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Abstract

Our work contributes to the game-theoretic analysis of bargaining by providing additional

non-cooperative support to the well-known Nash bargaining solution. In particular, in

the present paper we study a model of non-cooperative multilateral bargaining with a

very general proposer selection protocol and set of feasible payoffs. In each period of

the bargaining game, one out of n players is recognized as the proposer according to an

irreducible Markov process. The proposer offers a particular element of the convex set of

feasible payoffs. If all players accept the offer, it is implemented. If a player rejects the offer,

with some probability the negotiations break down and with the remaining probability the

next period starts. We show that subgame perfect equilibria in stationary strategies exist

and we fully characterize the set of such equilibria. Our main result is that in the limit,

as the exogenous risk of breakdown goes to zero, stationary subgame perfect equilibrium

payoffs converge to the weighted Nash bargaining solution with the stationary distribution

of the Markov proposer selection process as the weight vector. This result generalizes

recent findings which are based on time-invariant recognition probabilities or a fixed order

of proposers. The proof requires more than mere technical generalizations of those existing

results.

Keywords: Nash bargaining solution, subgame perfect equilibrium, stationary strategies,

Markov process.

JEL codes: C78.



1 Introduction

This paper contributes to the Nash program of supporting solution concepts from coop-

erative game theory by obtaining them as equilibrium outcomes of suitably constructed

non-cooperative games. More specifically, we will be concerned with the asymmetric Nash

bargaining solution. Consider a situation where two players receive a given pair of payoffs

if they disagree, but may obtain any element of a convex set of other (superior) payoff

pairs if they mutually agree on one such element. The Nash bargaining solution (NBS)

is that payoff pair which maximizes the product of players’ gains over their disagreement

payoff. Nash (1950) showed that this is the unique bargaining solution satisfying the ax-

ioms of scale invariance, symmetry, efficiency, and independence of irrelevant alternatives.

One can generalize the NBS by assigning different weights to the players. The asymmetric

Nash bargaining solution (ANBS) is that payoff pair which maximizes a weighted product

of players’ gains over their disagreement payoff, see Kalai (1977).

The NBS is used to gain insights on a wide variety of problems in economics. For

instance, Bester (1993) compares the effects of different pricing mechanisms on price and

quality of a product. In particular, posted pricing is compared to bargaining between

a buyer and a seller. In the latter case, the ANBS is taken to be the outcome of the

bargaining interaction.

Another common application is wage bargaining between a firm and a union: Firm

owners and workers can agree to produce and hence create a surplus. A part of the surplus

goes to the workers as their wage, and the rest goes to the shareholders. If, however, the

two sides cannot find an agreement, the workers may strike or the firm may shut down so

that no surplus is generated. In a seminal paper on wage bargaining, Grout (1984) studies

the effect of different legal frameworks on wage bargaining. Throughout the analysis, it is

assumed that bargaining between the firm and the union leads to the outcome predicted

by the ANBS.

An application to macroeconomic policy making is given by Alesina (1987): In a democ-

racy with two political parties, each party represents voters with different preferences over

macroeconomic policy outcomes. Elections take place regularly, but the probability that

one or the other party wins is fixed exogenously. The parties may either implement their

most preferred policy whenever they are in power or they may agree on a compromise which

will be implemented irrespective of who is in power at any specific point in time. Under

appropriate assumptions on utility functions, making a compromise generates a surplus.

The ANBS is used to predict the division of this surplus; the weights for the ANBS are

given by the exogenous probability of winning an election.

The prominent use of the NBS in applications highlights the need for strong non-

cooperative underpinnings of this concept. In the case of the ANBS, it is imperative to

1



examine the non-cooperative or strategic sources of players’ “bargaining power” which

is borne out in the weight vector of the ANBS. Nash (1953) presents a non-cooperative

demand game with two players who are uncertain about which payoff pairs are feasible. In

the limit as the uncertainty vanishes, equilibrium payoffs converge to those predicted by the

NBS. Carlsson (1991) takes a similar approach, but with a different source of uncertainty:

While the set of feasible payoffs is known to both players, their actions are subject to

noise. If players make demands which do not exhaust the available surplus, the remainder

is distributed according to an exogenously fixed rule. In the limit as the noise vanishes,

there is a unique efficient equilibrium. The payoff pair is a particular ANBS; the bargaining

weights are determined by the exogenous division rule.

In a seminal paper, Rubinstein (1982) provides a non-cooperative game in which two

players negotiate on the division of a pie. The players take turns acting as the proposer. The

division of the pie in the unique subgame perfect equilibrium depends upon how strongly

players prefer current over future payoffs. In the limit as players become perfectly patient,

the equilibrium division converges to the NBS. In their discussion of cooperative and non-

cooperative approaches to bargaining, Binmore, Rubinstein and Wolinsky (1986) obtain

the NBS in the limit if either players’ impatience or the risk of an exogenous breakdown

of the negotiations is vanishing.

Although the relationship between cooperative and non-cooperative approaches to bar-

gaining are well understood for the case of two players, such is far less the case when

more than two players are involved in the negotiation process. While it is straightfor-

ward to generalize the NBS to n players, the extension of its non-cooperative justification

has turned out to be a much more difficult problem. Krishna and Serrano (1996) make

use of Lensberg’s (1988) stability (consistency) property. They design a non-cooperative

bargaining protocol in which players can exit after partial agreements. This game has a

unique subgame perfect equilibrium and the payoffs implied by that equilibrium converge

to the NBS as the discount factor goes to one. Chae and Yang (1994) obtain uniqueness

of perfect equilibrium and convergence to the NBS in a game where a proposer negotiates

with one responder at a time. In both papers, the results come at the cost of allowing

partial agreements, rather than requiring unanimous consent to a comprehensive proposal.

