February 4, 2010

Incentives in Hedge Funds

Hitoshi Matsushima

Faculty of Economics, University of Tokyo

February 3, 2010

Hedge Fund as Delegated Portfolio Management

Investor (Unsophisticated) 1 Unit of Fund, No Withdrawal

Manager

M Units of Personal Fund: Manage Investor's and Personal Funds 'Separate Management' or (Equity Stake'

'Separate Management' or 'Equity Stake'

Weak Regulation, Low Transparency

Generate Alpha

Manager 🗸	Skilled Type	Select Alpha (Action) $a \in [0,\infty)$ with Non-Pecuniary Cost $C(a)$
	Unskilled Type	Alpha 0

Incentive Problem

Hidden Type Hidden Activity Investor Cannot Identify whether Manager is skilled or not Investor Cannot Observe Manager's Activity

Q: Can We Solve Incentive Problem?

A: Yes, but We Need Capital Gain Tax!

Manager's Incentive Fee Scheme

 $y:[0,\infty) \rightarrow [-M,\infty], y(x) \in [-M,\infty)$

Return-Contingency, Penalty, Escrow for Solvency

Real Fee Scheme

'2:20' Scheme

Asymmetry, No Penalty, Convexity, High-Powered

y(x) = 0.2x + 0.02

Criticisms (Warren Buffet): '2:20' Makes Manager More Risk-Taking by Side Contracting with Third Party. We Should Change '2:20' Scheme to

'Fulcrum' Scheme

Symmetric, Positive Penalty, Linear, Low-Powered

y(x) = k(x-1)

Side Contracting: Performance Mimicry

Randomize Return

Cumulative Distribution $F : [0, \infty) \rightarrow [0, 1]$

E[z | F] = x

Example (Lo (2001))

Capital Decimation Partners (CDP)

Unskilled Can Generate Alpha
$$\frac{p}{1-p} > 0$$
 with Prob.1 – p

Previous Works: Hedge Fund Never Survives

Foster + Young (08/09)

With No CG Tax, No Scheme Can Solve Incentive Problem

Medias:

FT (18/3/08), NYT (3/8/08)

"HF Never Survives. We Need More Transparency!"

Results of This Paper

- CG Tax Functions
 - With No CG Tax, We Cannot Solve Incentive Problem (a la Foster + Young)
 - With Positive CGT Rate t > 0, We Can Solve Incentive Problem
- Constrained Optimal Scheme
 - Fulcrum After Taxation: Low-Powered
- Income Tax on Fee Functions
 - Income Tax Rate Should be Greater than CG Tax Rate, $\tau > t$
 - Manager Selects Constrained Optimal Scheme Voluntarily
- Equity Stake Functions
 - We Can Solve Incentive Problem without Fulcrum

Assumption: Separate Management

10

Incentive Problem: Five Constraints

Skilled Entry

Unskilled Exit

Investor Entry

Welfare Improvement

Skilled Non-mimicry: Skilled Needs No Third-Party Side Contract

<u>Skilled Entry</u>: $V(y,t,\tau) \ge \overline{V}(t)$

 $\tilde{a}(1-t)$ Maximize (1-t)a-c(a)

 $a^*(y,\tau)$ Maximize $(1-\tau)y(a+1)-c(a)$

12

Unskilled Exit: $\max_{F \in \Phi} E[\min[(1-\tau)y(z), y(z)]|F] \le 0$

Investor Entry: $U(y,t,\tau) \ge 0$, i.e., $a^*(y,\tau) \ge y(a^*(y,\tau)+1)$

<u>Welfare Improvement</u>: $S(y,t,\tau) > \overline{S}$

No Capital Gain Tax: Impossibility

Theorem: Suppose CGT Rate t = 0. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Outline of Proof: Assume a > 0 is only available, y(0) = -w(y)

Positive Capital Gain Tax: Possibility

Theorem: There exist Tax Rates $(t,\tau) \in [0,1]^2$ and Fee Scheme $y \in Y^*(\tau)$ that satisfy All Constraints.

<u>Constrained Optimization</u>: (y^*, t^*, τ^*)

(1) Fulcrum Scheme after Taxation	y(x) = x - 1	for all $x \in [1,\infty)$
	$y(x) = (1 - \tau)(x - 1)$	for all $x \in [0,1)$
(2) Skilled Entry Binding	$V(y,t,\tau) = \overline{V}(t)$	

We Specify $(y,t,\tau) = (y^*,t^*,\tau^*)$ As Maximizing Surplus $S(y,t,\tau)$ Subject to (1) and (2)

Theorem: (y^*, t^*, τ^*) Satisfies All Constraints. There exists No (y, t, τ) that Satisfies All Constraints and $S(y, t, \tau) > S(y^*, t^*, \tau^*)$.

Constrained Optimization: Properties

•Manager is Willing to Select y^* Voluntarily: y^* is the Only Scheme that Satisfies Skilled Entry, Unskilled Exit, Investor Entry, and Skilled Non-mimicry.

• Manager Prefers to Put Personal Fund in Escrow as Large as Possible, Distorting Welfare.

• Income Tax Rate τ^* is Greater than CG Tax Rate t^* : High Income Tax Rate

Another Assumption: Equity Stake

We Don't Need Penalty, But CG Tax and Big Stake

Theorem: Suppose CGT Rate t = 0. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Additional Assumption: a > 0 is only available, $\tau = 0$

Theorem: There exist (t, y) that Levy No Penalty but Satisfy All Constraints.

Outline of Proof: CDP Must be Covered by Not only Investor's Fund But also Personal Fund

Further Comments

Investor's Optimization

• Investor Prefers higher-Powered and More Penalty than Constrained Optimal Scheme.

• By Transferring Total Tax Revenue to Investor, Government Can Incentivize Investor to Select Constrained Optimal Scheme Voluntarily.

• Investor's Payoff May be Greater than Manager's Payoff per Unit: Manager May Fold HF Business.

Entry Cost

Entry Cost Functions, if, and Only if, It is Non-Pecuniary!