the ordinal choice theory criteria can be ap-
plied to voting systems that utilize richer information about voter opinions
than just the ranking of candidates. However, one could ask whether the
evaluation based solely on criteria borrowed from the ranking environment
misses something relevant, viz. that the systems are devised to attain goals
(such as maximizing social welfare) that cannot be expressed in terms of
ordinal concepts only. If this is the case, then at least some of the evalu-
ation criteria should be specific to systems based on aggregating cardinal
utilities. For example a person resorting to utilitarian voting might not be
at all interested if the method fails on Condorcet winner criterion as long
as it maximizes the sum of expressed utilities. Much work remains to be
done in devising non-trivial criteria for such more specific evaluations. Until
they have been invented, the best we can do is to proceed in the manner
suggested by Felsenthal and Machover.

7 Concluding remarks

The most significant results of social choice theory pertain to compatibili-
ties of various choice desiderata. Some of these take the form of proving the
incompatibility of various properties of choice rules, others do the same for
specific choice rules and voting procedures. The choice of the best rule is
complicated by the sheer number of desiderata that one intuitively would like
to see fulfilled, but even within relatively small subsets of important choice
criteria one typically finds no procedure that would satisfy them all. Even
dominance relations between procedures are uncommon. Since the proce-
dures are intended for use in future collective decision making contexts, their
success in avoiding anomalies of paradoxes is highly contingent upon encoun-
tering problematic preference profiles. Probability models and simulations
have often been resorted to in order to obtain estimates about the theoreti-
cal frequencies of problematic profiles. This approach can be complemented
by another one focusing on the difficulty of finding counterexamples showing
various incompatibilities. Arguably it is only by looking at the structure or
details of the problematic profiles that one can obtain information about
their likelihood in practice. In the preceding we have also briefly touched
upon alternative foundations of choice theory. Some of them require more
information from the individuals, others less than the ordinal ranking ap-
proach. Setting up useful criteria for analyzing systems aggregating this
new type of information is still largely to be done.
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