More recently, support results for the ANBS have been given by Miyakawa (2006) and

Laruelle and Valenciano (2007). They consider a bargaining game where the proposer in

each period is drawn from an invariant probability distribution and unanimous consent

is required. The stationary equilibrium payoffs turn out to converge to the ANBS with

that probability distribution as the weight vector. Our analysis covers this result as a

special case. Another special case is a fixed order of proposers, as analyzed by Kultti and

Vartiainen (2007), who also show that differentiability of the payoff set’s Pareto frontier is
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essential for the convergence result if there are at least three players.

Other strands of the bargaining literature consider much more general bargaining pro-

tocols. For instance, in their analysis of uniqueness and efficiency of equilibria in bargaining

games, Merlo and Wilson (1995) assume that both the size of the cake to be divided and the

order in which players propose and respond follow a Markov process. Kalandrakis (2004)

examines no-delay equilibria in stationary strategies under a Markov selection protocol,

where agreement does not necessarily require unanimous consent of all players, but only of

those within a winning coalition. The set of such equilibria is characterized and shown to

be non-empty. Herings and Predtetchinski (2007) study a game with Markov recognition

probabilities, where the set of feasible payoffs is one-dimensional. While studying delay

or inefficiencies in bargaining games, other authors have used proposer protocols follow-

ing stochastic processes, see for instance Cho and Duggan (2005) and Hyndman and Ray

(2007). In these papers, the stochastic process is not even required to have the Markov

property, so the choice of the proposer may depend on aspects of history other than the

identity of the previous proposer. Since more general selection protocols are used in much

of the bargaining literature, we find it important to extend this approach to the support

results for the NBS.

In this paper we take a general approach towards multilateral bargaining. We aim at

results for the case with n players, a general set of feasible payoffs, and a general bargaining

protocol. An informal description of the game we consider in this paper is as follows.

In the first period of an infinitely repeated bargaining game, the identity of the proposer

is completely arbitrary. In each subsequent period, one out of the n players is recognized

as the proposer according to an irreducible Markov process. Upon recognition, the pro-

poser offers a particular element of a convex and comprehensive set of feasible payoffs.

If all players accept the offer, it is implemented. If a player rejects the offer, with some

exogenously given and constant breakdown probability the game ends, whereas with the

complementary probability the next period starts.

We show that subgame perfect equilibria in stationary strategies exist and we charac-

terize the set of such equilibria. We then study the limit of an arbitrary sequence of such

equilibria corresponding to a sequence of vanishing breakdown probabilities. We show that

in the limit all players make the same proposal. Our main result is that in the limit this

common proposal coincides with the ANBS with the stationary distribution of the Markov

proposer selection process as the weight vector. Hence, equilibrium payoffs depend only

on the set of feasible payoffs and the stationary distribution associated with the matrix of

transition probabilities.

The proof of our result goes well beyond mere technical generalizations of existing proof

strategies. Since the reservation payoff of a responding player depends on the identity
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of the current proposer, reservation payoffs cannot be expressed by a single vector, but

correspond to a matrix. For any value of the exogenous breakdown probability, we consider

the vectors corresponding to the difference between the equilibrium proposals of a pair of

players. We show that in the limit as the breakdown probability vanishes, these vectors

span an (n−1)-dimensional supporting hyperplane to the set of feasible payoffs at the point

corresponding to the common limit proposal of the players. Finally, we demonstrate that

the unique normal vector to this supporting hyperplane is proportional to the gradient of

the asymmetric Nash product with weights equal to the stationary distribution associated

with the matrix of transition probabilities.

The rest of the paper is organized as follows: Section 2 includes the formal description

of the bargaining game and the definition of the equilibrium concept. In Section 3, we give

necessary and sufficient conditions for a profile of stationary strategies to be an equilibrium

in accordance with that concept. We also show that such an equilibrium exists. In Section

4, the main result is established: our non-cooperative support for the ANBS. Section 5

concludes.

2 The Bargaining Game

We consider the bargaining game Γ(N, M, V ). The set of players is denoted by N , and its

members are indexed from 1 until n. The game is played for potentially infinitely many

periods t = 0, 1, 2, . . .. In each period, one player acts as the proposer. In period t = 0, the

proposer is determined in an arbitrary way. In all later periods, the proposer is chosen by a

Markov chain. The probability distribution on the players in period t > 0 depends on the

identity of the proposer in period t− 1. The entry mji of the matrix M is the probability

that player j will propose in period t given that player i has proposed in period t− 1. All

entries of M are nonnegative and for each i ∈ N , it is true that
∑n

j=1 mji = 1. The set

V corresponds to all feasible payoffs. We denote V ∩ Rn
+ by V+. Our assumptions are as

follows.

(A1) The set V is closed, convex, and comprehensive from below. The origin lies in the

interior of V . The set V+ is bounded and all weakly Pareto-efficient points in V+ are

also strongly Pareto–efficient.

(A2) The matrix M is irreducible.

We denote the interior and boundary of a set X by int(X) and ∂X respectively. A vector

η with ‖η‖ = 1 is said to be normal to the convex set V at a point v̄ ∈ V if (v − v̄)>η ≤ 0

for every v ∈ V. The set of all vectors η normal to V at v̄ is called the normal to V at v̄.
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(A3) There is a unique vector in the normal to V at every v ∈ ∂V ∩ Rn
+.

The assumption that all weakly Pareto-efficient points in V+ are also strongly Pareto–

efficient is essential to our results. As we show later in Section 3, this assumption implies

that a proposal of a player i gives all other players their respective reservation payoffs.

Thus a proposer always extracts the full surplus from all other players. Our assumptions

with respect to V are similar to those in Merlo and Wilson (1995) and Miyakawa (2006).

The game proceeds as follows. In any period t, first the proposer is chosen in the

aforementioned way. Next, the proposer offers a vector v ∈ V . Then, all players (including

the proposer) decide sequentially whether to accept or reject the offer v, where for the sake

of simplicity we assume that player i responds before player i + 1. We define the set S(i)

consisting of player i and all its successors by S(i) = {j ∈ N | j ≥ i}. If all players have

accepted the vector v in period t, the game ends and each player i receives a payoff of vi. As

soon as one player rejects v, period t+1 starts with probability δ, and the game ends with

probability 1− δ. In the latter case, as well as in the case with perpetual disagreement, all

players receive zero payoff. We assume that players maximize expected payoffs.

We denote by Hp
i the set of histories after which player i has to make a proposal and by

Hr
i the set of histories after which player i has to respond to a proposal. Then, a strategy

for player i is a map si : Hp
i ∪Hr

i → V ∪ {Yes, No}.
Player i’s strategy is stationary if the same proposal is made at all histories Hp

i and if

the action taken at any history Hr
i depends only on the current proposal and the current

proposer.1

A Nash equilibrium is a profile of strategies from which no player has an incentive to

unilaterally deviate. A subgame perfect Nash equilibrium (SPE) is a profile of strategies

such that its restriction to any subgame is a Nash equilibrium of that subgame.

A stationary subgame perfect Nash equilibrium (SSPE) is a profile of stationary strate-

gies which is an SPE.

3 Analysis of Stationary Equilibrium

In this section, we characterize the set of subgame perfect equilibria in stationary strate-

gies and show that such equilibria exist. Theorem 3.8 gives the necessary and sufficient

1This notion of stationarity is weaker than the notion of subgame consistency due to Harsanyi and Selten
(1988), which implies that a player chooses the same action at any two nodes for which the continuation
game is the same. For instance, suppose that rows i and j of M are identical. Then, the continuation
games after rejection of player i’s proposal and that after rejection of player j’s proposal are identical.
Yet, our definition allows Ai

k to be different from Aj
k for one or more players k ∈ N .
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conditions for a strategy profile to be an SSPE and Theorem 3.13 shows that an SSPE

exists.

The analysis in this section resembles Kalandrakis (2004), but some important differ-

ences should be noted: We admit only pure strategies and require unanimous agreement.

Furthermore, we conclude rather than assume that agreement is immediate in SSPE and

we do not impose assumptions on the behavior of players who are indifferent between

acceptance and rejection of some proposal.

Consider a profile of stationary strategies. It can be described by an n× n -matrix Θ,

where the entry θi
j is the payoff proposed to player j by player i, and a collection A of n2

acceptance sets, where the acceptance set Ai
j is the set of vectors in V which player j will

accept when proposed by player i. The set of vectors in V proposed by player i and accepted

by player j and his successors is Ai
S(j) = ∩k∈S(j)A

i
k. We refer to Ai = Ai

S(1) =
⋂

j∈N Ai
j as

the social acceptance set for proposer i.

Suppose that in period t, the proposal of player i is rejected. With probability 1 − δ

the game ends and all players receive zero payoff, and with probability δ period t + 1 is

reached and play proceeds according to the profile (Θ,A) of stationary strategies. The

expected payoff to player j after rejection is ri
j(Θ,A). Omitting the argument (Θ,A) from

the notation wherever possible, we refer to ri
j as the reservation payoff of player j when i

proposes.

Proposition 3.1 The reservation payoff ri belongs to int(V ).

Proof: Conditional on the next period being reached, the payoffs are determined by a

probability distribution on V (notice that also 0 ∈ V ), so expected payoffs belong to V

since V is convex. Since with probability 1 − δ the next period is not reached, these

expected payoffs equal δ−1ri, so δ−1ri ∈ V. Since 0 ∈ int(V ), the convex combination

(1− δ)0 + δδ−1ri = ri belongs to int(V ). 2

One implication of Proposition 3.1 is that a proposer always has the option to make a

proposal that strictly exceeds the reservation payoff of every player.

Proposition 3.2 In SSPE, for j ∈ N, if v ∈ Ai
S(j), then vk ≥ ri

k for all k ∈ S(j).

Proof: Suppose that (Θ,A) is a profile of stationary strategies such that v ∈ Ai
S(j) but

vk < ri
k for some player k ∈ S(j). Consider a history in Hr

k, where player k responds to

the proposal v made by player i. At that history player k could deviate from (Θ,A) by

rejecting v. In that case, an expected payoff of ri
k would result. Hence, this deviation is

profitable and (Θ,A) cannot be an SSPE. 2

Proposition 3.2 implies that for a vector of payoffs v to belong to the social acceptance

set, it should satisfy vj ≥ ri
j for all j ∈ N.
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Proposition 3.3 In SSPE, for j ∈ N, if v ∈ V satisfies vk > ri
k for all k ∈ S(j), then

v ∈ Ai
S(j).

Proof: Suppose that (Θ,A) is a profile of stationary strategies such that vk > ri
k for all

k ∈ S(j) and v /∈ Ai
S(j). Suppose first that v /∈ Ai

n. Consider a history in Hr
n, where player

n responds to the proposal v made by player i.Then, player n could deviate from (Θ,A) by

accepting v. This would yield a payoff of vn > ri
n, a contradiction. Consequently, v ∈ Ai

n.

We repeat the argument for players n− 1, n− 2, . . . , j to establish the proposition. 2

Proposition 3.3 established a kind of converse of Proposition 3.2. One implication of

this proposition is that a vector v ∈ V that satisfies vj > ri
j for all j ∈ N belongs to the

social acceptance set Ai
j.

Proposition 3.4 In SSPE, each player’s proposal θi lies in the social acceptance set Ai

for proposer i.

Proof: Suppose by way of contradiction that under some SSPE there is a player i ∈ N such

that θi /∈ Ai. Consider the subgame starting at a history where player i is the proposer.

Since θi is rejected, ri is the vector of expected payoffs by definition. By Proposition 3.1,

ri ∈ int(V ). Consequently, there exists v ∈ V such that vj > ri
j for all j ∈ N . By the

previous proposition, v ∈ Ai. Hence, it would be a profitable deviation for player i to

propose v instead of θi. 2

Proposition 3.5 In SSPE, θi
j ≥ 0 and ri

j ≥ 0 for all (i, j) ∈ N ×N .

Proof: Suppose by way of contradiction that (Θ,A) is an SSPE and that θi
j < 0 for some

(i, j) ∈ N × N . Consider a history where player j has to respond to the proposal θi. By

Proposition 3.4, θi ∈ Ai, so player j will receive a strictly negative payoff if play proceeds

according to (Θ,A). But then, it would be a profitable deviation for player j to reject the

proposal. Consequently, it holds that θi
j ≥ 0 for all (i, j) ∈ N × N. It then follows that

ri
j ≥ 0 for all (i, j) ∈ N ×N. 2

The next proposition establishes that an equilibrium proposal of any player gives all

other players their respective reservation payoffs. Thus a proposer always extracts the

entire surplus from the other players.

Proposition 3.6 In SSPE, θi
j = ri

j for all (i, j) ∈ N ×N such that i 6= j.
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Proof: Since θi ∈ Ai by Proposition 3.4, Proposition 3.2 implies that θi
j ≥ ri

j for all j ∈ N .

Suppose θi
k > ri

k for some k ∈ N such that k 6= i. Define the vector v as follows,

vj =

θi
i if j = i

ri
j if j 6= i.

The vector v is clearly non–negative and it is in V , because v ≤ θi and V is comprehensive.

Furthermore, vk = ri
k < θi

k, so the vector v is dominated by θi and is therefore not strongly

Pareto–efficient. Since we assume that all weakly Pareto–efficient vectors of V+ are also

strongly Pareto–efficient, the vector v is not weakly Pareto–efficient. Thus, there exists a

vector v′ such that v′j > vj for all j ∈ N .

We show now that v′ ∈ Ai. Indeed, v′j > vj = ri
j for all j 6= i. And for player i we

have the inequality v′i > vi = θi
i ≥ ri

i. Thus we conclude that v′j > ri
j for all j ∈ N .

Proposition 3.3 now implies that v′ ∈ Ai, as desired.

But then player i has a profitable deviation at any history where he is entitled to make

a proposal, namely propose the vector v′ rather than θi. Indeed, the vector v′ is accepted

and results in a payoff of v′i > θi
i to player i. 2

Proposition 3.7 claims that all players make a proposal belonging to the boundary of

V.

Proposition 3.7 In SSPE, θi ∈ ∂V for each i ∈ N .

Proof: Suppose by way of contradiction that there is a player i ∈ N such that θi ∈ int(V ).

Equivalently, there exists v ∈ V such that vj > θi
j for all j ∈ N . By the immediate

agreement property, θi ∈ Ai. This implies that v ∈ Ai as well. But then it would be a

profitable deviation for player i to propose v rather than θi. 2

The previous propositions are collected in the following theorem.

Theorem 3.8 If (Θ,A) is an SSPE profile, then for all i ∈ N

Ai
S(j) ⊂ {v ∈ V |vj′ ≥ δ

n∑
k=1

mkiθ
k
j ,∀j′ ∈ S(j)}, j ∈ N, (1)

Ai
S(j) ⊃ {v ∈ V |vj′ > δ

n∑
k=1

mkiθ
k
j ,∀j′ ∈ S(j)} ∪ {θi}, j ∈ N, (2)

θi ∈ ∂V ∩ Rn
+, (3)

θi
j = ri

j = δ

n∑
k=1

mkiθ
k
j , j ∈ N \ {i}. (4)
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In what follows, we establish the converse; the four conditions of Theorem 3.8 char-

acterize the set of SSPE. We first apply the well-known one-shot deviation principle to

the game at hand. That is, we show that if there is a subgame where a player has some

profitable deviation from a stationary strategy profile, then there must also be a subgame

where this player has a profitable one-shot deviation. Here, a one-shot deviation in a sub-

game is a single deviation by the player at the root of the subgame. Next we show that no

player has a profitable one-shot deviation.

Proposition 3.9 Let (Θ,A) be a stationary strategy profile satisfying (1)–(4). If there is

a subgame such that some player has a profitable deviation, then there is a subgame where

he has a profitable one-shot deviation.

Proof: Consider a subgame starting in period t′ and suppose that some, not necessarily

stationary, strategy si leads to a higher payoff for player i than (θi, Ai). Denote the gain

to player i from the deviation by ε > 0. For t > t′, let si(t) be the strategy that coincides

with si in periods t′, . . . , t− 1 and with (θi, Ai) in periods t, t + 1, . . . In any round t > t′,

we have by (1) that only proposals in V+ can be accepted. Let v̄i be an upper bound on

players i’s payoff when v ∈ V+. Then the gain to player i from a deviation to si(t) is at

least ε− δt−t′ v̄i/(1− δ). By choosing t > t′ + (ln(ε) + ln(1− δ)− ln(v̄i))/ ln(δ)) we have a

profitable deviation si(t) from (θi, Ai) that only involves a finite number of deviations.

If si(t) involves a deviation by player i at a history h ∈ Hr
i in period t − 1, and si(t)

is a profitable deviation from (θi, Ai) in subgame Γ(h), then the proposition holds. If si(t)

does not involve a profitable deviation by player i at any history h ∈ Hr
i in period t − 1,

then the strategy s̄i(t) that coincides with si in periods t′, . . . , t−2 and at histories h ∈ Hp
i

in period t − 1 and with (θi, Ai) otherwise, is a profitable deviation from (θi, Ai) in the

subgame starting in period t′ under consideration.

By a similar argument as in the previous paragraph, we can show that s̄i(t) involves a

profitable deviation by player i in subgame Γ(h) with h a history in period t− 1 belonging

to Hp
i , or the strategy si(t−1) is a profitable deviation from (θi, Ai) in the subgame starting

in period t′ under consideration. Repeating this argument a finite number of times leads

to a subgame where player i has a profitable one-shot deviation. 2

Proposition 3.10 Let (Θ,A) be a stationary strategy profile satisfying (1)–(4). There is

no subgame where a player has a profitable one-shot deviation.

Proof: Consider the subgame at a history h ∈ Hp
i . Suppose player i has a one-shot

deviation involving a proposal vi different from θi. If vi does not belong to Ai, it leads to

a payoff ri
i for player i. Since θi

j = ri
j for all j 6= i and ri ∈ int(V ), the Pareto-efficiency of
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θi implies θi
i > ri

i, so the deviation is not profitable. If vi belongs to Ai, then, for j 6= i,

vi
j ≥ ri

j = θi
j by (1) and (4). Now vi

i ≤ θi
i, since otherwise the Pareto-efficiency of θi would

be violated. The deviation is not profitable.

Consider the subgame at a history h ∈ Hr
i . Let v denote the proposal being made,

say by player j. Consider a one-shot deviation by player i. If v ∈ Aj
i and v ∈ Aj

S(i), then

the deviation leads to a payoff rj
i for player i, which is less than or equal to vi, the payoff

resulting from not deviating. If v ∈ Aj
i and v /∈ Aj

S(i), then the deviation does not lead to

a change in payoffs. If v /∈ Aj
i and v ∈ ∩k∈S(i)\{i}A

j
k, then the deviation leads to payoff vi,

which is less than or equal to rj
i , the payoff resulting from not deviating. If v /∈ Aj

i and

v /∈ ∩k∈S(i)\{i}A
j
k, then the deviation does not lead to a change in payoff. 2

The previous two propositions imply that the strategies conforming to the conditions

of Theorem 3.8 are subgame-perfect. Since they are also stationary, we have the following

Theorem 3.11 The strategy profile (Θ,A) fulfills the four conditions of Theorem 3.8 if

and only if it is an SSPE.

If a matrix Θ of proposals is part of an SSPE, then it is part of many SSPE’s. This

inessential multiplicity has two sources. First, if a responding player is proposed exactly

the reservation payoff, then our characterization restricts behavior only if the proposal

on the table is the equilibrium proposal. This is reflected in the fact that each point on

the boundary of a social acceptance set (except the relevant equilibrium proposal) may

or may not be an element of that set in SSPE. Second, if a proposal lies outside a social

acceptance set, it is indeterminate which player will reject the proposal. Consider for

example the case where N = {1, 2, 3, 4} and r1 = (1, 1, 1, 1). Now suppose that player 1

has proposed v = (2, 2, 0, 0) in some subgame. Since v3 < r1
3 and v4 < r1

4, Proposition 3.2

implies that v /∈ A1, and by Proposition 3.4 v 6= θ1. It is also true that v /∈ A1
4: If the

node where player 4 has to respond is reached, that player effectively chooses between

a payoff of 1 and a payoff of 0, so SSPE requires rejection of the proposal. However,

the SSPE characterization leaves indeterminate whether players 1, 2, and 3 will accept

or reject v. Consequently, there is an SSPE for any configuration of responses by these

players. In particular, player 3 may accept v in SSPE although v3 < r1
3, and player 2

may reject v although v2 > r1
2. This reasoning even extends to player 1: In SSPE, it is

possible that v /∈ A1
1 although v1 > r1

1 and player 1 is the proposer. However, this does not

mean that player 1 may reject his own proposal on the equilibrium path, since the SSPE

characterization requires the specific proposal θ1 to be made and immediately accepted by

all players.

10



Proposition 3.12 Given v ∈ V+, let W (v) = {x ∈ V |x ≥ v}. For each i ∈ N there exists

a unique v′ ∈ ∂V ∩ Rn
+ such that v′j = vj for all j ∈ N \ {i}. Furthermore,

{v′} = arg max
x∈W (v)

xi.

Proof: Take any

v′ ∈ arg max
x∈W (v)

xi.

We show that v′ ∈ ∂V ∩ Rn
+ and v′j = vj for all j ∈ N \ {i}. Indeed, v′ ∈ Rn

+, because

W (v) ⊂ Rn
+. Furthermore, v′ is a boundary point of V , for if it was an interior point, there

would exist a vector v̇ ∈ V such that v̇i > v′i for all i ∈ N , contradicting the choice of v′ as

a maximizer of xi over all points x ∈ W (v).

Suppose v′k > vk for some k ∈ N \ {i}. Define the vector x by the equation

xj =

v′j if j 6= k

vk if j = k.

Then v′ ≥ x, so x is an element of V , because V is comprehensive from below. Furthermore,

x ≥ v ≥ 0. Since v′ ≥ x with the strict inequality for component k, x is not strongly Pareto–

efficient. Since we assume that all weakly Pareto–efficient vectors of V+ are also strongly

Pareto–efficient, x is not weakly Pareto–efficient, so there exists v̇ ∈ V such that v̇j > xj

for all j ∈ N . But then v̇ ≥ x ≥ v, so that v̇ ∈ W (v), and v̇i > xi = v′i, contradicting the

choice of v′ as a maximizer of xi over all points x in W (v).

Suppose now that there exists a vector v′′ ∈ ∂V ∩ Rn
+ other than v′ such that v′′j = vj

for all j ∈ N \ {i}. Without loss of generality assume v′i > v′′i . Then the vector v′′ is not

strongly Pareto–efficient. Since we assume that each weakly Pareto–efficient vector is also

strongly Pareto–efficient, v′′ is not weakly Pareto–efficient. But then v′′ is in the interior

of V , a contradiction. 2

Theorem 3.13 An SSPE exists.

Proof: We identify the set of SSPE of Γ with the set of fixed points of a map and use

Brouwer’s fixed point theorem to establish existence. Consider a non–negative matrix Θ

with each column θi of Θ in the set V+. Let χi(Θ) be a vector satisfying the following

conditions:

χi(Θ) ∈ ∂V ∩ Rn
+ and χi

j(Θ) = δ

n∑
k=1

mkiθ
k
j for all j 6= i.

11



By Proposition 3.12, χi(Θ) is uniquely determined. Define now the function χ : V+ → V+

by letting χ(Θ) = (χ1(Θ), . . . , χn(Θ)). By the characterization of SSPE, if χ(Θ) = Θ for

a particular Θ ∈ V+, then there is at least one SSPE with Θ as the matrix of proposed

payoffs. The set V+ = V ∩ Rn
+ contains the origin, it is convex and closed, as it is the

intersection of two convex and closed sets, and it is bounded. Since the maximum theorem

can be used to show that χ is continuous, Brouwer’s fixed point theorem implies that it

has a fixed point. 2

4 The Limit Equilibrium

Our proofs so far did not rely on Assumptions A2 and A3. They will be needed for the

results of this section. Since the matrix M is irreducible, it has a unique stationary distri-

bution denoted by µ. Recall that the stationary distribution µ is a probability distribution

on the set of players N satisfying the equation Mµ = µ. Furthermore, irreducibility of

M implies that all states occur with positive probability under the stationary distribution,

that is µi > 0 for each i ∈ N . If the matrix M was reducible, the state space of M could be

partitioned into several communicating classes. In this case, one obtains results analogous

to those in the sequel within each communicating class.

Theorem 4.2 below is the main result of the paper. As the continuation probability goes

to one, along any sequence of stationary subgame perfect equilibria of Γ, the equilibrium

proposal of all players converges to the same limit. This common limit is the asymmetric

Nash bargaining solution weighted by the stationary distribution µ, denoted µ-ANBS.

Definition 4.1 The asymmetric Nash product with weights µ is the function ρ : V → R
defined by

ρ(v) =
∏
i∈N

(vi)
µi .

The µ–ANBS is the unique maximizer of the function ρ on the set V .

Theorem 4.2 Let {δm} be a sequence of continuation probabilities in [0, 1) converging to

1. For each m, let Θ(δm) be a matrix of proposals in some SSPE of the game Γ with

continuation probability δm. Then the limits lim θi(δm) exist for each i ∈ N . All limits are

equal to the µ–ANBS.

Let δm and Θ(δm) be as in Theorem 4.2. The sequence {Θ(δm)} has a convergent

subsequence, as it lies in the compact set V+. For the remainder of this section, we will

fix any such convergent subsequence and denote its limit by Θ̄. Since the convergent

12



subsequence considered is arbitrary, to prove Theorem 4.2 it is sufficient to show that each

column of the matrix Θ̄ is the µ–ANBS.

We now give a brief overview of the argument. First we show that along the sequence

{Θ(δm)} of equilibria the proposals of all players converge to a common limit, say the point

θ̄ ∈ V . We then compute the tangent space to the set ∂V at the point θ̄ by considering the

pairwise differences of the equilibrium proposals of players i and n, and show they converge

to zero at the same speed as 1− δm. In fact, we are able to compute explicitly the limits

of the vectors (θi(δm)− θn(δm))/(1− δm), which are then shown to span the tangent space

to the set ∂V at the point θ̄. Using this result we show next that the tangent space at

θ̄ is orthogonal to the gradient of the asymmetric Nash product with weights µ, thereby

showing that θ̄ is the µ–ANBS.

Proposition 4.3 All columns of Θ̄ are identical.

Proof: For any i 6= j, it follows from the SSPE characterization that

θ̄i
j =

n∑
k=1

mkiθ̄
k
j .

Suppose that, contrary to the proposition, not all limit proposals θ̄1, . . . , θ̄n are the

same. Let j ∈ N be such that in the limit not all players propose the same to player j,

and choose θ̄�j to be either mini∈N{θ̄i
j} or maxi∈N{θ̄i

j}, whichever is not equal to θ̄j
j . Define

N� = {i ∈ N |θ̄i
j = θ̄�j}. For any i ∈ N�, we have

θ̄�j = θ̄�j
∑
k∈N�

mki +
∑

k∈N\N�

mkiθ̄
k
j ,

which is equivalent to

θ̄�j
∑

k∈N\N�

mki =
∑

k∈N\N�

mkiθ̄
k
j .

Suppose first that for some i ∈ N�,∑
k∈N\N�

mki > 0.

Then

θ̄�j =

∑
k∈N\N� mkiθ̄

k
j∑

k∈N\N� mki

,

which contradicts the fact that either θ̄�j < θ̄k
j for all k ∈ N \ N� or θ̄�j > θ̄k

j for all

k ∈ N \N�. Therefore, mki = 0 for all (i, k) ∈ N� × (N\N�) and thus N� is an absorbing

set. Since N� 6= N , this contradicts the irreducibility assumption on M . 2
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We denote a column of Θ̄ by θ̄. For i ∈ N \ {n}, we define

di(δm) =
θi(δm)− θn(δm)

1− δm

.

Let D(δm) be the n× (n− 1)–matrix with columns d1(δm), . . . , dn−1(δm).

The rest of the proof is organized as follows. In Proposition 4.5 we compute the limits of

di(δm) as m goes to infinity. Proposition 4.6 establishes that the limit of {di(δm)} belongs

to the tangent space to ∂V at θ̄. We then proceed to show in Proposition 4.8 that the

limits of d1(δm), . . . , dn−1(δm) are linearly independent and thus span the tangent space to

∂V at θ̄. And finally, Proposition 4.9 establishes that the gradient of the Nash product

with weights µ at the point θ̄ is orthogonal to the tangent space of V, thereby showing that

θ̄ is the µ–ANBS.

For a matrix A, we denote by A−i and A−i the matrix A without its ith row and column,

respectively. We write 1 for a column vector of ones and I for the identity matrix.

For j ∈ N, we define the matrix L(j) by

L(j) = [M − I]−j
−n.

Thus L(j) is the (n− 1)× (n− 1)–matrix obtained from M − I by deleting column j and

row n. Proposition 4.4 is an auxiliary result used in the proof of Proposition 4.5.

Proposition 4.4 The matrix L(j) is invertible for all j ∈ N.

Proof: Suppose L(j) is singular. Let a be a non–zero vector such that [M − I]−j
−na = 0.

Since the elements in any column of the matrix M − I add up to zero, we also have the

equation (M − I)−j
n a = 0, so [M − I]−ja = 0. By using [M − I]−j = (M − I)I−j and

defining b = I−ja, we see that (M − I)b = 0. Thus the vector b is an eigenvector of M

associated with eigenvalue 1. By the Perron–Frobenius theorem, any non-zero eigenvector

of M associated with eigenvalue 1 is a strictly positive vector. However, since bj = 0, we

have obtained a contradiction. Consequently, the matrix L(j) is invertible. 2

Proposition 4.5 The sequence {D(δm)} of matrices converges to the matrix D̄ with rows

given by d̄j = θ̄j1
>L−1(j) for j ∈ N .

Proof: We fix m and denote δm by δ, θi(δm) by θi, and di(θm) by di.

For each j ∈ N and i ∈ N \ {j, n},

di
j(1− δ) = θi − θn = δ

n∑
k=1

mkiθ
k
j − θn

j

= δ
n∑

k=1

mki(θ
k
j − θn

j ) + δθn
j − θn

j ,
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where we use (4) for the second equality, so

di
j = δ

n−1∑
k=1

mkid
k
j − θn

j .

We have found that

θn
j = δ

∑
k/∈{i,n}

mkid
k
j + (δmii − 1)di

j, j ∈ N, i ∈ N \ {j, n}. (5)

Similarly, for j 6= n,

dj
j(1− δ) = θj

j − δ
n∑

k=1

mknθ
k
j

= θj
j − δ

n∑
k=1

mkn(θk
j − θn

j )− δθn
j

= θj
j − θn

j − δ

n∑
k=1

mkn(θk
j − θn

j ) + (1− δ)θn
j ,

where we use (4) for the second inequality, so

dj
j = dj

j − δ
n−1∑
k=1

mknd
k
j + θn

j .

We have found that

θn
j = δ

n−1∑
k=1

mknd
k
j , j ∈ N \ {n}. (6)

We write (5)–(6) in vector–matrix notation as

θn
j 1

> = dj(δM − I)−j
−n, j ∈ N.

The matrix (M − I)−j
−n is invertible by Proposition 4.4, and so is the matrix (δM − I)−j

−n

for δ close enough to one. Thus, for every j ∈ N, we can solve the above system for dj as

dj = θn
j 1

>[(δM − I)−j
−n]−1.

As δm goes to one, the sequence θn
j (δm) converges to θ̄j by Proposition 4.3. Thus the

sequence dj(δm) converges to θ̄j1
>L−1(j), as desired. 2

Proposition 4.5 expresses each row j of the matrix D̄ as the sum of the rows of the matrix

L−1(j) multiplied by the scalar θ̄j.

We show now that each column of the matrix D̄ is orthogonal to the normal vector of

V at the point θ̄, which is unique by Assumption A3. This is equivalent to saying that

each column of the matrix D̄ belongs to the tangent space of ∂V at θ̄. We let span(D̄)

denote the column span of the matrix D̄.
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Proposition 4.6 It holds that span(D̄) is orthogonal to the normal vector of V at θ̄.

Proof: Let ηi(δm) denote the normal vector of V at the point θi(δm). Since {θi(δm)}
converges to θ̄, the sequence {ηi(δm)} converges to η̄, the normal vector to the set V at

the point θ̄. By the definition of the normal vector,

ηn(δm)>(θi(δm)− θn(δm)) ≤ 0 and ηi(δm)>(θi(δm)− θn(δm)) ≥ 0.

Dividing by 1− δm and passing to the limit yields the inequalities η̄>d̄i ≤ 0 and η̄>d̄i ≥ 0,

therefore η̄>d̄i = 0, as desired. 2

Propositions 4.7 and 4.8 address the dimension of span(D̄). We show that the columns

of D̄ are linearly independent, thus establishing that span(D̄) equals the tangent space of

∂V at θ̄.

For j ∈ N, let Kj be the sum of the rows of the matrix L−1(j), thus

Kj = 1
>L−1(j).

Define K as the n× (n− 1)–matrix with rows Kj. Proposition 4.7 expresses all rows of K

in terms of rows of L−1(n) and the stationary distribution µ induced by M.

Proposition 4.7 Any combination of n − 1 distinct rows of the matrix K is linearly in-

dependent. Furthermore,

Kj = 1
>L−1(j) = 1

>L−1(n)− 1

µj

(L−1(n))j, j ∈ N \ {n}.

Proof: We define x = [M − I]n−n. Consider some j ∈ N \{n}. It can be verified by a direct

computation that

L−1(j) =



(L−1(n))1 −
(L−1(n)x)1

(L−1(n)x)j

(L−1(n))j

...

(L−1(n))j−1 −
(L−1(n)x)j−1

(L−1(n)x)j

(L−1(n))j

(L−1(n))j+1 −
(L−1(n)x)j+1

(L−1(n)x)j

(L−1(n))j

...

(L−1(n))n−1 −
(L−1(n)x)n−1

(L−1(n)x)j

(L−1(n))j

1

(L−1(n)x)j

(L−1(n))j



.
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The formula above is well-known in linear programming and is used to compute the sim-

plex tableau following from a change in basis variables. By definition of the stationary

distribution we have

L(n)µ−n + xµn = 0.

We multiply this expression by L−1(n) and rearrange to obtain

L−1(n)x = −µ−n/µn.

By substitution, we find that

L−1(j) =



(L−1(n))1 −
µ1

µj

(L−1(n))j

...

(L−1(n))j−1 −
µj−1

µj

(L−1(n))j

(L−1(n))j+1 −
µj+1

µj

(L−1(n))j

...

(L−1(n))n−1 −
µn−1

µj

(L−1(n))j

−µn

µj

(L−1(n))j



.

Summing up the rows of L−1(j) we get

1
>L−1(j) =

∑
i∈N\{j,n}

(L−1(n))i +
µj − 1

µj

)(L−1(n))j = 1
>L−1(n)− 1

µj

(L−1(n))j.

Therefore,

K−n = [11> − C]L−1(n),

where C is the (n− 1)–diagonal matrix with element 1/µi in column i.

The matrix [11> − C] is non–singular. Suppose not, then there is y 6= 0 such that

[11> − C]y = 0. It follows that 11>y = Cy = (y1/µ1, . . . , yn−1/µn−1)
>, from which it

follows in particular that 1
>y 6= 0. By pre-multiplying the last equality with the row

vector (µ1, . . . , µn−1), we find that (1 − µn)1>y = 1
>y, a contradiction since µn > 0.

Consequently, the matrix [11> − C] is non–singular.

It follows that K−n is non–singular. Since the labeling of players is arbitrary, we have

shown that any combination of n−1 distinct rows of the matrix K is linearly independent.

2
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Proposition 4.8 It holds that θ̄i > 0 for all i ∈ N . The column span of the matrix D̄ has

dimension n− 1.

Proof: We know that θ̄i ≥ 0 for each i ∈ N . Partition N into the set N0 of players i such

that θ̄i = 0 and the set N+ of players i such that θ̄i > 0.

Suppose that the set N0 is non–empty, so that the set N+ consists of at most n − 1

elements. We show first that θ̄ ∈ span(D̄) by constructing a vector z ∈ Rn−1 such that

D̄z = θ̄. Since the rows Ki of the matrix K corresponding to the elements i of the set

N+ are linearly independent by Proposition 4.7, there exists a vector z ∈ Rn−1 such that

Kiz = 1 for all i ∈ N+. Then d̄iz = θ̄iKiz = θ̄i for all i ∈ N+. Trivially, z also satisfies the

equations d̄iz = θ̄iKiz = 0 = θ̄i for each i ∈ N0.

Let η be the normal vector to V at the point θ̄. Since η is orthogonal to span(D̄)

by Proposition 4.6, we have η>θ̄ = 0. Since zero is in the interior of V by assumption,

the vector εη is in the set V for ε > 0 small enough. But then we have the inequality

η>(εη − θ̄) = ε(η>η) > 0, contradicting the definition of a normal vector. Consequently,

the set N0 is empty. We have established the first part of the proposition.

To prove the second part of the proposition, notice that D̄ can be written as the product

TK, where T is a diagonal matrix with θ̄i in column i. Since θ̄i > 0 for each i ∈ N , the

matrix T has full rank n, and the matrix K has rank n − 1 by Proposition 4.7. This

establishes the second part of the proposition. 2

We now establish that the gradient of the logarithm of the asymmetric Nash product with

weights µ is orthogonal to the column span of the matrix D̄. We observe that

ln ρ(v) =
∑
i∈N

µi ln(vi).

Proposition 4.9 It holds that span(D̄) is orthogonal to the gradient of the function ln ρ

at the point θ̄.

Proof: The gradient of ln ρ at θ̄ is the vector g given by gj = µj/θ̄j, j ∈ N. We have the

following chain of equations∑
j∈N

gj d̄j =
∑
j∈N

µj1
>L−1(j)

=
∑

j∈N\{n}

µj[1
>L−1(n)− 1

µj

(L−1(n))j] + µn1
>L−1(n)

= 1
>L−1(n)−

∑
j∈N\{n}

(L−1(n))j

= 1
>L−1(n)− 1

>L−1(n) = 0,

18



where the first equality uses the result of Proposition 4.5, and the second one Proposi-

tion 4.7. This establishes the proposition. 2

The proof of Theorem 4.2 is now immediate. The column span of the matrix D̄ is orthogonal

to the normal vector of V at θ̄ by Proposition 4.6, and at the same time it is orthogonal to

the gradient of ln ρ at θ̄ by Proposition 4.9. Since span(D̄) has dimension n−1 (Proposition

4.8), it follows at once that the gradient of the function ln ρ is proportional to the normal

vector to V at θ̄. Hence, the point θ̄ is the maximizer of the function ln ρ on the set V, as

well as the maximizer of the function ρ on the set V.

5 Conclusion

In this paper we have provided further non-cooperative support to the asymmetric Nash

bargaining solution. We demonstrate that existing results are instances of a much more

generally valid principle. We consider a bargaining process involving any number of players,

an arbitrary irreducible Markov process that determines the selection of the proposer, and

any set of feasible payoffs that is bounded, convex, and has a smooth boundary. As long

as no agreement is reached, negotiations break down with some fixed probability.

We fully characterize the set of subgame perfect equilibria in stationary strategies. We

show that at least one such equilibrium exists and argue that in general there are many

such equilibria. We continue by studying the limit of an arbitrary sequence of equilibria

when the probability of breakdown goes to zero. We establish that in the limit all players

make the same proposal. Moreover, this proposal is the same as the one corresponding

to the asymmetric Nash bargaining solution, where the weights in the Nash product are

equal to the stationary distribution of the Markov process that determines the selection of

the proposer.

One implication is that if players are selected as proposer in some fixed order, then

the symmetric Nash bargaining solution is achieved in the limit. This can be seen as a

generalization of alternating offer bargaining to more than two players. Another implication

is that if players are selected according to time-invariant probabilities, these probabilities

are equal to the weights in the Nash product. The symmetric Nash bargaining solution

would again result if the time-invariant probabilities are uniform.

It is noteworthy that the bargaining power of the players is only affected by the sta-

tionary distribution of the proposer selection process. The particular shape of the set of

feasible payoffs is irrelevant for the weights of the players in the Nash product, as are the

particular probabilities by which the proposer in the next period is chosen conditional on

the current proposer.
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